JP4818311B2 - Nori culture fertilizer container - Google Patents

Nori culture fertilizer container Download PDF

Info

Publication number
JP4818311B2
JP4818311B2 JP2008128967A JP2008128967A JP4818311B2 JP 4818311 B2 JP4818311 B2 JP 4818311B2 JP 2008128967 A JP2008128967 A JP 2008128967A JP 2008128967 A JP2008128967 A JP 2008128967A JP 4818311 B2 JP4818311 B2 JP 4818311B2
Authority
JP
Japan
Prior art keywords
fertilizer
container
nori
cylindrical container
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008128967A
Other languages
Japanese (ja)
Other versions
JP2009273425A (en
Inventor
裕延 福崎
高秀 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP2008128967A priority Critical patent/JP4818311B2/en
Publication of JP2009273425A publication Critical patent/JP2009273425A/en
Application granted granted Critical
Publication of JP4818311B2 publication Critical patent/JP4818311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Seaweed (AREA)

Description

本発明は、海苔養殖用施肥容器に関し、とりわけ海苔の養殖過程において、海水中の窒素やリンなどの栄養成分欠乏により発生する海苔の色落ち防止に有用な海苔養殖用施肥容器に関する。   The present invention relates to a fertilizer container for nori culture, and more particularly to a fertilizer container for nori culture that is useful for preventing discoloration of seaweed generated due to lack of nutrient components such as nitrogen and phosphorus in seawater during the nori culture process.

近年、下水道の普及、工場排水規制の強化などにより河川からの栄養塩の供給量が低下し、このため海苔の養殖に必要な窒素やリンが不足し、養殖海苔の色落ち現象が多発するようになっている。色落ちした海藻の品質は悪化しているため、販売単価の大幅低下あるいは廃棄処分を余儀なくされ、場合によっては栄養塩低下により、養殖を早期に打ち切らざるを得ないような状況となり、生産量の大幅減少という事態も発生している。   In recent years, the supply of nutrients from rivers has declined due to the widespread use of sewerage systems and the tightening of factory drainage regulations. As a result, the nitrogen and phosphorus necessary for nori cultivation have become insufficient, resulting in frequent discoloration of cultured nori. It has become. Since the quality of the discolored seaweed has deteriorated, the sales unit price has been significantly reduced or disposed of, and in some cases, the nutrients have been lowered, resulting in a situation where the aquaculture has to be terminated early, and the production volume has been reduced. There has also been a significant decrease.

このような養殖海苔の色落ち対策として、海苔養殖場への施肥により窒素やリンを供給する方法が提案されている。例えば、特許文献1には、海面下で設置できる施肥用海苔網伸子棒が開示されている。この施肥用海苔網伸子棒は、その内外に浮揚部材を設け、また海水が流出入する多数の孔を有し、肥料を充填する空間が存在し、海面下で設置できるものである。しかし、このような容器を使用する場合、肥料成分の溶出をこのサイズの孔によって制御することは困難であり、実用的には被覆粒状肥料のような緩効性を有するものを用いることが必要となる。この場合、溶出が終了しても被覆材が残存するため、継続して使用する際には、伸子棒内部を一度清掃し、新たに被覆肥料を充填することになるが、海上での作業であるため作業性が悪いなどといった問題がある。   As a countermeasure against such discoloration of cultured seaweed, a method of supplying nitrogen and phosphorus by fertilizing a seaweed farm has been proposed. For example, Patent Document 1 discloses a fertilizer laver netting bar that can be installed under the sea surface. This fertilizer laver netting bar has a floating member inside and outside, and has a large number of holes through which seawater flows in and out, and has a space for filling with fertilizer, and can be installed under the sea surface. However, when such a container is used, it is difficult to control the elution of fertilizer components with pores of this size, and it is practically necessary to use a slow-release material such as coated granular fertilizer. It becomes. In this case, since the covering material remains even after elution is completed, the inside of the extender bar must be cleaned once and refilled with the coated fertilizer when used continuously. There are problems such as poor workability.

特許文献2には、海苔養殖場、海苔養殖網、及び海苔養殖網用伸子棒の何れかに付設する多孔性施肥容器が開示されている。この発明の実施の態様に従えば、施肥容器の開孔率は少なくとも1%以上であり、このような開孔率の高い施肥容器を用いる場合、通常の肥料では極めて短期間に溶出が終了するため、実質的には前述のような溶出制御型の被覆肥料のようなものを用いることが必要となる。   Patent Document 2 discloses a porous fertilizer container attached to any one of a laver farm, a laver farm net, and a nori bar for laver farm nets. According to the embodiment of the present invention, the opening rate of the fertilizer container is at least 1%, and when such a fertilizer container having a high opening rate is used, elution is completed in a very short time with a normal fertilizer. For this reason, it is necessary to use a material such as the above-described elution control type coated fertilizer.

