JP4817308B2 - Sample surface treatment method for thermophysical property measurement - Google Patents

Sample surface treatment method for thermophysical property measurement Download PDF

Info

Publication number
JP4817308B2
JP4817308B2 JP2006159100A JP2006159100A JP4817308B2 JP 4817308 B2 JP4817308 B2 JP 4817308B2 JP 2006159100 A JP2006159100 A JP 2006159100A JP 2006159100 A JP2006159100 A JP 2006159100A JP 4817308 B2 JP4817308 B2 JP 4817308B2
Authority
JP
Japan
Prior art keywords
sample
thermophysical property
film
surface treatment
property measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006159100A
Other languages
Japanese (ja)
Other versions
JP2007327851A (en
Inventor
めぐみ 阿子島
雅美 根田
哲也 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006159100A priority Critical patent/JP4817308B2/en
Publication of JP2007327851A publication Critical patent/JP2007327851A/en
Application granted granted Critical
Publication of JP4817308B2 publication Critical patent/JP4817308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

発明の属する技術の分野TECHNICAL FIELD OF THE INVENTION

本発明は、光加熱時の試料の温度応答を光検出素子により非接触で観測して熱物性値を算出する熱物性測定に際して、薄くて均一な良質の黒化膜を形成し、観測用光検出素子の対応波長に充分な感度をもつ試料を得ることができるようにした熱物性測定用資料表面処理方法及びその方法により得られた試料、並びにその方法を用い或いは試料を用いた熱物性測定方法に関する。   The present invention forms a thin, uniform, high-quality blackening film when measuring the thermophysical value by observing the temperature response of the sample at the time of photoheating in a non-contact manner using a photodetecting element, and observing light. Thermophysical property measurement material surface treatment method capable of obtaining a sample having sufficient sensitivity for the corresponding wavelength of the detection element, sample obtained by the method, and thermophysical property measurement using the method or using the sample Regarding the method.

パルス加熱等の加熱を行うレーザフラッシュ法や周期加熱法、更にはステップ加熱法等に代表される、被測定試料に対して光加熱を行う際の試料の温度応答を、光検出素子により非接触で観測して熱物性値を算出する手法が、熱物性測定手法として広く用いられている。これらの熱物性測定に際しては、加熱光を吸収できて、かつ、観測用光検出素子の対応波長に十分な感度をもつ試料が測定対象となる。   The temperature response of the sample when performing optical heating on the sample to be measured, such as laser flash method that performs heating such as pulse heating, periodic heating method, and step heating method, etc. is non-contacted by the light detection element. The method of calculating the thermophysical value by observing at is widely used as a thermophysical property measuring method. In measuring these thermophysical properties, a sample that can absorb heating light and has sufficient sensitivity to the corresponding wavelength of the observation light detection element is the measurement target.

しかしながら、上記の光加熱・非接触観測による熱物性値の測定を必要とする材料は多種多様であり、加熱光の吸収や観測波長に対する感度の条件を満たすものは必ずしも多くない。そのため、可視光〜赤外光を用いる測定に対しては、試料の表面や裏面を黒色ペイントを塗布することにより黒化して測定を行っている。その表面処理に際しては、耐熱潤滑用途の市販品であるカーボンスプレーを流用して塗布することが広く採用されている。   However, there are a wide variety of materials that require measurement of the thermophysical property values by the above-mentioned light heating / non-contact observation, and there are not necessarily many materials that satisfy the conditions of absorption of heating light and sensitivity to the observation wavelength. Therefore, for the measurement using visible light to infrared light, measurement is performed by blackening the front and back surfaces of the sample by applying black paint. In the surface treatment, it is widely adopted to apply carbon spray which is a commercial product for heat-resistant lubrication.

なお、被測定物体としての試料をレーザにより加熱し、試料の温度変化を光学的に測定する手法は、本件発明者等による下記の特許文献が知られている。
特開2005−249427号公報 特開2005−315762号公報
In addition, the following patent documents by the present inventors are known as a method for optically measuring a temperature change of a sample by heating a sample as an object to be measured with a laser.
JP 2005-249427 A JP 2005-315762 A

上記のように、試料に対してスプレーの塗布により黒化膜を形成する際には、手作業で行うこととなるために塗布量や均一性の制御が難しく、塗料容器のスプレー剤の残量によっても塗布が変わることも経験的に知られており、再現性に不安がある。また、材料や試料の表面状態に依存して黒化膜の接着性も変わるため、加熱光に耐え得る強度の不安定要素があった。   As described above, when forming a blackened film by spray application on the sample, it is difficult to control the application amount and uniformity because it is done manually, and the remaining amount of spray agent in the paint container It is also empirically known that the application changes depending on the case, and there is anxiety in reproducibility. Further, since the adhesion of the blackening film changes depending on the material and the surface state of the sample, there is an unstable element that can withstand the heating light.

また、カーボンスプレーによる黒化膜は、黒鉛粒子が吹き付けられただけなので、緻密ではなくふわふわした様なものであり、厚さを決定することも難しい。したがって、黒化膜の熱物性値も不明であり、不確かさ評価も難しく、測定結果の精度も向上しない。   In addition, the blackened film by carbon spray is not dense but fluffy because the graphite particles are sprayed, and it is difficult to determine the thickness. Therefore, the thermophysical value of the blackened film is unknown, it is difficult to evaluate the uncertainty, and the accuracy of the measurement result is not improved.

このように、カーボンスプレーによる黒化膜の形成は均一性、再現性、安定性、及び評価が困難という問題があるが、これに変わる方法がなかったことと簡便性から、この手法が長年用いられてきた。   As described above, the formation of a blackened film by carbon spray has the problems of uniformity, reproducibility, stability, and difficulty in evaluation, but this method has been used for many years because there was no alternative method and simplicity. Has been.

一方、光の透過がある試料の場合には、黒化だけでなく、光の透過を防止する、主に金属コーティングの膜形成も併用される。この金属コーティングに際しては、スパッタリングや蒸着などの成膜装置を用いて行われることが多い。このような成膜装置は、大掛かりで高価なものが多く、熱物性測定の表面処理のためだけに用意することは不経済である。   On the other hand, in the case of a sample having light transmission, not only blackening but also film formation of a metal coating that prevents light transmission is used in combination. The metal coating is often performed using a film forming apparatus such as sputtering or vapor deposition. Many of such film forming apparatuses are large and expensive, and it is uneconomical to prepare only for surface treatment for thermophysical property measurement.

それに対して近年、熱物性値の需要が高まり、測定結果に精度も求められるようになってきており、これらに代わる黒化膜とその成膜技術が求められている。   On the other hand, in recent years, the demand for thermophysical property values has increased, and the accuracy of measurement results has been demanded, and there is a need for a blackened film and a film deposition technique in place of these.

以上のように、
1.条件を満たさない試料に対する従来の、例えばカーボンスプレーの塗布等の表面処理方法では、手作業での処理であるために試料表面で均一な塗布や再現性が難しく、安定性のある黒化膜が存在しなかった点。
2.従来の方法による黒化膜は、基板との粘着性や強度に不安がある点。
3.黒化膜の厚さが決定できないことなどから、表面処理に起因する不確かさ(誤差)を分析的に評価することが出来ず、測定精度が向上しなかった点。
4.黒化膜と併用する金属コーティングを行うためには、スパッタリングや蒸着など、大掛かりな成膜装置が必要となる点。
等の種々の問題点があった。
As above
1. In conventional surface treatment methods such as carbon spray coating for samples that do not satisfy the conditions, since it is a manual process, uniform coating and reproducibility are difficult on the sample surface, and a stable black film is formed. The point that did not exist.
2. The blackened film by the conventional method is uneasy about the adhesion and strength with the substrate.
3. Uncertainty (error) due to surface treatment could not be evaluated analytically because the thickness of the blackened film could not be determined, and measurement accuracy was not improved.
4). In order to perform metal coating used in combination with the blackened film, a large-scale film deposition system such as sputtering or vapor deposition is required.
There were various problems such as.

5.また、物質の表面処理技術として、試料の表面に処理物質を滴下し、その後この試料を回転させることにより試料表面に均一に表面処理を行うスピンコートの手法が知られているが、従来から用いられている一般のスピンコーターでは、主として数インチのウエハへの塗布用であるため、本発明が対象としているような、直径5〜10mm程度の熱物性測定用の小さい試料に均一に塗布することは困難であり、更に他の表面処理手法に関しても、小さな試料に均一に塗布する適切な手法が見つかっていない。
したがって本発明は上記の各種の課題を解決することを目的とする。
5). In addition, as a material surface treatment technique, a spin coating method is known in which a treatment substance is dropped onto the surface of the sample and then the sample is rotated to uniformly treat the surface of the sample. In general, a general spin coater is used for application to a wafer of several inches, so that it is uniformly applied to a small sample for measuring a thermophysical property having a diameter of about 5 to 10 mm, which is a target of the present invention. As for other surface treatment techniques, no suitable technique for uniformly applying to a small sample has been found.
Accordingly, an object of the present invention is to solve the various problems described above.

上記の課題を解決するため、前記のようなカーボンスプレーの塗布に変わる黒化処理方法を開発した。その開発に際しては簡便な材料と方法、再現性、均一な黒化膜(金属コーティングも含む)をコンセプトに開発を行った。手法としては、液体塗料(黒化膜の材料の微粉末を主成分とする液体)をスピンコーティングで塗布するものである。黒化処理方法として、一般的に湿式を避ける傾向があるが、本件の方法では敢えて湿式を採用しており、その点でも新しい発想である。   In order to solve the above-mentioned problems, a blackening treatment method was developed in place of the carbon spray application as described above. The development was based on the concept of simple materials and methods, reproducibility, and uniform blackened film (including metal coating). As a technique, a liquid paint (a liquid mainly composed of fine powder of a blackened film material) is applied by spin coating. As a blackening treatment method, generally, there is a tendency to avoid wet, but this method is dared to adopt wet, which is also a new idea.

スピンコーティングは、半導体業界においてレジスト塗布などで実績(製造ラインでも用いられている)があり、均一な塗布と再現性の高さという利点も知られている。それによって作成される膜は、μmオーダーの厚さが多く、フラッシュ法に代表される熱物性測定にも最適な黒化膜の厚さに対応する。また、スピンコーターで成膜した膜は、比較的緻密であり、形状(厚さ)も決定できる利点がある。これらの理由から、熱物性測定用の黒化処理にスピンコーティングを採用したものである。   Spin coating has a track record in resist coating and the like in the semiconductor industry (also used in production lines), and the advantages of uniform coating and high reproducibility are also known. The film thus formed has a thickness on the order of μm, and corresponds to the thickness of the blackened film that is optimal for the measurement of thermophysical properties represented by the flash method. In addition, the film formed by the spin coater is relatively dense and has an advantage that the shape (thickness) can be determined. For these reasons, spin coating is adopted for the blackening treatment for thermophysical property measurement.

それにより、前記の各課題に対して、
1.スピンコーティングで成膜される膜の均一性、再現性は、塗料の原料の粒径と粘度、スピンコーターの回転数に依存する。これらの条件を整えることで、均一性と再現性が確保し、本発明による手法により安定な黒化膜を作成できる。
2.スピンコートで作成すると、スプレーよりも緻密で強度があり、安定な黒化膜が作成できる。
3.スピンコーティングで作成した膜は、均一性、再現性、形状の面で優れていることから、黒化膜の物性値の評価と不確かさ評価を行うことができる。その評価により、これまで精度良く測定することが困難であった試料の熱物性値を、十分に精度良く測定することを可能とする。
4.スピンコートは、液体塗料であれば塗布可能であるので、黒化膜も金属コーティングも1台で両方を行うことができ、設備も簡単である。
5.液体を吸収できる材料(消しゴム材や紙粘土)で試料の側面と裏面を囲むようにする試料保持方法により、大きい試料を対象とするスピンコーターでも小さい試料に均一に塗布できる。
という理由により前記各課題を解決することができた。
As a result,
1. The uniformity and reproducibility of the film formed by spin coating depends on the particle size and viscosity of the coating material and the rotation speed of the spin coater. By adjusting these conditions, uniformity and reproducibility are ensured, and a stable blackened film can be produced by the method according to the present invention.
2. When it is formed by spin coating, it is denser and stronger than spray, and a stable blackened film can be formed.
3. Since the film formed by spin coating is excellent in terms of uniformity, reproducibility, and shape, it is possible to evaluate the property value and uncertainty of the blackened film. By the evaluation, it is possible to measure the thermophysical property value of the sample that has been difficult to measure with high accuracy until now.
4). Since spin coating can be applied as long as it is a liquid paint, both the blackening film and the metal coating can be performed by one unit, and the equipment is simple.
5). The sample holding method in which the side and back of the sample are surrounded by a material that can absorb liquid (such as an eraser material or paper clay) enables even a spin coater intended for a large sample to be uniformly applied to a small sample.
Therefore, the above-mentioned problems could be solved.

本発明について、前記課題を解決するためより具体的には次のような手法を採用し、また次のような試料を用い、更に次のような熱物性測定を行う。即ち、本発明に係る熱物性測定用試料表面処理方法は、熱物性測定用試料の表面にカーボンブラックを含む液体を用いたスピンコーティングにより黒化膜を形成したことを特徴とする。   In order to solve the above-mentioned problems, the present invention adopts the following technique more specifically, and uses the following sample and further performs the following thermophysical property measurement. That is, the sample surface treatment method for thermophysical property measurement according to the present invention is characterized in that a blackened film is formed on the surface of the sample for thermophysical property measurement by spin coating using a liquid containing carbon black.

また、本発明に係る他の熱物性測定用試料表面処理方法は、前記熱物性測定用試料表面処理方法において、前記カーボンブラックを含む液体として液体墨を用いたことを特徴とする。   Further, another sample surface treatment method for measuring thermophysical properties according to the present invention is characterized in that in the sample surface treatment method for measuring thermophysical properties, liquid black is used as the liquid containing the carbon black.

また、本発明に係る他の熱物性測定用試料表面処理方法は、前記熱物性測定用試料表面処理方法において、前記黒化膜形成の前処理として、金属コーティングを行ったことを特徴とする。   Further, another sample surface treatment method for measuring thermophysical properties according to the present invention is characterized in that in the sample surface treating method for measuring thermophysical properties, metal coating is performed as a pretreatment for forming the blackened film.

また、本発明に係る他の熱物性測定用試料表面処理方法は、前記熱物性測定用試料表面処理方法において、前記金属コーティングが、金属微粒子を含む液体を用いてスピンコーティングにより形成したことを特徴とする。   Further, another sample surface treatment method for thermophysical property measurement according to the present invention is characterized in that, in the sample surface treatment method for thermophysical property measurement, the metal coating is formed by spin coating using a liquid containing metal fine particles. And

また、本発明に係る他の熱物性測定用試料表面処理方法は、弾性素材からなる弾性板を試料より僅かに小さくくり抜いて孔を形成し、前記孔に試料を圧入保持して試料保持部材を作成し、前記試料保持部材をスピンコーターに固定して試料表面に黒化膜または金属コーティングを形成することを特徴とする。   In another sample surface treatment method for thermophysical property measurement according to the present invention, an elastic plate made of an elastic material is cut out slightly smaller than a sample to form a hole, and the sample is press-fitted and held in the hole to hold a sample holding member. The sample holding member is prepared and fixed to a spin coater, and a blackened film or a metal coating is formed on the sample surface.

また、本発明に係る他の熱物性測定用試料表面処理方法は、前記熱物性測定用試料表面処理方法において、前記くり抜きにより抜き取られた部材を前記孔の下方の一部に挿入して孔の上方に試料挿入部を形成し、前記孔の試料挿入部に試料を圧入保持したことを特徴とする。   Further, another sample surface treatment method for thermophysical property measurement according to the present invention is the above-described sample surface treatment method for thermophysical property measurement, in which the member extracted by the hollowing is inserted into a part below the hole. A sample insertion portion is formed above, and the sample is press-fitted and held in the sample insertion portion of the hole.

また、本発明に係る他の熱物性測定用試料表面処理方法は、前記熱物性測定用試料表面処理方法において、前記弾性素材として消しゴム材、または紙粘土を用いたことを特徴とする。   Another sample surface treatment method for thermophysical property measurement according to the present invention is characterized in that in the sample surface treatment method for thermophysical property measurement, an eraser material or paper clay is used as the elastic material.

また、本発明に係る熱物性測定用試料は、前記いずれかの熱物性測定用試料表面処理方法により作成された試料であることを特徴とする。   The thermophysical property measurement sample according to the present invention is a sample prepared by any one of the thermophysical property measurement sample surface treatment methods.

また、本発明に係る熱物性測定方法は、前記熱物性測定用試料を用い、該試料表面を加熱した際の試料表面または裏面の温度応答から熱物性値を算出することを特徴とする。   Moreover, the thermophysical property measurement method according to the present invention is characterized in that the thermophysical property value is calculated from the temperature response of the sample surface or the back surface when the sample surface is heated using the thermophysical property measurement sample.

また、本発明に係る熱物性測定方法は、前記熱物性測定方法において、前記試料の温度応答を、光または赤外線検出素子用いて非接触で測定したことを特徴とする。   Moreover, the thermophysical property measuring method according to the present invention is characterized in that, in the thermophysical property measuring method, the temperature response of the sample is measured in a non-contact manner using a light or infrared detecting element.

また、本発明に係る熱物性測定方法は、前記熱物性測定方法において、前記試料表面の加熱を、光を試料表面に照射する光加熱により行ったことを特徴とする。   The thermophysical property measuring method according to the present invention is characterized in that, in the thermophysical property measuring method, the sample surface is heated by light heating that irradiates the sample surface with light.

また、本発明に係る熱物性測定方法は、前記熱物性測定方法において、前記試料表面の加熱を、パルス加熱、周期加熱、ステップ加熱、フラッシュ加熱のいずれかにより行ったことを特徴とする   The thermophysical property measuring method according to the present invention is characterized in that in the thermophysical property measuring method, the sample surface is heated by any one of pulse heating, periodic heating, step heating, and flash heating.

試料の表面や裏面を均一にかつ再現性がある黒化処理することにより、
1.理想的な条件での測定を実現し、測定結果の高度化が期待できる。
2.黒化処理の効果を含めて不確かさ評価を十分に評価することができるので、測定結果の信頼性が向上する。
3.スプレーよりも安定な膜が作れるので、加熱光強度などの測定条件が広がる。
4.黒化処理できる材料が広いので、測定可能な材料の範囲が広がる。
5.小さい試料へのスピンコーターの適用を可能にした。
更にその他の効果として、
6.実験室で容易に作成出来る。
7.光透過防止用の金属コーティングも1台の装置で処理できる。
8.コーティング材料の調整が可能であり、黒鉛や金属の微粒子、溶剤の組合せを、材料によって選択・調整ができる。
等の種々の効果を奏することができる。
By blackening the surface and back of the sample uniformly and reproducibly,
1. Realization of measurement under ideal conditions, and sophistication of measurement results can be expected.
2. Since the uncertainty evaluation including the effect of the blackening process can be sufficiently evaluated, the reliability of the measurement result is improved.
3. Since a more stable film than spray can be made, measurement conditions such as heating light intensity are expanded.
4). Since the material that can be blackened is wide, the range of materials that can be measured is expanded.
5). The spin coater can be applied to small samples.
As another effect,
6). Easy to create in the laboratory.
7). The metal coating for preventing light transmission can also be processed with a single device.
8). The coating material can be adjusted, and the combination of graphite, metal fine particles, and solvent can be selected and adjusted depending on the material.
Various effects such as these can be achieved.

本発明は前記各種の課題を解決するため、熱物性測定用試料の表面にカーボンブラックを含む液体を用いたスピンコーティングにより黒化膜を形成する表面処理を行った試料を用い、熱物性の測定を行うことができるようにしたものである。   In order to solve the various problems described above, the present invention uses a sample that has been subjected to a surface treatment for forming a blackened film by spin coating using a liquid containing carbon black on the surface of the sample for thermophysical property measurement. It can be done.

本件で提案するスピンコーティングによる熱物性測定用黒化膜を試作した。試作では、黒化膜の材料として、液体墨(いわゆる墨汁など)を用いた。非常に身近な材料であり、購入が容易である。主成分は、カーボンブラック等なので、試料表面に塗布することで、光加熱・非接触測定の熱物性測定に適応する。材料との化学的反応性も不活性であり、安定である。親水性であるが速乾性で染込みも少ない。また、濃度を水で調整することもでき、扱いも容易である。   A blackening film for thermophysical property measurement by spin coating proposed in this study was fabricated. In the trial production, liquid black (so-called black ink etc.) was used as the material of the blackening film. It is a very familiar material and easy to purchase. Since the main component is carbon black or the like, it is applied to the surface of the sample to adapt to thermophysical property measurement by light heating and non-contact measurement. Chemical reactivity with the material is also inert and stable. Hydrophilic but quick drying and less soaking. Also, the concentration can be adjusted with water, and handling is easy.

試作の結果、黒化膜は、試料表面に均一に作成され、湿式ではあるが、乾燥も比較的速く良好であった。また、同じ手順で繰り返し行ったが、コーティング量を重量変化と厚さ測定から見積もって、図10の表に示すように、従来の方法よりも再現性が良いことが確認された。   As a result of trial manufacture, the blackened film was uniformly formed on the sample surface, and although it was wet, drying was relatively fast and good. Although the same procedure was repeated, the coating amount was estimated from the weight change and the thickness measurement, and as shown in the table of FIG. 10, it was confirmed that the reproducibility was better than the conventional method.

さらに、同様の手法を用いて、黒化処理の前処理として金属コーティングも試みた。測定に用いる光の透過性が強い試料に対しては、光の透過を防止する目的で、黒化処理の前処理にしばしば金属コーティングが用いられる。一般には、スパッタリングや蒸着で成膜するが、本件では、黒化膜同様にスピンコーティングで行った。   Furthermore, metal coating was also tried as a pretreatment for the blackening treatment using the same method. For a sample having a high light transmittance used for measurement, a metal coating is often used for the pretreatment of the blackening treatment for the purpose of preventing light transmission. In general, the film is formed by sputtering or vapor deposition, but in this case, the film was formed by spin coating like the blackened film.

金属コーティングの材料は、金属微粒子を主成分とするペーストを希釈したものやインクを用いる。試作した金属コーティングは、測定に影響が無い程度の膜厚で均一に塗布され、光の透過防止の役割を十分に果たすことを確認した。また、このコーティングも、再現性が良いことが確認できた。   As a material for the metal coating, a diluted paste or ink mainly composed of metal fine particles is used. It was confirmed that the prototype metal coating was uniformly applied with a film thickness that does not affect the measurement and sufficiently fulfilled the role of preventing light transmission. It was also confirmed that this coating also had good reproducibility.

実際にスピンコーターを用いて、液体墨、熱物性値を測定する材料(試作では、アルミナ、ガラス)を用い試作を行った。試作では、数種類の液体墨、数種類の試料を試した結果、特にカーボンブラックを含む合成墨を主成分とする液体墨が良好であることが分かった。   Using a spin coater, we made a prototype using liquid ink and materials for measuring thermophysical properties (in the prototype, alumina and glass). In the trial production, several types of liquid ink and several types of samples were tested. As a result, it was found that liquid ink mainly composed of synthetic black ink containing carbon black was good.

実際に均一な黒化膜を作成するため、図1に示すような手法を用いて行った。図1(a)のような、黒化したい試料よりも少し厚い板状の、例えばプラスチック消しゴムの材料のような弾性材の板からなる弾性板1を用意する。次に同図(b)のような、試料の直径よりも若干小さい直径を備えた円筒部2を形成している孔開け部材3を用い、同図(c)の斜視図及び同図(d)の断面図のように、弾性板1の中央を試料の直径よりも若干小さくくり抜き、同図(e)のようにくり抜き孔4を開けた試料保持部材5とする。このようにしてくり抜いたくり抜き孔4に、図1(f)及び(g)のように前記のようにしてくり抜かれた前記弾性板1の抜き取り部6を嵌め込む。その後更に同図(g)及び(h)のように、くり抜き孔4よりも若干大きな直径を有する試料7をくり抜き孔4内に嵌め込む。   In order to actually form a uniform blackened film, a method as shown in FIG. 1 was used. As shown in FIG. 1A, an elastic plate 1 made of an elastic material such as a plastic eraser material having a plate shape slightly thicker than the sample to be blackened is prepared. Next, using a perforating member 3 forming a cylindrical portion 2 having a diameter slightly smaller than the diameter of the sample as shown in FIG. ), The center of the elastic plate 1 is cut out slightly smaller than the diameter of the sample, and the sample holding member 5 is formed with a cutout hole 4 as shown in FIG. The extraction portion 6 of the elastic plate 1 that has been cut out as described above is fitted into the cutout hole 4 that has been cut out in this manner as shown in FIGS. Thereafter, a sample 7 having a slightly larger diameter than the cut-out hole 4 is fitted into the cut-out hole 4 as shown in FIGS.

その後これを図2(a)に略示するようにスピンコーター8にセットし、固定するとともに、同図(b)に示すように試料7の上に、カーボンブラックを含む液体としての液体墨9を1滴乗せる。次いで同図(c)のようにスピンコーター8を回転させて、遠心力により試料7の表面に液体墨9を塗布する。その後スピンコーター8からこれらを外して、液体墨を乾かした後、弾性板1のくり抜き孔4から試料7を外すことにより、表面に均一にカーボンブラックが塗布された試料を得ることができた。   Thereafter, this is set and fixed on the spin coater 8 as schematically shown in FIG. 2 (a), and liquid black 9 as a liquid containing carbon black is placed on the sample 7 as shown in FIG. 2 (b). 1 drop. Next, as shown in FIG. 3C, the spin coater 8 is rotated, and the liquid black 9 is applied to the surface of the sample 7 by centrifugal force. Thereafter, these were removed from the spin coater 8 to dry the liquid ink, and then the sample 7 was removed from the cut-out hole 4 of the elastic plate 1 to obtain a sample in which the surface was uniformly coated with carbon black.

上記のように、試料を支持する部材としての弾性板として実際には消しゴムの素材を用いて実験を行ったが、その他に紙粘土を整形して乾かしたもの等種々の弾性板を用いることができる。また、スピンコーターに試料を単体で乗せて塗布すると、黒化膜は試料の淵が厚くなってしまう。これを防止するために、試料の周辺を余分な液を適度に吸い取るもので囲むと均一な膜ができることを見出した。   As described above, an experiment was actually performed using an eraser material as an elastic plate as a member for supporting the sample, but various other elastic plates such as those obtained by shaping and drying paper clay can be used. it can. In addition, if the sample is placed alone on the spin coater and applied, the wrinkle of the sample becomes thick in the blackened film. In order to prevent this, it has been found that a uniform film can be formed if the periphery of the sample is surrounded by a material that appropriately absorbs excess liquid.

また、試料裏面も同材料で覆うことにより、裏面への回り込み防止とスピンコーターへの塗料の吸い込み防止効果が得られることも見出した。前記のような余分な塗料を吸い取る素材としては、紙やゴム板、紙粘土なども試みたが、消しゴムが、スピンコーターへの固定も容易で最も良好であった。このスピンコート手法は、一般にインチサイズのウエハへの塗布を前提とするスピンコーターで小さい試料にレジスト(液体)を塗布する手順としても非常に有効である。   It was also found that by covering the back surface of the sample with the same material, it was possible to prevent the back surface from flowing in and to prevent the paint from being sucked into the spin coater. Paper, rubber plates, paper clay, and the like were tried as materials for absorbing excess paint as described above. However, an eraser was the best because it was easy to fix to a spin coater. This spin coating method is also very effective as a procedure for applying a resist (liquid) to a small sample with a spin coater that is generally premised on application to an inch-size wafer.

図3に試作品と従来の方法で作成した試料の写真を示す。同図(a)は各種黒化処理前後の試料を示し、(1)は黒化前の試料(ガラス)、(2)はカーボンスプレー塗布(従来の方法)、(3)は本発明による方法を用いて液体墨をスピンコートしたもの、(4)は本発明による方法を用いてメタルインクをスピンコートしたものを示す。   Fig. 3 shows a photograph of a prototype and a sample created by a conventional method. FIG. 4A shows samples before and after various blackening treatments, (1) is a sample (glass) before blackening, (2) is carbon spray coating (conventional method), and (3) is a method according to the present invention. (4) shows a metal ink spin-coated using the method according to the present invention.

また、図3(b)は拡大写真であり、(1)はカーボンスプレー塗布(従来の方法)、(2)は本発明による液体墨をスピンコートしたもの、(3)は本発明による方法を用いてメタルインクをスピンコートしたものを示す。図3の写真から、(1)においてはカーボンスプレーは粉っぽくまだらな様子が伺える。また(2)の液体のスピンコートの方が、マットにコートされていることが分かる。メタルインクは、拡大写真は荒れている様にも見えるが、非常に薄いので、測定にはあまり影響しなかった。   FIG. 3 (b) is an enlarged photograph, (1) is carbon spray coating (conventional method), (2) is a spin-coated liquid ink according to the present invention, and (3) is a method according to the present invention. Used is a metal ink spin-coated. From the photograph of FIG. 3, in (1), it can be seen that the carbon spray is powdery and mottled. It can also be seen that the liquid spin coating (2) is coated on the mat. The metal ink looks rough on the enlarged photo, but it was so thin that it had little effect on the measurement.

試作した黒化膜の特徴は図3(a)に示す出願用写真からは必ずしも明瞭ではないが、生成されたカーボンスプレーの膜は、ガサガサしていて粉っぽく、スピンコーターで成膜したものは、平らで付きも良い。また図3(b)の写真に示すように、金属コーティングでも可能であった。更に、スピンコーターで成膜したものに関しては、φ10mmの試料内で厚さの分布が少なく均一であった。また、同条件で3回試作して、重量による塗布量が一定であり、このことから再現性が高いことが分かった。また、高出力パルスレーザの照射に対して耐久性があることを確認し、安定性が高いことがわかった。更に塗布回数を重ねることで、好みの厚さの膜ができ、各種条件に広く対応することができることが分かった。   The characteristics of the prototype blackening film are not always clear from the application photograph shown in FIG. 3 (a), but the carbon spray film produced is rough and powdery, and is formed with a spin coater. Is flat and sticky. Further, as shown in the photograph of FIG. 3B, metal coating was also possible. Further, the film formed by the spin coater was uniform with a small thickness distribution within a sample of φ10 mm. In addition, three trial manufactures were performed under the same conditions, and the coating amount by weight was constant, and this showed that reproducibility was high. In addition, it was confirmed that there was durability against irradiation with a high-power pulse laser, and it was found that the stability was high. Furthermore, it was found that by repeating the application, a film having a desired thickness can be formed and widely applicable to various conditions.

金属試料(Mo)に、従来のカーボンスプレーによる黒化処理および本件提案の方法である液体墨をスピンコートした黒化処理を行って、レーザフラッシュ法で熱拡散率を測定した結果を図4に示す。カーボンスプレーは、一回の塗布量がスピンコートよりも多いことから、黒化処理の影響により熱拡散率が小さく見積もられたり、塗布量のばらつきも大きいため、測定結果のばらつきも大きいかったりする傾向が見える。一方、スピンコーティングの場合は、黒化処理の影響が少なく、測定結果のばらつきも小さく、改善が見られる。   Fig. 4 shows the results of measuring the thermal diffusivity using the laser flash method after performing blackening treatment using a conventional carbon spray on the metal sample (Mo) and blackening treatment using the liquid ink, which is the proposed method, by spin coating. Show. Since carbon spray has a larger coating amount than spin coating, the thermal diffusivity is estimated to be small due to the effect of blackening treatment, and the variation in coating amount is also large, so the variation in measurement results may be large. The tendency to do is visible. On the other hand, in the case of spin coating, the effect of the blackening treatment is small, the variation in the measurement results is small, and improvement is seen.

図5〜図7に試作試料をレーザフラッシュ法で測定した結果を示す。同図のように、測定の生データ(信号)が非常に綺麗に得られることがわかる。即ち図4は液体墨を用いた例であり、本発明の方法により塗布した薄くて均一な黒化膜を用いた場合の測定信号を示している。このときの信号はS/N比も良好であり、測定結果への影響もない様子であるが、レーザの透過が見られる。なお、試料によっては、このレーザの透過で本来の信号が影響される場合もある。   5 to 7 show the results of measuring the prototype sample by the laser flash method. As shown in the figure, it can be seen that the raw data (signal) of the measurement can be obtained very beautifully. That is, FIG. 4 is an example using liquid black, and shows a measurement signal when a thin and uniform blackened film applied by the method of the present invention is used. The signal at this time has a good S / N ratio and does not affect the measurement result, but laser transmission is observed. Depending on the sample, the original signal may be affected by the transmission of the laser.

図6はメタルインク+液体墨を用いた例であり、本発明の方法によりメタルインクと液体墨を薄く均一に塗布した場合の測定信号を示す。この信号も良好で、レーザの透過もない。測定結果への表面処理の影響もみられない。   FIG. 6 is an example using metal ink + liquid black, and shows a measurement signal when the metal ink and liquid black are applied thinly and uniformly by the method of the present invention. This signal is good and there is no laser transmission. There is no effect of surface treatment on the measurement results.

図7は本発明の方法により液体墨を3重に重ね塗りした場合の測定信号を示す。即ち、厚さ約30μmのレーザ信号が見えなくなるまで重ね塗りしたものであり、この測定結果は、表面処理の影響で、約5%過小評価されている。   FIG. 7 shows a measurement signal when the liquid ink is applied three times by the method of the present invention. That is, it was overcoated until the laser signal with a thickness of about 30 μm disappeared, and this measurement result is underestimated by about 5% due to the influence of the surface treatment.

このようにして得られた熱拡散率の変化を図8に示す。各測定データのゼロ外挿値が、測定した熱拡散率に対応し、黒化膜が厚い場合は、測定結果への影響があり、メタルインクと液体墨の組合せでは、薄い膜でも十分に精密な測定が出来ていることがわかった。   The change in the thermal diffusivity thus obtained is shown in FIG. The zero extrapolation value of each measurement data corresponds to the measured thermal diffusivity, and if the blackened film is thick, there is an effect on the measurement result, and the combination of metal ink and liquid ink is sufficiently accurate even with a thin film It was found that accurate measurements were made.

また、金属コーティングと黒化膜を併用することで、薄くて均一な黒化処理で非常に綺麗なデータを得ることができ、測定結果も良好であり、ばらつきも少ないほか、測定に対する耐久性があることを確認した。   In addition, by using the metal coating and blackening film together, it is possible to obtain very clean data with a thin and uniform blackening treatment, good measurement results, little variation, and durability against measurement. I confirmed that there was.

図9に黒化膜の耐熱評価(熱重量変化)の結果を示す。同図(a)は熱処理前後の試料を示し、(1)は黒化処理前試料(アルミナ)、(2)は液体墨でスピンコートした試料(ガラス)、(3)は液体墨でスピンコートした試料を真空中で1000℃まで昇温した後の状態を示す。   FIG. 9 shows the results of heat resistance evaluation (thermal weight change) of the blackened film. (A) shows a sample before and after heat treatment, (1) is a sample before blackening treatment (alumina), (2) is a sample (glass) spin-coated with liquid black, and (3) is spin-coated with liquid black. The state after heating up the sample which was heated up to 1000 degreeC in the vacuum is shown.

昇温前後で、目視で見る限りは黒化膜の変化(劣化など)は見られず、1000℃に耐え得ることが分かった。   As long as it was visually observed before and after the temperature increase, no change (deterioration, etc.) of the blackened film was observed, and it was found that the film could withstand 1000 ° C.

また、図9(b)に前記(3)の試料について、真空中で1000℃まで昇温した時の熱重量変化を示す。ここでカーボンスプレーと液体墨スピンコートは傾向が非常に似ていることがわかる。液体墨は、カーボンスプレーと比べて重量の減少が多い様に見えるが、湿式の成膜であるために、昇温時に昇華する溶剤が多く含まれているためと考えられる。前記図9(a)の説明で述べたように、昇温しても膜の質感は変化しないこともあり、1000℃までの耐熱性が確認できた。   FIG. 9B shows the thermogravimetric change of the sample (3) when the temperature is raised to 1000 ° C. in a vacuum. Here, it can be seen that the tendency of carbon spray and liquid ink spin coat are very similar. The liquid black appears to have much less weight than the carbon spray, but because it is a wet film formation, it is thought that it contains a lot of solvent that sublimes when the temperature rises. As described in the description of FIG. 9A, the film texture may not change even when the temperature is raised, and heat resistance up to 1000 ° C. was confirmed.

上記のような本発明は、エレクトロニクスなどの産業分野における材料の熱的性質の評価に際し、
1.黒化膜を必要とする熱物性測定、
2.フラッシュ法を用いた熱拡散率測定および比熱容量測定、
3.光による表面加熱(パルス加熱や周期加熱)、および表面または裏面温度応答を赤外放射検出により観測し、熱物性値を算出する手法を用いた測定等に用いることができる。
The present invention as described above is used for evaluating the thermal properties of materials in industrial fields such as electronics.
1. Thermophysical property measurement that requires a blackened film,
2. Thermal diffusivity measurement and specific heat capacity measurement using flash method,
3. Surface heating (pulse heating or periodic heating) by light and surface or back surface temperature response can be observed by infrared radiation detection, and can be used for measurement using a method for calculating thermophysical values.

また、試料表面や裏面を光加熱・非接触観測するような各種熱物性測定手法における試料の表面処理において、
・黒化処理を必要とする材料の標準物質化が期待できる(標準物質:熱物性測定装置の校正用の試験片)。
・実績と認知度が上がれば、試料表面や裏面を光加熱・非接触観測するような各種熱物性測定手法のJISやISO規格への適用の可能性もある。
・信頼性の高い熱物性データが得られ、それにより熱物性データを用いたシミュレーションなどに貢献できる。
・本件に基づき、最適なスピンコーターと塗料を開発すれば、製品化が容易であり、広く普及させることができる。また、今後は、レーザフラッシュ法以外にも、黒化膜を必要とする測定装置が開発される見込みもあり、そのような分野にも有効に利用することができる。
In addition, in surface treatment of samples in various thermophysical property measurement methods such as optical heating and non-contact observation of the sample surface and back surface,
-The standardized material that requires blackening treatment can be expected (standard material: test specimen for calibration of thermophysical property measuring equipment).
・ If performance and recognition increase, various thermophysical property measurement methods such as light heating and non-contact observation of the sample front and back surfaces may be applied to JIS and ISO standards.
・ Reliable thermophysical property data can be obtained, which can contribute to simulations using thermophysical property data.
-If an optimal spin coater and paint are developed based on this case, it will be easy to commercialize and spread widely. In the future, in addition to the laser flash method, there is a possibility that a measuring apparatus that requires a blackened film will be developed, and it can be used effectively in such fields.

本発明において、試料にスピンコートを行うために採用する試料の保持方法を順に示す説明図である。In this invention, it is explanatory drawing which shows in order the holding | maintenance method of the sample employ | adopted in order to perform a spin coat to a sample. 本発明において、図1で示すようにして保持された試料にスピンコートを行う説明図である。In this invention, it is explanatory drawing which spin-coats to the sample hold | maintained as shown in FIG. 本発明による試作品と従来の方法で作成した試料の写真を示す。The photograph of the sample created by the prototype by the present invention and the conventional method is shown. 本発明による試作品と従来の方法で作成した試料をレーザフラッシュ法で測定した熱拡散率の結果を示すグラフである。It is a graph which shows the result of the thermal diffusivity which measured the prototype produced by this invention, and the sample created with the conventional method with the laser flash method. 本発明により液体墨を塗った試作品を、レーザフラッシュ法で測定した結果を示す生データである。It is raw data which shows the result of having measured the prototype which applied liquid ink by this invention by the laser flash method. 本発明によりメタルインクと液体墨の成膜をした試作品を、レーザフラッシュ法で測定した結果を示す生データである。It is raw data which shows the result of having measured the prototype which formed the metal ink and the liquid ink film by this invention by the laser flash method. 本発明により液体墨を3重に重ね塗りした試作品を、レーザフラッシュ法で測定した結果を示す生データである。It is raw data which shows the result of having measured the prototype which carried out the liquid ink triple-coating by this invention by the laser flash method. 図4〜6の各測定データにより熱拡散率を得たグラフである。It is the graph which acquired the thermal diffusivity by each measurement data of FIGS. 黒化膜の耐熱評価の説明図であり、(a)は熱処理前後の写真を示し、(b)は真空中で1000℃まで昇温したときの熱重量変化を示す図である。It is explanatory drawing of the heat resistance evaluation of a blackening film | membrane, (a) shows the photograph before and behind heat processing, (b) is a figure which shows the thermogravimetric change when it heats up to 1000 degreeC in a vacuum. 本発明による試作品と従来の方法で作成した試料の塗布量の再現性を比較した表である。It is the table | surface which compared the reproducibility of the coating amount of the prototype produced by this invention, and the sample created with the conventional method.

符号の説明Explanation of symbols

1 弾性板
2 円筒部
3 孔開け部材
4 くり抜き孔
5 試料保持部材
6 抜き取り部
7 試料
8 スピンコーター
9 液体墨
DESCRIPTION OF SYMBOLS 1 Elastic plate 2 Cylindrical part 3 Drilling member 4 Hole 5 Sample holding member 6 Extraction part 7 Sample 8 Spin coater 9 Liquid ink

Claims (2)

光加熱時の試料の温度応答を光検出素子により非接触で観測して熱物性値を算出する熱物性測定に際して、熱物性測定用試料の表面にカーボンブラックを含む液体を用いたスピンコーティングにより黒化膜を形成して、加熱用光を充分に吸収し、かつ観測用光検出素子の対応波長に充分な感度を持つ試料を得ることができるようにした熱物性測定用試料表面処理方法において
試料よりも厚い板状のプラスチック消しゴムを試料より僅かに小さくくり抜いて孔を形成し
くり抜きにより抜き取られた部材を前記孔の下方の一部に挿入して孔の上方に試料挿入部を形成し
前記試料挿入部に試料をプラスチック消しゴムの弾性を利用して圧入保持して試料保持部材を作成し
前記試料保持部材をスピンコーターに固定し
カーボンブラックを含む液体を試料の上に乗せて、スピンコーターを回転させ、遠心力により試料表面にカーボンブラックを含む液体を試料の表面に塗布するとともに試料周辺の余分な液体をプラスチック消しゴムで吸い取らせ
スピンコーターから前記試料保持部材をはずして乾かした後、前記試料挿入部から試料をはずすことにより試料表面に黒化膜を形成したことを特徴とする熱物性測定用試料表面処理方法。
When measuring the thermophysical property by calculating the thermophysical value by observing the temperature response of the sample during photoheating in a non-contact manner using a light detecting element, the surface of the thermophysical property measurement sample is black by spin coating using a liquid containing carbon black. In the sample surface treatment method for thermophysical property measurement, in which a sample having sufficient sensitivity to the corresponding wavelength of the observation light detection element can be obtained by forming a chemical film, sufficiently absorbing the light for heating ,
A plate-shaped plastic eraser thicker than the sample is cut slightly smaller than the sample to form a hole ,
Inserting the member extracted by punching into a part below the hole to form a sample insertion part above the hole ,
A sample holding member is created by press-fitting and holding the sample into the sample insertion portion using the elasticity of a plastic eraser ,
Fixing the sample holding member to a spin coater ;
Place the liquid containing carbon black on the sample, rotate the spin coater, apply the liquid containing carbon black to the surface of the sample by centrifugal force, and absorb excess liquid around the sample with a plastic eraser. ,
A sample surface treatment method for thermophysical property measurement , wherein a blackening film is formed on a sample surface by removing the sample holding member from a spin coater and drying, and then removing the sample from the sample insertion portion .
請求項1記載の熱物性測定用試料表面処理方法において、黒化膜を形成する前処理として
試料よりも厚い板状のプラスチック消しゴムを試料より僅かに小さくくり抜いて孔を形成し
くり抜きにより抜き取られた部材を前記孔の下方の一部に挿入して孔の上方に試料挿入部を形成し
前記試料挿入部に試料をプラスチック消しゴムの弾性を利用して圧入保持して試料保持部材を作成し
前記試料保持部材をスピンコーターに固定し
金属微粒子を含む液体を試料の上に乗せて、スピンコーターを回転させ、遠心力により試料表面に金属微粒子を含む液体を試料の表面に塗布するとともに試料周辺の余分な液体をプラスチック消しゴムで吸い取らせ
スピンコーターから前記試料保持部材をはずして乾かした後、前記試料挿入部から試料をはずすことにより試料表面に金属コーティングを形成しておくことを特徴とする熱物性測定用試料表面処理方法
In the sample surface treatment method for thermophysical property measurement according to claim 1, as a pretreatment for forming a blackened film ,
A plate-shaped plastic eraser thicker than the sample is cut slightly smaller than the sample to form a hole ,
Inserting the member extracted by punching into a part below the hole to form a sample insertion part above the hole ,
A sample holding member is created by press-fitting and holding the sample into the sample insertion portion using the elasticity of a plastic eraser ,
Fixing the sample holding member to a spin coater ;
Place a liquid containing metal fine particles on the sample, rotate the spin coater, apply the liquid containing metal fine particles to the sample surface by centrifugal force, and suck up excess liquid around the sample with a plastic eraser. ,
A sample surface treatment method for thermophysical property measurement, wherein after removing the sample holding member from a spin coater and drying, a sample is removed from the sample insertion portion to form a metal coating on the sample surface .
JP2006159100A 2006-06-07 2006-06-07 Sample surface treatment method for thermophysical property measurement Expired - Fee Related JP4817308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006159100A JP4817308B2 (en) 2006-06-07 2006-06-07 Sample surface treatment method for thermophysical property measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159100A JP4817308B2 (en) 2006-06-07 2006-06-07 Sample surface treatment method for thermophysical property measurement

Publications (2)

Publication Number Publication Date
JP2007327851A JP2007327851A (en) 2007-12-20
JP4817308B2 true JP4817308B2 (en) 2011-11-16

Family

ID=38928416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159100A Expired - Fee Related JP4817308B2 (en) 2006-06-07 2006-06-07 Sample surface treatment method for thermophysical property measurement

Country Status (1)

Country Link
JP (1) JP4817308B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135387A1 (en) 2016-02-05 2017-08-10 一般財団法人ファインセラミックスセンター Method for producing ceramic sintered body, and method and device for producing ceramic molded body
JP6956489B2 (en) * 2016-02-05 2021-11-02 一般財団法人ファインセラミックスセンター Sintering method and manufacturing method of sintered product
WO2017209039A1 (en) 2016-05-31 2017-12-07 地方独立行政法人東京都立産業技術研究センター Multilayered graphene dispersion, blackening agent for thermophysical properties measurement, and release agent/lubricant for powder sintering
CN110044955B (en) * 2019-02-15 2024-04-02 上海海事大学 Sample support for measuring heat conduction performance of pasty material by steady state method and measuring method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121711B2 (en) * 1993-05-26 2001-01-09 日本特殊陶業株式会社 Concentration measuring device
JP2002214601A (en) * 2001-01-19 2002-07-31 Seiko Epson Corp Liquid crystal display device and electronic apparatus
JP4394315B2 (en) * 2001-08-24 2010-01-06 株式会社超高温材料研究所 Thermal diffusivity measurement method using laser flash method
JP2004335410A (en) * 2003-05-12 2004-11-25 Sumitomo Metal Mining Co Ltd Forming method of transparent electric conductive layer

Also Published As

Publication number Publication date
JP2007327851A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
Liimatainen et al. Mapping microscale wetting variations on biological and synthetic water-repellent surfaces
JP4817308B2 (en) Sample surface treatment method for thermophysical property measurement
CN109991264B (en) Thermal diffusivity determination method of two-dimensional anisotropic nano material
Xue et al. A modified captive bubble method for determining advancing and receding contact angles
Fang et al. A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices
CN106290296B (en) SERS substrate based on metal dot matrix, preparation method thereof and method for performing Raman detection by using substrate
Petr et al. Surfaces with roughness gradient and invariant surface chemistry produced by means of gas aggregation source and magnetron sputtering
Slepička et al. Ripple polystyrene nano-pattern induced by KrF laser.
Bass et al. Facile evaluation of coating thickness on membranes using ATR-FTIR
Liu et al. Condensation-assisted micro-patterning of low-surface-tension liquids on reactive oil-repellent surfaces
CN114264695B (en) Method and system for measuring micro-liquid heat conductivity coefficient
Liu et al. Temperature-dependent wetting characteristics of micro–nano-structured metal surface formed by femtosecond laser
Huang et al. Painting and heating: A nonconventional, scalable route to sensitive biomolecular analysis with plasmon‐enhanced spectroscopy
Heib et al. Influence of different chemical surface patterns on the dynamic wetting behaviour on flat and silanized silicon wafers during inclining-plate measurements: An experimental investigation with the high-precision drop shape analysis approach
EP2080011A1 (en) Method for quantifying the photocatalytic activity of surfaces and use thereof
CN106405158A (en) Sample preparation device and method suitable for atomic force microscope
Tomašegović et al. Tailoring the properties of deposited thin coating and print features in flexography by application of UV-ozone treatment
CN108956261B (en) Preparation method of asphalt film
CN108982303B (en) Method and device for acquiring residence characteristic of liquid substance on material surface
Albu et al. Gold layers on untreated and plasma-treated substrates of quaternized polysulfones
CN105440935B (en) Anti- extension liquid sampling needle coating and preparation method
JP5083179B2 (en) Method for preparing calibration curve for quantitative analysis by infrared spectroscopy and quantitative method by infrared spectroscopy
JP2000035410A (en) Measuring method of metal deposit quantity on wafer
Wang et al. Surface characteristics and wetting properties of sol–gel coated base paper
Barakhovskaia et al. A fast methodology to assess the quality of coatings on rough 3D surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees