JP4819375B2 - System connection method and system connection inverter for distributed power supply - Google Patents

System connection method and system connection inverter for distributed power supply Download PDF

Info

Publication number
JP4819375B2
JP4819375B2 JP2005060943A JP2005060943A JP4819375B2 JP 4819375 B2 JP4819375 B2 JP 4819375B2 JP 2005060943 A JP2005060943 A JP 2005060943A JP 2005060943 A JP2005060943 A JP 2005060943A JP 4819375 B2 JP4819375 B2 JP 4819375B2
Authority
JP
Japan
Prior art keywords
phase
reactive power
frequency
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005060943A
Other languages
Japanese (ja)
Other versions
JP2006246650A (en
Inventor
功次 小西
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2005060943A priority Critical patent/JP4819375B2/en
Publication of JP2006246650A publication Critical patent/JP2006246650A/en
Application granted granted Critical
Publication of JP4819375B2 publication Critical patent/JP4819375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、商用電力系統に太陽光発電等の分散型電源を連系する系統連系方法及び系統連系インバータに関する。   The present invention relates to a grid interconnection method and a grid interconnection inverter that link a distributed power source such as photovoltaic power generation to a commercial power grid.

太陽光発電や燃料電池発電等の分散配置された電源を商用電力系統に連系して、余剰電力を商用電力系統へ逆潮流させる電力システムが実用化されている。このような電力システムでは、例えば特許文献1に示すような系統連系インバータが使用され、太陽光等で発電された直流電力を必要な電圧まで昇圧し、インバータ回路及びフィルタ回路で交流電力に変換し、商用電力系統に接続して電力を出力する連系運転を行っている。   An electric power system has been put into practical use in which distributed power sources such as solar power generation and fuel cell power generation are connected to a commercial power system, and surplus power flows backward to the commercial power system. In such a power system, for example, a grid-connected inverter as shown in Patent Document 1 is used, and DC power generated by sunlight or the like is boosted to a necessary voltage and converted to AC power by an inverter circuit and a filter circuit. However, it is connected to the commercial power system and performs a grid operation that outputs power.

このような系統連系インバータを用いた連系運転の場合、連系運転中に事故や工事等により商用電力系統が停止すると、分散型電源の単独運転状態が発生する。この状態は、系統の保安面や供給信頼度確保の面から問題が生じるため、分散型電源の単独運転状態が発生したら、分散型電源を系統から解列させる操作が行われている。
これを自動的に行う場合、周波数変化や電圧変化を検知して行うことが可能であるが、系統停止後に分散型電源の発電出力と負荷で消費する有効及び無効電力が平衡状態にあると周波数変化や電圧変化が現れないため、このような状態では系統停止を検知することができず、自動で遮断動作させるのが難しかった。
In the case of interconnection operation using such a grid interconnection inverter, if the commercial power system is stopped due to an accident or construction during the interconnection operation, a single operation state of the distributed power source occurs. In this state, a problem arises from the viewpoint of system security and supply reliability, and therefore, when a single operation state of the distributed power source occurs, an operation of disconnecting the distributed power source from the system is performed.
When this is done automatically, it is possible to detect changes in frequency and voltage, but after the system is shut down, the frequency of the active and reactive power consumed by the distributed power generation output and the load is in equilibrium. Since no change or voltage change appears, the system stoppage cannot be detected in such a state, and it is difficult to automatically perform the shut-off operation.

そのため、その解決方法として、分散型電源の発電出力に周期的な無効電力変動を与えておき、その作用で単独運転移行時に現れる周期的な周波数変動等を検出して単独運転を検出する方法が提案されている(分散型電源系統連系技術指針(JEAG9701−2001))。
この場合、周期的な無効電力変動方法として、以下のような方法が考えられる。
(1) 無効電力変動を正弦波状に変動させる。
(2) 無効電力変動を三角波状に変動させる。
(3) 無効電力変動を矩形波状に変動させる。
尚、特許文献1は(3) の矩形波(方形波)に変動させている。
Therefore, as a solution to this, there is a method of detecting isolated operation by giving periodic reactive power fluctuations to the power generation output of the distributed power source and detecting periodic frequency fluctuations, etc. appearing at the time of transition to isolated operation by that action. Proposed (Distributed power system interconnection technical guidelines (JEAG 9701-2001)).
In this case, the following method can be considered as a periodic reactive power fluctuation method.
(1) Change the reactive power fluctuation in a sine wave.
(2) Change the reactive power fluctuation in a triangular waveform.
(3) Change the reactive power fluctuation in a rectangular waveform.
In Patent Document 1, the rectangular wave (square wave) of (3) is changed.

特開平9−23660号公報Japanese Patent Laid-Open No. 9-23660

しかしながら、上記変動方法は夫々次のような問題を有している。(1) の場合、無効電力がゆっくりと変動するため、単独運転時に現れる周波数変動は小さく、誤検出を引き起こし易い。また、(2) の場合は、(1) と同様に単独運転時に現れる周波数変動が小さく誤検出し易いし、分散型電源の出力電圧周波数が常に変動するため、出力電流波形の歪みが大きくなりやすい。
一方、(3) の場合は、単独運転時に現れる周波数変動が分かりやすいので検出し易いが、出力している無効電力を短時間に大きく変動させるため、連系運転中の出力電流の波形歪みが大きい。また、(3) の形状で無効電力を変動させる上記特許文献1では、周波数変化を検出すると無効電力を所定の値に固定する方法を開示しているが、所定の値に関する記載はなく、無効電力を固定した時の出力と負荷の力率が近似している場合、周波数変化は現れ難くなることから誤検出する可能性があった。
However, each of the above fluctuation methods has the following problems. In the case of (1), since the reactive power fluctuates slowly, the frequency fluctuations that appear during isolated operation are small, and false detection is likely to occur. In the case of (2), as in (1), the frequency fluctuation that appears during isolated operation is small and easily misdetected, and the output voltage frequency of the distributed power supply constantly fluctuates, which increases the distortion of the output current waveform. Cheap.
On the other hand, in the case of (3), the frequency fluctuation that appears during isolated operation is easy to detect and easy to detect, but the output reactive power greatly fluctuates in a short time. large. Further, in Patent Document 1 in which the reactive power is changed in the shape of (3), a method for fixing the reactive power to a predetermined value when a frequency change is detected is disclosed, but there is no description about the predetermined value. If the output when the power is fixed is close to the power factor of the load, the frequency change is less likely to appear, so there is a possibility of erroneous detection.

そこで、本発明はこのような問題点に鑑み、負荷位相が遅れ、或いは進みのどのような状態であっても確実に分散型電源の単独運転を検出できる系統連系方法及び系統連系インバータを提供することを目的とする。   Therefore, in view of such a problem, the present invention provides a grid interconnection method and a grid interconnection inverter that can reliably detect a single operation of a distributed power source even if the load phase is delayed or advanced. The purpose is to provide.

上記課題を解決する為に、請求項1に記載の発明は、分散型電源の直流出力を交流変換して商用電力系統に電流を逆潮流させる分散型電源の系統連系方法であって、逆潮流させる電流に一定周期で進み位相、遅れ位相に交互に変動する無効電力を重畳させ、この無効電力変動により連係点での周波数が予め設定した第1の周波数範囲から外れたら、重畳している無効電力の位相を、その時点の位相で固定して前記無効電力の変動周期より長い一定期間継続し、無効電力の位相が固定されている間に、連係点での周波数が前記第1の周波数範囲より広く設定された所定の第2の周波数範囲から外れたら、単独運転と判断して分散型電源の交流出力を停止することを特徴とする。
この方法により、周波数変動が発生したら、その位相で無効電力位相を固定して判定するので、負荷がどのような位相状態であっても単独運転を検出して停止させることができる。その結果、単独運転状態が継続されることが無く、連系点付近の保安、保守等の際の安全性を確保できる。また、無効電力位相を固定してから一定期間経過しても第2の周波数範囲から外れなければ、リセットして無効電力の周期変動を実施させることができ、誤動作を防ぐことが可能となる。
In order to solve the above-mentioned problem, the invention described in claim 1 is a system connection method of a distributed power source that converts the direct current output of the distributed power source into an alternating current and reversely flows a current to the commercial power system. The reactive power that alternately fluctuates in the forward phase and the delayed phase is superimposed on the current to be flowed, and is superimposed if the reactive power fluctuation causes the frequency at the linkage point to deviate from the preset first frequency range. the reactive power of the phase continues longer predetermined period fixed in phase than the variation cycle of the reactive power at that time, while the reactive power of the phase is fixed, the frequency at the connection point is the first frequency If it deviates from the predetermined second frequency range set wider than the range, it is determined that the operation is independent, and the AC output of the distributed power supply is stopped.
By this method, if frequency fluctuation occurs, the reactive power phase is fixed and determined at that phase, so that the isolated operation can be detected and stopped regardless of the phase state of the load. As a result, the isolated operation state is not continued, and safety during maintenance, maintenance, etc. near the interconnection point can be ensured. In addition, if the reactive power phase is fixed and if it does not deviate from the second frequency range even after a certain period of time, it can be reset to cause periodic fluctuations in the reactive power, and malfunction can be prevented.

請求項2の発明は、分散型電源の直流出力を交流変換して商用電力系統に電流を逆潮流させる分散型電源の系統連系方法であって、逆潮流させる電流に一定周期で進み位相、遅れ位相に交互に変動する無効電力を重畳させ、この無効電力変動により連係点での周波数が予め設定した第1の周波数範囲から外れたら、重畳している無効電力の前記交互の変動を停止してその時点での位相を漸増させ、その状態を無効電力の前記変動周期より長い一定期間継続し、無効電力の位相が漸増されている間に、連係点での周波数が前記第1の周波数範囲より広く設定された所定の第2の周波数範囲から外れたら、単独運転と判断して分散型電源の交流出力を停止することを特徴とする
この方法により、周波数の変動が発生した段階で無効電力の位相変動を停止するのに加えて無効電力成分を徐々に大きくするので、単独運転をより確実に判断することが可能となる。また、位相変動を停止してから一定期間経過しても第2の周波数範囲から外れなければ、リセットして無効電力の周期変動を実施させることができ、誤動作を防ぐことが可能となる。
The invention of claim 2 is a system connection method for a distributed power source that converts the direct current output of the distributed power source into an alternating current and reversely flows the current to the commercial power system, and advances the current to the reverse power flow in a constant cycle, When the reactive power that alternately varies in the delay phase is superimposed, and the frequency at the linkage point deviates from the preset first frequency range due to this reactive power variation, the alternating variation of the superimposed reactive power is stopped. The phase at that time is gradually increased and the state is continued for a certain period longer than the fluctuation period of the reactive power. While the phase of the reactive power is gradually increased, the frequency at the linkage point is the first frequency range. If it deviates from the predetermined second frequency range set wider, it is determined that the operation is independent, and the AC output of the distributed power supply is stopped .
According to this method, the reactive power component is gradually increased in addition to stopping the phase fluctuation of the reactive power when the frequency fluctuation occurs, so that it is possible to more reliably determine the single operation. In addition, if it does not deviate from the second frequency range even after a lapse of a certain period after the phase fluctuation is stopped, it can be reset and the periodic fluctuation of the reactive power can be carried out, and malfunction can be prevented.

請求項3の発明は、分散型電源の直流出力を入力してインバータ回路により交流電力に変換し、商用電力系統に逆潮流させるための分散型電源の系統連系インバータであって、前記インバータ回路を制御する制御部は、連系点電圧の電圧位相に同期させた電流の基準位相を基に有効電流の出力電流目標値を作成する目標電流設定部と、前記電流の基準位相を基に一定周期で進み位相、遅れ位相に交互に変動させた無効電力成分を生成する位相変動部と、前記出力電流目標値に前記無効電力成分を加算して、周期的な無効電力変動を発生させた交流電流を連系点に出力するよう変調する変調部とを有し、前記位相変動部は、出力周波数が所定の第1の周波数範囲から外れていないか判定する第1周波数判定部を備え、出力周波数が前記第1の周波数範囲から外れたら、その時点での位相で無効電力を固定し、前記無効電力の変動周期より長い一定期間位相固定状態を持続し、前記変調部は、前記第1の周波数範囲より広く設定された第2の周波数範囲を判定基準に有する第2周波数判定部を有し、出力周波数が前記第2の周波数範囲から外れたら変調動作を停止することを特徴とする。
この構成により、周波数変動が発生したら、その位相で無効電力位相を固定して判定するので、負荷がどのような位相状態であっても単独運転を検出して停止させることができる。その結果、単独運転状態が継続されることが無く、連系点付近の保安、保守等の際の安全性を確保できる。また、無効電力位相を固定してから一定期間経過しても第2の周波数範囲から外れなければ、リセットして無効電力の周期変動を実施させることができ、誤動作を防ぐことが可能となる。
The invention according to claim 3 is a grid-connected inverter of a distributed power source for inputting a DC output of the distributed power source, converting the AC power into an AC power by an inverter circuit, and causing a reverse power flow to a commercial power system, the inverter circuit The control unit for controlling the current is a target current setting unit that creates an output current target value of the active current based on the reference phase of the current synchronized with the voltage phase of the interconnection point voltage, and is constant based on the reference phase of the current A phase fluctuation unit that generates a reactive power component that alternately fluctuates between a lead phase and a delay phase in a cycle, and an alternating current that generates a periodic reactive power fluctuation by adding the reactive power component to the output current target value A modulation unit that modulates the current to be output to the interconnection point, and the phase variation unit includes a first frequency determination unit that determines whether or not the output frequency is out of a predetermined first frequency range. The frequency is the first circumference If it is out of the range, the reactive power is fixed at the phase at that time, the phase locked state is maintained for a certain period longer than the reactive power fluctuation period, and the modulation unit is set wider than the first frequency range. the second has a second frequency determining section having the criteria of frequency ranges, the output frequency, characterized in that the stop et modulation operation deviated from the second frequency range.
With this configuration, when frequency fluctuations occur, the reactive power phase is fixed and determined at that phase, so that independent operation can be detected and stopped regardless of the phase state of the load. As a result, the isolated operation state is not continued, and safety during maintenance, maintenance, etc. near the interconnection point can be ensured. In addition, if the reactive power phase is fixed and if it does not deviate from the second frequency range even after a certain period of time, it can be reset to cause periodic fluctuations in the reactive power, and malfunction can be prevented.

請求項4の発明は、分散型電源の直流出力を入力してインバータ回路により交流電力に変換し、商用電力系統に逆潮流させるための分散型電源の系統連系インバータであって、前記インバータ回路を制御する制御部は、連系点電圧の電圧位相に同期させた電流の基準位相を基に有効電流の出力電流目標値を作成する目標電流設定部と、前記電流の基準位相を基に一定周期で進み位相、遅れ位相に交互に変動させた無効電力成分を生成する変動周期生成部、及び位相変動を停止して無効電力の出力を漸増する無効電力漸増部を備えた位相変動部と、前記出力電流目標値に前記無効電力成分を加算して、周期的な無効電力変動を発生させた交流電流を連系点に出力するよう変調する変調部とを有し、
前記位相変動部は、出力周波数が所定の第1の周波数範囲から外れていないか判定する第1周波数判定部と、無効電力成分に1より大きい係数を掛け無効電力を漸増させる無効電力漸増部とを備え、出力周波数が前記第1の周波数範囲から外れたら、重畳している無効電力の前記交互の変動を停止してその時点での位相を漸増すると共に、その状態を無効電力の前記変動周期より長い一定期間持続させ、前記変調部は、前記第1の周波数範囲より広く設定された第2の周波数範囲を判定基準に有する第2の周波数判定部を有し、出力周波数が前記第2の周波数範囲から外れたら変調動作を停止することを特徴とする
この構成により、周波数の変動が発生した段階で無効電力の位相変動を停止するのに加えて無効電力成分を徐々に大きくするので、単独運転をより確実に判断することが可能となる。また、位相変動を停止してから一定期間経過しても第2の周波数範囲から外れなければ、リセットして無効電力の周期変動を実施させることができ、誤動作を防ぐことが可能となる。
The invention according to claim 4 is a grid-connected inverter of a distributed power source for inputting a DC output of the distributed power source, converting it into AC power by an inverter circuit, and causing a reverse power flow to a commercial power system, wherein the inverter circuit The control unit for controlling the current is a target current setting unit that creates an output current target value of the active current based on the reference phase of the current synchronized with the voltage phase of the interconnection point voltage, and is constant based on the reference phase of the current A phase fluctuation unit including a fluctuation period generation unit that generates a reactive power component that is alternately changed to a lead phase and a delay phase in a cycle, and a reactive power gradual increase unit that gradually increases the output of the reactive power by stopping the phase fluctuation; A modulation unit that adds the reactive power component to the output current target value and modulates the alternating current that causes periodic reactive power fluctuations to be output to a connection point;
The phase varying unit includes a first frequency determining unit that determines whether an output frequency is out of a predetermined first frequency range, a reactive power gradually increasing unit that gradually increases reactive power by multiplying a reactive power component by a coefficient larger than 1. When the output frequency is out of the first frequency range, the alternating fluctuation of the superposed reactive power is stopped, the phase at that time is gradually increased, and the state is changed to the fluctuation period of the reactive power. The modulation unit has a second frequency determination unit having a second frequency range set wider than the first frequency range as a determination criterion, and the output frequency is the second frequency range. The modulation operation is stopped when it is out of the frequency range .
With this configuration, the reactive power component is gradually increased in addition to stopping the reactive power phase fluctuation when the frequency fluctuation occurs, so that it is possible to more reliably determine the single operation. In addition, if it does not deviate from the second frequency range even after a lapse of a certain period after the phase fluctuation is stopped, it can be reset and the periodic fluctuation of the reactive power can be carried out, and malfunction can be prevented.

本発明によれば、周波数変動が発生したら、その位相で無効電力位相を固定或いは漸増して判定するので、負荷がどのような位相状態であっても単独運転を検出して停止させることができる。その結果、単独運転状態が継続されることが無く、連系点付近の保安、保守等の際の安全性を確保できる。また、無効電力位相を固定してから一定期間経過しても第2の周波数範囲から外れなければ、リセットして無効電力の周期変動を実施させることができ、誤動作を防ぐことが可能となる。 According to the present invention, when the frequency fluctuation occurs, the reactive power phase is fixed or gradually increased at that phase, so that the independent operation can be detected and stopped regardless of the phase state of the load. . As a result, the isolated operation state is not continued, and safety during maintenance, maintenance, etc. near the interconnection point can be ensured. In addition, if the reactive power phase is fixed and if it does not deviate from the second frequency range even after a certain period of time, it can be reset to cause periodic fluctuations in the reactive power, and malfunction can be prevented.

以下、本発明を具体化した実施の形態を、図面に基づいて詳細に説明する。図1は本発明に係る分散型電源の系統連系インバータの第1実施形態を示す構成図であり、1は分散配置された太陽光発電等の直流電源(分散型電源)、2は直流を交流に変換する交流変換部、3は交流変換部2を制御する制御部、4は商用電力系統、5は負荷を示し、制御部3は出力電流を検出してフィードバック制御により連系点Mに所定の電流を出力するよう構成されている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing a first embodiment of a grid-connected inverter of a distributed power source according to the present invention, wherein 1 is a DC power source (distributed power source) such as solar power generation distributed, and 2 is a DC power source. AC conversion unit for converting to AC, 3 is a control unit for controlling the AC conversion unit 2, 4 is a commercial power system, 5 is a load, and the control unit 3 detects the output current and returns to the connection point M by feedback control. It is configured to output a predetermined current.

交流変換部2は、インバータ回路10、LCフィルタ11を有し、12は電流検出手段を示している。この交流変換部2で、直流電源1から供給される直流電力を図示しないチョッパ回路等で昇圧し、インバータ回路10でパルス状の交流に変換し、LCフィルタ11で正弦波に平滑して商用電力系統4に出力している。   The AC conversion unit 2 includes an inverter circuit 10 and an LC filter 11, and 12 indicates current detection means. The AC converter 2 boosts the DC power supplied from the DC power source 1 by a chopper circuit or the like (not shown), converts it into a pulsed AC by the inverter circuit 10, smoothes it into a sine wave by the LC filter 11, and commercial power Outputs to system 4.

制御部3は、出力電圧波形のゼロクロスポイントを検出するための位相検出部15、PLL16、商用電力系統に出力する交流電流の目標電流を設定する目標電流設定部17、位相変動を与えるための位相変動部18、インバータ回路10の制御信号を生成する変調部19、周波数検出部20を備え、PLL16は位相検出部15で検出したゼロクロスポイントを基に目標電流設定部17及び位相変動部18に位相基準信号を出力している。
そして、目標電流設定部17は、正弦波信号に出力電流目標値を掛けることで、出力する有効電流の目標値(目標電流値)を設定している。
The control unit 3 includes a phase detection unit 15 for detecting a zero cross point of the output voltage waveform, a PLL 16, a target current setting unit 17 for setting a target current of an alternating current output to the commercial power system, and a phase for giving a phase variation. A fluctuation unit 18, a modulation unit 19 that generates a control signal for the inverter circuit 10, and a frequency detection unit 20 are provided, and the PLL 16 provides a phase to the target current setting unit 17 and the phase fluctuation unit 18 based on the zero cross point detected by the phase detection unit 15. A reference signal is being output.
Then, the target current setting unit 17 sets the target value (target current value) of the active current to be output by multiplying the sine wave signal by the output current target value.

また位相変動部18は、無効電力整定部22、変動周期作成部23、第1周波数判定部24を有し、無効電力整定部22から所定の大きさの無効電力整定値が出力され、出力電流に加算される無効電力の大きさが決定される。そして、変動周期作成部23から予め設定した波形形状の周期波形が出力され、無効電力に周期的な位相変動が付与される。   The phase fluctuation unit 18 includes a reactive power settling unit 22, a fluctuation period creation unit 23, and a first frequency determination unit 24. A reactive power settling value having a predetermined magnitude is output from the reactive power settling unit 22, and an output current The amount of reactive power added to is determined. Then, a periodic waveform having a preset waveform shape is output from the fluctuation period creating unit 23, and periodic phase fluctuation is given to the reactive power.

この変動波形を具体的に説明すると、図2(a)に示すような波形であり、作成される波形の変動値は、−1.0〜1.0の間を台形形状に周期変動させ、位相検出部15で得られる電圧位相0度をカウントする毎に更新され、例えば24カウントで1周期変化する、即ち電圧波形24周期で1周期変化をするように更新される。
尚、図2は連系運転から単独運転になった際の位相変動と電圧周波数の関係図で、(a)は位相変動波形、(b)は(a)の位相変動に対応した連系点Mの電圧周波数特性図を示し、P0点で商用電力系統が停止し、分散型電源(直流電源)の単独運転となった場合を示している。
Specifically explaining this fluctuation waveform, it is a waveform as shown in FIG. 2 (a), and the fluctuation value of the created waveform is periodically fluctuated between −1.0 and 1.0 in a trapezoidal shape, It is updated every time the voltage phase obtained by the phase detector 15 is counted as 0 degree, and is updated so as to change, for example, one cycle at 24 counts, that is, change one cycle at 24 voltage waveforms.
FIG. 2 is a diagram showing the relationship between phase fluctuation and voltage frequency when the operation is switched from the interconnection operation to the independent operation. (A) is the phase fluctuation waveform, and (b) is the interconnection point corresponding to the phase fluctuation of (a). The voltage frequency characteristic diagram of M is shown, and the case where the commercial power system stops at the point P0 and the single operation of the distributed power supply (DC power supply) is shown.

第1周波数判定部24は、検出している周波数の変化が基準周波数を中心とした一定範囲の第1の周波数範囲W1(基準B)を超えると、タイマー25が始動し、タイマー25が動作している間はスイッチ26がオフとなり、ゼロクロス検出信号の供給が絶たれる。その結果、変動周期が更新されなくなり、基準Bを超えた時点で同じ位相値が供給される。   When the change in the detected frequency exceeds the first frequency range W1 (reference B) that is a fixed range centered on the reference frequency, the first frequency determination unit 24 starts the timer 25 and activates the timer 25. During this time, the switch 26 is turned off, and the supply of the zero cross detection signal is cut off. As a result, the fluctuation period is not updated, and the same phase value is supplied when the reference B is exceeded.

変調部19は、PI演算を実施するPI演算部27、PWM変調するPWM変調部28、出力周波数が基準Aで設定した周波数範囲内であるか検出する第2周波数判定部29を有し、設定した目標電流値と電流検出手段12で検出した出力電流の値を比較し、その偏差をPI演算部27でPI演算し、その結果をPWM変調部28でPWM変調し、インバータ回路10の制御信号を作成している。
また、第2周波数判定部29は、検出している周波数の変化が上記第1周波数範囲W1より広い第2の周波数範囲W2(基準A)を超えると、PWM変調部28の変調動作を停止する。
The modulation unit 19 includes a PI calculation unit 27 that performs PI calculation, a PWM modulation unit 28 that performs PWM modulation, and a second frequency determination unit 29 that detects whether the output frequency is within the frequency range set by the reference A. The calculated target current value is compared with the value of the output current detected by the current detection means 12, the deviation is PI-calculated by the PI calculation unit 27, and the result is PWM-modulated by the PWM modulation unit 28, and the control signal of the inverter circuit 10 Have created.
The second frequency determination unit 29 stops the modulation operation of the PWM modulation unit 28 when the change in the detected frequency exceeds the second frequency range W2 (reference A) wider than the first frequency range W1. .

尚、周波数検出部20は、電圧位相0度と次の電圧位相0度の発生間隔に例えば50μSのカウンタが何回発生したかカウントして連系点の電圧周波数を検出している。但し、50μSのカウンタは絶対的なものではなく、もっと細かな周波数変動を検出したければ、カウンタの時間を短くする等の変更をすれば良い。   The frequency detection unit 20 detects the voltage frequency of the interconnection point by counting how many times, for example, a 50 μS counter is generated at the generation interval between the voltage phase 0 degree and the next voltage phase 0 degree. However, the 50 μS counter is not absolute, and if a finer frequency fluctuation is detected, the counter time may be changed.

以下、制御部3の動作を具体的に説明する。但し、この制御部3の各回路の制御はマイクロコンピュータ(図示せず)の演算処理にて行っている。
(1)直流電源1から連系点Mへの出力電流は次のように制御される。
最初に位相検出部15で連系点Mの電圧のゼロクロス点を検出し、そこから位相0度の発生タイミングを入手し、位相0度と内部クロックで作成する内部位相(ωt)の0度をPLL16により同期させる。こうして出力電圧位相に同期させた内部位相(ωt)を基に、目標電流設定部17では、正弦演算をしsin(ωt)を作成し、この値に出力電流目標値を掛けることで、出力する有効電流の目標値(目標電流値)を設定する。
Hereinafter, the operation of the control unit 3 will be specifically described. However, the control of each circuit of the control unit 3 is performed by arithmetic processing of a microcomputer (not shown).
(1) The output current from the DC power source 1 to the interconnection point M is controlled as follows.
First, the phase detector 15 detects the zero cross point of the voltage at the connection point M, obtains the generation timing of the phase 0 degree therefrom, and obtains 0 degree of the internal phase (ωt) created by the phase 0 degree and the internal clock. Synchronized by the PLL 16. Based on the internal phase (ωt) synchronized with the output voltage phase in this way, the target current setting unit 17 performs a sine calculation to create sin (ωt), and outputs this value by multiplying this value by the output current target value. Set the target value (target current value) of the active current.

そして、変調部19において、この目標電流値と電流検出手段で検出した出力電流の値を比較し、その偏差をPI演算し、その結果を基にPWM変調してインバータ回路10の制御信号を作成する。
こうして作成された制御信号をもとに、インバータ回路の4個のスイッチ(図示せず)を動作させることで、位相が連系点の電圧位相に同期し、大きさが出力電流目標値に等しい電流が出力される。
Then, the modulation unit 19 compares the target current value with the output current value detected by the current detection means, performs PI calculation on the deviation, and creates a control signal for the inverter circuit 10 by PWM modulation based on the result. To do.
By operating four switches (not shown) of the inverter circuit based on the control signal thus created, the phase is synchronized with the voltage phase of the interconnection point, and the magnitude is equal to the output current target value. Current is output.

(2)位相変動部18の動作を説明する。
最初に、連系点Mの電圧位相に同期した上記内部位相(ωt)から、余弦演算をしてcos(ωt)を作成する。この値に無効電力整定部22で予め設定された無効電力整定値を掛け、更に変動周期作成部23で生成した値を掛けた後、上記演算された目標電流値に加算する。
(2) The operation of the phase changing unit 18 will be described.
First, cosine (ωt) is generated by cosine calculation from the internal phase (ωt) synchronized with the voltage phase of the interconnection point M. This value is multiplied by the reactive power set value preset by the reactive power settling unit 22 and further multiplied by the value generated by the fluctuation cycle creation unit 23, and then added to the calculated target current value.

こうして加算された無効電力により、連系点Mでは図2(b)のT1部に示すような電圧周波数の僅かな変動が発生する。これは、目標電流値に進み位相の無効電力が重畳されると出力位相が進み、PLL16により直前の出力の位相に同期した後、それを基準に再度進み位相成分を出力するためで、変動周期が1の期間が続くときは、図2(b)に示すように連系点Mでの電圧周波数は上昇する。逆に、変動周期が−1の期間が続くと、PLL16により直前の出力の位相に同期した後、それを基準に再度遅れ位相成分が出力されるため、電圧周波数は低下することによる。但し、系統連系インバータの出力に対して商用電力系統4からのエネルギーが大きいため、その周波数の変動分は吸収されてしまい僅かな変動しか現れず、連系運転中は波形歪みを小さく保つことができる。   Due to the reactive power added in this way, a slight fluctuation of the voltage frequency occurs at the interconnection point M as shown in the T1 part of FIG. This is because the output phase advances when the reactive power of the phase is superimposed on the target current value, and after synchronizing with the phase of the immediately previous output by the PLL 16, the phase component is advanced again based on that and the phase component is output. When the period of 1 continues, the voltage frequency at the interconnection point M increases as shown in FIG. On the contrary, when the period of the fluctuation period is −1, the phase frequency is lowered again after the PLL 16 synchronizes with the phase of the immediately preceding output, and then the reference phase is used as a reference. However, since the energy from the commercial power system 4 is large relative to the output of the grid interconnection inverter, the fluctuation in the frequency is absorbed and only a slight fluctuation appears, and the waveform distortion should be kept small during the grid operation. Can do.

尚、変動周期について説明すると、変動周期作成部23から出力される変動値が「1」の場合、cos(ωt)値はsin(ωt)値より位相が90度進んでいることを示している。これは、大きさが無効電力整定値分で90度の進み位相成分が目標電流値に重畳されることになる。その結果、系統に出力される電流も、目標電流値に無効電力整定値分位相が90度進んだ成分を重畳したものとなる。
逆に、変動周期作成部23から与えられる値が「−1」の場合は、cos(ωt)を基に作成した無効電力成分が反転され、−90度遅れていることを示している。これは、目標電流値に大きさが無効電力整定値分で90度の遅れ位相成分が目標電流値に重畳され、系統に出力される電流も出力電流目標に無効電力整定値分位相が90度遅れた成分を重畳したものとなる。
The fluctuation period will be described. When the fluctuation value output from the fluctuation period generator 23 is “1”, the cos (ωt) value is 90 degrees ahead of the sin (ωt) value. . This is because the lead phase component of 90 degrees in magnitude corresponding to the reactive power set value is superimposed on the target current value. As a result, the current output to the system is also the target current value superimposed with a component whose phase is advanced 90 degrees by the reactive power settling value.
Conversely, when the value given from the fluctuation cycle creation unit 23 is “−1”, it indicates that the reactive power component created based on cos (ωt) is inverted and delayed by −90 degrees. This is because the target current value is superimposed on the target current value by a delay phase component of 90 degrees in magnitude corresponding to the reactive power setting value, and the current output to the system also has a phase corresponding to the reactive power setpoint value of 90 degrees. The delayed component is superimposed.

(3)分散型電源が単独運転となった場合。
上述するように、連系運転中は系統連系インバータの出力に対して商用電力系統4からのエネルギーが大きいため周波数の変動は殆ど現れない。ところが、商用電力系統4が停止して直流電源1の単独運転になると、出力する無効電力位相に応じて連系点Mの電圧周波数が大きく変化するようになり、図2(b)のT2部に示すように周波数変化率が大きくなる。
(3) When the distributed power source is operated independently.
As described above, during the grid connection operation, the energy from the commercial power system 4 is large with respect to the output of the grid connection inverter, so that the frequency variation hardly appears. However, when the commercial power system 4 is stopped and the DC power supply 1 is operated alone, the voltage frequency of the interconnection point M changes greatly according to the reactive power phase to be output, and the T2 portion in FIG. As shown, the frequency change rate becomes large.

具体的に、負荷力率が1の場合に系統が停止状態になると、位相変動が進み位相状態ではPLLにより同期した連系点の電圧位相に進み成分を出力するため周波数は上昇する。また遅れ位相のときは低下する。
また、負荷位相が遅れ位相の場合に系統が停止状態になると、変動周期がマイナス側の時は、負荷と分散型電源の出力が平衡状態となり、電圧周波数変化は現れ難くなるが、プラス側に移行すると電圧周波数の変化(上昇)は顕著に現れる。
一方、負荷位相が進み位相の場合に系統が停止状態になると、同様の理由で変動周期がマイナス側の時に電圧周波数の変化(低下)が顕著に現れる。
Specifically, when the system is stopped when the load power factor is 1, in the phase state, in the phase state, the voltage phase is increased to advance to the voltage phase of the interconnection point synchronized by the PLL. In addition, it decreases when the phase is delayed.
Also, when the load phase is delayed and the system is stopped, when the fluctuation cycle is negative, the load and the output of the distributed power source are balanced, and voltage frequency changes are less likely to appear, but on the positive side. When shifted, the change (increase) in the voltage frequency appears remarkably.
On the other hand, when the system is stopped when the load phase is the leading phase, a change (decrease) in the voltage frequency appears noticeably when the fluctuation cycle is negative for the same reason.

以下、図2の波形図を基に具体的に説明する。P0点で単独運転が発生すると、出力周波数の変化がその時点から大きくなり基準B(第1の周波数範囲W1)から外れることになる。すると、無効電力はその時点(P1点)で位相が固定される。尚、図2では遅れ位相で固定された様子を示している。商用電力系統が停止状態であれば周波数はどんどん低下する。
その後、単独運転が継続すると、周波数の変化は更に大きくなりP2点で基準A(第2の周波数範囲W2)から外れる(第2の周波数範囲W2の下限を下回る)。そうなると、第2周波数判定部29から停止信号が出力され、PWM変調部28は動作を停止する。
逆に、進み位相の状態で位相が固定されると、周波数は上昇して基準Bを上回るし、単独運転が継続すると基準Aを上回る。
尚、タイマ25がタイムアップするまで基準Aを超えなければ、タイムアップした時点で変動周期作成部23は動作を再開して、出力位相は周期変動を再開する。
This will be specifically described below with reference to the waveform diagram of FIG. When the single operation occurs at the point P0, the change in the output frequency increases from that point and deviates from the reference B (first frequency range W1). Then, the phase of the reactive power is fixed at that time (P1 point). FIG. 2 shows a state in which the phase is fixed with a delay phase. If the commercial power system is stopped, the frequency will decrease.
Thereafter, when the isolated operation is continued, the frequency change is further increased and deviates from the reference A (second frequency range W2) at the point P2 (below the lower limit of the second frequency range W2). Then, a stop signal is output from the second frequency determination unit 29, and the PWM modulation unit 28 stops its operation.
On the contrary, if the phase is fixed in the state of the leading phase, the frequency increases and exceeds the reference B, and exceeds the reference A when the isolated operation continues.
If the reference A is not exceeded until the timer 25 expires, the fluctuation cycle creation unit 23 resumes operation when the time is up, and the output phase resumes cyclic fluctuations.

このように、周波数変動が発生したら、その位相で無効電力位相を固定して判定するので、負荷がどのような位相状態であっても単独運転を検出して停止させることができる。その結果、単独運転状態が継続されることが無く、連系点付近の保安、保守等の際の安全性を確保できる。また、無効電力位相を固定してから一定期間経過しても第2の周波数範囲から外れなければ、リセットして無効電力の周期変動を実施させることができ、誤動作を防ぐことが可能となる。   As described above, when the frequency fluctuation occurs, the reactive power phase is fixed and determined based on the phase, so that the isolated operation can be detected and stopped regardless of the phase state of the load. As a result, the isolated operation state is not continued, and safety during maintenance, maintenance, etc. near the interconnection point can be ensured. In addition, if the reactive power phase is fixed and if it does not deviate from the second frequency range even after a certain period of time, it can be reset to cause periodic fluctuations in the reactive power, and malfunction can be prevented.

図3は系統連系インバータの第2実施形態を示している。上記第1実施形態との相違点は、位相変動部18に無効電力漸増部31を有している点であり、上記図1と同様の構成要素には同一の符号を付与し、説明は省略する。
無効電力漸増部31は、傾き係数発生部32、第1周波数判定部24に制御されるスイッチ33を有し、周波数の変化が基準Bを超えてタイマ25が始動すると、変動分が固定された無効電力成分に1より大きい傾き係数を掛ける構成となっており、結果として位相変動を停止された無効電力の出力が漸増し、出力の無効電力成分が増加して行く。
FIG. 3 shows a second embodiment of the grid interconnection inverter. The difference from the first embodiment is that the phase varying unit 18 has a reactive power gradually increasing unit 31, and the same components as those in FIG. To do.
The reactive power gradual increase unit 31 includes a switch 33 controlled by the slope coefficient generation unit 32 and the first frequency determination unit 24. When the timer 25 is started when the frequency change exceeds the reference B, the fluctuation amount is fixed. The reactive power component is multiplied by a slope coefficient larger than 1. As a result, the reactive power output whose phase fluctuation is stopped gradually increases and the reactive power component of the output increases.

この図3の制御部の動作を図4を基に説明する。図4は上記図2と同様に、連系運転から単独運転になった際の位相変動と電圧周波数の関係図で、(a)は位相変動波形、(b)は(a)の位相変動に対応した連系点の電圧周波数特性図を示し、上記図2と同様にP0点で商用電力系統が停止し、分散型電源の単独運転となった場合を示している。   The operation of the control unit in FIG. 3 will be described with reference to FIG. FIG. 4 is a diagram showing the relationship between the phase fluctuation and the voltage frequency when switching from the grid operation to the independent operation, as in FIG. 2, where (a) shows the phase fluctuation waveform and (b) shows the phase fluctuation of (a). The voltage frequency characteristic diagram of the corresponding interconnection point is shown, and the case where the commercial power system is stopped at the point P0 as in FIG.

単独運転が発生すると、出力周波数の変化が大きくなり基準Bから外れ、無効電力はその時点(P1点)で位相が固定される。同時に、無効電力漸増部31が作動して固定された位相を漸増させて無効電力を漸増させる。図4では遅れ位相で基準Bから外れた様子を示し、系統停止状態であれば周波数はどんどん低下する。
その後、単独運転が継続すると、周波数の変化は更に大きくなりP2点で基準Aから外れる。そうなると、第2周波数判定部29から停止信号が出力され、PWM変調部28は動作を停止する。逆に、進み位相の状態で位相が固定されると、周波数は上昇して基準Bを上回るし、単独運転が継続すると基準Aを上回り、同様にPWM変調部28は出力を停止する。
尚、タイマ25がタイムアップするまで基準Aを超えなければ、タイムアップした時点で変動周期作成部23は動作を再開して、出力位相は周期変動を再開する。
When the isolated operation occurs, the change in the output frequency increases and deviates from the reference B, and the phase of the reactive power is fixed at that time (P1 point). At the same time, the reactive power gradually increasing unit 31 operates to gradually increase the fixed phase and gradually increase the reactive power. FIG. 4 shows a state in which the phase is deviated from the reference B due to the delayed phase. If the system is stopped, the frequency is decreased.
Thereafter, when the isolated operation is continued, the frequency change is further increased and deviates from the reference A at the point P2. Then, a stop signal is output from the second frequency determination unit 29, and the PWM modulation unit 28 stops its operation. On the other hand, when the phase is fixed in the lead phase state, the frequency increases and exceeds the reference B. When the isolated operation continues, the frequency exceeds the reference A, and the PWM modulator 28 similarly stops the output.
If the reference A is not exceeded until the timer 25 expires, the fluctuation cycle creation unit 23 resumes operation when the time is up, and the output phase resumes cyclic fluctuations.

このように、周波数変動が発生したら、その位相で無効電力位相を固定して判定するので、負荷がどのような位相状態であっても単独運転を検出して停止させることができる。その結果、単独運転状態が継続されることが無く、連系点付近の保安、保守等の際の安全性を確保できる。而も、無効電力の位相変動停止に合わせて無効電力成分を徐々に大きくするので、単独運転をより確実に判断することができる。
また、無効電力の位相変動を停止してから一定期間経過しても第2の周波数範囲から外れなければ、リセットして無効電力の周期変動を実施させることができ、誤動作を防ぐことが可能となる。
As described above, when the frequency fluctuation occurs, the reactive power phase is fixed and determined based on the phase, so that the isolated operation can be detected and stopped regardless of the phase state of the load. As a result, the isolated operation state is not continued, and safety during maintenance, maintenance, etc. near the interconnection point can be ensured. In addition, since the reactive power component is gradually increased in accordance with the stoppage of the phase variation of the reactive power, it is possible to more reliably determine the single operation.
In addition, if it does not deviate from the second frequency range even after a lapse of a certain period after the phase change of reactive power is stopped , it can be reset and periodic fluctuations of reactive power can be performed, and malfunctions can be prevented. Become.

尚、上記実施形態では、目標電流値に重畳させる無効電流の周期波形を台形形状としているが、従来技術の如く矩形波形状であっても良い。また、第1の周波数範囲W1、第2の周波数範囲W2の具体的な値は、連系する分散型電源の容量や連系点の特性等に合わせて個々に設定される。   In the above embodiment, the periodic waveform of the reactive current superimposed on the target current value has a trapezoidal shape, but may have a rectangular wave shape as in the prior art. Further, specific values of the first frequency range W1 and the second frequency range W2 are individually set in accordance with the capacity of the distributed power source and the characteristics of the connection point.

本発明に係る分散型電源の系統連系インバータの第1実施形態を示す回路ブロック図である。1 is a circuit block diagram illustrating a first embodiment of a grid-connected inverter of a distributed power source according to the present invention. 図1の動作説明のための位相変動と電圧周波数の関係図であり、(a)は位相変動波形、(b)は(a)の位相変動に対応した連系点の電圧周波数特性図である。FIG. 2 is a relationship diagram of phase fluctuation and voltage frequency for explaining the operation of FIG. 1, (a) is a phase fluctuation waveform, and (b) is a voltage frequency characteristic diagram of a connection point corresponding to the phase fluctuation of (a). . 本発明に係る分散型電源の系統連系インバータの第2実施形態を示す回路ブロック図である。It is a circuit block diagram which shows 2nd Embodiment of the grid connection inverter of the distributed power source which concerns on this invention. 図3の動作説明のための位相変動と電圧周波数の関係図であり、(a)は位相変動波形、(b)は(a)の位相変動に対応した連系点の電圧周波数特性図である。FIG. 4 is a relationship diagram of phase fluctuation and voltage frequency for explaining the operation of FIG. 3, (a) is a phase fluctuation waveform, and (b) is a voltage frequency characteristic diagram of a connection point corresponding to the phase fluctuation of (a). .

1・・直流電源(分散型電源)、2・・交流変換部、3・・制御部、4・・商用電力系統、5・・負荷、10・・インバータ回路、17・・目標電流設定部、18・・位相変動部、19・・変調部、22・・無効電力制定部、23・・変動周期作成部、24・・第1周波数判定部、29・・第2周波数判定部、31・・無効電力漸増部、M・・連系点、W1・・第1の周波数範囲、W2・・第2の周波数範囲。   1 .... DC power supply (distributed power supply) 2 .... AC conversion unit 3 .... control unit 4 .... commercial power system 5 .... load 10 .... inverter circuit 17 .... target current setting unit, 18 .. Phase variation unit, 19 .. Modulation unit, 22 .. Reactive power establishment unit, 23 .. Variation period creation unit, 24 .. First frequency determination unit, 29 .. Second frequency determination unit, 31. Reactive power gradually increasing section, M ·· interconnection point, W 1 ··· first frequency range, W 2 ··· second frequency range.

Claims (4)

分散型電源の直流出力を交流変換して商用電力系統に電流を逆潮流させる分散型電源の系統連系方法であって、
逆潮流させる電流に一定周期で進み位相、遅れ位相に交互に変動する無効電力を重畳させ、この無効電力変動により連係点での周波数が予め設定した第1の周波数範囲から外れたら、重畳している無効電力の位相を、その時点の位相で固定して前記無効電力の変動周期より長い一定期間継続し
無効電力の位相が固定されている間に、連係点での周波数が前記第1の周波数範囲より広く設定された所定の第2の周波数範囲から外れたら、単独運転と判断して分散型電源の交流出力を停止することを特徴とする分散型電源の系統連系方法。
A system connection method for a distributed power source that converts the direct current output of the distributed power source into an alternating current and reverses the current to the commercial power system.
The reactive power that alternately fluctuates in the forward phase and the delayed phase is superimposed on the current to be reversely flowed. The phase of the reactive power is fixed at the current phase and continues for a certain period longer than the reactive power fluctuation period,
While reactive power of phase are fixed, when out of a predetermined second frequency range whose frequency is set wider than the first frequency range at linkage points, distributed power supply is determined that the isolated operation A system interconnection method for a distributed power source, characterized in that AC output is stopped.
分散型電源の直流出力を交流変換して商用電力系統に電流を逆潮流させる分散型電源の系統連系方法であって、
逆潮流させる電流に一定周期で進み位相、遅れ位相に交互に変動する無効電力を重畳させ、この無効電力変動により連係点での周波数が予め設定した第1の周波数範囲から外れたら、重畳している無効電力の前記交互の変動を停止してその時点での位相を漸増させ、その状態を無効電力の前記変動周期より長い一定期間継続し、
無効電力の位相が漸増されている間に、連係点での周波数が前記第1の周波数範囲より広く設定された所定の第2の周波数範囲から外れたら、単独運転と判断して分散型電源の交流出力を停止することを特徴とする分散型電源の系統連系方法。
A system connection method for a distributed power source that converts the direct current output of the distributed power source into an alternating current and reverses the current to the commercial power system.
The reactive power that alternately fluctuates in the forward phase and lagging phase is superimposed on the current to be reversely flowed. If the frequency at the linkage point deviates from the preset first frequency range due to this reactive power fluctuation, it is superimposed. Stop the alternating fluctuation of the reactive power and gradually increase the phase at that time, and continue the state for a certain period longer than the fluctuation period of the reactive power,
While the phase of the reactive power is gradually increased, if the frequency at the linkage point deviates from the predetermined second frequency range set wider than the first frequency range, it is determined that the operation is independent, and the distributed power source A system interconnection method for a distributed power source, characterized in that AC output is stopped .
分散型電源の直流出力を入力してインバータ回路により交流電力に変換し、商用電力系統に逆潮流させるための分散型電源の系統連系インバータであって、
前記インバータ回路を制御する制御部は、連系点電圧の電圧位相に同期させた電流の基準位相を基に有効電流の出力電流目標値を作成する目標電流設定部と、
前記電流の基準位相を基に一定周期で進み位相、遅れ位相に交互に変動させた無効電力成分を生成する位相変動部と、
前記出力電流目標値に前記無効電力成分を加算して、周期的な無効電力変動を発生させた交流電流を連系点に出力するよう変調する変調部とを有し、
前記位相変動部は、出力周波数が所定の第1の周波数範囲から外れていないか判定する第1周波数判定部を備え、出力周波数が前記第1の周波数範囲から外れたら、その時点での位相で無効電力を固定し、前記無効電力の変動周期より長い一定期間位相固定状態を持続し、
前記変調部は、前記第1の周波数範囲より広く設定された第2の周波数範囲を判定基準に有する第2周波数判定部を有し、出力周波数が前記第2の周波数範囲から外れたら変調動作を停止することを特徴とする分散型電源の系統連系インバータ。
It is a grid-connected inverter of a distributed power source for inputting the DC output of the distributed power source, converting it to AC power by an inverter circuit, and causing reverse flow to the commercial power system,
A control unit that controls the inverter circuit includes a target current setting unit that creates an output current target value of an active current based on a reference phase of a current synchronized with a voltage phase of a connection point voltage;
A phase fluctuation unit that generates a reactive power component that is alternately changed to a lead phase and a delay phase in a constant cycle based on a reference phase of the current;
A modulation unit that adds the reactive power component to the output current target value and modulates the alternating current that causes periodic reactive power fluctuations to be output to a connection point;
The phase variation unit includes a first frequency determination unit that determines whether the output frequency is out of a predetermined first frequency range. If the output frequency is out of the first frequency range, the phase at that time Reactive power is fixed, and the phase fixed state is maintained for a certain period longer than the reactive power fluctuation period,
The modulation unit includes a second frequency determining section having the first second frequency range that is wider set than the frequency range criteria, et modulation of the output frequency deviates from the second frequency range A grid-connected inverter of a distributed power source characterized by stopping operation.
分散型電源の直流出力を入力してインバータ回路により交流電力に変換し、商用電力系統に逆潮流させるための分散型電源の系統連系インバータであって、
前記インバータ回路を制御する制御部は、連系点電圧の電圧位相に同期させた電流の基準位相を基に有効電流の出力電流目標値を作成する目標電流設定部と、
前記電流の基準位相を基に一定周期で進み位相、遅れ位相に交互に変動させた無効電力成分を生成する変動周期生成部、及び位相変動を停止して無効電力の出力を漸増する無効電力漸増部を備えた位相変動部と、
前記出力電流目標値に前記無効電力成分を加算して、周期的な無効電力変動を発生させた交流電流を連系点に出力するよう変調する変調部とを有し、
前記位相変動部は、出力周波数が所定の第1の周波数範囲から外れていないか判定する第1周波数判定部と、無効電力成分に1より大きい係数を掛けて無効電力を漸増させる無効電力漸増部とを備え、出力周波数が前記第1の周波数範囲から外れたら、重畳している無効電力の前記交互の変動を停止してその時点での位相を漸増すると共に、その状態を無効電力の前記変動周期より長い一定期間持続させ、
前記変調部は、前記第1の周波数範囲より広く設定された第2の周波数範囲を判定基準に有する第2の周波数判定部を有し、出力周波数が前記第2の周波数範囲から外れたら変調動作を停止することを特徴とする分散型電源の系統連系インバータ。
It is a grid-connected inverter of a distributed power source for inputting the DC output of the distributed power source, converting it to AC power by an inverter circuit, and causing reverse flow to the commercial power system,
A control unit that controls the inverter circuit includes a target current setting unit that creates an output current target value of an active current based on a reference phase of a current synchronized with a voltage phase of a connection point voltage;
Based on the reference phase of the current, a fluctuation period generation unit that generates a reactive power component that is alternately changed to a leading phase and a lagging phase, and a reactive power gradual increase that gradually increases the reactive power output by stopping the phase fluctuation A phase variation section with a section,
A modulation unit that adds the reactive power component to the output current target value and modulates the alternating current that causes periodic reactive power fluctuations to be output to a connection point;
The phase varying unit includes a first frequency determining unit that determines whether the output frequency is out of a predetermined first frequency range, and a reactive power gradually increasing unit that gradually increases the reactive power by multiplying the reactive power component by a coefficient larger than 1. When the output frequency is out of the first frequency range, the alternating fluctuation of the superposed reactive power is stopped, the phase at that time is gradually increased, and the state is changed to the fluctuation of the reactive power. Last for a period longer than the cycle,
The modulation unit includes a second frequency determination unit having a second frequency range set wider than the first frequency range as a determination criterion, and performs a modulation operation when an output frequency is out of the second frequency range. A grid-connected inverter of a distributed power source characterized by stopping the operation .
JP2005060943A 2005-03-04 2005-03-04 System connection method and system connection inverter for distributed power supply Active JP4819375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060943A JP4819375B2 (en) 2005-03-04 2005-03-04 System connection method and system connection inverter for distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060943A JP4819375B2 (en) 2005-03-04 2005-03-04 System connection method and system connection inverter for distributed power supply

Publications (2)

Publication Number Publication Date
JP2006246650A JP2006246650A (en) 2006-09-14
JP4819375B2 true JP4819375B2 (en) 2011-11-24

Family

ID=37052459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060943A Active JP4819375B2 (en) 2005-03-04 2005-03-04 System connection method and system connection inverter for distributed power supply

Country Status (1)

Country Link
JP (1) JP4819375B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070776B2 (en) * 2006-09-12 2012-11-14 井関農機株式会社 Control device for work vehicle
JP4983471B2 (en) * 2007-08-08 2012-07-25 パナソニック株式会社 Grid-connected inverter device
JP5343230B2 (en) * 2009-05-13 2013-11-13 新電元工業株式会社 Inverter
JP2011015493A (en) * 2009-06-30 2011-01-20 Fuji Electric Holdings Co Ltd Distributed power supply device
JP5946035B2 (en) * 2012-03-30 2016-07-05 東芝Itコントロールシステム株式会社 Solar power generation control system
JP6260194B2 (en) * 2013-10-22 2018-01-17 日本電気株式会社 Power storage device, power storage system, and method for controlling power storage device
JP6159271B2 (en) * 2014-02-21 2017-07-05 株式会社日立製作所 Power converter and control method of power converter
JP6459678B2 (en) * 2015-03-19 2019-01-30 アイシン精機株式会社 Distributed power grid interconnection device
KR101554630B1 (en) 2015-05-14 2015-09-21 카코뉴에너지 주식회사 Anti-islanding detection apparatus for parallel distributed generation
JP7068619B2 (en) * 2017-11-15 2022-05-17 日新電機株式会社 Independent operation detection device, grid interconnection inverter and independent operation detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851724A (en) * 1994-08-10 1996-02-20 Fuji Electric Co Ltd Method for detecting single operation of system interconnection inverter
JP3353549B2 (en) * 1995-03-30 2002-12-03 富士電機株式会社 Islanding operation detection device of inverter for grid interconnection
JP3235768B2 (en) * 1995-07-10 2001-12-04 富士電機株式会社 Method of detecting isolated operation of distributed power supply
JP3315298B2 (en) * 1995-11-07 2002-08-19 東芝アイティー・コントロールシステム株式会社 Power grid connection protection device

Also Published As

Publication number Publication date
JP2006246650A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4819375B2 (en) System connection method and system connection inverter for distributed power supply
US10084317B2 (en) Power converter circuit with AC output
KR100763135B1 (en) Photovoltaic power generation system and control method thereof
JP5459634B2 (en) Maximum power point tracking method and apparatus in power conversion based on double feedback loop and power ripple
US8879285B2 (en) Power converter for outputting power to a system
US9478989B2 (en) Power converter circuit with AC output
KR100817137B1 (en) The switching method which and uses this with the power conversion device of the distributed generation
JPH0638696B2 (en) Power converter
CN103078545A (en) Control circuit for stand-alone /grid-connected dual-mode inverter and switching technology thereof
EP2515430A2 (en) Electric generating system using solar cell
JP5608809B2 (en) Power converter
JP5505145B2 (en) Isolated operation detection device
JPH0728538A (en) System interconnection type inverter controller
WO2008029711A1 (en) Sequence-linked inverter device
JP2006217775A (en) System interconnection inverter of distributed power supply
JP2010115094A (en) Individual operation detection device of inverter and method of detecting the individual operation
JP2007135256A (en) Interconnected inverter
JP4712148B2 (en) Power converter
JP5331399B2 (en) Power supply
JP6243503B2 (en) Power conditioner and inverter control method
JP4983471B2 (en) Grid-connected inverter device
JP4039326B2 (en) Isolated operation detection method and power supply apparatus
JP4049080B2 (en) Isolated operation detection method and power supply apparatus
JP3245505B2 (en) Grid-connected inverter controller
JP6631311B2 (en) Power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4819375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250