また、特許文献3には、施肥容器を取り付けたロープまたはネットを、海藻養殖網の上部に設置して施肥する方法が提案されている。しかし、この方法も肥料成分としては特許文献1及び特許文献2と同様に、単一容器で、孔径も実施例によれば2mmと大きく、通常肥料(被覆されていない肥料)では肥料成分の溶出が早すぎるため、実用的には被覆肥料のような緩効性肥料を使用することが必要で、この場合は殻処分問題と共に、同じ肥料成分で比較すると通常肥料に比べて高コストとなり好ましくない。
このような現況から、通常肥料が使用でき、急激な肥料成分の溶出のない海苔養殖用施肥容器が強く求められている。
Patent Document 3 proposes a method of fertilizing by installing a rope or net with a fertilizer container on top of a seaweed aquaculture net. However, in this method as well as Patent Document 1 and Patent Document 2, the fertilizer component is a single container, the pore diameter is as large as 2 mm according to the embodiment, and the usual fertilizer (uncoated fertilizer) elutes the fertilizer component. However, it is necessary to use a slow-release fertilizer such as coated fertilizer because it is too early. .
Under such circumstances, there is a strong demand for fertilizer containers for laver culture that can be used with normal fertilizers and do not rapidly leach out fertilizer components.

特開平11−169001号公報Japanese Patent Laid-Open No. 11-169001 特開2002−84905号公報JP 2002-84905 A 特開2002−84904号公報JP 2002-84904 A

本発明は、上記現況に鑑み、通常肥料が使用でき、急激な肥料成分の溶出のない、特に海苔の色落ち防止及び回復に有用な海苔養殖用施肥容器を提供することを目的とする。
本発明者らは、通常肥料が使用でき、急激な肥料成分の溶出のない、特に海苔の色落防止及び回復に有用な海苔養殖用施肥容器について鋭意検討を重ねた結果、以下に詳記する海苔養殖用施肥容器が、前記課題を解決することを見出し、係る知見に基づき本発明を完成させたものである。
In view of the present situation, an object of the present invention is to provide a fertilizer container for nori culture, which can use normal fertilizers and does not have a rapid elution of fertilizer components, and is particularly useful for preventing and recovering nodding color loss.
The inventors of the present invention have made extensive studies on a fertilizer container for nori cultivation that is normally useful for fertilizer use and no drastic elution of fertilizer components, and particularly for preventing and recovering laver discoloration. The present inventors have found that a fertilizer container for nori culture can solve the above-mentioned problems, and has completed the present invention based on such knowledge.

即ち、本発明は、(1)筒状容器の孔径が2〜20mmで、該筒状容器の外側全表面積に対する孔の総面積の割合が0.001〜0.1で、且つ孔の数が少なくとも4個以上である内径50〜250mm、長さ500〜2,000mmの筒状容器であって、少なくとも筒の一方に開閉口部を有し、且つ、肥料充填用容器の細孔径が0.1〜1mmで、該容器の外側全表面積に対する細孔の総面積の割合が0.000001〜0.001で、且つ細孔の数が少なくとも5個以上である肥料充填用容器を内装した海苔養殖用施肥容器に関する。
また、本発明は、(2)筒状容器が円筒状容器である(1)記載の海苔養殖用施肥容器に関する。
That is, the present invention provides: (1) The hole diameter of the cylindrical container is 2 to 20 mm, the ratio of the total area of the holes to the total outer surface area of the cylindrical container is 0.001 to 0.1, and the number of holes is at least 4 or more A cylindrical container having an inner diameter of 50 to 250 mm and a length of 500 to 2,000 mm, having an opening / closing part in at least one of the cylinders, and the fertilizer filling container having a pore diameter of 0.1 to 1 mm, The present invention relates to a fertilizer container for nori culture, in which a fertilizer filling container having a ratio of the total pore area to the outer total surface area of 0.000001 to 0.001 and at least five pores is provided.
Moreover, this invention relates to the fertilization container for laver culture of (1) description whose (2) cylindrical container is a cylindrical container.

本発明の海苔養殖用施肥容器は、急激な肥料成分の溶出がなく、所望する期間安定して肥料成分が溶出するよう構成されているため、海水中の窒素やリンなどの栄養塩の低下が懸念されるときなど、通常の肥料成分供給器としての使用は勿論、特に色落ち防止及びその回復に有効である。更に本発明海苔養殖用施肥容器は、狭い箱船での施肥容器取り付け作業及び肥料供給作業が容易にできるよう構成されているため、省力且つ優れた作業効率性を有するものである。   The fertilizer container for seaweed cultivation of the present invention is configured so that the fertilizer components are not eluted rapidly and the fertilizer components are stably eluted for a desired period of time, so that nutrient salts such as nitrogen and phosphorus in seawater are reduced. Of course, it is effective for prevention of color fading and its recovery, as well as for use as a normal fertilizer component feeder when there is a concern. Furthermore, the fertilization container for seaweed culture according to the present invention is configured to facilitate the fertilization container attachment work and the fertilizer supply work in a narrow ark, and therefore has labor saving and excellent work efficiency.

