JP4817333B2 - Desulfurization method using waste concrete - Google Patents

Desulfurization method using waste concrete Download PDF

Info

Publication number
JP4817333B2
JP4817333B2 JP2007289595A JP2007289595A JP4817333B2 JP 4817333 B2 JP4817333 B2 JP 4817333B2 JP 2007289595 A JP2007289595 A JP 2007289595A JP 2007289595 A JP2007289595 A JP 2007289595A JP 4817333 B2 JP4817333 B2 JP 4817333B2
Authority
JP
Japan
Prior art keywords
desulfurization
waste
calcium
fine powder
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007289595A
Other languages
Japanese (ja)
Other versions
JP2009112958A (en
Inventor
章弘 山崎
幸雄 柳澤
淳 飯塚
佳唯 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007289595A priority Critical patent/JP4817333B2/en
Publication of JP2009112958A publication Critical patent/JP2009112958A/en
Application granted granted Critical
Publication of JP4817333B2 publication Critical patent/JP4817333B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、コンクリート廃材から排煙脱硫材を製造するリサイクル技術、及び製造した脱硫材を利用した排煙脱硫技術に関する。   The present invention relates to a recycling technology for producing a flue gas desulfurization material from a concrete waste material, and a flue gas desulfurization technology using the produced desulfurization material.

従来から、硫黄酸化物類による大気汚染防止を目的とし、石炭火力発電所煙道ガスなどから排出される硫黄酸化物類を除去するための技術が提案されている。
既存の脱硫技術は大きく三つに分類される。すなわち、湿式脱硫プロセス・半乾式脱硫プロセス・乾式脱硫プロセスである。
このうち乾式脱硫プロセスは、炭酸カルシウム(CaCO)や酸化カルシウム(CaO)等の化合物を脱硫剤とし、800〜1100℃の高温条件下で脱硫を行うプロセスである。乾式脱硫プロセスは、水をほとんど使用せず、脱硫設備を簡単に付設できるという利点を持つ。反面、湿式、半乾式脱硫プロセスと比較して硫黄除去率・投入カルシウムの利用率が低いこと、プロセスに高温が必要なことが問題となっている。
2. Description of the Related Art Conventionally, a technique for removing sulfur oxides emitted from coal-fired power plant flue gas has been proposed for the purpose of preventing air pollution caused by sulfur oxides.
Existing desulfurization technologies can be broadly classified into three. That is, a wet desulfurization process, a semi-dry desulfurization process, and a dry desulfurization process.
Among these, the dry desulfurization process is a process of performing desulfurization under a high temperature condition of 800 to 1100 ° C. using a compound such as calcium carbonate (CaCO 3 ) or calcium oxide (CaO) as a desulfurization agent. The dry desulfurization process has the advantage that it can be easily installed with desulfurization equipment using almost no water. On the other hand, compared to wet and semi-dry desulfurization processes, the sulfur removal rate and the utilization rate of input calcium are low, and the process requires high temperatures.

近年、珪酸カルシウム水和物(C−S−Hゲル)を脱硫剤として用いる新規な乾式脱硫プロセスが検討されてきている(非特許文献1〜5)。このプロセスは、石炭燃焼施設等から排出されるフライアッシュの周りに水酸化カルシウム(Ca(OH))を被覆することで、フライアッシュ中の珪素とCa(OH)を反応させてC−S−Hゲルの生成を行い、これを脱硫剤として用いている。このプロセスでは、57〜400℃の低温で脱硫が可能であり、脱硫剤中のCa利用効率が高いことも報告されている。しかしながら脱硫剤の調整に手間がかかること、水酸化カルシウムの価格が高く、脱硫コストが高価となることが欠点となっている。 In recent years, a novel dry desulfurization process using calcium silicate hydrate (C—S—H gel) as a desulfurizing agent has been studied (Non-Patent Documents 1 to 5). In this process, fly ash discharged from a coal combustion facility or the like is coated with calcium hydroxide (Ca (OH) 2 ) so that silicon in the fly ash reacts with Ca (OH) 2 to form C- An S—H gel is produced and used as a desulfurizing agent. In this process, it is reported that desulfurization is possible at a low temperature of 57 to 400 ° C., and Ca utilization efficiency in the desulfurization agent is high. However, there are drawbacks in that it takes time to adjust the desulfurizing agent, the price of calcium hydroxide is high, and the desulfurization cost is high.

ここで、珪酸カルシウム水和物とは水硬後のセメントの主成分に他ならない。塩基性のセメントと硫黄酸化物類との反応性の高さは、酸性雨がコンクリート構造物に与える影響を考える上でも指摘されている。もし、現在有効利用される廃棄されているセメント廃棄物を乾式脱硫材として直接利用できれば、廃棄物量の低減と低コストな脱硫プロセスの構築が可能となる。
こうしたコンクリート廃材、或はセメント廃材を乾式脱硫剤として利用することについては、既に幾つか提案されている。
Here, calcium silicate hydrate is nothing but the main component of cement after hydraulic hardening. The high reactivity between basic cement and sulfur oxides has been pointed out when considering the effect of acid rain on concrete structures. If the cement waste that is currently being used effectively can be directly used as a dry desulfurization material, it is possible to reduce the amount of waste and to build a low-cost desulfurization process.
Several proposals have already been made for using such concrete waste or cement waste as a dry desulfurization agent.

たとえば、特許文献1には、排ガス中に含まれる硫黄酸化物や塩化水素などの酸性ガスを吸収除去する固体吸収剤として、コンクリート廃材を破砕し、0.59〜1.19mmに整粒したコンクリート粒子を用いることが記載されている。
また、特許文献2には、建設廃材のコンクリートを破砕して得られた微粉末状モルタル分から排煙脱硫材を製造する方法が提案されている。この方法は、コンクリート中に含まれる炭酸カルシウム(CaCO)や水酸化カルシウムCa(OH)を、排煙脱硫材として再生させるものであって、建設廃材のコンクリートがらを破砕再生して得た微粉末状のモルタル分を、排煙脱硫材として利用するものであり、コンクリートがらを構成する各素材間の圧縮強度の差を利用してセメントペースト(モルタル分)と砂利や砕石などの骨材とを分離して微粉末状のモルタル分を得るものである。
特許文献2に記載された方法によれば、再処理材の混合物は、粒径が15〜20mmの砂利からなる中粒骨材、粒径が5〜15mmの砂利からなる小粒骨材、粒径が5mm以下の細骨材に分けられるとともに、粒径が5mm以下の細骨材はさらに0.13〜5mmの砂などからなる細骨材と、粒径が0.13mm以下のモルタル分などの微粒子16とに分離される。
For example, Patent Document 1 discloses concrete in which concrete waste is crushed and sized to 0.59 to 1.19 mm as a solid absorbent that absorbs and removes acidic gases such as sulfur oxides and hydrogen chloride contained in exhaust gas. The use of particles is described.
Patent Document 2 proposes a method for producing a flue gas desulfurization material from a fine powder mortar obtained by crushing concrete as construction waste material. This method regenerates calcium carbonate (CaCO 3 ) and calcium hydroxide Ca (OH) 2 contained in the concrete as a flue gas desulfurization material, and was obtained by crushing and regenerating the concrete waste of construction waste. The pulverized mortar is used as a flue gas desulfurization material, and cement paste (mortar) and aggregates such as gravel and crushed stone using the difference in compressive strength between the materials constituting the concrete waste To obtain a fine powder mortar.
According to the method described in Patent Document 2, the mixture of reprocessing materials is composed of medium aggregate made of gravel with a particle size of 15 to 20 mm, small aggregate made of gravel with a particle size of 5 to 15 mm, particle size Are divided into fine aggregates having a particle size of 5 mm or less, and fine aggregates having a particle size of 5 mm or less include fine aggregates made of sand or the like of 0.13 to 5 mm, and mortar components having a particle size of 0.13 mm or less. Separated into fine particles 16.

珪酸カルシウム水和物が大きな脱硫能力を持つには、高い塩基性を有することと、大きな表面積を有することの、2つの理由がある(非特許文献6参照)。
また、珪酸カルシウム水和物の結晶は間隙水を多く有しており、間隙水に溶け込んだ水酸化カルシウムにも脱硫に大きく寄与していると考えられる。
さらに、既往の研究により、特にCaO・SiO・HOあるいは4CaO・Al・13HO等の化合物の脱硫効果が高いこと(非特許文献2)、水、あるいはNOxの共存下で脱硫効果が高くなること(非特許文献4)などが報告されている。
実開昭59−184930号公報 特許第2646938号公報 C.S.Ho and S.M.Shih,1992,Ind.Ehg.Chem.Res.,31[4],1130-1135. J.F.Sanders,T.C.Keener,and J.Wang,1995,Ind.Eng.Chem.Res.,34[1],302-307. Jung,G.-H.,Kim,H.,and Kim,S.-G.,2000,Ind.Eng.Chem.Res.,39[5],1264-1270. Li,Y.,Loh,B.,Matsushima,N.,Nishioka,and M.,Sadakata,M.,2002,Energy & Fuel,16[1],155-160. Renedo,M.J.,and Fernandez,J.,2002,Ind.Eng.Chem.Res.,41[10],2412-2417. Reed.G.D.,Davis.W.T.,and Pudelek,R.E.,1984,Environ.Sci.Technol.18,54.
There are two reasons why calcium silicate hydrate has a high desulfurization ability: high basicity and a large surface area (see Non-Patent Document 6).
In addition, calcium silicate hydrate crystals have a lot of pore water, and it is considered that calcium hydroxide dissolved in the pore water greatly contributes to desulfurization.
Furthermore, according to past studies, the desulfurization effect of compounds such as CaO · SiO 2 · H 2 O or 4CaO · Al 2 O 3 · 13H 2 O is particularly high (Non-patent Document 2), in the presence of water or NOx. It has been reported that the desulfurization effect is high (Non-Patent Document 4).
Japanese Utility Model Publication No. 59-184930 Japanese Patent No. 2646938 CSHo and SMShih, 1992, Ind. Ehg. Chem. Res., 31 [4], 1130-1135. JFSanders, TCKeener, and J. Wang, 1995, Ind. Eng. Chem. Res., 34 [1], 302-307. Jung, G.-H., Kim, H., and Kim, S.-G., 2000, Ind. Eng. Chem. Res., 39 [5], 1264-1270. Li, Y., Loh, B., Matsushima, N., Nishioka, and M., Sadakata, M., 2002, Energy & Fuel, 16 [1], 155-160. Renedo, MJ, and Fernandez, J., 2002, Ind. Eng. Chem. Res., 41 [10], 241-2417. Reed.GD, Davis.WT, and Pudelek, RE, 1984, Environ.Sci.Technol. 18,54.

しかしながら、こうした従来のコンクリート廃材を利用した脱硫材は、珪酸カルシウム水和物(C−S−Hゲル)に比べて、その脱硫効果がまだ十分ではないという問題がある。
本発明は、以上のような事情に鑑みてなされたものであって、コンクリート廃材を利用して、安価で、且つ効率の高い脱硫材を製造し、脱硫を行うことを目的とするものである。
However, the conventional desulfurization material using the concrete waste material has a problem that its desulfurization effect is not yet sufficient as compared with calcium silicate hydrate (C—S—H gel).
This invention is made | formed in view of the above situations, Comprising: It aims at manufacturing a cheap and highly efficient desulfurization material using a concrete waste material, and performing a desulfurization. .

発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、酸による抽出処理を加えることで、粒子内奥のカルシウム分を抽出し、粒子表面を炭酸カルシウムで覆うことで、脱硫反応速度やカルシウム利用効率の向上を図ることができるという知見を得た。   As a result of intensive studies to achieve the above object, the inventors have extracted the calcium content in the interior of the particle by adding an acid extraction treatment, and covered the particle surface with calcium carbonate, thereby desulfurization reaction rate. And gained knowledge that calcium utilization efficiency can be improved.

本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
(1)コンクリート系廃棄物から得た廃セメント微粉末に、酸による抽出処理を加えて得られ抽出残渣からなることを特徴とする脱硫材。
(2)コンクリート系廃棄物を粉砕して廃セメント微粉末を得て、この得られた廃セメント微粉末を酸により抽出処理して抽出残渣を得ることを特徴する脱硫材の製造方法。
(3)コンクリート系廃棄物から得た廃セメント微粉末に、酸による抽出処理を加えて得られた抽出残渣からなる脱硫材を用いて、排煙から硫黄酸化物を取り除くことを特徴とする排煙脱硫方法。
The present invention has been completed based on these findings, and is as follows.
(1) A desulfurization material comprising an extraction residue obtained by subjecting a waste cement fine powder obtained from a concrete waste to an extraction treatment with an acid.
(2) was crushed concrete waste to give a waste cement powder, method for producing a desulfurizing material to said Rukoto obtain an extract residue was extracted treated with an acid this resulting waste cement fine powder.
(3) Exhaust gas characterized by removing sulfur oxide from flue gas using desulfurization material consisting of extraction residue obtained by adding extraction treatment with acid to waste cement fine powder obtained from concrete waste Smoke desulfurization method.

本発明によれば、二酸化硫黄と高い反応性を持ち、かつ廃棄物であるコンクリート廃材から得られるケイ酸カルシウム水和物を利用して、水の消費量が少なく、安価で低温で脱硫を行うことができる脱硫剤を提供することができる。   According to the present invention, calcium silicate hydrate, which has high reactivity with sulfur dioxide and is obtained from waste concrete waste, is used to desulfurize at low temperature at low cost with low water consumption. A desulfurizing agent that can be provided can be provided.

これまでにも、ケイ酸カルシウムと二酸化硫黄との高い反応性は指摘されてきた。
本発明では、コンクリート廃材から得たセメント水和物部を微細化し、更に酸処理を加えて、粒子内奥のカルシウム分を抽出することで、脱硫反応速度やカルシウム利用率の向上を図るものである。
本発明の酸処理に用いる酸としては、炭酸、塩酸、硝酸、硫酸などの無機酸や、酢酸、クエン酸、フミン酸などの有機酸があげられるが、特に炭酸を用いるのが好ましい。すなわち、酸として炭酸を用いた場合には、抽出されたカルシウムは粒子表面で炭酸カルシウムとして析出し、この炭酸カルシウムも脱硫に寄与することとなるためである。
Until now, the high reactivity of calcium silicate and sulfur dioxide has been pointed out.
In the present invention, the cement hydrate part obtained from the concrete waste material is refined and further subjected to acid treatment to extract the calcium content in the interior of the particles, thereby improving the desulfurization reaction rate and the calcium utilization rate. is there.
Examples of the acid used for the acid treatment of the present invention include inorganic acids such as carbonic acid, hydrochloric acid, nitric acid, and sulfuric acid, and organic acids such as acetic acid, citric acid, and humic acid, and it is particularly preferable to use carbonic acid. That is, when carbonic acid is used as the acid, the extracted calcium is precipitated as calcium carbonate on the particle surface, and this calcium carbonate also contributes to desulfurization.

本発明で用いる廃セメント微粉末は、コンクリート系廃棄物を破砕する際に得られる微粉末であって、粒径が5mm以下、好ましくは1mm以下、より好ましくは0.2mm以下のものが用いられる。   The waste cement fine powder used in the present invention is a fine powder obtained when crushing concrete waste, and has a particle size of 5 mm or less, preferably 1 mm or less, more preferably 0.2 mm or less. .

本発明においては、廃セメント微粉末に、酸による抽出処理を行なうが、この際には、廃セメント中のカルシウムが粒子表面に抽出されるように反応の量論比から酸の量を調整する。   In the present invention, the waste cement fine powder is subjected to an extraction treatment with an acid. At this time, the amount of acid is adjusted from the stoichiometric ratio of the reaction so that calcium in the waste cement is extracted to the particle surface. .

以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

〈実施例1〉
(炭酸によるカルシウム抽出処理)
試料として、廃コンクリートから骨材を再生した際に排出された廃セメント微粉末((株)立石建設提供)を用いた。
脱硫試験には、手を加えていない廃セメント微粉末と、炭酸によるカルシウム抽出処理を施した抽出残渣の2種を用いた。カルシウム抽出の条件は、廃セメント微粉末/水仕込量比:0.057、反応温度:30℃、二酸化炭素分圧:1.1MPa、反応時間:60分、とした。カルシウム抽出を行なった後、抽出残渣をフィルターで吸引濾過し、イオン交換水で洗った後、乾燥させた試料を用いた。
蛍光X線分析装置、示差熱天秤により測定した各試料の化合物組成を表1に示す。なお、CaCOとCa(OH)の値は理論値である。
<Example 1>
(Calcium extraction treatment with carbonic acid)
As a sample, waste cement fine powder (provided by Tateishi Construction Co., Ltd.) discharged when reclaiming aggregate from waste concrete was used.
In the desulfurization test, two types of waste cement fine powder that had not been modified and an extraction residue subjected to calcium extraction treatment with carbonic acid were used. The calcium extraction conditions were: waste cement fine powder / water charge ratio: 0.057, reaction temperature: 30 ° C., carbon dioxide partial pressure: 1.1 MPa, reaction time: 60 minutes. After calcium extraction, the extraction residue was suction filtered with a filter, washed with ion-exchanged water, and then dried.
Table 1 shows the compound composition of each sample measured by a fluorescent X-ray analyzer and a differential thermal balance. The values of CaCO 3 and Ca (OH) 2 are theoretical values.

Figure 0004817333
Figure 0004817333

(脱硫性能試験)
廃セメント微粉末の脱硫材としての効果を調べるために、以下のような手順で脱硫性能試験を行なった。図1は、脱硫試験に用いた装置を示す図である。
廃セメント微粉末にSOが吸収され固定される場合には何らかの重量変化が生じるはずであるので、示差熱天秤(島津製作所製 H60)を用いて、廃セメント微粉末、及び炭酸化処理を加えた廃セメント微粉末のSO雰囲気下(ガス流量100mL/min、SO 1000ppm、N balance)での重量の経時変化を測定し、脱硫速度を求めた。また、炭酸カルシウム粉末についても試験を行なった。
アルミナ製の上皿に試料を乗せ、熱天秤上に上皿を設置した後、窒素ガス雰囲気下で試料を前処理し、重量変化が見られなくなった後、SO雰囲気に切り替えた。ガス供給を開始し温度を一定に保ちながら、試料の重量変化を測定した。実験手法は、前記非特許文献4を参考とした。
試験の結果を、図2ないし5に示す。
(Desulfurization performance test)
In order to investigate the effect of the waste cement fine powder as a desulfurization material, a desulfurization performance test was performed in the following procedure. FIG. 1 is a diagram showing an apparatus used for a desulfurization test.
When SO 2 is absorbed and fixed in the waste cement fine powder, some weight change should occur. Therefore, using a differential thermal balance (H60 manufactured by Shimadzu Corporation), add the waste cement fine powder and carbonation treatment. The change over time of the weight of the waste cement fine powder in an SO 2 atmosphere (gas flow rate 100 mL / min, SO 2 1000 ppm, N 2 balance) was measured to determine the desulfurization rate. A test was also conducted on calcium carbonate powder.
After placing the sample on an alumina top plate and placing the top plate on a thermobalance, the sample was pretreated in a nitrogen gas atmosphere. After no change in weight was observed, the sample was switched to the SO 2 atmosphere. While the gas supply was started and the temperature was kept constant, the change in the weight of the sample was measured. The non-patent document 4 was referred as the experimental method.
The test results are shown in FIGS.

図2ないし4は、それぞれ、廃セメント微粉末、抽出残渣、及びCaCOに対する、吸収されたSO量(重量%)の時間推移の曝露温度依存性を示すものである。
図2に示すとおり、SOの曝露時間と共に廃セメント微粉末の重量が増加した。この重量増加は、廃セメント中のケイ酸カルシウム水和物や水酸化カルシウムとSOが反応し、硫酸カルシウムが生成したことによると考えられる。30℃と60℃においては、廃セメント微粉末とSOの反応速度は非常に大きく向上することが分かった。この理由としては、廃セメントに吸着していた水分やセメント化合物の水和水が脱硫に大きな寄与を持つことを示唆していると考えられる。つまり、100℃以上では、これらの水分子が廃セメントから脱離する割合が大きくなるため、大きな反応速度が得られない可能性がある。
これに対し、図3に示すとおり、抽出残渣とSOの反応速度は、反応温度60℃から、温度上昇に伴い減少し(含有水分減少のため)、700℃以上の温度で再び上昇した(CaCO→CaOの分解反応のため)。高温(700℃以上)での反応速度は、カルシウム含有量がすくないにもかかわらず、廃セメント微粉末の反応速度を上回った。これは炭酸によるカルシウムの抽出により、廃セメント粒子内に含まれるカルシウムが抽出され、粒子表面或は、粒子外部に炭酸カルシウムとして析出した結果、SOとの反応が速やかに行なわれるようになったためと考えられる。
FIGS. 2 to 4 show the exposure temperature dependence of the time course of the amount of SO 2 absorbed (wt%) for waste cement fine powder, extraction residue, and CaCO 3 , respectively.
As shown in FIG. 2, the weight of the waste cement fine powder increased with the exposure time of SO 2 . This increase in weight is thought to be due to the reaction of calcium silicate hydrate or calcium hydroxide in waste cement with SO 2 to produce calcium sulfate. It was found that at 30 ° C. and 60 ° C., the reaction rate between the waste cement fine powder and SO 2 was greatly improved. The reason for this is considered to suggest that the moisture adsorbed on the waste cement and the hydration water of the cement compound greatly contribute to desulfurization. That is, at a temperature of 100 ° C. or higher, the rate at which these water molecules are desorbed from the waste cement increases, so that a large reaction rate may not be obtained.
On the other hand, as shown in FIG. 3, the reaction rate between the extraction residue and SO 2 decreased from the reaction temperature of 60 ° C. as the temperature increased (due to a decrease in water content), and increased again at a temperature of 700 ° C. or higher ( CaCO 3 → CaO decomposition reaction). The reaction rate at a high temperature (700 ° C. or higher) exceeded the reaction rate of the waste cement fine powder even though the calcium content was low. This is because calcium contained in the waste cement particles is extracted by extraction of calcium with carbonic acid, and as a result of precipitation as calcium carbonate on the surface of the particles or outside the particles, the reaction with SO 2 is carried out rapidly. it is conceivable that.

図5は、吸収されたSO/Ca含有量(mol/mol)の曝露温度依存性(曝露開始後5分)を示す図である。
図から明らかなように、高温域(700℃以上)で抽出残渣は、手を加えていない廃セメント微粉末及び炭酸カルシウムの脱硫効率を上回った。すなわち、抽出残渣は、粒子表面の近傍に炭酸カルシウムが存在するため、より効率の良い乾式脱硫材として適用できることがわかる。
FIG. 5 is a graph showing the exposure temperature dependence of absorbed SO 2 / Ca content (mol / mol) (5 minutes after the start of exposure).
As is apparent from the figure, the extraction residue exceeded the desulfurization efficiency of the waste cement fine powder and calcium carbonate that were not modified in the high temperature range (700 ° C. or higher). That is, it can be seen that the extraction residue can be applied as a more efficient dry desulfurization material because calcium carbonate exists in the vicinity of the particle surface.

〈実施例2〉
(塩酸で処理した廃セメント微粉末の脱硫実験)
0.006mol/L塩酸を用い、塩酸の添加量を変化させて、カルシウム抽出率が10%ないし100%の各試料を得た。各試料は、実施例1と同様にして、廃セメント微粉末を溶かし、20分間撹拌した後、吸引濾過し、ろ液と固形分に分けることにより得た。なお、得られた試料のカルシウム抽出率は、ろ液中のカルシウム含有率をICPで測定することにより求めた。
(脱硫実験)
上記のCa抽出率10〜100%の各試料の固形分を乾燥し、実施例1と同様にして、脱硫実験を行った。
実験条件は、以下のとおりであった。
ガス流量:100mL/min
ガス組成:SO1005ppm、N balance
昇温プロセス:室温→(20℃/min)→反応温度
反応温度:850℃
<Example 2>
(Desulfurization experiment of waste cement fine powder treated with hydrochloric acid)
Each sample having a calcium extraction rate of 10% to 100% was obtained by using 0.006 mol / L hydrochloric acid and changing the addition amount of hydrochloric acid. Each sample was obtained in the same manner as in Example 1 by dissolving the waste cement fine powder and stirring for 20 minutes, followed by suction filtration, and separating the filtrate into a solid content. In addition, the calcium extraction rate of the obtained sample was calculated | required by measuring the calcium content rate in a filtrate by ICP.
(Desulfurization experiment)
The solid content of each sample having a Ca extraction rate of 10 to 100% was dried, and a desulfurization experiment was performed in the same manner as in Example 1.
The experimental conditions were as follows.
Gas flow rate: 100 mL / min
Gas composition: SO 2 1005ppm, N 2 balance
Temperature rising process: Room temperature → (20 ° C./min)→Reaction temperature Reaction temperature: 850 ° C.

実験結果を、図6に示す。図6は、処理前の廃セメント微粉末、及びCa抽出率10%ないしCa抽出率100%の各試料について、各試料の重量増加の時間推移を示すものである。
図から明らかなように、10%Ca抽出した後の試料の脱硫性能は、処理前の試料と比べると、高いことがわかった。これは、塩酸によるカルシウムの抽出により、廃セメント微粉末粒子内部に含まれるカルシウム分が抽出され、粒子表面あるいは、粒子外部に塩酸カルシウムとして析出した結果、SOとの反応が速やかに行われるようになったためだと考えられる。
また、20%Ca抽出した後の試料の脱硫性能は、処理する前の試料と比べると、反応初期における高いことがわかったが、40分を経過した後、抽出した後の試料の重量増加がやや頭打ち傾向となって、未処理試料の脱硫性能と同じ程度になることがわかった。しかし、カルシウム抽出率30%以降の試料の脱硫性能は処理前の試料と比べると、低くなった。
The experimental results are shown in FIG. FIG. 6 shows the time transition of the weight increase of each sample for the waste cement fine powder before treatment and each sample with a Ca extraction rate of 10% to a Ca extraction rate of 100%.
As can be seen from the figure, the desulfurization performance of the sample after 10% Ca extraction was higher than that of the sample before treatment. This is because calcium contained in fine particles of waste cement powder is extracted by extraction of calcium with hydrochloric acid, and precipitated as calcium hydrochloride on the particle surface or outside of the particle, so that the reaction with SO 2 is performed quickly. It is thought that it was because of.
In addition, it was found that the desulfurization performance of the sample after 20% Ca extraction was higher in the initial reaction than the sample before the treatment, but after 40 minutes passed, the weight of the sample after extraction increased. It turned out to be a little flat, and it was found to be the same as the desulfurization performance of the untreated sample. However, the desulfurization performance of samples with a calcium extraction rate of 30% or lower was lower than that of the sample before treatment.

本発明により、廃棄物を原料とした安価な脱硫プラントの提案を行うことが可能となる。   The present invention makes it possible to propose an inexpensive desulfurization plant using waste as a raw material.

脱硫試験装置を示す図Diagram showing desulfurization test equipment 吸収されたSO/廃セメント微粉末(wt%)の時間推移の曝露温度依存性を示す図It shows the exposure temperature dependence of the temporal transition of the absorbed SO 2 / waste cement powder (wt%) 吸収されたSO/抽出残渣(wt%)の時間推移の曝露温度依存性を示す図It shows the exposure temperature dependence of the temporal transition of the absorbed SO 2 / extraction residue (wt%) 吸収されたSO/CaCO(wt%)の時間推移の曝露温度依存性を示す図Shows the exposure temperature dependence of the temporal transition of the absorbed SO 2 / CaCO 3 (wt% ) 吸収されたSO/Ca含有量(mol/mol)の曝露温度依存性(曝露開始後5分)を示す図Shows the absorbed SO 2 / Ca content (mol / mol) of the exposure temperature dependence (exposure start after 5 minutes) 重量増加の時間推移と、Ca抽出率との関係を示す図The figure which shows the relationship between the time transition of weight increase and Ca extraction rate

Claims (3)

コンクリート系廃棄物から得た廃セメント微粉末に、酸による抽出処理を加えて得られ抽出残渣からなることを特徴とする脱硫材。 A desulfurization material comprising an extraction residue obtained by applying an extraction treatment with an acid to waste cement fine powder obtained from concrete waste. コンクリート系廃棄物を粉砕して廃セメント微粉末を得て、この得られた廃セメント微粉末を酸により抽出処理して抽出残渣を得ることを特徴する脱硫材の製造方法。 Concrete waste and pulverized to obtain a waste cement powder, method for producing a desulfurizing material to said Rukoto obtain an extract residue was extracted treated with an acid this resulting waste cement fine powder. コンクリート系廃棄物から得た廃セメント微粉末に、酸による抽出処理を加えて得られた抽出残渣からなる脱硫材を用いて、排煙から硫黄酸化物を取り除くことを特徴とする排煙脱硫方法。 A flue gas desulfurization method characterized by removing sulfur oxides from flue gas using a desulfurization material consisting of an extraction residue obtained by adding extraction treatment with acid to waste cement fine powder obtained from concrete waste .
JP2007289595A 2007-11-07 2007-11-07 Desulfurization method using waste concrete Expired - Fee Related JP4817333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007289595A JP4817333B2 (en) 2007-11-07 2007-11-07 Desulfurization method using waste concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289595A JP4817333B2 (en) 2007-11-07 2007-11-07 Desulfurization method using waste concrete

Publications (2)

Publication Number Publication Date
JP2009112958A JP2009112958A (en) 2009-05-28
JP4817333B2 true JP4817333B2 (en) 2011-11-16

Family

ID=40780700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289595A Expired - Fee Related JP4817333B2 (en) 2007-11-07 2007-11-07 Desulfurization method using waste concrete

Country Status (1)

Country Link
JP (1) JP4817333B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110030593A1 (en) * 2009-08-10 2011-02-10 General Electric Company Method for desulfurizing a fluid and methods for operating a coal combustion system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166931A (en) * 1982-03-26 1983-10-03 Onoda Cement Co Ltd Removing agent of acidic material in waste gas
JPS59184930U (en) * 1983-05-26 1984-12-08 バブコツク日立株式会社 absorbent
JPS6087851A (en) * 1983-10-18 1985-05-17 Babcock Hitachi Kk Manufacture of desulfurizing agent
JPS63294941A (en) * 1987-05-26 1988-12-01 Central Res Inst Of Electric Power Ind Desulfurizing agent
JP2646938B2 (en) * 1992-06-15 1997-08-27 共栄物産株式会社 Method of producing flue gas desulfurization material from construction waste
JP2003181243A (en) * 2001-12-14 2003-07-02 Sumitomo Osaka Cement Co Ltd Method of treating waste gas, soot and dust

Also Published As

Publication number Publication date
JP2009112958A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
Zou et al. Sorption capacity and mechanism of Cr3+ on tobermorite derived from fly ash acid residue and carbide slag
JP7450409B2 (en) Method for producing cement mixture, mixed cement and carbon dioxide adsorbent
CN113800787A (en) Preparation method of high-activity calcium hydroxide
CN104475050A (en) Activated carbon diatomite particles capable of rapid purification of flue gas and preparation method thereof
CN112403254B (en) Method for preparing desulfurizer by using red mud as raw material and desulfurizer prepared by method
CN110698174A (en) Lightweight sludge ceramsite, and preparation method and application thereof
KR101312341B1 (en) Carbon dioxide absorbent using recycled waste and concrete including the same
CN114797752A (en) Carbon dioxide adsorbent and preparation method thereof
JP2010180086A (en) Method for producing slaked lime
JP4817333B2 (en) Desulfurization method using waste concrete
CN115805008A (en) Iron-calcium-containing flue gas desulfurizer and preparation method thereof
EA039296B1 (en) Calcium hydroxide particles with fine pores and process for manufacturing same
JP4525164B2 (en) Digested dolomite powder and method for producing the same
Li et al. Utilization of steel slag as a highly efficient absorbent for SO2 removal at coal-fired power stations
CN113402183B (en) Preparation method of multifunctional titanium-containing solid waste source cement-based material
EP3152491A2 (en) Stabilization of sodic fly ash of type f using calcium-based material
CN106565116B (en) It is a kind of to absorb SO in cement kiln flue gas using diatomite/calcium based compound additive2Method
CN108940239B (en) Method for controlling fine particles and heavy metals of coal-fired power plant based on modified attapulgite
CN1820821A (en) High efficiency calciam base absorbant for smoke desulfurizing and its preparing method
KR20140039359A (en) Acidic gas adsorbent by using coal fly ash and method for preparing thereof
CN105664705A (en) Limestone and attapulgite mixed desulfurizing agent
CN109718658A (en) A kind of method of calcium carbide factory&#39;s solid waste desulfurization and cycling and reutilization
Sun et al. Preparation of sodium humate/α-aluminum oxide adsorbents for flue gas desulfurization
JP2002058963A (en) Exhaust gas treating agent and its method
CN112399884B (en) Sorbent compositions for electrostatic precipitators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees