JP4818688B2 - Drug dissolving device - Google Patents

Drug dissolving device Download PDF

Info

Publication number
JP4818688B2
JP4818688B2 JP2005313556A JP2005313556A JP4818688B2 JP 4818688 B2 JP4818688 B2 JP 4818688B2 JP 2005313556 A JP2005313556 A JP 2005313556A JP 2005313556 A JP2005313556 A JP 2005313556A JP 4818688 B2 JP4818688 B2 JP 4818688B2
Authority
JP
Japan
Prior art keywords
solution
temperature
agent
electrical conductivity
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005313556A
Other languages
Japanese (ja)
Other versions
JP2007117886A (en
Inventor
博之 鈴木
信一郎 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2005313556A priority Critical patent/JP4818688B2/en
Publication of JP2007117886A publication Critical patent/JP2007117886A/en
Application granted granted Critical
Publication of JP4818688B2 publication Critical patent/JP4818688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Description

本発明は、例えば医療分野における血液透析液の調製に利用される薬剤溶解装置に関するものである。   The present invention relates to a drug dissolution apparatus used for preparing hemodialysis fluid in the medical field, for example.

従来、例えば医療分野における血液透析液(以下、単に「透析液」という。)の調製のために、透析施設などにおいて血液透析用乾燥薬剤(以下、「乾燥薬剤」という。)を水に溶解することが広く行われている。   Conventionally, for example, in order to prepare hemodialysis fluid (hereinafter simply referred to as “dialysis fluid”) in the medical field, a hemodialysis dry medicine (hereinafter referred to as “dry medicine”) is dissolved in water in a dialysis facility or the like. It is widely done.

透析液の調製に用いられる従来の薬剤溶解装置は、溶解槽と、溶解槽にR/O(Reverse Osmosis:逆浸透)水を供給する給水手段と、溶解槽に供給されるR/O水を計量する計量手段と、計量されたR/O水に例えば顆粒状とされる乾燥薬剤を溶解するための撹拌手段と、乾燥薬剤を溶解した後の溶液を溶解槽から外部に送液する手段と、を備えている。   A conventional drug dissolution apparatus used for preparing dialysate includes a dissolution tank, a water supply means for supplying R / O (Reverse Osmosis) water to the dissolution tank, and R / O water supplied to the dissolution tank. A weighing means for weighing, a stirring means for dissolving, for example, a granular dry drug in the measured R / O water, and a means for feeding the solution after dissolving the dry drug from the dissolution tank to the outside. It is equipped with.

透析液は、治療上の必要性から、その濃度を適正な値に正しく管理しなければならない。そのため、従来、薬剤溶解装置には、乾燥薬剤の溶液の濃度を検出する濃度検出手段が設けられている。濃度検出手段としては、構成が簡単で取り扱いやすく、しかも測定値の変動要因が少なく高信頼性であるなどの多くの利点を有するため、電気伝導率計が用いられている。   The concentration of dialysate must be properly controlled to an appropriate value because of therapeutic needs. For this reason, conventionally, the drug dissolution apparatus is provided with a concentration detection means for detecting the concentration of the solution of the dry drug. As the concentration detection means, an electric conductivity meter is used because it has many advantages such as a simple configuration, easy handling, and a small amount of variation in measured values and high reliability.

例えば、溶解槽からの液を循環させる経路に電気伝導率計を設け、溶液の電気伝導率を検出しながら、乾燥薬剤を溶解槽に供給し、電気伝導率計の指示値が所定の値となった時点で乾燥薬剤の供給を停止する。これにより、乾燥薬剤が所定の濃度で溶解された溶液を得ることができる(例えば、特許文献1〜3参照)。
特開平7−275354号公報 特開平10−85573号公報 特公平1−55893号公報
For example, an electrical conductivity meter is provided in a path for circulating the liquid from the dissolution tank, and while detecting the electrical conductivity of the solution, the dry chemical is supplied to the dissolution tank, and the indicated value of the electrical conductivity meter is a predetermined value. At that point, the supply of dry medicine is stopped. Thereby, the solution by which the dry chemical | medical agent was melt | dissolved by the predetermined density | concentration can be obtained (for example, refer patent documents 1-3).
JP-A-7-275354 Japanese Patent Laid-Open No. 10-85573 Japanese Patent Publication No. 1-55893

ところで、溶液の溶質濃度が同じであっても、その溶液の電気伝導率は、溶液の温度により変わる。そのため、溶液の電気伝導率は、一般に、基準温度での電気伝導率に換算して表示される。電気伝導率の換算値は、下記式1により算出される。
T=kt/{1+α/100×(t−T)} ・・・(1)
(但し、Tは基準温度[℃]、tは溶液の温度[℃]、kTは電気伝導率のT℃換算値、ktはt℃における電気伝導率、αは溶液の温度係数[%])
By the way, even if the solute concentration of the solution is the same, the electrical conductivity of the solution varies depending on the temperature of the solution. Therefore, the electrical conductivity of the solution is generally displayed in terms of electrical conductivity at the reference temperature. The converted value of electrical conductivity is calculated by the following formula 1.
k T = kt / {1 + α / 100 × (t−T)} (1)
(Where, T is the reference temperature [° C.], t is the temperature of the solution [° C.], k T is the electrical conductivity converted into T ° C., kt is the electrical conductivity at t ° C., and α is the temperature coefficient of the solution [%]. )

通常、基準温度Tは25℃とされる。又、温度係数αは、一般に、固定値(例えば2.00%)として設定される。   Usually, the reference temperature T is set to 25 ° C. The temperature coefficient α is generally set as a fixed value (for example, 2.00%).

そして、従来の薬剤溶解装置においても、溶液の電気伝導率は、温度係数αは固定値として基準温度での電気伝導率に換算されて管理されていた。   And also in the conventional chemical | medical agent melt | dissolution apparatus, the electrical conductivity of the solution was converted into the electrical conductivity in reference | standard temperature, and the temperature coefficient (alpha) was managed as a fixed value.

しかしながら、温度係数αを固定値として扱うと、薬剤溶解装置の使用環境温度範囲内(例えば、5℃〜35℃)と同じ温度の希釈水で、4桁の精度で電気伝導率を制御し、濃度の安定した溶液(透析液或いは透析液原液など)を調製することができなかった。   However, if the temperature coefficient α is treated as a fixed value, the electrical conductivity is controlled with four-digit accuracy with diluted water having the same temperature as the use environment temperature range (for example, 5 ° C. to 35 ° C.) of the drug dissolving device, A solution having a stable concentration (such as dialysate or dialysate stock solution) could not be prepared.

そこで、従来、薬剤溶解装置の希釈水供給系に加温手段を設け、希釈水を一定温度(例えば、28℃)に加温することで溶液の温度を一定温度とする。そして、その温度の溶液の電気伝導率の検出値と、その温度において設定された基準値との比較に基づいて、溶液の濃度を管理していた。或いは、溶解槽内の溶液自体を加温するように加温手段が設けられることもある。   Therefore, conventionally, a heating means is provided in the dilution water supply system of the drug dissolving device, and the temperature of the solution is made constant by heating the dilution water to a constant temperature (for example, 28 ° C.). And the density | concentration of the solution was managed based on the comparison with the detected value of the electrical conductivity of the solution of the temperature, and the reference value set in the temperature. Or a heating means may be provided so that the solution itself in a dissolution tank may be heated.

上述のようにして希釈水や溶解槽内の溶液自体を加温してその温度を一定温度とすることによって、濃度の安定した溶液を調製することができる。   As described above, a solution having a stable concentration can be prepared by heating the dilution water and the solution itself in the dissolution tank to a constant temperature.

しかしながら、上述のような加温手段を設けるためには、薬剤溶解装置内にその分のスペースが必要であり、装置構成も複雑化し、又相応のコストがかかる。   However, in order to provide the heating means as described above, a corresponding space is required in the drug dissolution apparatus, the apparatus configuration is complicated, and a corresponding cost is required.

従って、本発明の目的は、電気伝導率の測定値のより正確な温度補償を行うことのできる薬剤溶解装置を提供することである。   Accordingly, an object of the present invention is to provide a drug dissolution apparatus that can perform more accurate temperature compensation of measured values of electrical conductivity.

本発明の他の目的は、加温手段を設けて溶液の温度を一定とすることなく、より精度よく溶液の電気伝導率を測定することができ、より正確に所定濃度の溶液を調製することを可能とする薬剤溶解装置を提供することである。   Another object of the present invention is to provide a solution having a predetermined concentration more accurately by measuring the electrical conductivity of the solution more accurately without providing a heating means to keep the temperature of the solution constant. It is an object of the present invention to provide a drug dissolving device that enables the above.

上記目的は本発明に係る薬剤溶解装置にて達成される。要約すれば、本発明は、溶解槽と、前記溶解槽に溶媒を供給する溶媒供給手段と、前記溶解槽に溶質を供給する溶質供給手段と、前記溶解槽内の溶液の温度を検出する温度計と、前記溶解槽内の溶液の電気伝導率を検出するための電気伝導率計と、前記電気伝導率計の測定値を下記式1、
T=kt/{1+α/100×(t−T)} ・・・(1)
(但し、Tは基準温度[℃]、tは溶液の温度[℃]、kTは電気伝導率のT℃換算値、ktはt℃における電気伝導率、αは溶液の温度係数[%])
に基づいて基準温度Tでの電気伝導率に換算する制御手段と、を有し、前記電気伝導率計により前記溶解槽内の溶液の電気伝導率を検出することにより、前記溶媒に所定濃度の前記溶質が溶解された溶液を調製する薬剤溶解装置において、
前記制御手段は、前記溶質の種類に応じて予め求められている温度係数αと溶液の温度tとの関係を示す情報を用いて、前記溶解槽内の溶液の温度tに対応する温度係数αを求め、求めた前記溶解槽内の溶液の温度tに対応する温度係数αを用いて前記式1に基づいて前記換算を行うことを特徴とする薬剤溶解装置である。
The above object is achieved by the drug dissolving device according to the present invention. In summary, the present invention provides a dissolution tank, a solvent supply means for supplying a solvent to the dissolution tank, a solute supply means for supplying a solute to the dissolution tank, and a temperature for detecting the temperature of the solution in the dissolution tank. meter and an electric conductivity meter for detecting the electrical conductivity of the solution of the dissolution tank, before Symbol formula 1 the measured value of electric conductivity meter,
k T = kt / {1 + α / 100 × (t−T)} (1)
(Where, T is the reference temperature [° C.], t is the temperature of the solution [° C.], k T is the electrical conductivity converted into T ° C., kt is the electrical conductivity at t ° C., and α is the temperature coefficient of the solution [%]. )
And a control means for converting into electrical conductivity at a reference temperature T based on the above , and by detecting the electrical conductivity of the solution in the dissolution tank with the electrical conductivity meter, the solvent has a predetermined concentration. In a drug dissolution apparatus for preparing a solution in which the solute is dissolved,
The control means uses information indicating the relationship between the temperature coefficient α obtained in advance according to the type of the solute and the temperature t of the solution, and the temperature coefficient α corresponding to the temperature t of the solution in the dissolution tank. And the conversion is performed based on the equation 1 using the temperature coefficient α corresponding to the obtained temperature t of the solution in the dissolution tank .

本発明の一実施態様によると、薬剤溶解装置は更に、前記溶質の種類毎に前記温度係数αと溶液の温度tとの関係を示す情報を記憶する記憶手段と、前記溶質の種類を指定する信号を前記制御手段に入力する入力手段と、を有し、前記制御手段は、前記入力手段からの前記溶質の種類を指定する信号に応じた前記記憶手段に記憶された前記温度係数αと溶液の温度tとの関係を示す情報を用いて、前記溶解槽内の溶液の温度tに対応する温度係数αを求める。又、好ましい一実施態様によると、前記記憶手段には、前記温度係数αと溶液の温度tとの関係を示す情報として、前記溶質の種類毎に、溶液の温度tを変数とした2次以上の回帰式の回帰定数が記憶されており、前記制御手段は、前記入力手段からの前記溶質の種類を指定する信号に応じた前記記憶手段に記憶された前記回帰定数を読み込み、その回帰定数を用いた前記回帰式により前記溶解槽内の溶液の温度tに対応する温度係数αを算出する。 According to one embodiment of the present invention, the drug dissolving device further specifies storage means for storing information indicating a relationship between the temperature coefficient α and the temperature t of the solution for each kind of the solute, and specifies the kind of the solute. Input means for inputting a signal to the control means, and the control means includes the temperature coefficient α and the solution stored in the storage means according to the signal designating the type of the solute from the input means. using the information indicating the relationship between the temperature t of, determine the temperature coefficient α corresponding to the temperature t of the solution of the dissolution tank. Further, according to a preferred embodiment, the storage means stores, as information indicating the relationship between the temperature coefficient α and the solution temperature t, for each kind of the solute, a secondary or higher order using the solution temperature t as a variable. The regression constant of the regression equation is stored, and the control means reads the regression constant stored in the storage means according to a signal specifying the type of the solute from the input means, and the regression constant is read. A temperature coefficient α corresponding to the temperature t of the solution in the dissolution tank is calculated from the regression equation used.

本発明の他の実施態様によると、前記制御手段は、前記溶解槽内の溶液の温度tに対応する温度係数αを、前記温度係数αと溶液の温度tとの関係を示す情報としての、溶液の温度tを変数とした2次以上の回帰式から算出し、薬剤溶解装置は更に、前記回帰式の回帰定数を入力する入力手段を有する。 According to another embodiment of the present invention, the control means uses the temperature coefficient α corresponding to the temperature t of the solution in the dissolution tank as information indicating the relationship between the temperature coefficient α and the temperature t of the solution, The drug dissolution apparatus further has an input means for inputting a regression constant of the regression equation, calculated from a quadratic or higher-order regression equation with the temperature t of the solution as a variable.

本発明の典型的な実施態様によると、前記溶質は、血液透析用乾燥薬剤であり、又、前記溶媒は、逆浸透水である。   According to an exemplary embodiment of the present invention, the solute is a hemodialysis dry drug and the solvent is reverse osmosis water.

本発明によれば、電気伝導率の測定値のより正確な温度補償を行うことができる。又、本発明によれば、加温手段を設けて溶液の温度を一定とすることなく、より精度よく溶液の電気伝導率を測定することができ、より正確に所定濃度の溶液を調製することが可能である。   According to the present invention, more accurate temperature compensation of the measured value of electrical conductivity can be performed. In addition, according to the present invention, it is possible to measure the electrical conductivity of the solution more accurately without providing a heating means to keep the temperature of the solution constant, and to prepare a solution with a predetermined concentration more accurately. Is possible.

以下、本発明に係る薬剤溶解装置を図面に則して更に詳しく説明する。   Hereinafter, the drug dissolution apparatus according to the present invention will be described in more detail with reference to the drawings.

実施例1
[薬剤溶解装置の全体構成]
図1は、本発明に係る薬剤溶解装置の一実施例の概略構成を示す。本実施例では、薬剤溶解装置1は、透析液のA液(又はA剤の濃厚溶液であるA原液)を調製する血液透析液用乾燥薬剤溶解装置として好適に使用することができる。
Example 1
[Overall configuration of drug dissolving device]
FIG. 1 shows a schematic configuration of an embodiment of a drug dissolving apparatus according to the present invention. In this embodiment, the drug dissolution apparatus 1 can be suitably used as a dry drug dissolution apparatus for hemodialysis fluid that prepares A liquid of dialysate (or A stock solution that is a concentrated solution of agent A).

図1に示すように、薬剤溶解装置1は、溶解槽15を有する。又、薬剤溶解装置1は、乾燥薬剤であるA剤101を貯留した薬剤貯留手段としてのホッパー11を有する。ホッパー11は、溶質供給手段としての供給装置13を介して溶解槽15に接続されている。   As shown in FIG. 1, the drug dissolving device 1 has a dissolving tank 15. Further, the drug dissolving device 1 has a hopper 11 as a drug storage means for storing the A drug 101 which is a dry drug. The hopper 11 is connected to the dissolution tank 15 via a supply device 13 as a solute supply means.

溶解槽15には、水系の極性溶媒であるR/O水を溶解槽15に供給する溶媒供給手段としての入口管路16が、電磁弁である入口弁17を介して接続されている。又、溶解槽15の出口には、出口管路18が接続されている。出口管路18には、送液手段としてのポンプ19が介装されている。又、このポンプ19には、溶解槽15から送出された液を再度溶解槽15に環流させるための環流管路20が接続されている。更に、ポンプ19には、溶解槽15にて調製された所定濃度の溶液を図示しない貯留槽へと送給するための送給管路21が接続されている。   An inlet pipe 16 as a solvent supply means for supplying R / O water, which is an aqueous polar solvent, to the dissolving tank 15 is connected to the dissolving tank 15 via an inlet valve 17 that is an electromagnetic valve. In addition, an outlet pipe 18 is connected to the outlet of the dissolution tank 15. The outlet pipe 18 is provided with a pump 19 as a liquid feeding means. The pump 19 is connected to a reflux line 20 for recirculating the liquid sent from the dissolution tank 15 to the dissolution tank 15 again. The pump 19 is connected to a feeding line 21 for feeding a solution having a predetermined concentration prepared in the dissolution tank 15 to a storage tank (not shown).

環流管路20には電磁弁である環流路弁22及び電気伝導率計24が設置されている。又、送給管路21には、電磁弁である送給路弁23が設置されている。   The recirculation pipe 20 is provided with a recirculation flow path valve 22 and an electric conductivity meter 24 which are electromagnetic valves. In addition, a feeding path valve 23 that is an electromagnetic valve is installed in the feeding line 21.

本実施例の薬剤溶解装置1により透析液のA液(又はA原液)を調製する際には、先ず、環流路弁22、送給路弁23が閉じられた状態で、入口弁17が開かれ、入口管路16を通してR/O水が溶解槽15に導入される。水量は、溶解槽15内に設けられた計量手段としてのフロートスイッチ25で計量される。水量が計量されると、入口弁17が閉じられ、環流路弁22を開、送給路弁23を閉とした状態でポンプ19が作動される。これにより、溶解槽15内の水は、出口管路18及び環流管路20を介して循環され、撹拌される。   When preparing the liquid A (or A stock solution) of the dialysate with the drug dissolving apparatus 1 of the present embodiment, first, the inlet valve 17 is opened with the annular flow path valve 22 and the supply path valve 23 closed. R / O water is introduced into the dissolution tank 15 through the inlet pipe 16. The amount of water is measured by a float switch 25 as a measuring means provided in the dissolution tank 15. When the amount of water is metered, the inlet valve 17 is closed, the ring passage valve 22 is opened, and the pump 19 is operated with the supply passage valve 23 closed. Thereby, the water in the dissolution tank 15 is circulated through the outlet line 18 and the reflux line 20 and stirred.

続いて、ホッパー11からA剤101が供給装置13を介して溶解槽15内へと連続的に供給される。A剤101は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、酢酸ナトリウム、氷酢酸、グルコース(ブドウ糖)を所定の割合で含む粉末状薬剤である。   Subsequently, the A agent 101 is continuously supplied from the hopper 11 into the dissolution tank 15 via the supply device 13. Agent A 101 is a powdered drug containing sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium acetate, glacial acetic acid, and glucose (glucose) at a predetermined ratio.

A剤101は、循環する水により溶解槽15内にて撹拌、混合される。この時、環流管路20に設置された電気伝導率計24は、環流管路20内を流動する液の電気伝導率を検出する。この電気伝導率を検出することにより、A剤溶液の電気伝導率とA剤の濃度との関係(検量線)に基づいて、A剤溶液のA剤濃度を測定することができる。   The agent A 101 is stirred and mixed in the dissolution tank 15 by circulating water. At this time, the electrical conductivity meter 24 installed in the reflux conduit 20 detects the electrical conductivity of the liquid flowing in the reflux conduit 20. By detecting this electrical conductivity, the concentration of agent A in the agent A solution can be measured based on the relationship (calibration curve) between the conductivity of agent A solution and the concentration of agent A.

本実施例では、電気伝導率計24の検出信号は、制御部30において増幅、A/D変換などの所定の信号処理を経てコントローラ31に入力される。制御部30の記憶手段32には、A剤溶液の電気伝導率とA剤101の濃度との関係(検量線)に基づいて予め決められた、A剤溶液に対する電気伝導率計24の検出値の目標値が記憶されている。コントローラ31は、供給装置13を制御してA剤101を適宜供給すると共に、電気伝導率計24の検出値と目標値とを比較して、検出値が目標値に達したことを検知した時点で第1供給装置13によるA剤101の供給を停止させる。これにより、所定の濃度のA剤101を含有するA剤溶液、即ち、A液(又はA原液)が調製される。   In this embodiment, the detection signal of the electric conductivity meter 24 is input to the controller 31 through predetermined signal processing such as amplification and A / D conversion in the control unit 30. The storage means 32 of the control unit 30 stores the detected value of the electrical conductivity meter 24 for the agent A solution, which is determined in advance based on the relationship (calibration curve) between the electric conductivity of the agent A solution and the concentration of the agent A 101. The target value is stored. The controller 31 controls the supply device 13 to appropriately supply the agent A 101 and compares the detected value of the electric conductivity meter 24 with the target value to detect that the detected value has reached the target value. Then, the supply of the agent A 101 by the first supply device 13 is stopped. Thereby, the A agent solution containing the A agent 101 having a predetermined concentration, that is, the A solution (or A stock solution) is prepared.

このようにして、所定濃度のA液(又はA原液)が調製されると、次に、環流路弁22が閉とされ、又送給路弁23が開とされることによって、溶解槽15内の混合溶液が送給管路21へ排出される。この混合溶液は、送給管路21を流動して図示しない貯留槽へと供給される。   When the A solution (or A stock solution) having a predetermined concentration is prepared in this way, the circulation passage valve 22 is then closed and the feed passage valve 23 is opened, so that the dissolution tank 15 is opened. The mixed solution in the inside is discharged to the feeding line 21. This mixed solution flows through the supply pipeline 21 and is supplied to a storage tank (not shown).

例えば、薬剤溶解装置1により調製されたA液が供給される貯留槽の下流側には、透析液供給装置又は個人用透析装置が接続される。透析液供給装置又は個人用透析装置は、他の溶解装置にて調整された透析液のB液(又はB剤の濃厚溶液であるB原液)と、薬剤溶解装置1により調製されたA液(又はA原液)とをR/O水で希釈混合して、所定濃度の透析液を調製する。尚、透析液B液は、炭酸水素ナトリウムであるB剤の所定濃度の水溶液である。   For example, a dialysis fluid supply device or a personal dialysis device is connected to the downstream side of the storage tank to which the liquid A prepared by the drug dissolving device 1 is supplied. The dialysate supply device or the personal dialyzer is prepared by using the B solution of dialysate (or B stock solution, which is a concentrated solution of B agent) prepared by another dissolving device, and the A solution prepared by the drug dissolving device 1 ( Or A stock solution) is diluted with R / O water to prepare a dialysate having a predetermined concentration. The dialysate B solution is an aqueous solution having a predetermined concentration of agent B, which is sodium hydrogen carbonate.

以上のような工程が終了すると、送給路弁23は閉じられ、1回の溶解動作が終了する。そして、次回の溶解動作時には、上述の動作が繰り返される。   When the above process is completed, the feed passage valve 23 is closed and one melting operation is completed. In the next melting operation, the above-described operation is repeated.

ところで、前述のように、溶液の電気伝導率は、その濃度が同じであっても、溶液の温度により変化する。そこで、本実施例の薬剤溶解装置1では、電気伝導率計24の測定値は、基準温度での電気伝導率に換算して管理する。   By the way, as described above, the electric conductivity of the solution varies depending on the temperature of the solution even if the concentration is the same. Therefore, in the drug dissolving device 1 of the present embodiment, the measured value of the electric conductivity meter 24 is managed by converting into the electric conductivity at the reference temperature.

即ち、本実施例の薬剤溶解装置1は、入口管路16に溶媒であるR/O水の温度を検出する温度計26を有する。これにより、結果的に溶解槽15内の溶液の温度を検出することができる。温度計26の検出信号は、制御部30において増幅、A/D変換などの所定の信号処理を経てコントローラ31に入力される。尚、温度計26は、溶解槽15内の溶液自体の温度を検出するように設けられていてもよい。   That is, the drug dissolving device 1 of the present embodiment has a thermometer 26 that detects the temperature of R / O water as a solvent in the inlet pipe line 16. Thereby, the temperature of the solution in the dissolution tank 15 can be detected as a result. The detection signal of the thermometer 26 is input to the controller 31 through predetermined signal processing such as amplification and A / D conversion in the control unit 30. The thermometer 26 may be provided so as to detect the temperature of the solution itself in the dissolution tank 15.

コントローラ31は、電気伝導率計24の測定値を、下記式1、
T=kt/{1+α/100×(t−T)} ・・・(1)
(但し、Tは基準温度[℃]、tは溶液の温度[℃]、kTは電気伝導率のT℃換算値、ktはt℃における電気伝導率、αは溶液の温度係数[%])
に基づいて基準温度Tでの電気伝導率に換算する。本実施例では、基準温度Tは25℃である。
The controller 31 converts the measured value of the electric conductivity meter 24 into the following formula 1,
k T = kt / {1 + α / 100 × (t−T)} (1)
(Where, T is the reference temperature [° C.], t is the temperature of the solution [° C.], k T is the electrical conductivity converted into T ° C., kt is the electrical conductivity at t ° C., and α is the temperature coefficient of the solution [%]. )
Is converted into the electrical conductivity at the reference temperature T. In this embodiment, the reference temperature T is 25 ° C.

ここで、従来の薬剤溶解装置では、温度係数αは固定値(例えば、2.00%)としていた。これは、例えば、常温程度の通常の水溶液の電気伝導率は1℃の温度変化で約2%変化するので、一般の用途では、温度係数αを2.00%とすることで十分な精度で電気伝導率を測定することができるためである。 Here, in the conventional drug dissolving apparatus, the temperature coefficient α is a fixed value (for example, 2.00% ) . This is because, for example, the electrical conductivity of a normal aqueous solution at about room temperature changes by about 2% with a temperature change of 1 ° C., so that in general applications, the temperature coefficient α is set to 2.00% with sufficient accuracy. This is because the electrical conductivity can be measured.

しかし、薬剤溶解装置においては、前述のように、温度係数αを固定値として扱うと、薬剤溶解装置の使用環境温度範囲内(5℃〜35℃)と同じ温度の希釈水で、4桁の精度で電気伝導率を制御することができない。そのため、従来は、希釈水を加温する加温手段を設けたり、或いは溶解槽内の溶液自体を加温する加温手段を設けたりすることで、溶解槽内の溶液の温度を一定温度(例えば、28℃)にしていた。しかしながら、装置の構成の簡略化、低コスト化を考えると、このような加温手段を設けなくても精度よく電気伝導率を測定することができ、正確な濃度の溶液を調製できることが望まれる。   However, in the drug dissolving apparatus, as described above, when the temperature coefficient α is handled as a fixed value, it is 4 digits in dilution water having the same temperature as the use environment temperature range (5 ° C. to 35 ° C.) of the drug dissolving apparatus. The electrical conductivity cannot be controlled with accuracy. Therefore, conventionally, the temperature of the solution in the dissolution tank is kept constant by providing a heating means for heating the dilution water or a heating means for heating the solution itself in the dissolution tank. For example, 28 ° C.). However, in view of simplification of the configuration of the apparatus and cost reduction, it is desired that the electrical conductivity can be accurately measured without providing such a heating means, and a solution with an accurate concentration can be prepared. .

本発明者らが鋭意検討した結果、例えばA液(又はA原液)の温度係数αが、温度によって異なることが確認された。そして、予め温度係数αの温度依存性を調べておくことで、任意の温度の溶液の電気伝導率を正確に温度補償することができることが分かった。   As a result of intensive studies by the present inventors, for example, it was confirmed that the temperature coefficient α of the A liquid (or A stock solution) varies depending on the temperature. Then, it was found that the electrical conductivity of the solution at an arbitrary temperature can be accurately compensated by examining the temperature dependence of the temperature coefficient α in advance.

又、本発明者らの検討の結果、溶質の種類、例えば、血液透析用乾燥薬剤溶解装置であれば乾燥薬剤の種類によって、温度係数の温度依存性が異なることが分かった。   Further, as a result of the study by the present inventors, it has been found that the temperature dependence of the temperature coefficient varies depending on the type of solute, for example, the type of dry drug for hemodialysis.

そこで、本実施例の薬剤溶解装置1では、詳しくは後述するように、制御手段としてのコントローラ31は、溶質(本実施例ではA剤)の種類に応じて指定される温度係数αと溶液の温度tとの関係を示す情報を用いて、温度係数αを溶解槽15内の溶液の温度tに従って変更する。   Therefore, in the drug dissolving device 1 of the present embodiment, as will be described in detail later, the controller 31 serving as a control means includes a temperature coefficient α specified according to the type of solute (agent A in the present embodiment) and the solution. The temperature coefficient α is changed according to the temperature t of the solution in the dissolution tank 15 using information indicating the relationship with the temperature t.

そして、コントローラ31は、このように可変とされる温度係数αを用いて、上記式1により電気伝導率の測定値を基準温度における電気伝導率に換算して管理する。即ち、所定濃度の溶液の電気伝導率の目標値は基準温度における電気伝導率で設定されており、溶液の電気伝導率の測定値は基準温度における電気伝導率に換算されて、この目標値との比較などの処理に供される。これによって、希釈水、即ち、溶液の温度に拘わらず、常に正確に所定濃度の溶液を調製することができる。   Then, the controller 31 uses the temperature coefficient α thus variable to convert the measured value of the electrical conductivity into the electrical conductivity at the reference temperature according to the above formula 1 and manage it. That is, the target value of the electrical conductivity of the solution having a predetermined concentration is set as the electrical conductivity at the reference temperature, and the measured value of the electrical conductivity of the solution is converted into the electrical conductivity at the reference temperature. It is used for processing such as comparison. Accordingly, it is possible to always prepare a solution having a predetermined concentration accurately regardless of the dilution water, that is, the temperature of the solution.

[電気伝導率の温度補償]
次に、本実施例の薬剤溶解装置1における電気伝導率計24の測定値の温度補償について更に詳しく説明する。
[Temperature compensation for electrical conductivity]
Next, the temperature compensation of the measured value of the electric conductivity meter 24 in the drug dissolving device 1 of the present embodiment will be described in more detail.

先ず、A剤としてキンダリー3E号(扶桑薬品工業社製)を用いて、溶液の温度係数αの温度依存性を調べた。キンダリー3E号は、透析液のA液に含有される電解質分と非電解質分とが1剤化された粉末状の乾燥薬剤である。   First, the temperature dependence of the temperature coefficient α of the solution was examined using Kindaly 3E (manufactured by Fuso Pharmaceutical Co., Ltd.) as the agent A. Kindary 3E is a powdered dry medicine in which the electrolyte and non-electrolyte components contained in the A liquid of the dialysate are combined into one agent.

正しい濃度、即ち、基準温度(本実施例では25℃)における電気伝導率が既定値(188.9mS/cm)とされたA原液を調製した。このA原液の温度を5℃〜40℃の範囲で1℃刻みで変化させ、各温度において温度補償を行わずに電気伝導率を測定した。そして、基準温度を25℃とした場合の各温度における温度係数を上記式1から算出した。即ち、上記式1中、Tは25[℃]、tは溶液の温度[℃](5℃〜35℃の範囲で1℃刻み)、kT(k25)は188.9[mS/cm]、ktはt℃における電気伝導率[mS/cm]として代入し、各温度tにおける温度係数αを算出した。 A stock solution having a correct concentration, that is, a predetermined value (188.9 mS / cm) of electrical conductivity at a reference temperature (25 ° C. in this example) was prepared. The temperature of this A stock solution was changed in increments of 1 ° C. within a range of 5 ° C. to 40 ° C., and the electrical conductivity was measured without performing temperature compensation at each temperature. The temperature coefficient at each temperature when the reference temperature was 25 ° C. was calculated from the above equation 1. That is, in the above formula 1, T is 25 [° C.], t is the temperature of the solution [° C.] (in increments of 1 ° C. in the range of 5 ° C. to 35 ° C.), and k T (k 25 ) is 188.9 [mS / cm ], Kt were substituted as electric conductivity [mS / cm] at t ° C., and a temperature coefficient α at each temperature t was calculated.

上述のようにして得られた温度係数αと溶液の温度tとの関係を調べた結果、その関係は下記式2、
α=at2+bt+c ・・・(2)
(但し、αは溶液の温度係数[%]、tは溶液の温度[℃]、a、b、cは回帰定数)
にて示される2次回帰式で表すことができることが分かった。
As a result of investigating the relationship between the temperature coefficient α obtained as described above and the temperature t of the solution, the relationship is expressed by the following formula 2,
α = at 2 + bt + c (2)
(Where α is the temperature coefficient of the solution [%], t is the temperature of the solution [° C.], a, b, and c are regression constants)
It was found that it can be expressed by a quadratic regression equation shown in FIG.

次に、A剤としてキンダリー2E号(扶桑薬品工業社製)、リンパックTA−1(ニプロファーマ社製)、リンパックTA−3(ニプロファーマ社製)を用いて、上記同様にして温度係数αの温度依存性を調べた。キンダリー2E号、リンパックTA−1、リンパックTA−3のいずれも、透析液のA液に含有される電解質分と非電解質分とが1剤化された粉末状の乾燥薬剤である。これらのA剤についても、温度係数αと溶液の温度tとの関係は、上記式2にて示される2次回帰式で表すことができることが分かった。   Next, using Kinderry 2E (manufactured by Fuso Yakuhin Kogyo Co., Ltd.), Rinpack TA-1 (manufactured by Nipro Pharma Corporation), Rinpac TA-3 (manufactured by Nipro Pharma Corporation) as the A agent, the temperature coefficient α The temperature dependence was investigated. All of Kindary 2E, Rinpac TA-1, and Rinpac TA-3 are powdered dry drugs in which the electrolyte and non-electrolyte components contained in the liquid A of the dialysate are combined. Also for these agents A, it was found that the relationship between the temperature coefficient α and the temperature t of the solution can be expressed by a quadratic regression equation represented by the above equation 2.

上記各A剤について求められた温度係数αと溶液の温度tとの関係を表す2次回帰曲線を図2に示す。又、各A剤について求められた2次回帰式の回帰定数a、b、cを表1に示す。   FIG. 2 shows a quadratic regression curve representing the relationship between the temperature coefficient α determined for each agent A and the temperature t of the solution. Table 1 shows the regression constants a, b, and c of the quadratic regression equation obtained for each agent A.

Figure 0004818688
Figure 0004818688

尚、表1に示す回帰定数a、b、cは、複数回(4回)の測定で得られた各温度における温度係数αの平均値を用いて求められたものである。   In addition, the regression constants a, b, and c shown in Table 1 are obtained using the average value of the temperature coefficient α at each temperature obtained by a plurality of (four) measurements.

この時、上記複数回(4回)の測定で得られた各温度における温度係数αの平均値を用いて求められた回帰定数a、b、cに対する、それぞれの測定で得られた各温度における温度係数αを用いて求められた得られた回帰定数a、b、cの偏差を調べると、定数aは±18%以内、定数bは±6%以内、定数cは±0.005%以内であった。   At this time, with respect to the regression constants a, b, and c obtained by using the average value of the temperature coefficient α at each temperature obtained by the above-described multiple times (four times), at each temperature obtained by each measurement. When the deviations of the obtained regression constants a, b, and c obtained by using the temperature coefficient α are examined, the constant a is within ± 18%, the constant b is within ± 6%, and the constant c is within ± 0.005%. Met.

図3に、代表例として、キンダリー3E号を用いた場合について、複数回の測定のそれぞれにおける温度係数αと温度tとの関係と、複数回の測定における温度係数αの平均値と温度tとの関係を示す。その他のA剤を用いた場合にも同様の結果が得られた。   FIG. 3 shows a relationship between the temperature coefficient α and the temperature t in each of a plurality of measurements, and the average value of the temperature coefficient α and the temperature t in a plurality of measurements. The relationship is shown. Similar results were obtained when other agents A were used.

又、本発明者らの実験研究の結果、いずれの種類のA剤についても、表1に示す回帰定数に対する偏差が所定範囲内の回帰定数であれば、電気伝導率の換算値は所望の誤差範囲内に収まることが分かった。即ち、表1に示す値に対して、定数aについては±25%以内、定数bについては±6.0%以内、定数cについては±0.3%以内の偏差であれば、電気伝導率の換算値は、±0.5mS/cm以内に収まる。これは、例えば、透析液(又は透析液原液)を調製する場合には許容し得る精度である。   In addition, as a result of the experimental studies by the present inventors, for any type of agent A, if the deviation from the regression constant shown in Table 1 is within a predetermined range, the converted value of the electrical conductivity is a desired error. It was found to be within the range. That is, if the deviation is within ± 25% for constant a, within ± 6.0% for constant b, and within ± 0.3% for constant c with respect to the values shown in Table 1, the electrical conductivity The converted value falls within ± 0.5 mS / cm. This is, for example, acceptable accuracy when preparing dialysate (or dialysate stock solution).

図4に、代表例として、キンダリー3E号を用いた場合について、表1に示す回帰定数a、b、cを用いた2次回帰曲線(基準)と、表1に示す回帰定数a、b、cに対してそれぞれ±25%、±6.0%、±0.3%の偏差のある回帰定数a、b、cを用いた2次回帰曲線(プラス誤差、マイナス誤差)を示す。   In FIG. 4, as a representative example, when using the kindery 3E, a quadratic regression curve (reference) using the regression constants a, b, and c shown in Table 1 and regression constants a, b, and b shown in Table 1 are used. A quadratic regression curve (plus error, minus error) using regression constants a, b, and c with deviations of ± 25%, ± 6.0%, and ± 0.3%, respectively, is shown.

次に、温度係数αを固定値とした場合と、温度係数αと溶液の温度tとの関係を用いて温度tに従って温度係数αを可変とした場合とで、電気伝導率の測定値の温度補償の精度を検討した。   Next, when the temperature coefficient α is a fixed value and when the temperature coefficient α is variable according to the temperature t using the relationship between the temperature coefficient α and the temperature t of the solution, the temperature of the measured value of electrical conductivity The accuracy of compensation was studied.

ここでは、代表例として、キンダリー3E号を用いた場合について、表1に示す回帰定数a、b、cを使用した2次回帰式に従って温度係数αを可変とした時の電気伝導率の換算値と温度係数αを2.00%で固定値とした時の電気伝導率の換算値との、溶液の温度による変化を表2及び図5に示す。   Here, as a representative example, for the case of using Kindery 3E, the converted value of electrical conductivity when the temperature coefficient α is variable according to the quadratic regression equation using the regression constants a, b, and c shown in Table 1. Table 2 and FIG. 5 show the change of the electrical conductivity when the temperature coefficient α is fixed at 2.00% and the conversion value of the electrical conductivity according to the temperature of the solution.

Figure 0004818688
Figure 0004818688

表2及び図5から分かるように、表1に示す回帰定数を用いた2次回帰式により温度係数αを可変とすることにより、5℃〜40℃の広い温度範囲で電気伝導率を精度よく温度補償することができる。これに対して、温度係数α=2.00%の固定値を用いる場合、略10℃〜26℃の温度範囲(この温度範囲では、可変とした場合の温度係数αも略2.00%となる)では比較的精度よく温度補償されるが、それより低温の温度範囲、より高温の温度範囲では電気伝導率の温度補償の精度は低下している。その他のA剤を用いた場合にも同様の結果が得られた。   As can be seen from Table 2 and FIG. 5, by making the temperature coefficient α variable by a quadratic regression equation using the regression constants shown in Table 1, the electrical conductivity can be accurately measured over a wide temperature range of 5 ° C. to 40 ° C. Temperature compensation can be performed. On the other hand, when a fixed value of the temperature coefficient α = 2.00% is used, a temperature range of about 10 ° C. to 26 ° C. (the temperature coefficient α when variable in this temperature range is also about 2.00%. In this case, the temperature compensation is performed with relatively high accuracy, but the temperature compensation accuracy of the electrical conductivity is lowered in a temperature range lower than that and in a temperature range higher than that. Similar results were obtained when other agents A were used.

以上説明したように、予めA剤の種類毎に温度係数αと溶液の温度tとの関係を求めておく。実際の溶液の電気伝導率を測定する際に、その関係に基づいて、その溶液の温度tにおける温度係数αを求める。そして、この温度係数αを用いて電気伝導率計24の測定値を基準温度における電気伝導率に換算することができる。特に、本実施例では、温度係数αと溶液の温度tとの関係は、溶液の温度tを変数とした温度係数αの2次回帰式として表される。   As described above, the relationship between the temperature coefficient α and the solution temperature t is obtained in advance for each type of agent A. When measuring the electrical conductivity of the actual solution, the temperature coefficient α at the temperature t of the solution is obtained based on the relationship. And the measured value of the electrical conductivity meter 24 can be converted into the electrical conductivity in reference temperature using this temperature coefficient (alpha). In particular, in this embodiment, the relationship between the temperature coefficient α and the solution temperature t is expressed as a quadratic regression equation of the temperature coefficient α with the solution temperature t as a variable.

より具体的には、本実施例では、制御部30の記憶手段32には、温度係数αと溶液の温度tとの関係を示す情報として、A剤の種類毎に回帰定数a、b、cが記憶されている。   More specifically, in this embodiment, the storage unit 32 of the control unit 30 stores the regression constants a, b, c for each type of agent A as information indicating the relationship between the temperature coefficient α and the temperature t of the solution. Is remembered.

又、制御部30のコントローラ31には、操作部40が接続されている。操作部40には、コントローラ31に対して各種設定の入力を行うための入力キーなどとされる入力手段41が設けられている。又、操作部40には、設定情報等が表示されるLCDパネルなどとされる表示手段42が設けられている。操作者は、入力手段41によって、使用するA剤の種類を選択することができる。この時、表示手段42での表示により、操作者が設定事項を確認できるようにすることができる。   An operation unit 40 is connected to the controller 31 of the control unit 30. The operation unit 40 is provided with an input means 41 serving as an input key for inputting various settings to the controller 31. The operation unit 40 is provided with a display means 42 such as an LCD panel on which setting information is displayed. The operator can select the type of agent A to be used by the input means 41. At this time, the display on the display means 42 enables the operator to check the set items.

入力手段41によりA剤の種類が選択されると、A剤の種類を指定する信号がコントローラ31に入力される。コントローラ31は、入力されたA剤の種類を指定する信号に応じて、A剤の種類と関係付けられて記憶手段32に記憶されている回帰定数a、b、cを選択して読み込む。そして、薬剤溶解工程時には、コントローラ31は、その回帰定数a、b、cを用いた上記式2の2次回帰式によって、電気伝導率計24の測定値を基準温度(本実施例では25℃)での電気伝導率値に換算して管理する。   When the type of agent A is selected by the input means 41, a signal designating the type of agent A is input to the controller 31. The controller 31 selects and reads the regression constants a, b, c associated with the type of agent A and stored in the storage means 32 in accordance with the input signal specifying the type of agent A. And at the time of a chemical | medical agent melt | dissolution process, the controller 31 makes the measured value of the electrical conductivity meter 24 into reference temperature (25 degreeC in a present Example) by the quadratic regression equation of the said Formula 2 using the regression constant a, b, c. ) And convert to the electrical conductivity value in

以上、本実施例によれば、加温手段を設けて溶液の温度を一定とすることなく、広い温度範囲において、溶質(本実施例ではA剤)の種類に応じて正確に電気伝導率の測定値を温度補償することができる。   As described above, according to the present embodiment, the electric conductivity can be accurately measured according to the type of the solute (agent A in the present embodiment) in a wide temperature range without providing the heating means to keep the temperature of the solution constant. The measured value can be temperature compensated.

実施例2
次に、本発明の他の実施例について説明する。
Example 2
Next, another embodiment of the present invention will be described.

[薬剤溶解装置の全体構成]
図6は、本実施例の薬剤溶解装置2の概略構成を示す。本実施例では、薬剤溶解装置2は、透析液のA液(又はA剤の濃厚溶液であるA原液)を調製する血液透析用乾燥薬剤溶解装置として好適に使用することができる。
[Overall configuration of drug dissolving device]
FIG. 6 shows a schematic configuration of the drug dissolving device 2 of the present embodiment. In the present embodiment, the drug dissolving device 2 can be suitably used as a dry drug dissolving device for hemodialysis for preparing a dialysate solution A (or A stock solution that is a concentrated solution of agent A).

実施例1では、電解質分と非電解質分とが1剤化されたA剤からA液(又はA原液)を調製する場合について説明した。これに対して、本実施例では、薬剤溶解装置2は、電解質分であるA−1剤と、グルコース(非電解質)分であるA−2剤とから成るA剤を溶解してA液(又はA原液)を調製する。尚、図1に示す実施例1の薬剤溶解装置1のものと同一又はそれに相当する要素には同一符号を付して詳しい説明は省略する。   In Example 1, the case where the A solution (or A stock solution) was prepared from the A agent in which the electrolyte component and the non-electrolyte component were combined into one agent was described. On the other hand, in the present embodiment, the drug dissolving device 2 dissolves the A agent composed of the A-1 agent that is the electrolyte component and the A-2 agent that is the glucose (non-electrolyte) component to dissolve the A solution ( Or A stock solution). In addition, the same code | symbol is attached | subjected to the element which is the same as that of the chemical | medical agent dissolution apparatus 1 of Example 1 shown in FIG. 1, or it corresponds, and detailed description is abbreviate | omitted.

図6に示すように、薬剤溶解装置2は、溶解槽15を有する。又、薬剤溶解装置2は、乾燥薬剤であるA−1剤(A剤におけるグルコース(ブドウ糖)を除いた電解質分の粉末状薬剤)101を貯留した薬剤貯留手段としての第1ホッパー11と、乾燥薬剤であるA−2剤(A剤におけるグルコース(非電解質)分の粉末状薬剤)102を貯留した薬剤貯留手段としての第2ホッパー12とを有する。第1、第2ホッパー11、12は、それぞれ溶質供給手段としての第1供給装置13、第2供給装置14を介して溶解槽15に接続されている。   As shown in FIG. 6, the drug dissolving device 2 has a dissolving tank 15. The drug dissolution apparatus 2 includes a first hopper 11 as a drug storage unit that stores A-1 agent (powdered drug for electrolyte excluding glucose (glucose) in A agent) 101 as a dry drug, And a second hopper 12 serving as a medicine storage means that stores the medicine A-2 agent (a powdered medicine for glucose (non-electrolyte) in the agent A) 102. The first and second hoppers 11 and 12 are connected to the dissolution tank 15 via a first supply device 13 and a second supply device 14 as solute supply means, respectively.

又、入口管路16には、溶媒であるR/O水の温度を検出する温度計26が設けられている。これにより、結果的に溶解槽15内の溶液の温度を検出することができる。温度計26の検出信号は、制御部30において増幅、A/D変換などの所定の信号処理を経てコントローラ31に入力される。   The inlet pipe 16 is provided with a thermometer 26 that detects the temperature of the R / O water that is the solvent. Thereby, the temperature of the solution in the dissolution tank 15 can be detected as a result. The detection signal of the thermometer 26 is input to the controller 31 through predetermined signal processing such as amplification and A / D conversion in the control unit 30.

本実施例の薬剤溶解装置2により透析液のA液(又はA原液)を調製する際には、先ず、環流路弁22、送給路弁23が閉じられた状態で、入口弁17が開かれ、入口管路16を通してR/O水が溶解槽15に導入される。水量は、溶解槽15内に設けられた計量手段としてのフロートスイッチ25で計量される。水量が計量されると、入口弁17が閉じられ、環流路弁22を開、送給路弁23を閉とした状態でポンプ19が作動される。これにより、溶解槽15内の水は、出口管路18及び環流管路20を介して循環され、撹拌される。   When preparing the A liquid (or A stock solution) of the dialysate with the drug dissolving device 2 of the present embodiment, first, the inlet valve 17 is opened with the annular flow path valve 22 and the supply path valve 23 closed. R / O water is introduced into the dissolution tank 15 through the inlet pipe 16. The amount of water is measured by a float switch 25 as a measuring means provided in the dissolution tank 15. When the amount of water is metered, the inlet valve 17 is closed, the ring passage valve 22 is opened, and the pump 19 is operated with the supply passage valve 23 closed. Thereby, the water in the dissolution tank 15 is circulated through the outlet line 18 and the reflux line 20 and stirred.

続いて、第1ホッパー11からA−1剤101が第1供給装置13を介して溶解槽15内へと連続的に供給される。A−1剤101は、透析液のA剤におけるグルコースを除いた塩化ナトリウムを主体とした電解質分で、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、酢酸ナトリウム、氷酢酸を所定の割合で含む粉末状薬剤である。   Subsequently, the A-1 agent 101 is continuously supplied from the first hopper 11 into the dissolution tank 15 via the first supply device 13. The A-1 agent 101 is an electrolyte component mainly composed of sodium chloride excluding glucose in the A agent of the dialysate, and contains sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium acetate, and glacial acetic acid in a predetermined ratio. It is a powdered drug.

A−1剤101は、循環する水により溶解槽15内にて撹拌、混合される。この時、環流管路20に設置された電気伝導率計24は、環流管路20内を流動する液の電気伝導率を検出する。この電気伝導率を検出することにより、A−1剤溶液の電気伝導率とA−1剤の濃度との関係(検量線)に基づいて、A−1剤溶液のA−1剤濃度を測定することができる。   The A-1 agent 101 is stirred and mixed in the dissolution tank 15 by circulating water. At this time, the electrical conductivity meter 24 installed in the reflux conduit 20 detects the electrical conductivity of the liquid flowing in the reflux conduit 20. By detecting this electrical conductivity, the A-1 agent concentration of the A-1 agent solution is measured based on the relationship (calibration curve) between the electrical conductivity of the A-1 agent solution and the concentration of the A-1 agent. can do.

本実施例では、電気伝導率計24の検出信号は、制御部30において増幅、A/D変換などの所定の信号処理を経てコントローラ31に入力される。制御部30の記憶手段32には、A−1剤溶液の電気伝導率とA−1剤101の濃度との関係(検量線)に基づいて予め決められた、A−1剤溶液に対する電気伝導率計24の検出値の目標値が記憶されている。コントローラ31は、第1供給装置13を制御してA−1剤101を適宜供給すると共に、電気伝導率計24の検出値と目標値とを比較して、検出値が目標値に達したことを検知した時点で第1供給装置13によるA−1剤101の供給を停止させる。これにより、所定の濃度のA−1剤101を含有するA−1剤溶液が調製される。   In this embodiment, the detection signal of the electric conductivity meter 24 is input to the controller 31 through predetermined signal processing such as amplification and A / D conversion in the control unit 30. The storage means 32 of the control unit 30 stores the electrical conductivity for the A-1 agent solution determined in advance based on the relationship (calibration curve) between the electrical conductivity of the A-1 agent solution and the concentration of the A-1 agent 101. The target value of the detection value of the rate meter 24 is stored. The controller 31 controls the first supply device 13 to appropriately supply the A-1 agent 101, and compares the detected value of the electric conductivity meter 24 with the target value, and the detected value has reached the target value. The supply of the A-1 agent 101 by the 1st supply apparatus 13 is stopped at the time of detecting. Thereby, the A-1 agent solution containing the A-1 agent 101 having a predetermined concentration is prepared.

所定濃度のA−1剤溶液が溶解槽15内に調製されると、次に、A−1剤溶液の流動による撹拌下に、A−2剤102が、第2ホッパー12から第2供給装置14により所定量ずつ溶解槽15へと供給される。A−2剤102は、透析液のA剤におけるグルコース(非電解質)分の粉末状薬剤である。溶解槽15内のA−1剤溶液とA−2剤102とは、ポンプ19により環流管路20を介して循環流動されることにより、十分に撹拌され、A−1剤溶液にA−2剤102が溶解された混合溶液となる。この時、環流管路20に設置された電気伝導率24は、環流管路20内を流動する液の電気伝導率を検出する。この電気伝導率を検出することにより、混合溶液の電気伝導率とA−2剤濃度との関係(検量線)に基づいて、混合溶液のA−2剤濃度を測定することができる。   When the A-1 agent solution having a predetermined concentration is prepared in the dissolution tank 15, the A-2 agent 102 is then transferred from the second hopper 12 to the second supply device under stirring by the flow of the A-1 agent solution. 14 is supplied to the dissolution tank 15 by a predetermined amount. The A-2 agent 102 is a powdery drug for glucose (non-electrolyte) in the A agent of the dialysate. The A-1 agent solution and the A-2 agent 102 in the dissolution tank 15 are sufficiently agitated by being circulated and flowed through the reflux line 20 by the pump 19, and the A-1 agent solution is added to the A-2 agent solution. It becomes a mixed solution in which the agent 102 is dissolved. At this time, the electrical conductivity 24 installed in the reflux conduit 20 detects the electrical conductivity of the liquid flowing in the reflux conduit 20. By detecting this electrical conductivity, the A-2 agent concentration of the mixed solution can be measured based on the relationship (calibration curve) between the electrical conductivity of the mixed solution and the A-2 agent concentration.

尚、例えば、前述の特許文献2に開示されるように、電解質溶液に非電解質を添加していくと、非電解質の添加量の増加に従って溶液の電気伝導率が一定の関係で減少する。従って、予め電解質と非電解質が同一な系について混合溶液の電気伝導率と非電解質の濃度との相関関係(検量線)を求めておけば、混合溶液の電気伝導率を測定することにより、非電解質濃度を測定することができる。   For example, as disclosed in Patent Document 2 described above, when a non-electrolyte is added to an electrolyte solution, the electrical conductivity of the solution decreases with a constant relationship as the amount of non-electrolyte added increases. Therefore, if a correlation (calibration curve) between the electric conductivity of the mixed solution and the concentration of the non-electrolyte is obtained in advance for a system in which the electrolyte and the non-electrolyte are the same, the non-electrolyte concentration is determined by measuring the electric conductivity of the mixed solution. The electrolyte concentration can be measured.

本実施例では、電気伝導率計24の検出信号は、制御部30において増幅、A/D変換などの所定の信号処理を経てコントローラ31に入力される。制御部30の記憶手段32には、所定濃度のA−1剤溶液にA−2剤102を添加した時の、混合溶液の電気伝導率とA−2剤102の濃度との関係(検量線)に基づいて予め決められた、混合溶液に対する電気伝導率計24の検出値の目標値が記憶されている。コントローラ31は、第2供給装置14を制御してA−2剤102を適宜供給すると共に、電気伝導率計24の検出値と目標値とを比較して、検出値が目標値に達したことを検知した時点で第2供給装置14によるA−2剤102の供給を停止させる。これにより、所定濃度のA−2剤102を含有する混合溶液が調製される。   In the present embodiment, the detection signal of the electric conductivity meter 24 is input to the controller 31 through predetermined signal processing such as amplification and A / D conversion in the control unit 30. The storage means 32 of the control unit 30 stores the relationship between the electric conductivity of the mixed solution and the concentration of the A-2 agent 102 (calibration curve) when the A-2 agent 102 is added to the A-1 agent solution having a predetermined concentration. The target value of the detected value of the electric conductivity meter 24 with respect to the mixed solution, which is determined in advance based on), is stored. The controller 31 controls the second supply device 14 to appropriately supply the A-2 agent 102, and compares the detected value of the electric conductivity meter 24 with the target value, and the detected value has reached the target value. Is detected, the supply of the A-2 agent 102 by the second supply device 14 is stopped. Thereby, the mixed solution containing A-2 agent 102 of predetermined concentration is prepared.

このようにして、所定濃度のA−1剤101とA―2剤102とを含有する混合溶液、即ち、A液(又はA原液)が調製されると、次に、環流路弁22が閉とされ、又送給路弁23が開とされることによって、溶解槽15内の混合溶液が送給管路21へ排出される。この混合溶液は、送給管路21を流動して図示しない貯留槽へと供給される。そして、実施例1で説明したように、貯留槽内のA液(又はA原液)は、例えば、透析液供給装置又は個人用透析装置においてB液(又はB原液)と共にR/O水により希釈混合され、所定濃度の透析液が調製される。   When a mixed solution containing A-1 agent 101 and A-2 agent 102 having a predetermined concentration, that is, A solution (or A stock solution) is prepared in this way, the circulation passage valve 22 is then closed. In addition, when the feed passage valve 23 is opened, the mixed solution in the dissolution tank 15 is discharged to the feed conduit 21. This mixed solution flows through the supply pipeline 21 and is supplied to a storage tank (not shown). And as demonstrated in Example 1, A liquid (or A stock solution) in a storage tank is diluted with R / O water with B liquid (or B stock solution) in a dialysate supply apparatus or a personal dialysis machine, for example. By mixing, a predetermined concentration of dialysate is prepared.

以上のような工程が終了すると、送給路弁23は閉じられ、1回の溶解動作が終了する。そして、次回の溶解動作時には、上述の動作が繰り返される。   When the above process is completed, the feed passage valve 23 is closed and one melting operation is completed. In the next melting operation, the above-described operation is repeated.

[電気伝導率の温度補償]
次に、本実施例の薬剤溶解装置2における電気伝導率計24の測定値の温度補償について説明する。
[Temperature compensation for electrical conductivity]
Next, temperature compensation of the measured value of the electric conductivity meter 24 in the drug dissolving device 2 of the present embodiment will be described.

本実施例においても、制御手段としてのコントローラ31は、電気伝導率計24の測定値を温度補償するための温度係数αを、溶質(本実施例ではA剤)の種類に応じて指定される温度係数αと溶液の温度tとの関係を示す情報を用いて、溶解槽15内の溶液の温度tに従って変更する。   Also in the present embodiment, the controller 31 as the control means designates the temperature coefficient α for temperature compensation of the measured value of the electric conductivity meter 24 according to the type of the solute (agent A in the present embodiment). Using information indicating the relationship between the temperature coefficient α and the temperature t of the solution, the temperature is changed according to the temperature t of the solution in the dissolution tank 15.

ここで、実施例1では、A剤が電解質分と非電解質分とが1剤化されていたが、本実施例では、A液(又はA原液)を調製するのに、A−1剤がR/O水に溶解された後、その溶液にA−2剤が溶解される。即ち、本実施例では、電気伝導率計24により、A−1剤溶液の電気伝導率と、A−1剤溶液にA−2剤が溶解された混合溶液の電気伝導率をそれぞれ検出する。   Here, in Example 1, the agent A was composed of the electrolyte component and the non-electrolyte component, but in this example, the agent A-1 was used to prepare the solution A (or A stock solution). After being dissolved in R / O water, the A-2 agent is dissolved in the solution. That is, in this embodiment, the electric conductivity meter 24 detects the electric conductivity of the A-1 agent solution and the electric conductivity of the mixed solution in which the A-2 agent is dissolved in the A-1 agent solution.

従って、本実施例では、各A剤に対して、温度係数αと溶液の温度tとの関係を、A−1剤用と、A−1剤溶液にA−2剤が溶解された混合溶液用とで2つ求めておく。   Therefore, in this example, for each agent A, the relationship between the temperature coefficient α and the temperature t of the solution is a mixture solution for agent A-1 and a solution in which agent A-2 is dissolved in agent A-1. I will ask you for two.

より具体的には、制御部30の記憶手段32には、温度係数αと溶液の温度tとの関係を示す情報として、A剤の種類毎に、A−1剤溶液用の回帰定数a、b、cと、A−1剤溶液にA−2剤が溶解された混合溶液用の回帰定数a、b、cが記憶されている。   More specifically, in the storage means 32 of the control unit 30, as information indicating the relationship between the temperature coefficient α and the temperature t of the solution, a regression constant a for the A-1 agent solution, b, c, and regression constants a, b, c for a mixed solution in which the A-2 agent is dissolved in the A-1 agent solution are stored.

又、制御部30のコントローラ31には、入力手段41、表示手段42などを備える操作部40が接続されている。そして、実施例1と同様に、操作者は、操作部40の入力手段41によって、使用するA剤の種類を選択することができる。   The controller 31 of the control unit 30 is connected with an operation unit 40 including an input unit 41 and a display unit 42. As in the first embodiment, the operator can select the type of agent A to be used by the input unit 41 of the operation unit 40.

入力手段41によりA剤の種類が選択されると、A剤の種類を指定する信号がコントローラ31に入力される。コントローラ31は、入力されたA剤の種類を指定する信号に応じて、A剤の種類と関係付けられて記憶手段32に記憶されている回帰定数a、b、cを選択して読み込む。本実施例では、A−1剤溶液用の回帰定数a、b、cと、A−1剤溶液にA−2剤が溶解された混合溶液用の回帰定数a、b、cとを読み込む。そして、A−1剤の溶解工程時には、コントローラ31は、A−1剤溶液用の回帰定数a、b、cを用いた上記式2の2次回帰式によって、電気伝導率計24の測定値を基準温度(本実施例では25℃)における電気伝導率値に換算して管理する。又、A−1剤溶液にA−2剤を溶解する工程時には、コントローラ31は、A−1剤溶液にA−2剤が溶解された混合溶液用の回帰定数a、b、cを用いた上記式2の2次回帰式によって、電気伝導率計24の測定値を基準温度(本実施例では25℃)における電気伝導率値に換算して管理する。   When the type of agent A is selected by the input means 41, a signal designating the type of agent A is input to the controller 31. The controller 31 selects and reads the regression constants a, b, c associated with the type of agent A and stored in the storage means 32 in accordance with the input signal specifying the type of agent A. In this embodiment, the regression constants a, b, and c for the A-1 agent solution and the regression constants a, b, and c for the mixed solution in which the A-2 agent is dissolved in the A-1 agent solution are read. And at the time of the dissolution process of A-1 agent, the controller 31 measures the measured value of the electric conductivity meter 24 by the quadratic regression equation of the above equation 2 using the regression constants a, b, c for the A-1 agent solution. Is converted into an electrical conductivity value at a reference temperature (25 ° C. in the present embodiment) and managed. In the process of dissolving the A-2 agent in the A-1 agent solution, the controller 31 uses the regression constants a, b, and c for the mixed solution in which the A-2 agent is dissolved in the A-1 agent solution. The measured value of the electric conductivity meter 24 is converted into the electric conductivity value at the reference temperature (25 ° C. in the present embodiment) and managed by the quadratic regression equation of the above equation 2.

ここで、A剤が電解質分であるA−1剤とグルコース(非電解質)分であるA−2剤とから成る乾燥薬剤に対する回帰定数の一例を下記の表3に示す。   Here, Table 3 shows an example of regression constants for a dry drug composed of the A-1 agent in which the A agent is an electrolyte component and the A-2 agent in which the glucose (non-electrolyte) component is an agent.

Figure 0004818688
Figure 0004818688

尚、実施例1で説明したのと同様、本発明者らの実験研究の結果、表3に示す回帰定数に対する偏差が所定範囲内の回帰定数であれば、電気伝導率の換算値は所望の誤差範囲内に収まることが分かった。即ち、表3に示す値に対して、定数aについては±25%以内、定数bについては±6.0%以内、定数cについては±0.3%以内の偏差であれば、電気伝導率の換算値は、±0.5mS/cm以内に収まる。これは、例えば、透析液(又は透析液原液)を調製する場合には許容し得る精度である。   As described in Example 1, if the deviation from the regression constants shown in Table 3 is within a predetermined range as a result of the experimental study by the present inventors, the converted value of electrical conductivity is a desired value. It was found that it was within the error range. That is, if the deviation is within ± 25% for the constant a, within ± 6.0% for the constant b, and within ± 0.3% for the constant c with respect to the values shown in Table 3, the electrical conductivity The converted value falls within ± 0.5 mS / cm. This is, for example, acceptable accuracy when preparing dialysate (or dialysate stock solution).

以上、本実施例によれば、A剤が電解質分であるA−1剤と非電解質であるA−2剤とから成る場合であっても、加温手段を設けて溶液の温度を一定とすることなく、広い温度範囲において、溶質(本実施例ではA剤)の種類に応じて正確に電気伝導率の測定値を温度補償することができる。   As described above, according to this example, even when the A agent is composed of the A-1 agent that is the electrolyte and the A-2 agent that is the non-electrolyte, the temperature of the solution is kept constant by providing the heating means. Without this, it is possible to accurately compensate the temperature measurement of the electrical conductivity in accordance with the type of solute (agent A in this embodiment) in a wide temperature range.

以上、本発明を具体的な実施例に則して説明したが、本発明は上述の実施態様に限定されるものではない。   As mentioned above, although this invention was demonstrated according to the specific Example, this invention is not limited to the above-mentioned embodiment.

例えば、実施例1の薬剤溶解装置1と同様の構成は、炭酸水素ナトリウムの水溶液である透析液のB液の調製にも使用できる。この場合、溶質として乾燥薬剤であるB剤(炭酸水素ナトリウム)を、ホッパー11から供給装置13によって溶解槽15に供給する。そして、この場合、炭酸水素ナトリウム水溶液について、実施例1で説明したのと同様にして温度係数αと溶液の温度tとの関係を示す情報を予め求めておく。   For example, the structure similar to the chemical | medical agent dissolution apparatus 1 of Example 1 can be used also for preparation of B liquid of the dialysate which is the aqueous solution of sodium hydrogencarbonate. In this case, B agent (sodium hydrogen carbonate), which is a dry chemical, is supplied from the hopper 11 to the dissolution tank 15 by the supply device 13 as a solute. In this case, the information indicating the relationship between the temperature coefficient α and the temperature t of the solution is obtained in advance in the same manner as described in Example 1 for the sodium hydrogen carbonate aqueous solution.

又、薬剤溶解装置は、透析液の調製用のものに限定されるものではなく、広く他の薬剤の溶解のために使用することができる。例えば、食品工業や製薬工業において、例えば、食塩や炭酸ソーダなどを水や他の水系の極性溶媒に溶解した溶液、更にはこの電解質溶液に砂糖やアルコールなどの非電解質を混合した混合溶液を使用することは多い。このような、他の薬剤の溶解のための薬剤溶解装置にも、本発明は等しく適用することができる。この場合にも、それぞれの薬剤について、温度係数αと溶液の温度tとの関係を示す情報を予め求めておけばよい。   The drug dissolving device is not limited to the one for preparing dialysate, and can be widely used for dissolving other drugs. For example, in the food industry or the pharmaceutical industry, for example, a solution in which sodium chloride or sodium carbonate is dissolved in water or another aqueous polar solvent, or a mixed solution in which a non-electrolyte such as sugar or alcohol is mixed with this electrolyte solution is used. There are many things to do. The present invention can be equally applied to such a drug dissolving apparatus for dissolving other drugs. In this case as well, information indicating the relationship between the temperature coefficient α and the solution temperature t may be obtained in advance for each drug.

又、本発明によれば、希釈水又は溶液自体を加温する加温手段を設けることなく、広い温度範囲で電気伝導率の測定値を正確に温度補償することができるといった格別なる作用効果を奏し得る。但し、そのような加温手段を設ける場合であっても、本発明によれば、溶液の温度に応じて電気伝導率計の測定値をより正確に温度補償することができる利点がある。   In addition, according to the present invention, it is possible to provide a special effect that the measured value of the electrical conductivity can be accurately compensated over a wide temperature range without providing a heating means for heating the dilution water or the solution itself. Can play. However, even when such a heating means is provided, according to the present invention, there is an advantage that the measured value of the electric conductivity meter can be more accurately temperature compensated according to the temperature of the solution.

又、上記各実施例では、操作者が操作部40から溶質である乾燥薬剤の種類を指定する入力を行い、これによりコントローラ31が乾燥薬剤の種類毎に記憶手段42に記憶されている回帰定数a、b、cを選択して使用するものとした。例えば、薬剤溶解装置が血液透析用乾燥薬剤溶解装置として用いられる場合、現在認可された乾燥薬剤の種類は限られている。又、専用の透析溶解装置を必要とせずに任意の薬剤溶解装置において使用できる乾燥薬剤の種類は更に限られる。   In each of the above embodiments, the operator inputs from the operation unit 40 the designation of the type of the dry medicine that is the solute, whereby the controller 31 stores the regression constant stored in the storage means 42 for each type of the dry medicine. a, b, and c were selected and used. For example, when a drug dissolution apparatus is used as a dry drug dissolution apparatus for hemodialysis, the types of dry drugs currently approved are limited. Further, the types of dry drugs that can be used in any drug dissolving apparatus without requiring a dedicated dialysis dissolving apparatus are further limited.

具体的には、A剤が1剤化されたものでは、ニプロファーマ社製のリンパックTA−1、リンパックTA−3、扶桑薬品工業社製のキンダリー2E号、キンダリー3E号である。又、A剤が電解質分であるA−1剤と、グルコース(ブドウ糖)分であるA−2剤とで構成されるものでは、ニプロファーマ社製のリンパック、リンパック3号、扶桑薬品工業社製のキンダリー2D号、キンダリー3D号、味の素社製のハイソルブ−D、ハイソルブ−Fである。   Specifically, in the case where the agent A is made into one agent, there are RINPACK TA-1 and RINPACK TA-3 manufactured by Nipro Pharma, Inc., Kindery 2E and Kindery 3E manufactured by Fuso Pharmaceutical Co., Ltd. Also, in the case where the A agent is composed of the A-1 agent, which is an electrolyte component, and the A-2 agent, which is a glucose (glucose) component, Rinpac, Rinpac 3 manufactured by Nipro Pharma, Fuso Pharmaceutical Industries Ltd. These are Kindaly 2D, Kindaly 3D, manufactured by Ajinomoto Co., Ltd., and Highsolve-F.

従って、予めこれらの乾燥薬剤の全て又は一部(使用が予定されるものなど)に関して上記各実施例にて説明したように回帰定数を記憶手段42に記憶させておくことにより、操作者は、使用する乾燥薬剤の種類を入力するだけで、煩雑な設定操作を行うことなく、それぞれの乾燥薬剤に応じて電気伝導率の測定値を正確に温度補償することが可能となる。しかし、本発明はこれに限定されるものではない。   Therefore, by storing the regression constant in the storage means 42 in advance as described in the above embodiments for all or part of these dry drugs (such as those scheduled to be used), the operator can By simply inputting the type of the dry medicine to be used, it is possible to accurately compensate the temperature of the measured electric conductivity according to each dry medicine without performing complicated setting operations. However, the present invention is not limited to this.

例えば、新たに使用可能となった乾燥薬剤について、温度係数αと溶液の温度tとの関係を示す情報として、例えば、上記各実施例において説明した2次回帰式の回帰定数a、b、cの情報を、操作部40の入力手段41などから入力することができる。又、これを記憶手段42に記憶させることができる。このような回帰定数の情報は、薬剤溶解装置の製造者が提供してもよいし、薬剤溶解装置の使用者が別途求めてもよい。   For example, as for the information indicating the relationship between the temperature coefficient α and the temperature t of the solution with respect to the newly usable dry medicine, for example, the regression constants a, b, c of the quadratic regression equations described in the above embodiments Can be input from the input means 41 of the operation unit 40 or the like. Further, this can be stored in the storage means 42. Such regression constant information may be provided by the manufacturer of the drug dissolution apparatus or may be separately obtained by the user of the drug dissolution apparatus.

又、上記各実施例においては、温度係数αと溶液の温度tとの関係は、2次回帰式で表されるものとして説明した。本発明者らの検討によれば、例えば溶液が透析液(又は透析液原液)である場合には、2次回帰式によって十分な精度で温度係数αと溶液の温度tとの関係を表すことができる。しかし、本発明はこれに限定されるものではなく、3次以上の回帰式としてもよい。この場合、当然、回帰式の次数に応じた数の回帰定数を使用することになる。但し、徒らに回帰式の次数を大きくしても、相応の精度の向上の効果は見られず、逆に過大な演算処理のためにコストが増大することが考えられる。従って、一般には、2次〜3次の回帰式を用いるのが好ましい。   In each of the above embodiments, the relationship between the temperature coefficient α and the temperature t of the solution has been described as being expressed by a quadratic regression equation. According to the study by the present inventors, for example, when the solution is a dialysate (or dialysate stock solution), the relationship between the temperature coefficient α and the temperature t of the solution is expressed with sufficient accuracy by a quadratic regression equation. Can do. However, the present invention is not limited to this, and a regression equation of third order or higher may be used. In this case, of course, the number of regression constants corresponding to the order of the regression equation is used. However, even if the degree of the regression equation is increased, they do not have the effect of correspondingly improving accuracy, and conversely, the cost may increase due to excessive calculation processing. Therefore, it is generally preferable to use a quadratic to cubic regression equation.

更に、温度補償の精度の観点からは、温度係数αと溶液の温度tとの関係は上述のような曲線式(2次以上の回帰式)で表すことが好ましい。即ち、より正確な温度補償を行う場合は、溶液の温度範囲が広ければ広いほど、より多くの測定点において温度係数αと溶液の温度tとの関係を求めておくことが好ましい。しかし、場合によっては、次のような折れ線近似方式を用いてもよい。   Further, from the viewpoint of accuracy of temperature compensation, the relationship between the temperature coefficient α and the temperature t of the solution is preferably expressed by the above-described curve equation (second-order or higher regression equation). That is, when more accurate temperature compensation is performed, it is preferable to obtain the relationship between the temperature coefficient α and the solution temperature t at more measurement points as the temperature range of the solution is wider. However, in some cases, the following polygonal line approximation method may be used.

即ち、折れ線近似方式では、濃度が既知(即ち、基準温度での電気伝導率が既知)の溶液について、例えば10点の温度と、その温度における電気伝導率の値とを求める。そして、各温度間における温度係数と温度との関係を1次式で表現する。実際の電気伝導率の測定時には、溶液の温度がその範囲内に入る温度間の上記1次式より、その溶液の温度における温度係数を求める。従って、折れ線近似方式の場合、予め、溶液(即ち、溶質)の種類毎に、温度間の数だけ1次式を記憶しておく。温度係数αと溶液の温度tとを曲線式で表す場合に比べて精度は劣るが、所望により、このような折れ線近似方式によっても温度係数αを溶液の温度tに従って変更することができる。   That is, in the broken line approximation method, for example, for a solution having a known concentration (that is, known electrical conductivity at a reference temperature), for example, the temperature at 10 points and the value of electrical conductivity at that temperature are obtained. And the relationship between the temperature coefficient between each temperature and temperature is expressed by a linear expression. When measuring the actual electrical conductivity, the temperature coefficient at the temperature of the solution is obtained from the above linear equation between the temperatures where the temperature of the solution falls within the range. Accordingly, in the case of the polygonal line approximation method, the number of linear equations is stored in advance for each type of solution (ie, solute). Although the accuracy is inferior to the case where the temperature coefficient α and the temperature t of the solution are expressed by a curved line equation, the temperature coefficient α can be changed according to the temperature t of the solution if desired by such a polygonal line approximation method.

本発明に係る薬剤溶解装置の一実施例の概略構成図である。It is a schematic block diagram of one Example of the chemical | medical agent melt | dissolution apparatus which concerns on this invention. A剤の種類毎の温度係数αと溶液の温度tとの関係を示すグラフ図である。It is a graph which shows the relationship between the temperature coefficient (alpha) for every kind of A agent, and the temperature t of a solution. 温度係数αと溶液の温度tとの関係の誤差を説明するためのグラフ図である。It is a graph for demonstrating the error of the relationship between the temperature coefficient (alpha) and the temperature t of a solution. 温度係数αと溶液の温度tとの関係の誤差範囲を説明するためのグラフ図である。It is a graph for demonstrating the error range of the relationship between the temperature coefficient (alpha) and the temperature t of a solution. 温度係数αを溶液の温度に従って可変とする場合と、温度係数αを固定値とした場合とでの電気伝導率の温度補償の精度の違いを説明するためのグラフ図である。It is a graph for demonstrating the difference in the accuracy of the temperature compensation of electrical conductivity between the case where the temperature coefficient α is variable according to the temperature of the solution and the case where the temperature coefficient α is a fixed value. 本発明に係る薬剤溶解装置の他の実施例の概略構成図である。It is a schematic block diagram of the other Example of the chemical | medical agent melt | dissolution apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 薬剤溶解装置
2 薬剤溶解装置
13 第1供給装置(溶質供給手段)
14 第2供給装置(溶質供給手段)
15 溶解槽
16 入口管路(溶媒供給手段)
18 出口管路(導出路)
19 ポンプ(送液手段)
20 環流管路(環流経路)
21 送給管路(導出路)
22 環流路弁
23 送給路弁(開閉手段)
24 電気伝導率計
30 制御部
31 コントローラ(制御手段)
32 記憶手段
40 操作部
41 入力手段
DESCRIPTION OF SYMBOLS 1 Drug dissolving device 2 Drug dissolving device 13 1st supply apparatus (solute supply means)
14 Second supply device (solute supply means)
15 Dissolution tank 16 Inlet pipeline (solvent supply means)
18 Outlet pipeline (lead-out route)
19 Pump (liquid feeding means)
20 Circulation pipeline (circulation pathway)
21 Feeding pipeline (leading route)
22 Ring channel valve 23 Supply channel valve (opening / closing means)
24 Electric conductivity meter 30 Control unit 31 Controller (control means)
32 storage means 40 operation unit 41 input means

Claims (6)

溶解槽と、前記溶解槽に溶媒を供給する溶媒供給手段と、前記溶解槽に溶質を供給する溶質供給手段と、前記溶解槽内の溶液の温度を検出する温度計と、前記溶解槽内の溶液の電気伝導率を検出するための電気伝導率計と、前記電気伝導率計の測定値を下記式1、
T=kt/{1+α/100×(t−T)} ・・・(1)
(但し、Tは基準温度[℃]、tは溶液の温度[℃]、kTは電気伝導率のT℃換算値、ktはt℃における電気伝導率、αは溶液の温度係数[%])
に基づいて基準温度Tでの電気伝導率に換算する制御手段と、を有し、前記電気伝導率計により前記溶解槽内の溶液の電気伝導率を検出することにより、前記溶媒に所定濃度の前記溶質が溶解された溶液を調製する薬剤溶解装置において、
前記制御手段は、前記溶質の種類に応じて予め求められている温度係数αと溶液の温度tとの関係を示す情報を用いて、前記溶解槽内の溶液の温度tに対応する温度係数αを求め、求めた前記溶解槽内の溶液の温度tに対応する温度係数αを用いて前記式1に基づいて前記換算を行うことを特徴とする薬剤溶解装置。
A dissolution tank; a solvent supply means for supplying a solvent to the dissolution tank; a solute supply means for supplying a solute to the dissolution tank; a thermometer for detecting the temperature of the solution in the dissolution tank; and electric conductivity meter for detecting the electrical conductivity of the solution, the following equation 1 the measurement value before Symbol electric conductivity meter,
k T = kt / {1 + α / 100 × (t−T)} (1)
(Where, T is the reference temperature [° C.], t is the temperature of the solution [° C.], k T is the electrical conductivity converted into T ° C., kt is the electrical conductivity at t ° C., and α is the temperature coefficient of the solution [%]. )
And a control means for converting into electrical conductivity at a reference temperature T based on the above , and by detecting the electrical conductivity of the solution in the dissolution tank with the electrical conductivity meter, the solvent has a predetermined concentration. In a drug dissolution apparatus for preparing a solution in which the solute is dissolved,
The control means uses information indicating the relationship between the temperature coefficient α obtained in advance according to the type of the solute and the temperature t of the solution, and the temperature coefficient α corresponding to the temperature t of the solution in the dissolution tank. And the conversion is performed based on the equation 1 using a temperature coefficient α corresponding to the obtained temperature t of the solution in the dissolution tank .
更に、前記溶質の種類毎に前記温度係数αと溶液の温度tとの関係を示す情報を記憶する記憶手段と、前記溶質の種類を指定する信号を前記制御手段に入力する入力手段と、を有し、前記制御手段は、前記入力手段からの前記溶質の種類を指定する信号に応じた前記記憶手段に記憶された前記温度係数αと溶液の温度tとの関係を示す情報を用いて、前記溶解槽内の溶液の温度tに対応する温度係数αを求めることを特徴とする請求項1に記載の薬剤溶解装置。 Furthermore, storage means for storing information indicating the relationship between the temperature coefficient α and the temperature t of the solution for each solute type, and input means for inputting a signal designating the solute type to the control means, And the control means uses information indicating a relationship between the temperature coefficient α and the temperature t of the solution stored in the storage means according to a signal designating the type of the solute from the input means, The drug dissolution apparatus according to claim 1, wherein a temperature coefficient α corresponding to a temperature t of the solution in the dissolution tank is obtained. 前記記憶手段には、前記温度係数αと溶液の温度tとの関係を示す情報として、前記溶質の種類毎に、溶液の温度tを変数とした2次以上の回帰式の回帰定数が記憶されており、前記制御手段は、前記入力手段からの前記溶質の種類を指定する信号に応じた前記記憶手段に記憶された前記回帰定数を読み込み、その回帰定数を用いた前記回帰式により前記溶解槽内の溶液の温度tに対応する温度係数αを算出することを特徴とする請求項2に記載の薬剤溶解装置。 The storage means stores, as information indicating the relationship between the temperature coefficient α and the solution temperature t, a regression constant of a quadratic or higher regression equation with the solution temperature t as a variable for each type of the solute. The control means reads the regression constant stored in the storage means according to a signal designating the type of the solute from the input means, and the dissolution tank by the regression equation using the regression constant The drug dissolution apparatus according to claim 2, wherein a temperature coefficient α corresponding to the temperature t of the solution is calculated. 前記制御手段は、前記溶解槽内の溶液の温度tに対応する温度係数αを、前記温度係数αと溶液の温度tとの関係を示す情報としての、溶液の温度tを変数とした2次以上の回帰式から算出し、薬剤溶解装置は更に、前記回帰式の回帰定数を入力する入力手段を有することを特徴とする請求項1に記載の薬剤溶解装置。 The control means uses a temperature coefficient α corresponding to the temperature t of the solution in the dissolving tank as a variable indicating the temperature t of the solution as information indicating the relationship between the temperature coefficient α and the temperature t of the solution. The drug dissolving apparatus according to claim 1, wherein the drug dissolving apparatus further includes an input unit that inputs the regression constant of the regression expression, calculated from the above regression equation. 前記溶質は、血液透析用乾燥薬剤であることを特徴とする請求項1〜4のいずれかの項に記載の薬剤溶解装置。   5. The drug dissolution apparatus according to claim 1, wherein the solute is a dry drug for hemodialysis. 前記溶媒は、逆浸透水であることを特徴とする請求項1〜5のいずれかの項に記載の薬剤溶解装置。   The drug dissolving apparatus according to any one of claims 1 to 5, wherein the solvent is reverse osmosis water.
JP2005313556A 2005-10-27 2005-10-27 Drug dissolving device Active JP4818688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313556A JP4818688B2 (en) 2005-10-27 2005-10-27 Drug dissolving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313556A JP4818688B2 (en) 2005-10-27 2005-10-27 Drug dissolving device

Publications (2)

Publication Number Publication Date
JP2007117886A JP2007117886A (en) 2007-05-17
JP4818688B2 true JP4818688B2 (en) 2011-11-16

Family

ID=38142306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313556A Active JP4818688B2 (en) 2005-10-27 2005-10-27 Drug dissolving device

Country Status (1)

Country Link
JP (1) JP4818688B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571397B2 (en) * 2010-01-26 2014-08-13 シスメックス株式会社 Reagent preparation device
US10086344B2 (en) 2011-02-17 2018-10-02 Sintokogio, Ltd. Tank apparatus, a system for dispersing by circulating a mixture, and a method for dispersing by circulating a mixture
JP6974723B2 (en) * 2018-03-05 2021-12-01 東亜ディーケーケー株式会社 Dissolver

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171540U (en) * 1984-04-25 1985-11-13 日機装株式会社 Ammonia automatic melting equipment with automatic temperature compensation device
JPS6193946A (en) * 1984-10-13 1986-05-12 Nisshin Flour Milling Co Ltd Automatic moisture measuring method
JPH05146488A (en) * 1991-11-29 1993-06-15 Nikkiso Co Ltd Dissolving device for solid dialyzing drug
JPH07275354A (en) * 1994-04-13 1995-10-24 Toa Denpa Kogyo Kk Drug dissolving device
JPH0933538A (en) * 1995-07-19 1997-02-07 Toa Medical Electronics Co Ltd Method and unit for preparing reagent
WO2002025274A1 (en) * 2000-09-20 2002-03-28 Yuko Seino Reaction detecting method, immunoreaction detecting method and device
JP2002296209A (en) * 2001-04-02 2002-10-09 Toyokazu Nagata Concentration measuring system for composite solution
JP2003133569A (en) * 2001-10-30 2003-05-09 Atsushi Iga Method and apparatus for evaluating output of solar battery in field
JP4403812B2 (en) * 2004-01-27 2010-01-27 富士電機ホールディングス株式会社 Methane fermentation treatment method

Also Published As

Publication number Publication date
JP2007117886A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4653630B2 (en) Drug dissolving device
US5800056A (en) Apparatus for diluting a solution and method for the same
US5762769A (en) Method of measuring concentration of nonelectrolyte in electrolyte solution, method of preparing mixed solution containing electrolytes and nonelectrolytes and apparatus for preparing the solution
US9162021B2 (en) Integrated water testing system and method for ultra-low total chlorine detection
US9274073B2 (en) Method and apparatus for determining the composition of medical liquids with regard to their fraction of electrolytes and non-electrolytes
JP7204747B2 (en) Real-time quality monitoring of beverage batch production using density measurement
JP4818688B2 (en) Drug dissolving device
AU2010281539B2 (en) Systems and methods for detecting an H202 level in a cold aseptic filling system that uses a peracetic acid cleaning solution
JP2019509224A5 (en)
US20200054808A1 (en) Dialysate concentration measurement sensor diagnosis
EP3524287B1 (en) Therapeutic fluid preparation device and blood processing system
CN213517098U (en) Power plant water quality on-line instrument evaluation test device
CN108498889A (en) The online compounding and controlling system of dialysis machine working solution and dialysis machine
US20220241478A1 (en) Medicament Preparation Devices, Methods, and Systems
CN112129909A (en) Power plant water quality on-line instrument evaluation test device and test method
CN208927217U (en) The online compounding and controlling system of dialysis machine working solution and dialysis machine
JP3685887B2 (en) Preparation method of mixed solution of electrolyte and non-electrolyte
JP4606358B2 (en) Automatic milking device
CN107866159A (en) Method and apparatus for being pre-mixed dialyzate
CN210397815U (en) Constant-temperature water washing device
JP7017077B2 (en) Chemiluminescence analyzer, blood purification device, and blood purification system
JP6133134B2 (en) Dialysis system, adjustment device, and adjustment method
CN116380612A (en) Reagent preparation device, sample analysis system and calibration method
Fisher A Stirred-Tank Bioreactor
TW567090B (en) Method and device for preparing acid-base solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250