更に言えば、本発明の海苔養殖用施肥容器は、筒状容器と該容器に内装された肥料充填用容器の2層構造となっているため、海流や海藻などの外的要因の影響が最小限となり、所望する期間安定して肥料成分の溶出を行うことができるものである。即ち、本発明海苔養殖用施肥容器は、2層構造となっているため、高価な被覆肥料の使用に代えて通常肥料で、所望する期間安定して肥料成分の溶出を行うことができ、またその形状は単純で、安価に製造することができ甚だ経済的で、その産業的意義は絶大である。   Furthermore, since the fertilization container for nori culture of the present invention has a two-layer structure of a cylindrical container and a fertilizer filling container built in the container, the influence of external factors such as ocean current and seaweed is minimal. The fertilizer component can be eluted with stability for a desired period. That is, since the fertilization container for seaweed culture of the present invention has a two-layer structure, it can be used for normal fertilizer instead of expensive coated fertilizer, and the fertilizer components can be stably eluted for a desired period of time. Its shape is simple, it can be manufactured at low cost, it is economical, and its industrial significance is tremendous.

以下、本発明の海苔養殖用施肥容器について、更に詳細に説明を行う。
本発明筒状容器の材質は、特に限定されるものではないが、軽量、加工性、経済性の観点から、ポリエステル樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂等の熱可塑性樹脂が望ましく、強化性、耐候性樹脂が望ましい。特に耐海水性、経済性の点から塩化ビニル樹脂とポリプロピレン樹脂が望ましい。市販のポリ塩化ビニル、ポリプロピレン製管等を利用すれば更に経済的である。
Hereinafter, the fertilization container for nori culture of the present invention will be described in more detail.
The material of the cylindrical container of the present invention is not particularly limited, but a thermoplastic resin such as a polyester resin, a polyolefin resin, a polyvinyl chloride resin, and a polyamide resin is desirable from the viewpoint of light weight, workability, and economy, Reinforcing and weathering resins are desirable. In particular, vinyl chloride resin and polypropylene resin are desirable from the viewpoint of seawater resistance and economy. It is more economical to use commercially available polyvinyl chloride, polypropylene pipes and the like.

本発明筒状容器の形状等について云えば、その内径は50〜250mmで、長さは500〜2,000mmの範囲内であることが必要である。この内径が50mm以下では充填できる肥料量が少なくまた後述する肥料充填用容器の交換が困難となり実用性が低く、250mm以上となると箱船のような狭小船上での作業性が悪くなることから好ましくない。また、筒状容器の長さに関しても同様で、500mmより短いと肥料充填量が少ないため実用性は低く、逆に2,000mm以上では船上での作業性が低下することから好ましくない。形状は断面が三角形状でも、四角形状でも良く、それ以上の多角形状でも良い。最も望ましい形状は製造容易性、取り扱い等作業性の観点から円状である。   Speaking of the shape and the like of the cylindrical container of the present invention, it is necessary that the inner diameter is 50 to 250 mm and the length is in the range of 500 to 2,000 mm. If the inner diameter is 50 mm or less, the amount of fertilizer that can be filled is small, and it is difficult to replace the fertilizer filling container described later, so that the practicality is low, and if it is 250 mm or more, the workability on a narrow ship such as an ark is deteriorated. . The same applies to the length of the cylindrical container. When the length is shorter than 500 mm, the fertilizer filling amount is small, so that the practicality is low. The shape may be triangular, quadrangular, or more polygonal in cross section. The most desirable shape is a circle from the viewpoint of manufacturability and workability such as handling.

このような筒状容器の少なくとも筒の一方は肥料充填用容器の出入を行う開閉口部を有している。この開閉口部の構造は、肥料充填用容器の出入を行うことができれば如何なる構造であっても良く、例えば扉状であっても、図1のようなねじ込み式キャップであっても良い。また長尺の場合、筒の両端に開閉口部を有していても良い。長尺の場合、両端に有れば、肥料充填用容器の交換作業は更に容易となる。   At least one cylinder of such a cylindrical container has an opening / closing port part through which the fertilizer filling container enters and exits. The structure of the opening / closing port may be any structure as long as the fertilizer filling container can be taken in and out. For example, it may be a door or a screwed cap as shown in FIG. Moreover, in the case of long, you may have an opening-and-closing opening part in the both ends of a pipe | tube. In the case of long, if it exists in both ends, the replacement | exchange operation | work of the container for fertilizer filling will become still easier.

次に、この筒状容器の孔に関して言えば、その孔径は2〜20mmで、孔の総面積は筒状容器の外側全表面積に対して0.001〜0.1である。孔数は、孔の閉塞などの危険性を考慮し、回避するため、少なくとも4個以上であることが必要であり、孔の孔径が小さい程孔数は多くすべきである。孔の形状は、三角形、四角形、それ以上の正多角形でも良い。とりわけ円形が好ましい。孔は、後述の肥料充填用容器の細孔から溶出した肥料成分の溶出口の機能を有するものであるから、海苔面全面に肥料成分が拡散するよう容器全面に均等に穿設されていることが好ましい。この孔径が2mm以下では海苔養殖時に藻類などの付着によって孔が閉塞される危険性があり、20mm以上になると、内装されている肥料充填用容器中の肥料が海流などの影響を受け、急激な肥料成分の溶出等肥料成分の溶出不均一性を招来し、所望する期間安定して肥料成分を溶出させることが困難となる。また、孔の総表面積が容器外側全表面積に対して0.001以下になると、肥料充填用容器から溶出した肥料成分が速やかに溶出しないことがあり、0.1以上になると、孔径との関連性もあるが海流などの影響が大きくなり、所望する期間安定して肥料成分を溶出させることが困難となる。   Next, regarding the holes of this cylindrical container, the hole diameter is 2 to 20 mm, and the total area of the holes is 0.001 to 0.1 with respect to the total outer surface area of the cylindrical container. The number of holes needs to be at least 4 or more in order to avoid danger such as blockage of the hole, and the number of holes should be larger as the hole diameter is smaller. The shape of the hole may be a triangle, a quadrangle, or a regular polygon larger than that. A circular shape is particularly preferable. Since the hole has a function of the elution port of the fertilizer component eluted from the pore of the fertilizer filling container described later, the hole should be evenly drilled on the entire surface of the container so that the fertilizer component diffuses over the entire surface of the laver. Is preferred. If the hole diameter is 2 mm or less, there is a risk that the hole may be blocked due to adhesion of algae during nori cultivation.If the hole diameter is 20 mm or more, the fertilizer in the fertilizer filling container is affected by the ocean current and so on. This causes non-uniformity of elution of the fertilizer component such as elution of the fertilizer component, and makes it difficult to elute the fertilizer component stably for a desired period. In addition, when the total surface area of the holes is 0.001 or less with respect to the total surface area outside the container, the fertilizer components eluted from the fertilizer filling container may not be eluted quickly, and when it is 0.1 or more, there is a relationship with the hole diameter. The influence of ocean currents increases, making it difficult to elute fertilizer components stably for a desired period.

次に、この筒状容器に内装する肥料充填用容器に関しては、その材質は経済性、耐久性などの面からポリエチレン樹脂が推奨されるが、特にこれに限定されるものではない。この肥料充填用容器は、例えば市販塩ビ管のようなものであってもよいし、折り畳み自由な、例えば筒状容器と相似形状の筒状袋であってもよい。肥料充填用容器の外径については、筒状容器に挿入するために、その内径よりも多少小さくする必要はあるが、可能な限り肥料充填量を多くするためにも挿入に差し支えない程度の外径が好ましい。この肥料充填用容器の細孔の径について言えば、その径は0.1〜1mmとすることが重要であり、この細孔の径によって溶出速度は大きく影響を受ける。例えば、これが0.1mm以下となると、初期の海水流入に時間を要するため肥料成分の初期溶出が遅れたり、細孔数を極めて多数作成する必要があり、逆にこれが1mm以上になると単に孔数を調整しても溶出速度を制御することが著しく困難となる。次に、肥料充填用容器の細孔の総面積は外側全表面積に対して0.000001〜0.001であることが必要で、この範囲を外れると孔径と同様に、肥料成分の溶出速度を制御することが困難となる。更に細孔の数は少なくとも5個以上である必要があり、これは藻類や異物などによる細孔の閉塞を避け、安定した溶出性を維持させるためである。尚、細孔の作成方法としては特に制限はなく、例えば工業的に使用されている針穴やレーザー照射などによって穿設すれば良い。   Next, as for the fertilizer filling container installed in the cylindrical container, polyethylene resin is recommended as a material from the viewpoint of economy and durability, but it is not particularly limited thereto. The fertilizer filling container may be, for example, a commercially available PVC pipe, or may be a foldable, for example, cylindrical bag similar to a cylindrical container. The outer diameter of the fertilizer filling container needs to be slightly smaller than the inner diameter in order to insert it into the cylindrical container. A diameter is preferred. Speaking of the pore diameter of the fertilizer filling container, it is important that the diameter is 0.1 to 1 mm, and the elution rate is greatly influenced by the diameter of the pore. For example, if this is 0.1 mm or less, it takes time for the initial seawater inflow to delay the initial elution of fertilizer components, or it is necessary to create an extremely large number of pores. Even if it is adjusted, it becomes extremely difficult to control the elution rate. Next, the total area of the pores of the fertilizer filling container needs to be 0.000001 to 0.001 with respect to the entire outer surface area, and if it is outside this range, the elution rate of the fertilizer components can be controlled in the same manner as the pore diameter. It becomes difficult. Furthermore, the number of pores needs to be at least 5 or more, in order to avoid clogging of the pores due to algae, foreign matters, etc., and maintain a stable dissolution property. In addition, there is no restriction | limiting in particular as a creation method of a pore, For example, what is necessary is just to drill by the needle hole currently used industrially, laser irradiation, etc.

また、本発明で使用する肥料成分の種類としては、窒素系またはリン酸系の肥料成分が適し、窒素系としては、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム等を使用することができ、また、リン酸系としては、過リン酸石灰、重過リン酸石灰、リン酸ナトリウム、リン酸カリウム、ポリリン酸カリウム、フィチン酸等を使用することができ、更に、窒素系とリン酸系の肥料成分を併せもつものとして、リン酸二水素アンモニウム、リン酸水素二アンモニウム等を使用することができる。   Further, as the type of fertilizer component used in the present invention, a nitrogen-based or phosphate-based fertilizer component is suitable, and as the nitrogen-based one, ammonium sulfate, ammonium chloride, ammonium nitrate, sodium nitrate, potassium nitrate, etc. can be used, Moreover, as phosphoric acid type | system | group, a superphosphate lime, a heavy superphosphate lime, a sodium phosphate, a potassium phosphate, a potassium polyphosphate, a phytic acid etc. can be used, Furthermore, a nitrogen type and a phosphate type As the fertilizer component, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and the like can be used.

更に、これら使用する肥料成分は、何れも粒子径を調整した粒状物を使用し、その粒子径は概ね0.5〜3mmのものを使用する。即ち、肥料塩を粒状化せずに粉状物で使用すると、静電気により充填作業やその後のヒートシール作業に支障をきたすことがあり好ましくない。本発明に使用する肥料は、このような粒径の調整された市販の通常肥料が最も経済的で、本発明の効果を最も良く発揮するが、被覆粒状肥料の使用を妨げるものではない。また、本発明の海苔養殖用施肥容器は、浮き流し式漁場は勿論、支柱式漁場、その他漁場において利用できることは勿論である。   Furthermore, as for the fertilizer component to be used, the granular material which adjusted the particle diameter is used for all, and the particle diameter uses about 0.5-3 mm. That is, it is not preferable to use fertilizer salt as a powdery product without granulating, because it may hinder filling work and subsequent heat sealing work due to static electricity. As the fertilizer used in the present invention, a commercially available normal fertilizer having such a particle size adjusted is most economical, and the effect of the present invention is best exhibited, but does not hinder the use of the coated granular fertilizer. In addition, the fertilizer container for nori culture of the present invention can be used not only in floating fishing grounds, but also in pillar-type fishing grounds and other fishing grounds.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらに限定されるものではない。尚、特に断らない限り%は全て質量%を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these. In addition, unless otherwise indicated, all% shows the mass%.

<筒状容器の作成>
本発明で使用する海苔養殖用施肥容器の筒状容器の形状等を表1に、その外観図を図1に示した。尚、筒状容器は市販の管を加工、使用した。
<Creation of cylindrical container>
Table 1 shows the shape and the like of the cylindrical container of the fertilizer container for nori culture used in the present invention, and FIG. In addition, the cylindrical container processed and used the commercially available pipe | tube.

Figure 0004818311
Figure 0004818311

<肥料充填用容器の作成>
本発明で使用した肥料充填用容器の形状等を表2に示した。また、肥料として粒状硫酸アンモニウム(住友化学工業(株)製、粒径0.5〜2mm、見掛け比重1.1g/cm3)を所定量充填し、次いでヒートシールして、肥料充填用容器を密封した。この場合の、硫酸アンモニウムの充填量も表2に示した。尚、肥料充填用容器はポリエチレン製で厚さ0.16mm、全長は、各充填部長よりいずれも約100mm長いものを用いた。
<Making a fertilizer filling container>
The shape of the fertilizer filling container used in the present invention is shown in Table 2. Further, a predetermined amount of granular ammonium sulfate (manufactured by Sumitomo Chemical Co., Ltd., particle size 0.5-2 mm, apparent specific gravity 1.1 g / cm 3 ) was filled as a fertilizer, and then heat sealed to seal the fertilizer filling container. The amount of ammonium sulfate charged in this case is also shown in Table 2. The fertilizer filling container was made of polyethylene and had a thickness of 0.16 mm, and the total length was about 100 mm longer than the length of each filling part.

Figure 0004818311
Figure 0004818311

次いで、表2の粒状硫酸アンモニウムを充填した肥料充填用容器を、表1の筒状容器に所定数挿入後蓋をし、表3、5に示す海苔養殖用施肥容器を作成した。   Next, a fertilizer filling container filled with granular ammonium sulfate shown in Table 2 was inserted into a cylindrical container shown in Table 1 and then covered, and fertilizer containers for nori culture shown in Tables 3 and 5 were prepared.

Figure 0004818311
Figure 0004818311

次いで、作成した表3の海苔養殖用施肥容器を、兵庫県播磨灘にある浮き流し式の海苔養殖現場に設置し、作業性、耐久性、硫酸アンモニウムの溶出性などに関する評価を行った。   Next, the prepared fertilizer container for nori culture shown in Table 3 was installed at a floating nori culture site at Harima Pass in Hyogo Prefecture, and the workability, durability, and elution of ammonium sulfate were evaluated.

最初に、筒状容器の太さについて検討するため、表3に示した実施例1〜3及び比較例1、2の海苔養殖用施肥容器の各3本を、図3に示した位置12にロープで係止し、これを1週間設置して作業性などを検討した。
その結果、比較例2では容器径が大きいため、狭小な箱舟での作業性が悪く、また比較例1では肥料充填量が少ないため、設置本数が極めて多くなることから不適であることが判った。これに対し、実施例1〜3では作業性に特に問題はなく、粒状硫酸アンモニウムの溶出も良好であった。
First, in order to examine the thickness of the cylindrical container, three each of the fertilization containers for nori culture in Examples 1 to 3 and Comparative Examples 1 and 2 shown in Table 3 are placed at the position 12 shown in FIG. Locked with a rope and installed it for a week to study workability.
As a result, the comparative example 2 has a large container diameter, so the workability in a narrow ark is poor, and the comparative example 1 has a small amount of fertilizer, so it is not suitable because the number of installations is extremely large. It was. On the other hand, in Examples 1 to 3, there was no problem in workability and the elution of granular ammonium sulfate was good.

次いで、筒状容器の長さについて検討するため、実施例2、4及び比較例3、4の海苔養殖用施肥容器の各3本を、同様に1週間設置した。その結果、比較例3のように管長が4mでは、狭い箱舟で係止作業、肥料充填用容器の交換作業を行うことは困難であり、反対に管長0.3mと短い比較例4では、硫酸アンモニウムの充填量が少なく設置本数が増えるため、海苔養殖用施肥容器としては適さないことが判った。
これに対し、管長が1及び2mである実施例2及び4では、箱舟上での作業性は良好であった。
Next, in order to examine the length of the cylindrical container, three each of the fertilizer containers for nori culture of Examples 2 and 4 and Comparative Examples 3 and 4 were similarly installed for one week. As a result, when the tube length is 4 m as in Comparative Example 3, it is difficult to perform the locking operation in a narrow ark and the replacement work of the fertilizer filling container, and conversely in Comparative Example 4 where the tube length is as short as 0.3 m, ammonium sulfate is used. It was found that it was not suitable as a fertilizer container for nori culture because of the small amount of filling and the number of installations increased.
On the other hand, in Examples 2 and 4 where the tube length was 1 and 2 m, the workability on the ark was good.

筒状容器に設ける孔の径、数及び容器の外側全表面積に対する孔の総面積の割合について検討するため、実施例5〜7、比較例5〜7の海苔養殖用施肥容器の各2本を海苔養殖現場に設置し、2日、5日、10日後にこれを回収し、容器の状態を点検すると共に、肥料充填用容器内に残存する硫酸アンモニウム量を分析した。結果を表4に示した。
表4より、比較例5〜7に較べて、実施例5〜7は比較的安定した溶出性を示した。特に、比較例5の孔径1mmでは、海藻などの付着によって容器の孔は閉塞気味であった。比較例6は孔径が大きいため海流の影響を強く受け短期間で溶出し、比較例7は孔数が少なく、孔の面積比も小さいため溶出速度が小さくなった。
In order to examine the diameter and number of holes provided in the cylindrical container and the ratio of the total area of the holes to the total outer surface area of the container, each of the fertilization containers for laver culture of Examples 5 to 7 and Comparative Examples 5 to 7 It was installed at the seaweed farming site and collected after 2, 5, and 10 days, and the state of the container was checked and the amount of ammonium sulfate remaining in the fertilizer filling container was analyzed. The results are shown in Table 4.
From Table 4, compared with Comparative Examples 5-7 , Examples 5-7 showed the comparatively stable elution property. In particular, in the case of the hole diameter of 1 mm in Comparative Example 5 , the hole of the container seemed to be closed due to adhesion of seaweed and the like. Since Comparative Example 6 had a large pore diameter, it was strongly affected by ocean currents and eluted in a short period of time. Comparative Example 7 had a small number of holes and a small area ratio of pores, so that the dissolution rate was small.

Figure 0004818311
Figure 0004818311

筒状容器の材質については、その材質のみが異なる実施例2と実施例8の海苔養殖用施肥容器について、各3本を海苔養殖現場に設置し、1週間後に回収したところ、両者には耐久性には差がなく、また硫酸アンモニウムの溶出性にも殆ど差異は認められなかった。   As for the material of the cylindrical container, only three of them were installed at the nori culture site for the fertilization containers for nori culture of Example 2 and Example 8, and recovered after one week. There was no difference in the properties, and there was almost no difference in the elution properties of ammonium sulfate.

次いで、肥料充填用容器が硫酸アンモニウムの溶出性に及ぼす影響について検討した。表3と同じ方法で試作した海苔養殖用施肥容器を、表5に示す。   Subsequently, the influence which the container for fertilizer filling has on the elution property of ammonium sulfate was examined. Table 5 shows the fertilization containers for nori culture, which were produced in the same manner as in Table 3.

Figure 0004818311
Figure 0004818311

作成した表5の海苔養殖用施肥容器を、前述の海苔養殖現場に設置し、硫酸アンモニウムの溶出性について評価を行った。まず、肥料充填用容器の細孔径について検討するため、実施例911及び比較例89の海苔養殖用施肥容器の各6本を、図3に示した位置12にロープで10日間係止し、経時毎に2本づつ回収して硫酸アンモニウムの溶出性を求めた。結果を表6に示した。尚、肥料充填用容器の細孔径は、硫酸アンモニウムの溶出性に非常に大きな影響を及ぼし、細孔径は0.1〜1mmの範囲では、安定な溶出性を示すことが判った。比較例8は細孔径、細孔の面積比が小さきに過ぎ溶出率があまりに小さく、比較例9は細孔径があまりに大きく短期間で溶出した。
The prepared fertilizer container for nori culture shown in Table 5 was installed at the above-mentioned nori culture site, and the dissolution property of ammonium sulfate was evaluated. First, in order to examine the pore diameter of the fertilizer filling container, six each of the fertilizer containers for nori culture in Examples 9 to 11 and Comparative Examples 8 and 9 were attached to the position 12 shown in FIG. The two were collected every time and the elution of ammonium sulfate was determined. The results are shown in Table 6. In addition, it turned out that the pore diameter of the container for fertilizer filling has a great influence on the elution property of ammonium sulfate, and shows a stable elution property in the range of 0.1-1 mm. In Comparative Example 8 , the pore diameter and the area ratio of the pores were too small, and the dissolution rate was too small. In Comparative Example 9, the pore diameter was too large and eluted in a short period of time.

Figure 0004818311
Figure 0004818311

次に、肥料充填用容器の細孔数について検討するため、表5に示した実施例1215比較例10の海苔養殖用施肥容器の各6本を、図4に示した位置12にロープで10日間係止し、経時毎に2本づつ回収して硫酸アンモニウムの溶出率を求めた。結果を表7に示した。これより、細孔数と溶出率の相関性は高いが、安定な溶出率を得るためには、少なくとも5個以上の細孔が必要であることが判る。
Next, in order to examine the number of pores of the fertilizer filling container, each of the six fermented containers for nori culture in Examples 12 to 15 and Comparative Example 10 shown in Table 5 was placed at the position 12 shown in FIG. Locked with a rope for 10 days, two were collected every time, and the elution rate of ammonium sulfate was determined. The results are shown in Table 7. This shows that the correlation between the number of pores and the dissolution rate is high, but at least 5 pores are necessary to obtain a stable dissolution rate.

Figure 0004818311
Figure 0004818311

次いで、養殖海苔の色落ち防止効果を確認するため、海苔網100枚に対して、本発明で使用した実施例14の海苔養殖用施肥容器の400個を、図3に示した11のロープに係止した。この場合、11のロープ1本当たり、海苔養殖用施肥容器4個をほぼ等間隔で係止した。係止前、係止後2日目、5日目及び10日目に採取した海苔葉体を2枚重ねてSPAD値を測定(コニカミノルタ(株)製,葉緑素測定器SPAD-502)した。尚、SPAD値測定用海苔葉体の採取は、上記海苔養殖用施肥容器を設置したロープから1枚目と3枚目の海苔網の中央部分から行った。また、上記試験と同じ日に、試験区から溶出した硫酸アンモニウムの影響を受けない海苔養殖区域を対照区として海苔葉体を採取し、同様にSPAD値を測定した。これらの結果を表8に示す。これより、その値は海苔養殖用施肥容器を設置していない海苔網で採取した葉体よりも高い値を示し、本発明の海苔養殖用施肥容器が有効であることが判った。
尚、下記のSPAD値は、海苔のクロロフィル量を示す値として表示したものである。

Next, in order to confirm the effect of preventing discoloration of the cultured seaweed, 400 pieces of fertilization containers for seaweed cultivation of Example 14 used in the present invention were applied to 11 ropes shown in FIG. Locked. In this case, four nori culture fertilization containers were locked at almost equal intervals per 11 ropes. Two pieces of laver leaf bodies collected on the 2nd, 5th, and 10th days before and after locking were overlapped and the SPAD value was measured (Konica Minolta Co., Ltd., chlorophyll measuring instrument SPAD-502). In addition, the nori leaf bodies for SPAD value measurement were collected from the central part of the first and third nori nets from the rope in which the fertilizer container for nori culture was installed. On the same day as the above test, nori leaf bodies were collected using the nori culture area not affected by ammonium sulfate eluted from the test area as a control area, and the SPAD value was measured in the same manner. These results are shown in Table 8. From this, the value showed a value higher than the leaf body extract | collected with the laver net which has not installed the fertilization container for noriculture, and it turned out that the fertilization container for noriculture of this invention is effective.
In addition, the following SPAD value is displayed as a value indicating the amount of chlorophyll in seaweed.

Figure 0004818311
Figure 0004818311

本発明の筒状容器を示し、一端はふたで固定し、残る一端はねじ込み式で開閉可能とした状態を示す図である。The cylindrical container of the present invention is shown, and one end is fixed with a lid, and the remaining one end is a view showing a state in which it can be opened and closed by screwing. 肥料充填用容器の一例を示す図であり、両端が開いた容器に肥料を充填後、ヒートシールによって両端を封止した状態を示す図である。It is a figure which shows an example of the container for fertilizer filling, and is a figure which shows the state which sealed the both ends with the heat seal after filling a fertilizer in the container with which both ends opened. 養殖海苔網(浮き流し式漁場)における海苔養殖用施肥容器の係止方法の一例を示す図である。It is a figure which shows an example of the latching method of the fertilization container for nori culture in a culture nori net (floating type fishing ground).

符号の説明Explanation of symbols

1 筒状容器
2 開閉可能な蓋
3 密閉した蓋
4 本体固定用ロープを通す孔
5 筒状容器の孔
6 肥料充填用容器
7 肥料充填用容器のヒートシール封止部
8 肥料充填用容器の細孔
9 海苔養殖網
10 フロート
11 海苔養殖用施肥容器を係止したロープ
12 海苔養殖用施肥容器
DESCRIPTION OF SYMBOLS 1 Cylindrical container 2 Lid that can be opened and closed 3 Sealed lid 4 Hole through which rope for fixing the body 5 Hole in cylindrical container 6 Fertilizer filling container 7 Heat seal sealing part of fertilizer filling container 8 Fine fertilizer filling container Hole 9 Nori culture net 10 Float 11 Rope that locks the fertilizer container for nori culture 12 Fertilization container for nori culture

Claims (2)

筒状容器の孔径が2〜20mmで、該筒状容器の外側全表面積に対する孔の総面積の割合が0.001〜0.1で、且つ孔の数が少なくとも4個以上である内径50〜250mm、長さ500〜2,000mmの筒状容器であって、少なくとも筒の一方に開閉口部を有し、且つ、肥料充填用容器の細孔径が0.1〜1mmで、該容器の外側全表面積に対する細孔の総面積の割合が0.000001〜0.001で、且つ細孔の数が少なくとも5個以上である肥料充填用容器を内装した海苔養殖用施肥容器。 The hole diameter of the cylindrical container is 2 to 20 mm, the ratio of the total area of the holes to the outer total surface area of the cylindrical container is 0.001 to 0.1, and the inner diameter is 50 to 250 mm and the length is at least 4 or more. A cylindrical container of 500 to 2,000 mm, having an opening and closing part on at least one of the cylinders, and the pore diameter of the fertilizer filling container is 0.1 to 1 mm, and the total number of pores relative to the total outer surface area of the container A fertilizer container for nori culture, in which a fertilizer filling container having an area ratio of 0.000001 to 0.001 and at least 5 pores is provided . 筒状容器が円筒状容器である請求項1記載の海苔養殖用施肥容器。 Cylindrical container seaweed aquaculture fertilization container according to claim 1, wherein a cylindrical container.
JP2008128967A 2008-05-16 2008-05-16 Nori culture fertilizer container Expired - Fee Related JP4818311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008128967A JP4818311B2 (en) 2008-05-16 2008-05-16 Nori culture fertilizer container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008128967A JP4818311B2 (en) 2008-05-16 2008-05-16 Nori culture fertilizer container

Publications (2)

Publication Number Publication Date
JP2009273425A JP2009273425A (en) 2009-11-26
JP4818311B2 true JP4818311B2 (en) 2011-11-16

Family

ID=41439448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008128967A Expired - Fee Related JP4818311B2 (en) 2008-05-16 2008-05-16 Nori culture fertilizer container

Country Status (1)

Country Link
JP (1) JP4818311B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5777085B2 (en) * 2010-11-04 2015-09-09 多木化学株式会社 Underwater plant fertilizer
JP5505374B2 (en) * 2011-06-28 2014-05-28 新日鐵住金株式会社 Method for preventing and restoring discoloration of laver body
JP5884631B2 (en) * 2012-05-14 2016-03-15 新日鐵住金株式会社 Water environment container

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS461569Y1 (en) * 1969-01-08 1971-01-20

Also Published As

Publication number Publication date
JP2009273425A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
Minamikawa et al. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy
Tiessen Phosphorus in the global environment
Lekang et al. Efficiency of nitrification in trickling filters using different filter media
JP4818311B2 (en) Nori culture fertilizer container
Faccini et al. Natural and NH 4+-enriched zeolitite amendment effects on nitrate leaching from a reclaimed agricultural soil (Ferrara Province, Italy)
Lenka et al. Impacts of fertilizers use on environmental quality
Cao et al. Phosphorus losses to water from lowland rice fields under rice–wheat double cropping system in the Tai Lake region
Stonehouse Biological husbandry: a scientific approach to organic farming
Grahmann et al. Ion exchange resin samplers to estimate nitrate leaching from a furrow irrigated wheat-maize cropping system under different tillage-straw systems
Newman et al. Nutrient release from controlled-release fertilizers in a neutral-pH substrate in an outdoor environment: I. Leachate electrical conductivity, pH, and nitrogen, phosphorus, and potassium concentrations
Jansen et al. Pesticide monitoring in the Central Rift Valley 2009-2010: ecosystems for water in Ethiopia
Pia et al. Contamination level (Water quality) assessment and agro-ecological risk management of Shitalakshy ariver of Dhaka, Bangladesh
Holas et al. Pollution by phosphorus and nitrogen in water streams feeding the Zelivka drinking water reservoir
Kauppinen Trophic state of the Great Masurian Lakes system in the past, present and future-causes, mechanisms and effects of changes
JP2009273424A (en) Fertilizer tool for laver culture
Bird Evaluation of the feasibility of struvite precipitation from domestic wastewater as an alternative phosphorus fertilizer resource
CN113243319B (en) Ecological restoration method and growth auxiliary system for coral reef
Zhang et al. Effects of agricultural production on phosphorus losses from paddy soils: a case study in the Taihu Lake Region of China
JP5884631B2 (en) Water environment container
Kadwa et al. Effect of chlorine and chloramine disinfection and the presence of phosphorous and nitrogen on biofilm growth in dead zones on PVC pipes in drinking water systems
JP2011115183A (en) Method for cultivating oyster or scallop
Wilson et al. Novel flow-through bioremediation system for removing nitrate from nursery discharge water
JP3163338U (en) Nori culture fertilizer
JP5777085B2 (en) Underwater plant fertilizer
Evans et al. 8. Application of chemical materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees