JP4817144B2 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
JP4817144B2
JP4817144B2 JP2007246133A JP2007246133A JP4817144B2 JP 4817144 B2 JP4817144 B2 JP 4817144B2 JP 2007246133 A JP2007246133 A JP 2007246133A JP 2007246133 A JP2007246133 A JP 2007246133A JP 4817144 B2 JP4817144 B2 JP 4817144B2
Authority
JP
Japan
Prior art keywords
shaft member
tool holder
tool
holder
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007246133A
Other languages
Japanese (ja)
Other versions
JP2009050995A (en
Inventor
保宏 駒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NT Engineering KK
Original Assignee
NT Engineering KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NT Engineering KK filed Critical NT Engineering KK
Priority to JP2007246133A priority Critical patent/JP4817144B2/en
Priority to PCT/JP2007/075219 priority patent/WO2009028120A1/en
Publication of JP2009050995A publication Critical patent/JP2009050995A/en
Application granted granted Critical
Publication of JP4817144B2 publication Critical patent/JP4817144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/03Boring heads
    • B23B29/034Boring heads with tools moving radially, e.g. for making chamfers or undercuttings
    • B23B29/03403Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable before starting manufacturing
    • B23B29/03421Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable before starting manufacturing by pivoting the tool carriers or by elastic deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/03Boring heads
    • B23B29/034Boring heads with tools moving radially, e.g. for making chamfers or undercuttings
    • B23B29/03403Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable before starting manufacturing
    • B23B29/03417Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable before starting manufacturing by means of inclined planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/068Flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/078Hand tools used to operate chucks or to assemble, adjust or disassemble tools or equipment used for turning, boring or drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2270/00Details of turning, boring or drilling machines, processes or tools not otherwise provided for
    • B23B2270/06Use of elastic deformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling And Boring (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

[PROBLEMS] To perform position correction of a tool fixed to a tool holder with high precision of micron order in the radial direction of the tool holder through simple constitution and control. [MEANS FOR SOLVING PROBLEMS] The working machine includes a tool holder (20) rotatable integrally with a spindle (16), a resilient holder portion (24) of a ring shape having one end bonded to the tool holder (20) and the other end for fixing blade tools (22a, 22b), a working shaft member (26) having an end projecting axially outward of the resilient holder portion (24) and rotatable relatively to the tool holder (20), a conversion mechanism (28) for changing the rotary operation of the working shaft member (26) into radial enlarging/shrinking operation of the resilient holder portion (24), and a support mechanism (72) arranged on the outside of the tool holder (20) and coupled with the working shaft member (26) in order to rotate it relatively to the tool holder (20).

Description

本発明は、スピンドルと一体的に回転可能なツールホルダに、道具が取り付けられる作業機械に関する。  The present invention relates to a work machine in which a tool is attached to a tool holder that can rotate integrally with a spindle.

一般的に、ツールホルダに取り付けられた道具、例えば、加工工具を介してワークに加工処理を施す工作機械(作業機械)が種々使用されている。例えば、エンジンブロックを構成するシリンダのボーリング加工は、内筒径寸法をミクロンオーダで高精度に加工する必要がある。このため、通常、ボーリング加工は、荒ボーリング加工(荒加工)、中仕上げボーリング加工(中仕上げ加工)及び仕上げボーリング加工(仕上げ加工)の3工程の加工に分けて行われている。
この種のボーリング加工では、特に仕上げボーリング加工において、高精度な加工径を形成しなければならず、単刃による加工が行われている。しかしながら、量産設備による仕上げボーリング加工では、単一の刃先で加工を行うために前記刃先の磨耗が著しく、加工径が小さくなってしまう。従って、刃先磨耗による加工径の変化に応じて前記刃先位置を調整し、一定のボーリング加工径を維持する必要がある。
そこで、例えば、特許文献1に開示されている円筒内面の加工装置を用いることが考えられる。この加工装置は、中ぐり加工用の加工ヘッドの先端外周の互いに対向する位置に、荒加工用の刃具と仕上げ加工用の刃具とをそれぞれ設けるとともに、前記加工ヘッドの中心軸線に直交する方向で且つ、前記仕上げ加工用の刃具から荒加工用の刃具に向かう方向に圧力が付与されることで、同方向に移動変形しつつ前記各刃具を同方向に移動させる弾性ホルダ部を設けたことを特徴としている。そして、この特許文献1では、コンパクトで且つ剛性を有しており、刃具位置の移動(補正)を高精度に行うことができる。
特開2003−311517号公報
In general, various types of tools (work machines) that perform processing on a workpiece through a tool attached to a tool holder, for example, a processing tool, are used. For example, the boring of a cylinder constituting an engine block needs to be machined with high accuracy with an inner cylinder diameter of the order of microns. For this reason, the boring process is usually performed in three steps of rough boring (roughing), intermediate finishing boring (medium finishing), and finishing boring (finishing).
In this type of boring, particularly in finish boring, a high-precision machining diameter must be formed, and machining with a single blade is performed. However, in finishing boring processing by mass production equipment, since the processing is performed with a single cutting edge, the cutting edge is extremely worn, and the processing diameter is reduced. Therefore, it is necessary to adjust the cutting edge position according to the change in the machining diameter due to the wear of the cutting edge and maintain a constant boring diameter.
Thus, for example, it is conceivable to use a cylindrical inner surface processing apparatus disclosed in Patent Document 1. This processing apparatus is provided with a roughing tool and a finishing tool at positions opposite to each other on the outer periphery of the tip of the boring head, and in a direction perpendicular to the central axis of the processing head. In addition, by applying pressure in a direction from the finishing tool to the roughing tool, an elastic holder portion is provided that moves each tool in the same direction while moving and deforming in the same direction. It is a feature. And in this patent document 1, it is compact and has rigidity, and the movement (correction | amendment) of a blade tool position can be performed with high precision.
JP 2003-311517 A

本発明はこの種の加工装置において、簡単な構成及び制御で、ツールホルダに取り付けられる道具を、前記ツールホルダの径方向にミクロンオーダで高精度に位置補正することが可能な作業機械を提供することを目的とする。  The present invention provides a working machine capable of correcting the position of a tool attached to a tool holder with high accuracy in the order of microns in the radial direction of the tool holder with a simple configuration and control in this type of processing apparatus. For the purpose.

本発明は、スピンドルと一体的に回転可能なツールホルダと、一端が前記ツールホルダに固着される一方、他端に道具が取り付けられる開放端部を形成するリング形状を有する弾性ホルダ部と、端部が前記弾性ホルダ部の軸方向外方の突出するとともに、前記ツールホルダに対して相対的に回転可能な作動軸部材と、前記作動軸部材の回転動作を、前記開放端部の径方向の拡縮動作に変換させる変換機構と、前記ツールホルダの外部に配置され、前記作動軸部材に連結されて該作動軸部材を前記ツールホルダに対し相対的に回転させるための支持機構とを備えている。
また、作業機械は、作動軸部材と支持機構とが連結されたことを検出する連結確認機構を備えることが好ましい。
さらに、変換機構は、弾性ホルダ部の内方に配置され、前記弾性ホルダ部の軸方向に進退することにより開放端部を径方向に拡縮自在なテーパ手段と、作動軸部材の回転動作を、前記テーパ手段の前記軸方向への進退動作に変換させるねじ手段とを備えることが好ましい。
さらにまた、テーパ手段は、弾性ホルダ部の内周面に形成される内周コンタクト面と、作動軸部材に外装されるとともに、前記弾性ホルダ部と一体に回転し且つ該弾性ホルダ部の軸方向に進退自在なテーパリング部材と、前記テーパリング部材の外周面に形成され、前記内周コンタクト面に摺接する外周コンタクト面とを有し、少なくとも前記外周コンタクト面は、テーパ面を構成することが好ましい。
また、ねじ手段は、ツールホルダに固定されるとともに、作動軸部材を周回して配置される固定ねじ部材と、前記作動軸部材の外周と前記固定ねじ部材及びテーパリング部材との間に介装されるとともに、前記作動軸部材と一体に回転し且つ該作動軸部材の軸方向に進退自在な可動ねじ部材とを備え、前記固定ねじ部材の内周面には、第1雌ねじが形成され、前記テーパリング部材の内周面には、前記第1雌ねじと異なるピッチに設定される第2雌ねじが形成され、前記可動ねじ部材の外周面には、前記第1雌めじに螺合する第1雄ねじと、前記第2雌ねじに螺合する第2雄ねじとが形成されることが好ましい。
さらに、支持機構は、作動軸部材の先端部に軸方向に形成されるスプライン穴又はスプライン軸に結合されるスプライン軸又はスプライン穴を有する支持軸部材と、前記支持軸部材を、前記作動軸部材の軸方向に進退自在で且つ回転不能に配置するハウジングと、前記ハウジング内に配設され、前記支持軸部材を前記作動軸部材に向かって押圧する弾性部材とを備えることが好ましい。
さらにまた、支持機構は、作動軸部材の先端部に径方向に形成される結合穴に挿入される支持軸部材と、前記支持軸部材を、前記作動軸部材の径方向に進退自在で且つ回転不能に配置するハウジングと、前記ハウジング内に配設され、前記支持軸部材を前記作動軸部材に向かって押圧する弾性部材とを備えることが好ましい。
また、支持軸部材は、クーラント用の中空穴を有することが好ましい。
さらに、支持機構は、作動軸部材の先端部に形成されるピニオン部に係合するラック部と、前記ラック部を固着し、前記作動軸部材の径方向に進退自在なラック軸部材と、前記ラック軸部材を前記作動軸部材に向かって押圧する弾性部材とを備えることが好ましい。
The present invention includes a tool holder that can rotate integrally with a spindle, an elastic holder portion having a ring shape that forms an open end portion to which a tool is attached, while one end is fixed to the tool holder and the other end. A projecting portion in the axial direction of the elastic holder portion, and an operation shaft member rotatable relative to the tool holder, and a rotational operation of the operation shaft member in a radial direction of the open end portion. A conversion mechanism for converting into an expansion / contraction operation, and a support mechanism disposed outside the tool holder and connected to the operation shaft member to rotate the operation shaft member relative to the tool holder. .
The work machine preferably includes a connection confirmation mechanism that detects that the operating shaft member and the support mechanism are connected.
Further, the conversion mechanism is disposed inward of the elastic holder portion, and a taper means capable of expanding and contracting the open end portion in the radial direction by advancing and retreating in the axial direction of the elastic holder portion, and rotating operation of the operating shaft member, It is preferable that the screw means for converting the taper means into the axial movement of the taper means.
Furthermore, the taper means is covered with the inner peripheral contact surface formed on the inner peripheral surface of the elastic holder portion and the operating shaft member, and rotates integrally with the elastic holder portion and the axial direction of the elastic holder portion. A taper member that can be moved forward and backward, and an outer peripheral contact surface that is formed on the outer peripheral surface of the taper member and that is in sliding contact with the inner peripheral contact surface, and at least the outer peripheral contact surface constitutes a tapered surface. preferable.
Further, the screw means is fixed to the tool holder, and is interposed between a fixed screw member arranged around the operating shaft member, and an outer periphery of the operating shaft member and the fixed screw member and the tapering member. And a movable screw member that rotates integrally with the operating shaft member and is movable back and forth in the axial direction of the operating shaft member, and a first female screw is formed on an inner peripheral surface of the fixed screw member, A second female screw set at a different pitch from the first female screw is formed on the inner peripheral surface of the taper member, and a first female screw is engaged with the outer peripheral surface of the movable screw member. It is preferable that a male screw and a second male screw screwed with the second female screw are formed.
Further, the support mechanism includes a spline hole formed in the axial direction at a tip portion of the operating shaft member, a support shaft member having a spline shaft or spline hole coupled to the spline shaft, the support shaft member, and the operating shaft member. It is preferable to include a housing that can move forward and backward in the axial direction and cannot rotate, and an elastic member that is disposed in the housing and presses the support shaft member toward the operation shaft member.
Furthermore, the support mechanism includes a support shaft member inserted into a coupling hole formed in a radial direction at a distal end portion of the operating shaft member, and the support shaft member can be moved forward and backward in the radial direction of the operating shaft member and rotated. It is preferable to include an impossiblely arranged housing and an elastic member that is disposed in the housing and presses the support shaft member toward the operation shaft member.
Moreover, it is preferable that a support shaft member has a hollow hole for coolant.
Further, the support mechanism includes a rack portion that engages with a pinion portion formed at a distal end portion of the operating shaft member, a rack shaft member that fixes the rack portion and is movable forward and backward in the radial direction of the operating shaft member, It is preferable to provide an elastic member that presses the rack shaft member toward the operation shaft member.

本発明に係る作業機械では、作動軸部材が支持機構に連結された状態で、前記作動軸部材は、ツールホルダに対して相対的に回転されると、変換機構は、前記作動軸部材の回転動作を、弾性ホルダ部の開放端部の径方向の拡縮動作に変換させる。このため、開放端部の取り付けられている道具は、ツールホルダの径方向に位置調整(補正)される。
従って、例えば、作動軸部材が支持機構に連結された状態で、マシニングセンタ主軸であるスピンドルの角度割り出し機能を介して、ツールホルダが所定の角度だけ回転されると、弾性ホルダ部に取り付けられている道具は、前記ツールホルダの径方向に高精度に補正移動することができる。
In the work machine according to the present invention, when the operation shaft member is rotated relative to the tool holder in a state where the operation shaft member is connected to the support mechanism, the conversion mechanism rotates the operation shaft member. The operation is converted into an expansion / contraction operation in the radial direction of the open end portion of the elastic holder portion. For this reason, the tool to which the open end is attached is adjusted (corrected) in the radial direction of the tool holder.
Therefore, for example, when the tool holder is rotated by a predetermined angle through the angle indexing function of the spindle that is the machining center main shaft in a state where the operation shaft member is connected to the support mechanism, the tool holder is attached to the elastic holder portion. The tool can be corrected and moved with high accuracy in the radial direction of the tool holder.

図1は、本発明の第1の実施形態に係る作業機械である工作機械10の斜視説明図であり、図2は、前記工作機械10の要部断面説明図である。
工作機械10は、本体部12を備え、この本体部12には、ハウジング14がX軸方向、Y軸方向及びZ軸方向に摺動可能に装着される。ハウジング14には、スピンドル(主軸)16がベアリング18を介して回転可能に設けられると、前記スピンドル16には、ツールホルダ20が着脱自在に取り付けられる。
図2に示すように、ツールホルダ20には、一端が前記ツールホルダ20に固着される一方、他端に道具、例えば、刃工具22a、22bが取り付けられる開放端部24aを形成するリング形状の弾性ホルダ部24と、端部が前記弾性ホルダ部24の軸方向外方の突出するとともに、前記ツールホルダ20に対して相対的に回転可能な作動軸部材26と、前記作動軸部材26の回転動作を、前記開放端部24aの径方向の拡縮動作に変換させる変換機構28とが装着される。
弾性ホルダ部24は、図2及び図3に示すように、ツールホルダ20の先端に固着される基台部30を設ける。基台部30には、リング体32が設けられるとともに、前記リング体32の開放端部24a側の端部には、刃工具22a、22bが交換自在に取り付けられるバンク部(変形頂点部)34a、34bと、前記バンク部34a、34bと直交する膨出部36a、36bとが形成される(図3参照)。
作動軸部材26は、軸部38を有し、この軸部38は、ツールホルダ20の軸心に形成された段付孔部40に嵌合する。段付孔部40の中間部には、軸部38に固定されるヘッド部42が配設されるとともに、前記段付孔部40の大径部には、ストッパ44が移動不能に配置される。作動軸部材26は、弾性ホルダ部24の軸方向外方の突出する端部46にスプライン穴48が形成される。
変換機構28は、弾性ホルダ部24の内方に配置され、前記弾性ホルダ部24の軸方向に進退することにより開放端部24aを径方向に拡縮自在なテーパ手段50と、作動軸部材26の回転動作を、前記テーパ手段50の前記軸方向への進退動作に変換させるねじ手段52とを備える。
テーパ手段50は、弾性ホルダ部24を構成するバンク部34a、34bの内周面に形成される内周コンタクト面54a、54bと、作動軸部材26に外装されるとともに、前記弾性ホルダ部24と一体に回転し且つ該弾性ホルダ部24の軸方向に進退自在なテーパリング部材56と、前記テーパリング部材56の外周面に形成され、前記内周コンタクト面54a、54bに摺接する外周コンタクト面58とを有する。
なお、内周コンタクト面54a、54b及び外周コンタクト面58は、少なくとも前記外周コンタクト面58がZ1軸方向(ツールホルダ20側)に向かうに従って径方向内方に傾斜しており、テーパリング部材56がZ1軸方向に移動する際、開放端部24aが楕円形状に弾性変形する。これに代えて、テーパリング部材56がZ2軸方向に移動する際、開放端部24aが楕円形状に弾性変形するように構成してもよい。
図3に示すように、テーパリング部材56は、膨出部36a、36bに設けられる位相ピン59a、59bを介して弾性ホルダ部24の軸方向に移動自在で且つ前記弾性ホルダ部24に回転不能に構成される。
ねじ手段52は、ツールホルダ20に固定されるとともに、作動軸部材26を周回して配置される固定ねじ部材60と、前記作動軸部材26の外周と前記固定ねじ部材60及びテーパリング部材56との間に介装されるとともに、前記作動軸部材26と一体に回転し且つ該作動軸部材26の軸方向に進退自在な可動ねじ部材62とを備える。作動軸部材26と可動ねじ部材62とは、平行キー溝64及び平行キー66を介して係合する。
固定ねじ部材60の内周面には、第1雌ねじ68aが形成され、テーパリング部材56の内周面には、前記第1雌ねじ68aと異なるピッチに設定される第2雌ねじ68bが形成される。可動ねじ部材62の外周面には、第1雌めじ68aに螺合する第1雄ねじ70aと、第2雌ねじ68bに螺合する第2雄ねじ70bとが形成される。なお、第1及び第2雌ねじ68a、68bと第1及び第2雄ねじ70a、70bは、右ねじに構成してもよく、また、左ねじに構成してもよい。
図1に示すように、ツールホルダ20の外部に設けられているテーブル71上には、作動軸部材26に連結されて前記作動軸部材26を前記ツールホルダ20に対し相対的に回転させるための支持機構72が配置される。
支持機構72は、図4に示すように、作動軸部材26の先端部に軸方向に形成されるスプライン穴48に結合されるスプライン軸74を有する支持軸部材76と、前記支持軸部材76を、前記作動軸部材26の軸方向に進退自在で且つ回転不能に配置するハウジング78と前記ハウジング78内に配設され、前記支持軸部材76を前記作動軸部材26に向かって押圧するスプリング(弾性部材)80とを備える。
支持軸部材76の外周面には、所定の幅寸法にわたって溝部82が形成される一方、ハウジング78には、前記溝部82に挿入されて前記支持軸部材76の回転及び軸方向の移動距離を規制するストッパピン84が設けられる。支持軸部材76は、通常、スプリングの弾性力を介して肩部86がハウジング78の内壁面88に当接している。
支持軸部材76の後端部には、作動軸部材26と支持機構72とが連結されたことを検出する連結確認機構90が設けられる。連結確認機構90は、支持軸部材76の後端部に設けられる大径コンタクト部92及び小径コンタクト部94と、前記大径コンタクト部92に係合することにより作動軸部材26と支持軸部材76とが確実に連結されたことを検出する一方、前記小径コンタクト部94に係合することにより前記作動軸部材26と前記支持軸部材76とが連結不良であることを検出するスイッチ96とを備える。
このように構成される第1の実施形態に係る工作機械10の動作について、以下に説明する。
先ず、図5に示すように、新しい刃工具22a、22bを使用してワーク(例えば、エンジンのシリンダブロック)の筒体98の穴部98aに加工を行う。その際、弾性ホルダ部24には、変換機構28による拡径操作が行われていない。
次いで、刃工具22a、22bの刃先が磨耗した際には、変換機構28を介して前記刃工具22a、22bを径方向外方に位置調整(補正)する。具体的には、ハウジング14の移動作用下にスピンドル16が支持機構72側に移動する。このため、ツールホルダ20に装着されている作動軸部材26は、支持機構72を構成する支持軸部材76と同軸上に配置された状態で、軸方向(Z2軸方向)に移動し、前記作動軸部材26のスプライン穴48に前記支持軸部材76のスプライン軸74が挿入される(図4参照)。
ツールホルダ20は、さらにZ2軸方向に移動されると、スプライン軸74がスプライン穴48の端面に当接し、支持軸部材76は、スプリング80に抗してZ2軸方向に移動する。そして、ツールホルダ20は、予め設定された位置まで移動した後、停止される。その際、図6に示すように、連結確認機構90を構成するスイッチ96は、支持軸部材76の後端部に設けられる大径コンタクト部92に係合することにより、作動軸部材26と支持軸部材76とが確実に連結されたことを検出(オン状態)する。
一方、図7に示すように、スプライン軸74がスプライン穴48に結合されていないと、ツールホルダ20が予め設定された位置で停止した状態で、スイッチ96は、支持軸部材76の後端部に設けられる小径コンタクト部94に係合する。従って、作動軸部材26と支持軸部材76とが連結不良であることが検出(オフ状態)される。このため、再度、上記の動作を行って、スプライン軸74とスプライン穴48とを確実に連結させる。
作動軸部材26と支持軸部材76とが確実に連結されたことが検出されると、スピンドル16は、工作機械10の割り出し機能を介して所定の角度だけ回転される。これにより、スピンドル16と一体にツールホルダ20が回転し、このツールホルダ20に固着される弾性ホルダ部24が回転する。
一方、作動軸部材26は、支持軸部材76に連結されて回転が規制されている。従って、作動軸部材26は、弾性ホルダ部24に対して相対的に回転する。以下、説明の簡素化のため、弾性ホルダ部24が停止し、作動軸部材26が前記弾性ホルダ部24に対して回転するものとする。
作動軸部材26は、ねじ手段52をねじ込む方向に一定角度回転すると、この作動軸部材26に平行キー溝64及び平行キー66を介して係合する可動ねじ部材62は、前記作動軸部材26と一体に回転する。ここで、可動ねじ部材62の外周面には、それぞれピッチの異なる第1雄ねじ70a及び第2雄ねじ70bが形成されるとともに、前記第1雄ねじ70a及び前記第2雄ねじ70bは、固定ねじ部材60の第1雌ねじ68a及びテーパリング部材56の第2雌ねじ68bに螺合している。
さらに、固定ねじ部材60は、ツールホルダ20に固定されているため、弾性ホルダ部24と一体に停止しており、回転しない。一方、テーパリング部材56は、弾性ホルダ部24に摺接するとともに、位相ピン59a、59bを介して互いに軸方向に移動自在に且つ回転方向に一体化されている。
このため、作動軸部材26が回転すると、可動ねじ部材62が回転し、第1雌ねじ68aと第2雌ねじ68b(第1雄ねじ70と第2雄ねじ70b)とのピッチ差によって、テーパリング部材56が軸方向内方(Z1軸方向)に摺動する。その際、テーパリング部材56の外周コンタクト面58と弾性ホルダ部24を構成するバンク部34a、34bの内周コンタクト面54a、54bとが摺接している。
これにより、テーパリング部材56が軸方向内方に移動すると、テーパ手段50を介して開放端部24aが楕円形状に弾性変形する。そして、開放端部24aの2つの変形頂点部であるバンク部34a、34bに取り付けられている刃工具22a、22bは、半径外方に移動して磨耗状態に応じた補正移動を行う。従って、図8及び図9に示すように、補正移動した刃工具22a、22bを使用して、筒体98の穴部98aに加工を行うことができる。
上記の動作を、より具体的に説明すると、可動ねじ部材62は、右ねじであり、第1雄ねじ70aのピッチが第2雄ねじ70bのピッチよりも大きく、例えば、ピッチ差が0.1mmであるとする。そして、可動ねじ部材62を時計回りに72度だけ回転させると、テーパリング部材56は、Z1軸方向に0.02mmだけ移動する。
さらに、テーパコンタクト部(内周コンタクト面54a、54b及び外周コンタクト面58)の軸方向対径方向のテーパ比が、10:1であると、テーパリング部材56がZ1軸方向に0.02mmだけ移動する際、開口端部24aのバンク部34a、34b、すなわち、刃工具22a、22bは、径方向外方に0.002mmだけ補正移動することになる。これにより、刃工具22a、22bは、ミクロンオーダの刃先調整が高精度に遂行されるという効果が得られる。
しかも、第1の実施形態では、弾性ホルダ部24の開放端部24aが楕円形状に弾性変形するとともに、刃工具22a、22bは、同じ質量でもって対向して配置されている。このため、弾性ホルダ部24は、この弾性ホルダ部24の重心位置を回転軸線上に維持した状態で、刃工具22a、22bがツールホルダ20の径方向に位置調整(補正)されている。これにより、ツールホルダ20は、バランスの移動がなく、筒体98に対して高精度な加工作業を効率的に遂行可能になる。
しかも、第1の実施形態では、2つの刃工具22a、22bを備えている。従って、径差を設定することにより一方の刃、例えば、刃工具22aを先行刃とするとともに、他方の刃、例えば、刃工具22bを仕上げ刃とすることができ、該最終の仕上げ刃の取り代を安定した最小取り代として高精度なボーリング加工が遂行可能になる。
なお、刃工具22aのみを使用する際には、バンク部34bにバランスダミーを取り付けることにより対応することができる。また、バンク部の数は、種々変更可能であり、例えば、3つのバンク部を設けるとともに、2つの刃工具を中仕上げ刃とする一方、1つの刃工具を仕上げ刃として使用することも可能である。
さらにまた、作動軸部材26にプライン穴48を設ける一方、支持軸部材76にスプライン軸74を設けているが、これとは逆に、前記作動軸部材26にスプライン軸を設けるとともに、前記支持軸部材76にスプライン穴を設けてもよい。
図10は、本発明の第2の実施形態に係る工作機械を構成する支持機構100の断面説明図である。なお、第1の実施形態に係る工作機械10と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。
支持機構100を構成する支持軸部材76は、プライン軸74を有するとともに、前記プライン軸74の先端には、面取り加工によりガイド部102が設けられる。プライン軸74には、軸心に沿ってクーラント用の中空穴104が形成される。
このように構成される第2の実施形態では、プライン軸74の先端にガイド部102が設けられている。このため、作動軸部材26のプライン穴48と支持軸部材76のスプライン軸74との位相角が多少ずれていても、ガイド部102の案内作用下に、前記作動軸部材26が位相角のずれを修正するように動作することができる。
しかも、支持軸部材76には、クーラント用の中空穴104が設けられている。このため、結合時にクーラントを流すことにより、結合部分の切削屑等を強制的に排除することが可能になる。
図11は、本発明の第3の実施形態に係る作業機械である工作機械120の斜視説明図であり、図12は、前記工作機械120の要部断面説明図である。
工作機械120を構成するツールホルダ20には、前記ツールホルダ20に対して相対的に回転可能な作動軸部材122が配設される。作動軸部材122の先端部には、径方向に互いに直交して貫通する結合穴124a、124bが形成される。
図11に示すように、ツールホルダ20の外部には、作動軸部材122に連結されて前記作動軸部材122を前記ツールホルダ20に対し相対的に回転させるための支持機構126が配置される。この支持機構126は、図12に示すように、作動軸部材122の先端部に径方向に形成される結合穴124a又は124bに挿入される結合ピン部128を有する支持軸部材130を備える。
図13に示すように、結合ピン部128は、ストレート部128aとテーパ部128bとを有するとともに、前記ストレート部128aの直径は、結合穴124a、124bの開口直径よりも小径に設定される。結合穴124a、124bには、ストレート部128aが挿入された状態で、隙間Sが形成される。支持軸部材130内には、クーラント用の中空穴104が形成される。
このように構成される第3の実施形態では、刃工具22a、22bの刃先位置補正を行う際には、基本的には、第1の実施形態と同様に行われる。概略的に説明すると、図12に示すように、作動軸部材122の結合穴124a(又は124b)と、支持機構126を構成する支持軸部材130の結合ピン128とが同軸上に配置された状態で、ハウジング14がX軸方向に沿って前記支持機構126側に移動する。
このため、図13に示すように、結合ピン128は、結合穴124a内に挿入されるとともに、連結確認機構90を介して作動軸部材122と支持軸部材130とが確実に連結されたか否かが検出される。そして、作動軸部材122と支持軸部材130とが確実に連結されたことを検出すると、スピンドル16が所定の角度だけ回転されて変換機構28が駆動され、刃工具22a、22bは、磨耗に伴う径方向の補正移動が行われる。
従って、第3の実施形態では、上記の第1の実施形態と同様の効果が得られる。しかも、図13に示すように、結合ピン部128は、ストレート部128aとテーパ部128bとを有するとともに、前記ストレート部128aの直径は、結合穴124a、124bの開口直径よりも小径に設定されている。これにより、工作機械120の割り出し角度や結合位置の機械的誤差は、隙間S及びテーパ部128bによって吸収することができるという利点がある。
なお、作動軸部材122の先端部には、2つの結合穴124a、124bが形成されているが、これに限定されるものではない。例えば、補正量と割り出し角度に基づいて、種々の穴数に設定することができるとともに、90度毎に設けなくてもよい。
図14は、本発明の第4の実施形態に係る作業機械である工作機械140の斜視説明図であり、図15は、前記工作機械140の要部断面説明図である。
工作機械140を構成するツールホルダ20には、前記ツールホルダ20に対して相対的に回転可能な作動軸部材142が配設される。作動軸部材142の先端部には、ピニオン部(サーキュラピニオン)144が形成される。
ツールホルダ20の外部には、作動軸部材142に連結されて前記作動軸部材142を前記ツールホルダ20に対し相対的に回転させるための支持機構146が配置される。支持機構146は、図14及び図15に示すように、作動軸部材142のピニオン部144に係合するラック部148が先端部に形成される支持軸部材150を備える。
このように構成される第4の実施形態では、刃工具22a、22bの刃先位置補正を行う際には、ハウジング14がX軸方向に沿って支持機構146側に移動することにより、作動軸部材142のピニオン部144と、前記支持機構146を構成するラック部148とが係合する(図16参照)。
そして、ピニオン部144とラック部148とが確実に係合したことが、連結確認機構90により検出されると、スピンドル16がY軸方向に所定の距離だけ移動される。従って、スピンドル16のY軸方向への移動距離を、ピニオン部144のサーキュラピッチ円により換算された量の回転角度量だけ、作動軸部材142が回転する。
これにより、作動軸部材142が所定の角度だけ回転されて変換機構28が駆動され、刃工具22a、22bは、磨耗に伴う径方向の補正移動が行われる。このため、第4の実施形態では、上記の第1〜第3の実施形態と同様の効果が得られる。
FIG. 1 is a perspective explanatory view of a machine tool 10 that is a work machine according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional explanatory view of a main part of the machine tool 10.
The machine tool 10 includes a main body 12, and a housing 14 is mounted on the main body 12 so as to be slidable in the X-axis direction, the Y-axis direction, and the Z-axis direction. When a spindle (main shaft) 16 is rotatably provided on the housing 14 via a bearing 18, a tool holder 20 is detachably attached to the spindle 16.
As shown in FIG. 2, the tool holder 20 has a ring shape that forms an open end 24 a to which one end is fixed to the tool holder 20 and a tool such as a blade tool 22 a or 22 b is attached to the other end. The elastic holder portion 24, the end portion protrudes outward in the axial direction of the elastic holder portion 24, and the operating shaft member 26 is rotatable relative to the tool holder 20, and the operating shaft member 26 is rotated. A conversion mechanism 28 for converting the operation into the expansion / contraction operation in the radial direction of the open end 24a is attached.
As shown in FIGS. 2 and 3, the elastic holder portion 24 includes a base portion 30 that is fixed to the tip of the tool holder 20. The base portion 30 is provided with a ring body 32, and a bank portion (deformed vertex portion) 34a to which the blade tools 22a and 22b are attached to the end portion on the open end portion 24a side of the ring body 32 in a replaceable manner. , 34b and bulged portions 36a, 36b orthogonal to the bank portions 34a, 34b are formed (see FIG. 3).
The operating shaft member 26 has a shaft portion 38, and the shaft portion 38 is fitted into a stepped hole portion 40 formed in the shaft center of the tool holder 20. A head portion 42 fixed to the shaft portion 38 is disposed at an intermediate portion of the stepped hole portion 40, and a stopper 44 is disposed so as not to move at a large diameter portion of the stepped hole portion 40. . The operating shaft member 26 is formed with a spline hole 48 at an end portion 46 protruding outward in the axial direction of the elastic holder portion 24.
The conversion mechanism 28 is disposed inward of the elastic holder portion 24, and has a taper means 50 capable of expanding and contracting the open end 24 a in the radial direction by moving forward and backward in the axial direction of the elastic holder portion 24, and the operating shaft member 26. And screw means 52 for converting the rotation operation into the axial movement of the taper means 50.
The taper means 50 is sheathed on the inner peripheral contact surfaces 54a, 54b formed on the inner peripheral surfaces of the bank portions 34a, 34b constituting the elastic holder portion 24, the operating shaft member 26, and the elastic holder portion 24. A tapered member 56 that rotates integrally and is capable of moving back and forth in the axial direction of the elastic holder portion 24, and an outer peripheral contact surface 58 that is formed on the outer peripheral surface of the tapered member 56 and that is in sliding contact with the inner peripheral contact surfaces 54a and 54b. And have.
The inner peripheral contact surfaces 54a and 54b and the outer peripheral contact surface 58 are inclined radially inward as at least the outer peripheral contact surface 58 is directed in the Z1 axial direction (tool holder 20 side). When moving in the Z1 axis direction, the open end 24a is elastically deformed into an elliptical shape. Instead, when the tapering member 56 moves in the Z2 axis direction, the open end 24a may be elastically deformed into an elliptical shape.
As shown in FIG. 3, the tapering member 56 is movable in the axial direction of the elastic holder portion 24 via the phase pins 59 a and 59 b provided in the bulging portions 36 a and 36 b, and cannot rotate to the elastic holder portion 24. Configured.
The screw means 52 is fixed to the tool holder 20 and is arranged around the operating shaft member 26, the outer periphery of the operating shaft member 26, the fixed screw member 60 and the tapering member 56. And a movable screw member 62 that rotates integrally with the operating shaft member 26 and is movable forward and backward in the axial direction of the operating shaft member 26. The operation shaft member 26 and the movable screw member 62 are engaged with each other via a parallel key groove 64 and a parallel key 66.
A first female screw 68a is formed on the inner peripheral surface of the fixing screw member 60, and a second female screw 68b set at a different pitch from the first female screw 68a is formed on the inner peripheral surface of the tapering member 56. . On the outer peripheral surface of the movable screw member 62, a first male screw 70a screwed to the first female screw 68a and a second male screw 70b screwed to the second female screw 68b are formed. The first and second female screws 68a and 68b and the first and second male screws 70a and 70b may be configured as right-handed screws or left-handed screws.
As shown in FIG. 1, a table 71 provided outside the tool holder 20 is connected to an operation shaft member 26 to rotate the operation shaft member 26 relative to the tool holder 20. A support mechanism 72 is disposed.
As shown in FIG. 4, the support mechanism 72 includes a support shaft member 76 having a spline shaft 74 coupled to a spline hole 48 formed in the axial direction at the distal end portion of the operating shaft member 26, and the support shaft member 76. The housing 78 is disposed in the housing 78 so as to be movable forward and backward in the axial direction of the operating shaft member 26 and non-rotatable, and a spring (elasticity) that presses the support shaft member 76 toward the operating shaft member 26. Member) 80.
A groove 82 is formed on the outer peripheral surface of the support shaft member 76 over a predetermined width. On the other hand, the housing 78 is inserted into the groove 82 to restrict the rotation and axial movement distance of the support shaft member 76. A stopper pin 84 is provided. In the support shaft member 76, the shoulder portion 86 is normally in contact with the inner wall surface 88 of the housing 78 through the elastic force of the spring.
A connection confirmation mechanism 90 that detects that the operating shaft member 26 and the support mechanism 72 are connected is provided at the rear end portion of the support shaft member 76. The connection confirmation mechanism 90 is engaged with the large-diameter contact portion 92 and the small-diameter contact portion 94 provided at the rear end portion of the support shaft member 76, and the large-diameter contact portion 92, so that the operation shaft member 26 and the support shaft member 76 are engaged. And a switch 96 that detects that the operation shaft member 26 and the support shaft member 76 are poorly connected by engaging with the small diameter contact portion 94. .
The operation of the machine tool 10 according to the first embodiment configured as described above will be described below.
First, as shown in FIG. 5, new hole tools 22a and 22b are used to process a hole 98a of a cylinder 98 of a workpiece (for example, an engine cylinder block). At that time, the elastic holder portion 24 is not subjected to a diameter expansion operation by the conversion mechanism 28.
Next, when the blade tips of the blade tools 22a and 22b are worn, the position of the blade tools 22a and 22b is adjusted (corrected) radially outward via the conversion mechanism 28. Specifically, the spindle 16 moves to the support mechanism 72 side under the moving action of the housing 14. Therefore, the operating shaft member 26 mounted on the tool holder 20 moves in the axial direction (Z2 axial direction) in a state where it is coaxially disposed with the support shaft member 76 constituting the support mechanism 72, and the operation The spline shaft 74 of the support shaft member 76 is inserted into the spline hole 48 of the shaft member 26 (see FIG. 4).
When the tool holder 20 is further moved in the Z2 axis direction, the spline shaft 74 comes into contact with the end surface of the spline hole 48, and the support shaft member 76 moves against the spring 80 in the Z2 axis direction. Then, the tool holder 20 is stopped after moving to a preset position. At this time, as shown in FIG. 6, the switch 96 constituting the connection confirmation mechanism 90 is engaged with a large-diameter contact portion 92 provided at the rear end portion of the support shaft member 76 to support the operation shaft member 26. It is detected (ON state) that the shaft member 76 is securely connected.
On the other hand, as shown in FIG. 7, if the spline shaft 74 is not coupled to the spline hole 48, the switch 96 is in the rear end portion of the support shaft member 76 while the tool holder 20 is stopped at a preset position. It engages with a small diameter contact portion 94 provided in the. Accordingly, it is detected (off state) that the operating shaft member 26 and the support shaft member 76 are poorly connected. For this reason, the above operation is performed again to securely connect the spline shaft 74 and the spline hole 48.
When it is detected that the operation shaft member 26 and the support shaft member 76 are securely connected, the spindle 16 is rotated by a predetermined angle via the indexing function of the machine tool 10. As a result, the tool holder 20 rotates integrally with the spindle 16, and the elastic holder portion 24 fixed to the tool holder 20 rotates.
On the other hand, the operation shaft member 26 is connected to the support shaft member 76 and its rotation is restricted. Accordingly, the operating shaft member 26 rotates relative to the elastic holder portion 24. Hereinafter, for the sake of simplicity of explanation, it is assumed that the elastic holder portion 24 stops and the operating shaft member 26 rotates with respect to the elastic holder portion 24.
When the operating shaft member 26 rotates by a certain angle in the direction in which the screw means 52 is screwed, the movable screw member 62 engaged with the operating shaft member 26 via the parallel key groove 64 and the parallel key 66 is connected to the operating shaft member 26. Rotates together. Here, a first male screw 70 a and a second male screw 70 b having different pitches are formed on the outer peripheral surface of the movable screw member 62, and the first male screw 70 a and the second male screw 70 b are formed on the fixed screw member 60. The first female screw 68a and the second female screw 68b of the tapering member 56 are screwed together.
Furthermore, since the fixing screw member 60 is fixed to the tool holder 20, it is stopped integrally with the elastic holder portion 24 and does not rotate. On the other hand, the tapering member 56 is slidably in contact with the elastic holder portion 24 and is integrated with each other in the rotational direction so as to be movable in the axial direction via the phase pins 59a and 59b.
For this reason, when the operating shaft member 26 rotates, the movable screw member 62 rotates, and the taper ring member 56 is caused by the pitch difference between the first female screw 68a and the second female screw 68b (the first male screw 70 and the second male screw 70b). Slides inward in the axial direction (Z1 axial direction). At that time, the outer peripheral contact surface 58 of the tapering member 56 and the inner peripheral contact surfaces 54a and 54b of the bank portions 34a and 34b constituting the elastic holder portion 24 are in sliding contact.
As a result, when the tapering member 56 moves inward in the axial direction, the open end 24 a is elastically deformed into an elliptical shape via the taper means 50. And the blade tools 22a and 22b attached to the bank parts 34a and 34b which are two deformation | transformation vertex parts of the open end part 24a move to radial outward, and perform the correction | amendment movement according to a wear state. Therefore, as shown in FIGS. 8 and 9, the hole 98 a of the cylindrical body 98 can be processed using the blade tools 22 a and 22 b that have been corrected and moved.
The above operation will be described more specifically. The movable screw member 62 is a right-hand screw, and the pitch of the first male screw 70a is larger than the pitch of the second male screw 70b. For example, the pitch difference is 0.1 mm. And When the movable screw member 62 is rotated by 72 degrees clockwise, the tapering member 56 moves by 0.02 mm in the Z1 axis direction.
Furthermore, when the taper contact portion (inner peripheral contact surfaces 54a and 54b and outer peripheral contact surface 58) has an axial to radial taper ratio of 10: 1, the taper ring member 56 is 0.02 mm in the Z1 axial direction. When moving, the bank portions 34a and 34b of the open end 24a, that is, the blade tools 22a and 22b, are corrected and moved radially outward by 0.002 mm. Thereby, the blade tools 22a and 22b have an effect that the blade edge adjustment of micron order is performed with high accuracy.
In addition, in the first embodiment, the open end 24a of the elastic holder portion 24 is elastically deformed into an elliptical shape, and the blade tools 22a and 22b are arranged to face each other with the same mass. For this reason, in the elastic holder portion 24, the position of the blade tools 22 a and 22 b is adjusted (corrected) in the radial direction of the tool holder 20 while the center of gravity of the elastic holder portion 24 is maintained on the rotation axis. As a result, the tool holder 20 does not move in balance and can efficiently perform a highly accurate machining operation on the cylindrical body 98.
Moreover, in the first embodiment, two blade tools 22a and 22b are provided. Therefore, by setting the diameter difference, one of the blades, for example, the blade tool 22a can be used as the leading blade, and the other blade, for example, the blade tool 22b can be used as the finishing blade. High-accuracy boring can be performed with a stable minimum machining allowance.
In addition, when using only the blade tool 22a, it can respond by attaching a balance dummy to the bank part 34b. Also, the number of bank portions can be variously changed. For example, three bank portions can be provided, and two blade tools can be used as intermediate finishing blades, while one blade tool can be used as a finishing blade. is there.
Furthermore, while the pre-hole 48 is provided in the operating shaft member 26, the spline shaft 74 is provided in the support shaft member 76, conversely, the operating shaft member 26 is provided with a spline shaft and the support shaft is provided. Spline holes may be provided in the member 76.
FIG. 10 is a cross-sectional explanatory view of a support mechanism 100 constituting a machine tool according to the second embodiment of the present invention. The same components as those of the machine tool 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
The support shaft member 76 that constitutes the support mechanism 100 has a pipeline shaft 74, and a guide portion 102 is provided at the tip of the pipeline shaft 74 by chamfering. A hollow hole 104 for coolant is formed in the pipeline shaft 74 along the axis.
In the second embodiment configured as described above, the guide portion 102 is provided at the tip of the ply shaft 74. For this reason, even if the phase angle between the pipeline hole 48 of the operating shaft member 26 and the spline shaft 74 of the support shaft member 76 is slightly deviated, the operating shaft member 26 is shifted in phase angle under the guiding action of the guide portion 102. Can work to fix.
In addition, the support shaft member 76 is provided with a hollow hole 104 for coolant. For this reason, it becomes possible to forcibly remove the cutting waste and the like in the joint portion by flowing the coolant during the joint.
FIG. 11 is a perspective explanatory view of a machine tool 120 that is a work machine according to a third embodiment of the present invention, and FIG. 12 is a cross-sectional explanatory view of a main part of the machine tool 120.
The tool holder 20 constituting the machine tool 120 is provided with an operation shaft member 122 that is rotatable relative to the tool holder 20. At the distal end portion of the operating shaft member 122, coupling holes 124a and 124b are formed that penetrate perpendicularly to each other in the radial direction.
As shown in FIG. 11, a support mechanism 126 that is connected to the operation shaft member 122 and rotates the operation shaft member 122 relative to the tool holder 20 is disposed outside the tool holder 20. As shown in FIG. 12, the support mechanism 126 includes a support shaft member 130 having a coupling pin portion 128 inserted into a coupling hole 124 a or 124 b formed in the radial direction at the distal end portion of the operating shaft member 122.
As shown in FIG. 13, the connecting pin portion 128 has a straight portion 128a and a tapered portion 128b, and the diameter of the straight portion 128a is set smaller than the opening diameter of the connecting holes 124a and 124b. A gap S is formed in the coupling holes 124a and 124b in a state where the straight portion 128a is inserted. A hollow hole 104 for coolant is formed in the support shaft member 130.
In the third embodiment configured as described above, the edge position correction of the blade tools 22a and 22b is basically performed in the same manner as in the first embodiment. Schematically, as shown in FIG. 12, the coupling hole 124a (or 124b) of the operating shaft member 122 and the coupling pin 128 of the support shaft member 130 constituting the support mechanism 126 are arranged coaxially. Thus, the housing 14 moves toward the support mechanism 126 along the X-axis direction.
Therefore, as shown in FIG. 13, the coupling pin 128 is inserted into the coupling hole 124 a and whether or not the operating shaft member 122 and the support shaft member 130 are securely coupled via the coupling confirmation mechanism 90. Is detected. When it is detected that the operation shaft member 122 and the support shaft member 130 are securely connected, the spindle 16 is rotated by a predetermined angle to drive the conversion mechanism 28, and the blade tools 22a and 22b are accompanied by wear. A radial correction movement is performed.
Therefore, in the third embodiment, the same effect as in the first embodiment can be obtained. Moreover, as shown in FIG. 13, the connecting pin portion 128 has a straight portion 128a and a tapered portion 128b, and the diameter of the straight portion 128a is set smaller than the opening diameter of the connecting holes 124a and 124b. Yes. Accordingly, there is an advantage that mechanical errors in the indexing angle and the coupling position of the machine tool 120 can be absorbed by the gap S and the tapered portion 128b.
In addition, although the two coupling holes 124a and 124b are formed in the front-end | tip part of the action | operation shaft member 122, it is not limited to this. For example, various hole numbers can be set on the basis of the correction amount and the index angle, and it is not necessary to provide every 90 degrees.
FIG. 14 is a perspective explanatory view of a machine tool 140 that is a work machine according to a fourth embodiment of the present invention, and FIG. 15 is a cross-sectional explanatory view of a main part of the machine tool 140.
The tool holder 20 constituting the machine tool 140 is provided with an operation shaft member 142 that can rotate relative to the tool holder 20. A pinion portion (circular pinion) 144 is formed at the distal end portion of the operating shaft member 142.
A support mechanism 146 is disposed outside the tool holder 20 so as to be connected to the operation shaft member 142 and rotate the operation shaft member 142 relative to the tool holder 20. As shown in FIGS. 14 and 15, the support mechanism 146 includes a support shaft member 150 in which a rack portion 148 that engages with the pinion portion 144 of the operation shaft member 142 is formed at the distal end portion.
In the fourth embodiment configured as described above, when the blade tip positions of the blade tools 22a and 22b are corrected, the housing 14 moves toward the support mechanism 146 along the X-axis direction. The pinion part 144 of 142 and the rack part 148 which comprises the said support mechanism 146 engage (refer FIG. 16).
When the connection confirmation mechanism 90 detects that the pinion portion 144 and the rack portion 148 are securely engaged, the spindle 16 is moved by a predetermined distance in the Y-axis direction. Accordingly, the operating shaft member 142 rotates by the amount of rotation angle of the amount of movement of the spindle 16 in the Y-axis direction converted by the circular pitch circle of the pinion portion 144.
As a result, the operating shaft member 142 is rotated by a predetermined angle to drive the conversion mechanism 28, and the blade tools 22a and 22b are subjected to radial correction movement accompanying wear. For this reason, in 4th Embodiment, the effect similar to said 1st-3rd embodiment is acquired.

本発明の第1の実施形態に係る作業機械である工作機械の斜視説明図である。  It is a perspective explanatory view of a machine tool which is a work machine concerning a 1st embodiment of the present invention. 前記工作機械の断面説明図である。  It is a section explanatory view of the machine tool. 前記工作機械を構成する弾性ホルダ部の正面説明図である。  It is front explanatory drawing of the elastic holder part which comprises the said machine tool. 前記工作機械を構成する支持機構の断面説明図である。  It is a section explanatory view of a support mechanism which constitutes the machine tool. 新たな刃工具による加工の説明図である。  It is explanatory drawing of the process by a new blade tool. 前記支持機構の動作説明図である。  It is operation | movement explanatory drawing of the said support mechanism. 前記支持機構の動作説明図である。  It is operation | movement explanatory drawing of the said support mechanism. 補正された刃工具による加工の説明図である。  It is explanatory drawing of the process by the correct | amended blade tool. 刃工具が補正された前記弾性ホルダ部の正面説明図である。  It is front explanatory drawing of the said elastic holder part by which the blade tool was correct | amended. 本発明の第2の実施形態に係る工作機械を構成する支持機構の断面説明図である。  It is a section explanatory view of a support mechanism which constitutes a machine tool concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る作業機械である工作機械の斜視説明図である。  It is a perspective explanatory view of a machine tool which is a work machine concerning a 3rd embodiment of the present invention. 前記工作機械の要部断面説明図である。  It is principal part cross-sectional explanatory drawing of the said machine tool. 前記工作機械を構成する作動軸部材と支持軸部材との連結状態の説明図である。  It is explanatory drawing of the connection state of the action | operation shaft member and support shaft member which comprise the said machine tool. 本発明の第4の実施形態に係る作業機械である工作機械の斜視説明図である。  It is a perspective explanatory view of a machine tool which is a work machine concerning a 4th embodiment of the present invention. 前記工作機械の要部断面説明図である。  It is principal part cross-sectional explanatory drawing of the said machine tool. 前記工作機械を構成する作動軸部材と支持軸部材との連結状態の説明図である。  It is explanatory drawing of the connection state of the action | operation shaft member and support shaft member which comprise the said machine tool.

符号の説明Explanation of symbols

10、120、140…工作機械 16…スピンドル
20…ツールホルダ 22a、22b…刃工具
24…弾性ホルダ部 24a…開放端部
26、122、142…作動軸部材 28…変換機構
34a、34b…バンク部 48…スプライン穴
50…テーパ手段 52…ねじ手段
54a、54b…内周コンタクト面 56…テーパリング部材
58…外周コンタクト面 60…固定ねじ部材
62…可動ねじ部材 68a、68b…雌ねじ
70a、70b…雄ねじ 72,100、126、146…支持機構
74…スプライン軸 76、130、150…支持軸部材
80…スプリング 90…連結確認機構
104…中空穴 124a、124b…結合穴
128…結合ピン部 144…ピニオン部
148…ラック部
DESCRIPTION OF SYMBOLS 10, 120, 140 ... Machine tool 16 ... Spindle 20 ... Tool holder 22a, 22b ... Blade tool 24 ... Elastic holder part 24a ... Open end part 26, 122, 142 ... Actuation shaft member 28 ... Conversion mechanism 34a, 34b ... Bank part 48 ... Spline hole 50 ... Tapering means 52 ... Screw means 54a, 54b ... Inner peripheral contact surface 56 ... Tapering member 58 ... Outer peripheral contact surface 60 ... Fixed screw member 62 ... Moving screw member 68a, 68b ... Female screw 70a, 70b ... Male screw 72, 100, 126, 146 ... support mechanism 74 ... spline shaft 76, 130, 150 ... support shaft member 80 ... spring 90 ... connection confirmation mechanism 104 ... hollow hole 124a, 124b ... coupling hole 128 ... coupling pin portion 144 ... pinion portion 148 ... Rack part

Claims (5)

スピンドルと一体的に回転可能なツールホルダと、
一端が前記ツールホルダに固着される一方、他端に道具が取り付けられる開放端部を形成するリング形状を有する弾性ホルダ部と、
端部が前記弾性ホルダ部の軸方向外方の突出するとともに、前記ツールホルダに対して相対的に回転可能な作動軸部材と、
前記作動軸部材の回転動作を、前記開放端部の径方向の拡縮動作に変換させる変換機構と、
前記ツールホルダの外部に配置され、前記作動軸部材に連結されて該作動軸部材を前記ツールホルダに対し相対的に回転させるための支持機構と、
を備え
前記変換機構は、前記弾性ホルダ部の内方に配置され、前記弾性ホルダ部の軸方向に進退 することにより前記開放端部を径方向に拡縮自在なテーパ手段と、
前記作動軸部材の回転動作を、前記テーパ手段の前記軸方向への進退動作に変換させるね じ手段と、
を備え、
前記テーパ手段は、前記作動軸部材に外装されるとともに、前記弾性ホルダ部と一体に回 転し且つ該弾性ホルダ部の軸方向に進退して前記開放端部を径方向に拡縮自在なテーパリ ング部材を設け、
前記ねじ手段は、前記ツールホルダに固定されるとともに、前記作動軸部材を周回して配 置される固定ねじ部材と、
前記作動軸部材の外周と前記固定ねじ部材及び前記テーパリング部材との間に介装される とともに、前記作動軸部材と一体に回転し且つ該作動軸部材の軸方向に進退自在な可動ね じ部材と、
を備え、
前記固定ねじ部材の内周面には、第1雌ねじが形成され、
前記テーパリング部材の内周面には、前記第1雌ねじと異なるピッチに設定される第2雌 ねじが形成され、
前記可動ねじ部材の外周面には、前記第1雌めじに螺合する第1雄ねじと、
前記第2雌ねじに螺合する第2雄ねじと、
が形成されることを特徴とする作業機械。
A tool holder that can rotate integrally with the spindle;
An elastic holder part having a ring shape forming an open end part to which one end is fixed to the tool holder and the tool is attached to the other end;
An end portion protruding axially outward of the elastic holder portion and an operation shaft member rotatable relative to the tool holder;
A conversion mechanism that converts the rotation operation of the operating shaft member into a radial expansion / contraction operation of the open end;
A support mechanism disposed outside the tool holder and connected to the operating shaft member to rotate the operating shaft member relative to the tool holder;
Equipped with a,
The converting mechanism is disposed inward of the elastic holder portion, and a taper means capable of expanding and contracting the open end portion in the radial direction by moving back and forth in the axial direction of the elastic holder portion .
The rotational movement of the actuating shaft member, and it Flip means for converting the forward and backward movement to the axial direction of the tapered section,
With
The tapered section, wherein while being fitted on the actuating shaft member, said resilient holder portion integrally with rotation to and elastic holder scaled freely Tepari packaging said open end radially moves forward and backward in the axial direction of the A member,
Said screw means has a fixing screw member to which the is fixed to the tool holder, it is placed in orbit the operating shaft member,
Together is interposed between the outer periphery and the fixing screw member and the tapering member of the actuating shaft member, Flip it freely movable forward and backward in the axial direction of the rotating and the actuating shaft member to said actuating shaft member integrally A member,
With
A first female screw is formed on the inner peripheral surface of the fixing screw member,
Wherein the inner circumferential surface of the taper ring member, a second female screw, which is set to a pitch different from the first internal thread is formed,
On the outer peripheral surface of the movable screw member, a first male screw threadedly engaged with the first female female screw,
A second male screw threadably engaged with the second female screw;
Working machine but is formed, characterized in Rukoto.
請求項1記載の作業機械において、前記作動軸部材と前記支持機構とが連結されたことを検出する連結確認機構を備えることを特徴とする作業機械。  The work machine according to claim 1, further comprising a connection confirmation mechanism that detects that the operation shaft member and the support mechanism are connected. 請求項1又は2記載の作業機械において、前記テーパ手段は、前記弾性ホルダ部の内周面に形成される内周コンタクト面と
記テーパリング部材の外周面に形成され、前記内周コンタクト面に摺接する外周コンタクト面と、
を有し、
少なくとも前記外周コンタクト面は、テーパ面を構成することを特徴とする作業機械。
The work machine according to claim 1 or 2 , wherein the taper means includes an inner peripheral contact surface formed on an inner peripheral surface of the elastic holder portion ,
Formed on the outer peripheral surface of the front Symbol tapering member, the outer circumferential contact surface in sliding contact with the inner peripheral contact surface,
Have
At least the outer peripheral contact surface constitutes a tapered surface.
請求項1記載の作業機械において、前記支持機構は、前記作動軸部材の先端部に軸方向に形成されるスプライン穴又はスプライン軸に結合されるスプライン軸又はスプライン穴を有する支持軸部材と、
前記支持軸部材を、前記作動軸部材の軸方向に進退自在で且つ回転不能に配置するハウジングと、
前記ハウジング内に配設され、前記支持軸部材を前記作動軸部材に向かって押圧する弾性部材と、
を備えることを特徴とする作業機械。
The work machine according to claim 1, wherein the support mechanism includes a support shaft member having a spline shaft or a spline hole coupled to the spline shaft or a spline shaft formed in an axial direction at a distal end portion of the operation shaft member;
A housing in which the support shaft member is disposed so as to be movable back and forth in the axial direction of the operation shaft member and non-rotatable;
An elastic member disposed in the housing and pressing the support shaft member toward the operating shaft member;
A work machine comprising:
請求項記載の作業機械において、前記支持軸部材は、クーラント用の中空穴を有することを特徴とする作業機械。5. The work machine according to claim 4 , wherein the support shaft member has a hollow hole for coolant.
JP2007246133A 2007-08-24 2007-08-24 Work machine Expired - Fee Related JP4817144B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007246133A JP4817144B2 (en) 2007-08-24 2007-08-24 Work machine
PCT/JP2007/075219 WO2009028120A1 (en) 2007-08-24 2007-12-19 Working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246133A JP4817144B2 (en) 2007-08-24 2007-08-24 Work machine

Publications (2)

Publication Number Publication Date
JP2009050995A JP2009050995A (en) 2009-03-12
JP4817144B2 true JP4817144B2 (en) 2011-11-16

Family

ID=40386863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246133A Expired - Fee Related JP4817144B2 (en) 2007-08-24 2007-08-24 Work machine

Country Status (2)

Country Link
JP (1) JP4817144B2 (en)
WO (1) WO2009028120A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115753B2 (en) * 2009-04-16 2013-01-09 エヌティーエンジニアリング株式会社 Work machine with position correction function
JP5120665B2 (en) * 2009-06-17 2013-01-16 エヌティーエンジニアリング株式会社 Work machine with position correction function

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135365Y2 (en) * 1980-04-30 1986-10-15
JPS6015601Y2 (en) * 1980-12-10 1985-05-16 株式会社大隈鉄工所 Boring tool cutting edge position correction device
JPH1015712A (en) * 1996-07-03 1998-01-20 Komatsu Ltd Device and method for automatic correcting machining hole diameter of atc type boring machining center
JP4590697B2 (en) * 2000-07-24 2010-12-01 豊和工業株式会社 Cutting edge position adjusting method and apparatus

Also Published As

Publication number Publication date
JP2009050995A (en) 2009-03-12
WO2009028120A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4572133B2 (en) Internal processing equipment for hollow workpieces
JP4693480B2 (en) Tool holder
JP4817144B2 (en) Work machine
JP6383626B2 (en) Boring tools
US11633266B2 (en) Holding attachment for denture abutment
JP7019904B2 (en) Method and turning device for machining the rotationally symmetric plane of the workpiece
JP2003211303A (en) Guide bush
WO2007141947A1 (en) Inter-element support mechanism, automatic tool changer with the inter-element support mechanism, conveying device, and actuator
JP2002137132A (en) Tip positioning mechanism of tool
JP4978912B2 (en) Work machine
JP4352896B2 (en) Chuck method and chuck device in lathe
JP7464816B2 (en) Lathe and method for attaching guide member thereto
JP2004142033A (en) Tap holder having axial direction small slide mechanism
JP5121361B2 (en) Internal processing equipment for hollow workpieces
CN109862980B (en) Working machine having position correction function and position correction method for working machine
KR102207808B1 (en) Working machine with position correction function
JP2008173699A (en) Workpiece setting method
JP2008110458A (en) Manufacturing method of end mill having circular arc blade
JP2003145378A (en) Tool holder and run-out correcting tool
JP2011200955A (en) Cutting tool
JP4014290B2 (en) Tapered peripheral cutting tool
JP2748846B2 (en) Cutting tools
JP4126193B2 (en) Valve seat machining tool device
JP2007268642A (en) Automatic changeable cutting tool
JP2998597B2 (en) Cutting method and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170909

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees