JP4819322B2 - Metal oxide fine particle dispersion and method for producing the same - Google Patents

Metal oxide fine particle dispersion and method for producing the same Download PDF

Info

Publication number
JP4819322B2
JP4819322B2 JP2004139456A JP2004139456A JP4819322B2 JP 4819322 B2 JP4819322 B2 JP 4819322B2 JP 2004139456 A JP2004139456 A JP 2004139456A JP 2004139456 A JP2004139456 A JP 2004139456A JP 4819322 B2 JP4819322 B2 JP 4819322B2
Authority
JP
Japan
Prior art keywords
metal oxide
oxide fine
fine particle
particle dispersion
zeta potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004139456A
Other languages
Japanese (ja)
Other versions
JP2005001981A (en
Inventor
宏幸 木田
京史 足立
智之 新島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuso Chemical Co Ltd
Original Assignee
Fuso Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuso Chemical Co Ltd filed Critical Fuso Chemical Co Ltd
Priority to JP2004139456A priority Critical patent/JP4819322B2/en
Publication of JP2005001981A publication Critical patent/JP2005001981A/en
Application granted granted Critical
Publication of JP4819322B2 publication Critical patent/JP4819322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Colloid Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は金属酸化物微粒子分散体及びその製造方法に関し、その目的は分散媒が酸性領域であっても金属酸化物微粒子の凝集やゲル化を起こすことがなく、長期間安定分散可能な金属酸化物微粒子分散体及びその製造方法を提供することにある。 The present invention relates to metal oxide fine particles dispersion and a manufacturing method thereof, and an object without causing aggregation or gelation of the metal oxide fine particles even dispersion medium is an acidic region, long-term stability dispersible metal oxide An object of the present invention is to provide a fine particle dispersion and a method for producing the same.

シリカ微粒子を水に分散させたコロイダルシリカは、半導体ウェーハの研磨剤として使用され、とくにアルキルシリケートを原料として製造されたコロイダルシリカは、ナトリウム等の金属不純物の含有量が低く高純度であるために、半導体ウェーハの最終研磨工程で広く使用されている。   Colloidal silica in which silica fine particles are dispersed in water is used as a semiconductor wafer polishing agent. Widely used in the final polishing process of semiconductor wafers.

コロイダルシリカの製造方法としては、様々な方法が提案されているが、特にストーバーらの報告(非特許文献1参照)が広く知られている。
ストーバーらのコロイダルシリカの製造方法は、金属アルコキシドを塩基性アルコール水溶液中で加水分解反応を行うことにより、コロイダルシリカを製造する方法であり、様々な金属アルコキシドに対して適用されている。
Various methods have been proposed for producing colloidal silica, but the report by Stover et al. (See Non-Patent Document 1) is widely known.
The method for producing colloidal silica by Stover et al. Is a method for producing colloidal silica by hydrolyzing a metal alkoxide in a basic alcohol aqueous solution, and is applied to various metal alkoxides.

J. Colloid and Interface Sci., 26 (1968) 62J. Colloid and Interface Sci., 26 (1968) 62

しかしながら、上記した製造方法によって製造された従来のコロイダルシリカは、分散媒が酸性領域の場合、ゼータ電位の絶対値がゼロ付近の値となる。ゼータ電位とは、互いに接している固体と液体とが相対運動を行ったときの両者の界面に生じる電位差のことであり、ゼータ電位の絶対値が増加すれば、粒子間の反発が強く粒子の安定性は高くなり、ゼータ電位の絶対値がゼロに近くなるほど、粒子は凝集しやすくなる。
従来のコロイダルシリカは、分散媒が酸性領域である場合、ゼータ電位の絶対値がゼロ付近の値となるから、従来のコロイダルシリカは特に酸性領域におけるケイ素微粒子の分散性が不安定であり、長期間保存するとケイ素微粒子の凝集やゲル化などが起こり易く、保存安定性が悪いという問題が存在した。
However, the conventional colloidal silica produced by the above production method has an absolute value of zeta potential near zero when the dispersion medium is in the acidic region. The zeta potential is the potential difference that occurs at the interface between the solid and the liquid that are in contact with each other when they move relative to each other. If the absolute value of the zeta potential increases, the repulsion between the particles is strong. Stability increases and the closer the absolute value of the zeta potential is to zero, the more likely the particles will aggregate.
In conventional colloidal silica, when the dispersion medium is in the acidic region, the absolute value of the zeta potential becomes a value near zero. Therefore, in conventional colloidal silica, the dispersibility of silicon fine particles in the acidic region is particularly unstable and long. When stored for a long period of time, the silicon fine particles are likely to aggregate and gel, and the storage stability is poor.

本発明者らは上記課題を解決すべく鋭意研究を行った結果、加水分解可能なケイ素化合物と、加水分解可能なチタン化合物とを組み合わせて金属酸化物微粒子分散体を製造することにより、酸性領域におけるゼータ電位を改善することができ、よって広いpH領域において長期間安定分散可能な金属微粒子分散体が得られることを見出し、本発明の完成に至った。 As a result of diligent research to solve the above problems, the present inventors have produced a metal oxide fine particle dispersion by combining a hydrolyzable silicon compound and a hydrolyzable titanium compound, thereby producing an acidic region. It has been found that a metal fine particle dispersion can be obtained which can improve the zeta potential in and can be stably dispersed for a long period of time in a wide pH range, and the present invention has been completed.

即ち、請求項1に係る発明は、加水分解可能なケイ素化合物と、加水分解可能なチタン化合物とを共に加水分解して得られる金属酸化物微粒子が分散媒に分散されており、pH1〜14において、ゼータ電位が0を示す等電点が存在しておらず負のゼータ電位を有することを特徴とする金属酸化物微粒子分散体に関する。
請求項2に係る発明は、pH8〜11に調整された反応溶媒中において、触媒の存在下、加水分解可能なケイ素化合物と、加水分解可能なチタン化合物とを加水分解した後に、反応溶媒を100℃になるまで加熱して水で置換することを特徴とする金属酸化物微粒子分散体の製造方法に関する。
That is, in the invention according to claim 1, metal oxide fine particles obtained by hydrolyzing both a hydrolyzable silicon compound and a hydrolyzable titanium compound are dispersed in a dispersion medium . In addition, the present invention relates to a metal oxide fine particle dispersion characterized by having an isoelectric point where the zeta potential is 0 and having a negative zeta potential .
In the invention according to claim 2, the reaction solvent is adjusted to 100 after hydrolyzing a hydrolyzable silicon compound and a hydrolyzable titanium compound in the presence of a catalyst in a reaction solvent adjusted to pH 8-11. The present invention relates to a method for producing a metal oxide fine particle dispersion, which is heated to 0 ° C. and substituted with water .

本発明に係る金属酸化物微粒子分散体は、酸性領域でのゼータ電位の絶対値を高くすることができ、広いpH領域において長期間安定分散可能な金属酸化物微粒子分散体である。
本発明に係る金属酸化物微粒子分散体の製造方法は、加水分解可能なケイ素化合物と、ケイ素化合物を除く加水分解可能なチタン化合物とを共に加水分解するから、広いpH領域において長期間安定分散可能な金属酸化物微粒子分散体を製造することができる。
Metal oxide particles dispersion according to the present invention, it is possible to increase the absolute value of the zeta potential of an acidic region, a long term stable dispersible metal oxide particles dispersion in a wide pH range.
The method for producing a metal oxide fine particle dispersion according to the present invention hydrolyzes both a hydrolyzable silicon compound and a hydrolyzable titanium compound excluding the silicon compound, so that it can be stably dispersed over a wide pH range for a long period of time. A metal oxide fine particle dispersion can be produced.

以下、本発明に係る金属酸化物微粒子分散体及びその製造方法について詳細に説明する。
本発明に係る金属酸化物微粒子分散体は、加水分解可能なケイ素化合物と、加水分解可能なチタン化合物とを、共に加水分解することにより得ることができる。
加水分解可能なケイ素化合物(以下、単にケイ素化合物という場合がある。)は特に限定されないが、一般式1(化1)で示されるアルコキシシラン又はこの誘導体が好ましく用いられる。
Hereinafter, the metal oxide fine particle dispersion and the production method thereof according to the present invention will be described in detail.
The metal oxide fine particle dispersion according to the present invention can be obtained by hydrolyzing a hydrolyzable silicon compound and a hydrolyzable titanium compound together.
The hydrolyzable silicon compound (hereinafter sometimes simply referred to as a silicon compound) is not particularly limited, but an alkoxysilane represented by the general formula 1 (chemical formula 1) or a derivative thereof is preferably used.

Figure 0004819322
Figure 0004819322

一般式1(化1)中、Rはアルキル基であり、好ましくは炭素数1〜8の低級アルキル基であり、より好ましくは炭素数1〜4の低級アルキル基である。
具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等を例示することができ、Rがメチル基であるテトラメトキシシラン、Rがエチル基であるテトラエトキシシラン、Rがイソプロピル基であるテトライソプロポキシシランが好ましい。
アルコキシシランの誘導体としては、前記アルコキシシランを部分的に加水分解して得られる低縮合物を例示することができる。
また本発明では、一種類のケイ素化合物を使用することもでき、二種類以上のケイ素化合物の混合物も使用することができる。
In General Formula 1 (Chemical Formula 1), R is an alkyl group, preferably a lower alkyl group having 1 to 8 carbon atoms, and more preferably a lower alkyl group having 1 to 4 carbon atoms.
Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, and the like. Tetramethoxysilane in which R is a methyl group and tetra in which R is an ethyl group Ethoxysilane and tetraisopropoxysilane in which R is an isopropyl group are preferred.
Examples of the alkoxysilane derivative include low-condensates obtained by partially hydrolyzing the alkoxysilane.
In the present invention, one kind of silicon compound can also be used, and a mixture of two or more kinds of silicon compounds can also be used.

加水分解可能なチタン化合物(以下、単にチタン化合物という場合がある。)は特に限定されないが、一般式2(化2)で示されるチタンの金属アルコキシド又はこの誘導体が好ましく用いられる。   The hydrolyzable titanium compound (hereinafter sometimes simply referred to as a titanium compound) is not particularly limited, but a metal alkoxide of titanium represented by the general formula 2 (chemical formula 2) or a derivative thereof is preferably used.

Figure 0004819322
(Rはアルキル基である。)
Figure 0004819322
(R is an alkyl group.)

アルキル基としては上述のアルキル基と同様のアルキル基を例示することができ、反応性などの観点からイソプロピル基、ブチル基が好ましい。
好ましいチタン化合物の具体例としては、チタンテトライソプロポキシド、チタンテトラ−n−ブトキシドなどを例示することができる。
チタンの金属アルコキシドの誘導体としては、前記チタンの金属アルコキシドを部分的に加水分解して得られる低縮合物を例示することができる。
また本発明では、一種類のチタン化合物を使用することもでき、二種類以上のチタン化合物の混合物も使用することができる。
As an alkyl group, the same alkyl group as the above-mentioned alkyl group can be illustrated, and an isopropyl group and a butyl group are preferable from the viewpoint of reactivity.
Specific examples of preferred titanium compounds include titanium tetraisopropoxide and titanium tetra-n-butoxide.
Examples of the titanium metal alkoxide derivative include low-condensates obtained by partially hydrolyzing the titanium metal alkoxide.
In the present invention, one kind of titanium compound can also be used, and a mixture of two or more kinds of titanium compounds can also be used.

上記したケイ素化合物とチタン化合物(以下、単に原料化合物という場合がある。)は、反応溶媒中で加水分解、縮合されて金属酸化物微粒子分散体とされる。
反応に供されるケイ素化合物とチタン化合物の割合は特に限定されないが、ケイ素化合物1モル当り、チタン化合物を0.0001モル以上、好ましくは0.001モル以上、より好ましくは0.005モル以上とされる。
ケイ素化合物1モル当り、チタン化合物の添加量が0.0001モル未満であると、チタン化合物を添加することによって得られるゼータ電位の改善効果が得られない。
The aforementioned silicon compound and titanium compound (hereinafter sometimes referred to simply as a raw material compound) are hydrolyzed and condensed in a reaction solvent to form a metal oxide fine particle dispersion.
The ratio of the silicon compound and the titanium compound to be subjected to the reaction is not particularly limited, but the titanium compound is 0.0001 mol or more, preferably 0.001 mol or more, more preferably 0.005 mol or more per mol of the silicon compound. Is done.
If the addition amount of the titanium compound is less than 0.0001 mol per 1 mol of the silicon compound, the effect of improving the zeta potential obtained by adding the titanium compound cannot be obtained.

反応溶媒としては、水を含む有機溶媒が使用される。
有機溶媒としては、メタノール、エタノール、イソプロパノール、n−ブタノール、t−ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール等のアルコール類、アセトン、メチルエチルケトン等のケトン類等を例示することができる。
特に本発明では、メタノール、エタノール、イソプロパノールなどの、アルコール類を使用することが好ましく、反応溶媒の後処理などの観点から、原料化合物のアルキル基(R)と同様のアルキル基を有するアルコール類を使用することがより好ましい。
これらの有機溶媒は、一種を単独で使用することもでき、二種以上の有機溶媒を混合して使用することもできる。
As the reaction solvent, an organic solvent containing water is used.
Examples of the organic solvent include methanol, ethanol, isopropanol, n-butanol, t-butanol, pentanol, alcohols such as ethylene glycol, propylene glycol, and 1,4-butanediol, and ketones such as acetone and methyl ethyl ketone. be able to.
Particularly in the present invention, it is preferable to use alcohols such as methanol, ethanol and isopropanol. From the viewpoint of after-treatment of the reaction solvent, alcohols having the same alkyl group as the alkyl group (R) of the raw material compound are used. More preferably it is used.
These organic solvents can also be used individually by 1 type, and can also mix and use 2 or more types of organic solvents.

有機溶媒の使用量は特に限定されないが、原料化合物1モル当り、5〜50モル程度とされる。5モル未満の場合、原料化合物との相溶性が失われることがある。50モルを超える場合、製造効率が低下することがある。
また有機溶媒に添加される水の量は特に限定されず、原料化合物の加水分解に必要な量存在すればよく、原料化合物1モル当り、2〜15モル程度とされる。
尚、有機溶媒に混合される水の量は、形成される金属酸化物微粒子の粒径に大きく影響する。水の添加量が相対的に増加すれば、金属酸化物微粒子の粒径を相対的に大きくすることができる。水の添加量を相対的に低下すれば、金属酸化物微粒子の粒径を相対的に小さくすることができる。よって、水と有機溶媒の混合比率を変化させることによって、製造される金属酸化物微粒子の粒径を任意に調整することができる。
Although the usage-amount of an organic solvent is not specifically limited, It is set as about 5-50 mol per mol of raw material compounds. When the amount is less than 5 mol, compatibility with the raw material compound may be lost. When it exceeds 50 moles, the production efficiency may decrease.
The amount of water added to the organic solvent is not particularly limited, as long as it is present in an amount necessary for hydrolysis of the raw material compound, and is about 2 to 15 moles per mole of the raw material compound.
Note that the amount of water mixed in the organic solvent greatly affects the particle size of the metal oxide fine particles to be formed. If the amount of water added is relatively increased, the particle size of the metal oxide fine particles can be relatively increased. If the amount of water added is relatively reduced, the particle size of the metal oxide fine particles can be made relatively small. Therefore, the particle diameter of the metal oxide fine particles to be produced can be arbitrarily adjusted by changing the mixing ratio of water and the organic solvent.

尚、反応溶媒には、アンモニア、尿素、エタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の触媒を添加して、反応溶媒をアルカリ性に調整することが好ましい。反応溶媒はより好ましくはpH8〜11、さらに好ましくはpH8.5〜10.5に調整される。
反応溶媒をアルカリ性に調整することによって、速やかに金属酸化物微粒子を形成することができる。
In addition, it is preferable to adjust the reaction solvent to be alkaline by adding a catalyst such as ammonia, urea, ethanolamine, tetramethylammonium hydroxide to the reaction solvent. The reaction solvent is more preferably adjusted to pH 8 to 11, more preferably pH 8.5 to 10.5.
By adjusting the reaction solvent to be alkaline, metal oxide fine particles can be rapidly formed.

反応溶媒中で原料化合物を加水分解、縮合するには、原料化合物を有機溶媒に添加して、0〜100℃、好ましくは0〜50℃の温度条件で攪拌すればよい。
水を含む有機溶媒中で原料化合物を攪拌しながら加水分解、縮合することにより、球状でしかも粒径のそろった金属酸化物微粒子を得ることができる。
In order to hydrolyze and condense the raw material compound in the reaction solvent, the raw material compound may be added to an organic solvent and stirred at a temperature of 0 to 100 ° C., preferably 0 to 50 ° C.
By hydrolyzing and condensing the raw material compound in an organic solvent containing water while stirring, metal oxide fine particles having a spherical shape and a uniform particle diameter can be obtained.

尚、上記説明した加水分解によって製造された金属酸化物微粒子分散体を本発明に係る金属酸化物微粒子分散体として使用することもできるが、長期保存安定性を高めるために、反応溶媒を主とする分散媒を水で置換することが好ましい。
反応溶媒を主とする分散媒を水で置換する方法は特に限定されず、例えば、上記説明した製造方法によって得られた金属酸化物微粒子分散体を加熱しながら水を一定量ずつ滴下する方法を例示することができる。
また、上記説明した製造方法によって得られた金属酸化物微粒子分散体を沈殿・分離、遠心分離等により反応溶媒を主とする分散媒と分離した後に、水に再分散させる方法を例示することができる。
The above-described metal oxide is prepared by hydrolysis microparticle dispersion can also be used as the metal oxide fine particle dispersion according to the present invention, in order to increase the long-term storage stability, the reaction solvent as the main It is preferable to replace the dispersion medium to be replaced with water.
The method of replacing the dispersion medium mainly containing the reaction solvent with water is not particularly limited. For example, a method in which water is added dropwise in a certain amount while heating the metal oxide fine particle dispersion obtained by the above-described production method. It can be illustrated.
In addition, the metal oxide fine particle dispersion obtained by the above-described production method may be exemplified by a method of redispersing in water after separating the reaction solvent as a main dispersion medium by precipitation, separation, centrifugation, or the like. it can.

こうして製造された本発明に係る金属酸化物微粒子分散体は、ケイ素化合物とチタン化合物とを共に加水分解、縮合することにより得ることができるから、ゼータ電位の絶対値、特に酸性領域のゼータ電位の絶対値を増加させることができ、しかも、本発明に係る金属酸化物微粒子分散体は、pH1〜14において、ゼータ電位が0となる等電位点が存在しておらず、広いpHの範囲で長期間安定分散可能な金属酸化物微粒子分散体である。 Since the metal oxide fine particle dispersion according to the present invention thus produced can be obtained by hydrolysis and condensation of both a silicon compound and a titanium compound, the absolute value of the zeta potential, particularly the zeta potential in the acidic region. The absolute value can be increased, and the metal oxide fine particle dispersion according to the present invention does not have an equipotential point at which the zeta potential becomes 0 at pH 1 to 14, and is long in a wide pH range. It is a metal oxide fine particle dispersion capable of stable dispersion over a period of time.

本発明に係る金属酸化物微粒子分散体は、ケイ素化合物とチタン化合物とが共に加水分解されているので、金属酸化物微粒子はSi−O−Ti結合を有している。金属酸化物微粒子がSi−O−Ti結合を有していることは、赤外線吸収スペクトルによって確認することができる。即ち、本発明に係る金属酸化物微粒子分散体は、赤外線吸収スペクトル(KBr法)によって、940〜960cm−1の吸収領域にSi−O−Ti結合に由来する吸収帯を確認することができる。
また、本発明に係る金属酸化物微粒子分散体では、製造に使用したケイ素化合物とチタン化合物の量によって、800〜810cm−1、1080〜1105cm−1の吸収領域にSi−O−Si結合に由来する吸収帯を確認することができる場合もある
In the metal oxide fine particle dispersion according to the present invention, since the silicon compound and the titanium compound are both hydrolyzed, the metal oxide fine particles have Si—O—Ti bonds. It can be confirmed by the infrared absorption spectrum that the metal oxide fine particles have Si—O—Ti bonds. That is, in the metal oxide fine particle dispersion according to the present invention, an absorption band derived from Si—O—Ti bond can be confirmed in an absorption region of 940 to 960 cm −1 by infrared absorption spectrum (KBr method).
In addition, in the metal oxide fine particle dispersion according to the present invention, depending on the amount of the silicon compound and the titanium compound used for the production, the absorption region of 800 to 810 cm −1 and 1800 to 1105 cm −1 is derived from Si—O—Si bond. You may be able to confirm the absorption band

また本発明に係る金属酸化物微粒子分散体は、ケイ素化合物とチタン化合物とを共に加水分解、縮合することにより得ることができ、粒子径が1000nm以下、好ましくは5〜500nm、より好ましくは10〜300nmである。
また本発明に係る金属酸化物微粒子分散体は、ケイ素化合物とチタン化合物とを共に加水分解、縮合することにより得ることができるから、ナトリウム等の金属不純物含有量は1ppm以下であり、高純度な金属酸化物微粒子分散体である。
The metal oxide fine particle dispersion according to the present invention can be obtained by hydrolyzing and condensing both a silicon compound and a titanium compound, and has a particle size of 1000 nm or less, preferably 5 to 500 nm, more preferably 10 to 10 nm. 300 nm.
In addition, since the metal oxide fine particle dispersion according to the present invention can be obtained by hydrolyzing and condensing a silicon compound and a titanium compound together, the content of metal impurities such as sodium is 1 ppm or less and high purity. It is a metal oxide fine particle dispersion.

本発明に係る金属酸化物微粒子分散体は、研磨剤、紙のコーティング剤などの様々な用途に使用することができるが、広いpH範囲で長期間安定分散可能であり、しかもナトリウムなどの金属不純物の含有量が1ppm以下と高純度であるので、特に半導体ウェーハの化学機械研磨の研磨剤として好適に用いることができる。 The metal oxide fine particle dispersion according to the present invention can be used for various applications such as abrasives and paper coating agents, but can be stably dispersed over a wide pH range for a long time, and metal impurities such as sodium. In particular, it can be suitably used as an abrasive for chemical mechanical polishing of semiconductor wafers.

以下、本発明を実施例に基づき説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples at all.

(試料の調製;実施例1)
メタノール480gに水90gと20%アンモニア水溶液13gを加えて均一になるまで混合して液温を5℃に維持した。テトラメトキシシラン(扶桑化学工業社製)60gとチタンテトライソプロポキシド(東京化成社製)1.5gを液温が変化しないように滴下した。滴下終了後、反応液を100℃に加熱してメタノールを水で置換することによって実施例1のコロイド水溶液を得た。
(Sample preparation; Example 1)
90 g of water and 13 g of 20% aqueous ammonia solution were added to 480 g of methanol and mixed until uniform to maintain the liquid temperature at 5 ° C. 60 g of tetramethoxysilane (manufactured by Fuso Chemical Co., Ltd.) and 1.5 g of titanium tetraisopropoxide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added dropwise so that the liquid temperature did not change. After completion of the dropping, the reaction solution was heated to 100 ° C. to replace methanol with water, thereby obtaining an aqueous colloidal solution of Example 1.

(試料の調製;実施例2)
メタノール480gに水120gと20%アンモニア水溶液20gを加えて均一になるまで混合して液温を5℃に維持した。テトラエトキシシラン(コルコート社製)60gとチタンテトライソプロポキシド(東京化成社製)1.5gを液温が変化しないように滴下した。滴下終了後、反応液を100℃に加熱してメタノールを水で置換することによって実施例2のコロイド水溶液を得た。
(Sample preparation; Example 2)
120 g of water and 20 g of 20% aqueous ammonia solution were added to 480 g of methanol and mixed until uniform to maintain the liquid temperature at 5 ° C. 60 g of tetraethoxysilane (manufactured by Colcoat) and 1.5 g of titanium tetraisopropoxide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added dropwise so that the liquid temperature did not change. After completion of dropping, the reaction solution was heated to 100 ° C. and methanol was replaced with water to obtain an aqueous colloidal solution of Example 2.

(試料の調製;比較例1)
メタノール480gに水90gと20%アンモニア水溶液13gを加えて均一になるまで混合して液温を5℃に維持した。テトラメトキシシラン(扶桑化学工業社製)60gを液温が変化しないように滴下した。滴下終了後、反応液を100℃に加熱してメタノールを水で置換することによって比較例1のコロイド水溶液を得た。
(Sample preparation; Comparative Example 1)
90 g of water and 13 g of 20% aqueous ammonia solution were added to 480 g of methanol and mixed until uniform to maintain the liquid temperature at 5 ° C. 60 g of tetramethoxysilane (manufactured by Fuso Chemical Industry Co., Ltd.) was added dropwise so that the liquid temperature did not change. After completion of dropping, the reaction solution was heated to 100 ° C. and methanol was replaced with water to obtain a colloidal aqueous solution of Comparative Example 1.

(試験例1;粒子径、比表面積の測定)
実施例1,2のコロイド水溶液の微粒子の粒子径及び比表面積を測定した。尚、比表面積はシリカゾルを乾燥後、焼成した粉末をBET法で測定した。粒子径は散乱強度から換算して粒子径を算出した。結果を表1に記載する。
(Test Example 1; measurement of particle diameter and specific surface area)
The particle diameter and specific surface area of the fine particles of the colloidal aqueous solutions of Examples 1 and 2 were measured. The specific surface area was measured by drying the silica sol and then baking the powder by the BET method. The particle diameter was calculated from the scattering intensity. The results are listed in Table 1.

Figure 0004819322
Figure 0004819322

(試験例2;ゼータ電位の測定)
実施例1及び比較例1のコロイド水溶液のゼータ電位をELS−8000(大塚電子社製)を用いて動的光散乱ドップラー法にて測定した。
実施例1の結果を図1に、比較例1の結果を図2に、それぞれ記載する。
(Test Example 2; measurement of zeta potential)
The zeta potentials of the colloidal aqueous solutions of Example 1 and Comparative Example 1 were measured by a dynamic light scattering Doppler method using ELS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
The results of Example 1 are shown in FIG. 1, and the results of Comparative Example 1 are shown in FIG.

図1,2に示されるように、実施例1の試料では、ゼータ電位の絶対値、特に酸性領域でのゼータ電位の絶対値が大きくなり、しかも、pH1〜14において、ゼータ電位が0を示す等電位点が存在しておらず、実施例1の試料は、広いpH領域において、金属酸化物微粒子を長期間安定して分散可能であることが分かる。
一方、比較例1の試料では、特に酸性領域でゼータ電位が0付近の値となり、しかも、pH1〜5の酸性領域で、ゼータ電位が0となる等電位点が存在しており、比較例1の試料は酸性領域で保存安定性が悪いことが分かる。
As shown in FIGS. 1 and 2, in the sample of Example 1, the absolute value of the zeta potential, particularly the absolute value of the zeta potential in the acidic region increases, and the zeta potential shows 0 at pH 1-14. No equipotential point exists, and it can be seen that the sample of Example 1 can stably disperse the metal oxide fine particles for a long period of time in a wide pH range.
On the other hand, in the sample of Comparative Example 1, there is an equipotential point at which the zeta potential becomes a value close to 0 in the acidic region and the zeta potential becomes 0 in the acidic region of pH 1 to 5. It can be seen that the sample of No. 1 has poor storage stability in the acidic region.

(試験例3;赤外線吸収スペクトルの測定)
実施例1及び比較例1の試料のコロイド水溶液の赤外線吸収スペクトルをParagon1000(パーキンエルマー社製)を使用してKBr法にて測定した。
結果を図3に示す。
(Test Example 3; measurement of infrared absorption spectrum)
Infrared absorption spectra of the colloidal aqueous solutions of the samples of Example 1 and Comparative Example 1 were measured by the KBr method using Paragon 1000 (manufactured by Perkin Elmer).
The results are shown in FIG.

図3の(A)が実施例1の赤外線吸収スペクトルであり、(B)が比較例1の赤外線吸収スペクトルである。
図3に示されるように、実施例1の試料では、比較例1の試料には確認することができない947cm−1の赤外線吸収が認められる。この吸収波長はSi−O−Tiに由来するものであり、実施例1の試料では、Si−O−Tiの結合が形成されていることが確認された。
3A is the infrared absorption spectrum of Example 1, and FIG. 3B is the infrared absorption spectrum of Comparative Example 1.
As shown in FIG. 3, in the sample of Example 1, infrared absorption of 947 cm −1 that cannot be confirmed in the sample of Comparative Example 1 is observed. This absorption wavelength is derived from Si—O—Ti, and it was confirmed that the Si—O—Ti bond was formed in the sample of Example 1.

実施例1のコロイド水溶液のゼータ電位の変化を示すグラフである。3 is a graph showing changes in zeta potential of the aqueous colloidal solution of Example 1. 比較例1のコロイド水溶液のゼータ電位の変化を示すグラフである。5 is a graph showing changes in zeta potential of a colloidal aqueous solution of Comparative Example 1. コロイド水溶液中の金属酸化物微粒子の赤外線吸収スペクトルであり、(A)が実施例1の赤外線吸収スペクトル、(B)が比較例2の赤外線吸収スペクトルである。It is an infrared absorption spectrum of the metal oxide fine particles in the colloidal aqueous solution, (A) is the infrared absorption spectrum of Example 1, and (B) is the infrared absorption spectrum of Comparative Example 2.

Claims (2)

加水分解可能なケイ素化合物と、加水分解可能なチタン化合物とを共に加水分解して得られる金属酸化物微粒子が分散媒に分散されており、pH1〜14において、ゼータ電位が0を示す等電点が存在しておらず負のゼータ電位を有することを特徴とする金属酸化物微粒子分散体。 Metal oxide fine particles obtained by hydrolyzing both a hydrolyzable silicon compound and a hydrolyzable titanium compound are dispersed in a dispersion medium, and an isoelectric point at which the zeta potential is 0 at pH 1-14. A metal oxide fine particle dispersion characterized by having no zeta potential and no negative zeta potential . pH8〜11に調整された反応溶媒中において、触媒の存在下、加水分解可能なケイ素化合物と、加水分解可能なチタン化合物とを加水分解した後に、反応溶媒を100℃になるまで加熱して水で置換することを特徴とする金属酸化物微粒子分散体の製造方法。In a reaction solvent adjusted to pH 8-11, after hydrolyzing a hydrolyzable silicon compound and a hydrolyzable titanium compound in the presence of a catalyst, the reaction solvent is heated to 100 ° C. to obtain water. A method for producing a metal oxide fine particle dispersion, wherein
JP2004139456A 2003-05-21 2004-05-10 Metal oxide fine particle dispersion and method for producing the same Expired - Fee Related JP4819322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004139456A JP4819322B2 (en) 2003-05-21 2004-05-10 Metal oxide fine particle dispersion and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003143856 2003-05-21
JP2003143856 2003-05-21
JP2004139456A JP4819322B2 (en) 2003-05-21 2004-05-10 Metal oxide fine particle dispersion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005001981A JP2005001981A (en) 2005-01-06
JP4819322B2 true JP4819322B2 (en) 2011-11-24

Family

ID=34106497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004139456A Expired - Fee Related JP4819322B2 (en) 2003-05-21 2004-05-10 Metal oxide fine particle dispersion and method for producing the same

Country Status (1)

Country Link
JP (1) JP4819322B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062606A1 (en) * 2005-12-23 2007-07-05 Deutsche Institute Für Textil- Und Faserforschung Denkendorf New nano-scale primary particle based on silicon oxide/mixed oxide of silicon oxide and other metal oxide, useful e.g. for hydrophilic coating of hydrophobic textile materials

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156478A (en) * 1987-12-14 1989-06-20 Centre Meridional Oenologie Production of membrane constituted of inorganic lattice of titanium oxide and silicon oxide and powder constituted of fine particle mixture of titanium oxide and silicon oxide
JPH0761851B2 (en) * 1988-12-06 1995-07-05 信越化学工業株式会社 Silica-titania spherical fine particles and method for producing the same
JP3387969B2 (en) * 1993-06-16 2003-03-17 株式会社トクヤマ Composite oxide particles
JP3174829B2 (en) * 1997-05-30 2001-06-11 経済産業省産業技術総合研究所長 Porous titanosilicate and method for producing the same
JP3988936B2 (en) * 2003-05-13 2007-10-10 信越化学工業株式会社 Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same

Also Published As

Publication number Publication date
JP2005001981A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4577755B2 (en) Process for producing modified colloidal silica
TWI745286B (en) Modified colloidal silicon and its manufacturing method and abrasive using it
JP5080061B2 (en) Method for producing neutral colloidal silica
JP3828011B2 (en) Silica aqueous dispersion, process for its production and use thereof
JP6966458B2 (en) A method for producing cation-modified silica, a cation-modified silica dispersion, and a method for producing a polishing composition using cation-modified silica, and a polishing composition using cation-modified silica.
JP7119208B2 (en) Colloidal silica and method for producing the same
JP5267758B2 (en) Method for producing hydrophobic silica powder
WO2010134542A1 (en) Sulfonic acid-modified aqueous anionic silica sol and method for producing same
JPS6374911A (en) Production of fine spherical silica
JP6947718B2 (en) Method for producing cation-modified silica and cation-modified silica dispersion
JP2016008157A (en) Method for producing colloidal silica containing core-shell type silica particles
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
JP5698087B2 (en) Inorganic oxide powder
JP2018108924A (en) Silica particle dispersion and production method thereof
JP4458396B2 (en) Method for producing high-purity hydrophilic organic solvent-dispersed silica sol, high-purity hydrophilic organic solvent-dispersed silica sol obtained by the method, method for producing high-purity organic solvent-dispersed silica sol, and high-purity organic solvent-dispersed silica sol obtained by the method
WO2020218089A1 (en) Colloidal silica for metal polishing
CN101302358B (en) Waterless nano-znic antimonite sol and preparation thereof
KR101121576B1 (en) A manufacturing method of colloidal silica for chemical mechenical polishing
JP4819322B2 (en) Metal oxide fine particle dispersion and method for producing the same
JPWO2018181713A1 (en) Method for producing silica particle dispersion
JP7119209B2 (en) Colloidal silica and method for producing the same
JP6841166B2 (en) Method for producing phenylalkoxysilane-treated silica
JP5769932B2 (en) Titanium oxide sol, method for producing the same, and titanium oxide-containing polymer
JP7470508B2 (en) Silica powder, method for producing silica powder, and method for producing calcined silica powder
JPH04214022A (en) Production of flat silica sol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4819322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees