JP4815759B2 - Polymer electrolyte composite membrane, production method thereof and use thereof - Google Patents

Polymer electrolyte composite membrane, production method thereof and use thereof Download PDF

Info

Publication number
JP4815759B2
JP4815759B2 JP2004173666A JP2004173666A JP4815759B2 JP 4815759 B2 JP4815759 B2 JP 4815759B2 JP 2004173666 A JP2004173666 A JP 2004173666A JP 2004173666 A JP2004173666 A JP 2004173666A JP 4815759 B2 JP4815759 B2 JP 4815759B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
composite membrane
hydrophilic
hydrophobic
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004173666A
Other languages
Japanese (ja)
Other versions
JP2005038834A (en
Inventor
光紀 野殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004173666A priority Critical patent/JP4815759B2/en
Publication of JP2005038834A publication Critical patent/JP2005038834A/en
Application granted granted Critical
Publication of JP4815759B2 publication Critical patent/JP4815759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、微細孔を有する多孔質基材に、疎水部と親水部からなる高分子電解質が充填された高分子電解質複合層を有する高分子電解質複合膜、その製造方法及びその用途に関する。   The present invention relates to a polymer electrolyte composite membrane having a polymer electrolyte composite layer in which a porous base material having micropores is filled with a polymer electrolyte composed of a hydrophobic portion and a hydrophilic portion, a method for producing the same, and a use thereof.

近年プロトン伝導性の高分子膜を電解質として用いた燃料電池(固体高分子電解質型燃料電池)が盛んに研究されている。固体高分子電解質型燃料電池は、低温で作動し単位面積当たりの出力が高く小型化が可能であるという特徴を有し、車載用電源等の用途に対し有力視され、その基本材料となる高分子電解質膜が種々提案されている。
例えば、高分子電解質を多孔質基材に充填した高分子電解質複合膜が提案されている(特許文献1)。
In recent years, fuel cells (solid polymer electrolyte fuel cells) using proton conductive polymer membranes as electrolytes have been actively studied. Solid polymer electrolyte fuel cells have the characteristics that they operate at a low temperature, have a high output per unit area and can be miniaturized, and are considered to be promising for applications such as in-vehicle power supplies. Various molecular electrolyte membranes have been proposed.
For example, a polymer electrolyte composite membrane in which a porous base material is filled with a polymer electrolyte has been proposed (Patent Document 1).

特開平6−29032号公報JP-A-6-29032

しかしながら、上記の複合膜は、高分子電解質の単身膜に比し機械的強度は改善されているものの、イオン伝導度が十分ではなく、満足な発電性能が得られないといった問題があった。
したがって、本発明の目的は、高い発電性能を示す高分子電解質複合膜、その製造方法およびその用途を提供するものである。
However, although the above-described composite membrane has improved mechanical strength as compared with a single membrane of a polymer electrolyte, there is a problem in that satisfactory ion generation performance cannot be obtained due to insufficient ionic conductivity.
Accordingly, an object of the present invention is to provide a polymer electrolyte composite membrane exhibiting high power generation performance, a method for producing the same, and a use thereof.

本発明者等は、高い発電性能を示す高分子電解質複合膜を見出すべく、高分子電解質について鋭意検討を重ねた結果、高分子電解質として、固体状態において疎水部と親水部の相分離構造を形成し、かつ該相分離構造における疎水性ドメインの大きさと親水性ドメインの大きさの和が、該多孔質基材の微細孔の平均細孔直径以下であるという特定の高分子電解質を用いた高分子電解質複合膜が、高い発電性能を示すことを見出すとともに、さらに種々の検討を加え、本発明を完成した。   As a result of intensive studies on polymer electrolytes in order to find a polymer electrolyte composite membrane exhibiting high power generation performance, the present inventors have formed a phase separation structure of a hydrophobic part and a hydrophilic part in a solid state as a polymer electrolyte. And using a specific polymer electrolyte in which the sum of the size of the hydrophobic domain and the size of the hydrophilic domain in the phase separation structure is equal to or less than the average pore diameter of the micropores of the porous substrate. The molecular electrolyte composite membrane was found to exhibit high power generation performance, and various studies were further made to complete the present invention.

すなわち本発明は、微細孔を有する多孔質基材に、疎水部と親水部からなる高分子電解質が充填された高分子電解質複合層を有する高分子電解質複合膜であって、該高分子電解質が、固体状態において疎水部と親水部の相分離構造を形成し、かつ下式(1)
a+b≦d (1)
(式中、aは相分離構造における疎水性ドメインの大きさ(nm)、bは親水
性ドメインの大きさ(nm)、dは多孔質基材の微細孔の平均細孔直径(nm
)を表す。)
を満たすことを特徴とする分子電解質複合膜を提供するものである。
That is, the present invention provides a polymer electrolyte composite membrane having a polymer electrolyte composite layer in which a porous base material having micropores is filled with a polymer electrolyte composed of a hydrophobic portion and a hydrophilic portion, In the solid state, a phase separation structure of a hydrophobic part and a hydrophilic part is formed, and the following formula (1)
a + b ≦ d (1)
(Wherein, a is the size of the hydrophobic domain in the phase separation structure (nm), b is the size of the hydrophilic domain (nm), and d is the average pore diameter (nm) of the micropores of the porous substrate.
). )
A molecular electrolyte composite membrane characterized by satisfying the above requirements is provided.

また本発明は、微細孔を有する多孔質基材に、疎水部と親水部からなる高分子電解質が充填された高分子電解質複合層を有する高分子電解質複合膜を製造するに当り、高分子電解質として、固体状態において疎水部と親水部の相分離構造を形成し、かつ前記式(1)を満たす高分子電解質を用いることを特徴とする高分子電解質複合膜の製造方法を提供するものである。   The present invention also provides a method for producing a polymer electrolyte composite membrane having a polymer electrolyte composite layer in which a porous base material having micropores is filled with a polymer electrolyte composed of a hydrophobic portion and a hydrophilic portion. The present invention provides a method for producing a polymer electrolyte composite membrane characterized by using a polymer electrolyte that forms a phase-separated structure of a hydrophobic part and a hydrophilic part in a solid state and satisfies the formula (1). .

さらに本発明は、上記の高分子電解質複合膜を用いてなる燃料電池を提供するものである。   Furthermore, the present invention provides a fuel cell using the above polymer electrolyte composite membrane.

本発明によれば、高分子電解質として、固体状態において疎水部と親水部の相分離構造を形成し、かつ該相分離構造における疎水性ドメインの大きさと親水性ドメインの大きさの和が、多孔質基材の微細孔の平均細孔直径以下であるという特定の高分子電解質を用いることにより、高い発電性能を示す高分子電解質複合膜を提供し得る。
また本発明の高分子電解質複合膜は、高い発電性能を示すので、燃料として、水素を使用する燃料電池のみならずメタノール等のアルコールを使用する例えばダイレクトメタノール型燃料電池等の電解質膜として有利である。
According to the present invention, the polymer electrolyte forms a phase separation structure of a hydrophobic part and a hydrophilic part in a solid state, and the sum of the size of the hydrophobic domain and the hydrophilic domain in the phase separation structure is porous. By using a specific polymer electrolyte that is equal to or smaller than the average pore diameter of the fine pores of the porous substrate, a polymer electrolyte composite membrane exhibiting high power generation performance can be provided.
In addition, since the polymer electrolyte composite membrane of the present invention exhibits high power generation performance, it is advantageous not only as a fuel cell using hydrogen as a fuel but also as an electrolyte membrane in, for example, a direct methanol fuel cell using alcohol such as methanol. is there.

以下、本発明を詳細に説明する。
本発明の高分子電解質複合膜は、高分子電解質複合層における高分子電解質が、固体状態において疎水部と親水部の相分離構造を形成し、かつ該相分離構造における疎水性ドメインの大きさa(nm)と親水性ドメインの大きさb(nm)と、該多孔質基材の微細孔の平均細孔直径d(nm)とが前記式(1)を満たすことを特徴とする。
Hereinafter, the present invention will be described in detail.
In the polymer electrolyte composite membrane of the present invention, the polymer electrolyte in the polymer electrolyte composite layer forms a phase separation structure of a hydrophobic part and a hydrophilic part in a solid state, and the size of the hydrophobic domain in the phase separation structure a (Nm), the size b (nm) of the hydrophilic domain, and the average pore diameter d (nm) of the micropores of the porous substrate satisfy the above formula (1).

ここで、上記の疎水性ドメインの大きさa(nm)、親水性ドメインの大きさb(nm)は、例えば、透過型電子顕微鏡、小角X線回折等により測定し得る。 なかでも前者が好ましく用いられ、この場合、具体的には、高分子電解質のみからなる膜の厚み方向に切り出した超薄切片を染色法で常法により、疎水性ドメインと親水性ドメインに染め分け、それぞれのドメインに内包される最大円の直径を、それぞれについて10個所以上測定し、それぞれの平均値を算出する。このようにして、それぞれの大きさ、すなわち疎水性ドメインの大きさa(nm)、親水性ドメインの大きさb(nm)を測定することができる。
また疎水性ドメインの大きさと親水性ドメインの大きさの和であるa+bは、上記のようにして求めた値を代入して算出しても良いし、電解質が、連続した疎水部と親水部の相分離構造を形成している場合には、染め分けた疎水性ドメインと親水性ドメインの両ドメインに内包される最大円の直径を、10個所以上測定し、その平均値を代用しても良い。前者の方法と後者の方法では、異なる値を示す場合もあるが、本発明においては、少なくとも一方の方法で求めた値が前記式(1)を満たせば良い。
なお、高分子電解質のみからなる膜は、複合膜製造時と同じ溶媒、同じ乾燥条件で製造されたものを用いることが好ましい。
疎水性ドメインの大きさと親水性ドメインの大きさの和であるa+bは、通常1〜200nm程度である。好ましくは3〜100nm程度、より好ましくは10〜80nm程度である。
Here, the size a (nm) of the hydrophobic domain and the size b (nm) of the hydrophilic domain can be measured by, for example, a transmission electron microscope or small-angle X-ray diffraction. Among these, the former is preferably used, and in this case, specifically, an ultrathin section cut out in the thickness direction of the membrane composed only of a polymer electrolyte is dyed into a hydrophobic domain and a hydrophilic domain by a conventional method by a staining method, Measure the diameter of the largest circle contained in each domain at 10 or more locations and calculate the average value of each. In this manner, the size, that is, the size a (nm) of the hydrophobic domain and the size b (nm) of the hydrophilic domain can be measured.
Further, a + b, which is the sum of the size of the hydrophobic domain and the size of the hydrophilic domain, may be calculated by substituting the value obtained as described above. When the phase separation structure is formed, the diameter of the maximum circle included in both the dyed hydrophobic domain and the hydrophilic domain may be measured at 10 or more locations, and the average value may be substituted. Although the former method and the latter method may show different values, in the present invention, the value obtained by at least one of the methods should satisfy the formula (1).
In addition, it is preferable to use what was manufactured with the same solvent and the same drying conditions as the film | membrane made from a polymer electrolyte only at the time of composite film manufacture.
A + b, which is the sum of the size of the hydrophobic domain and the size of the hydrophilic domain, is usually about 1 to 200 nm. Preferably it is about 3-100 nm, More preferably, it is about 10-80 nm.

また高分子電解質における親水部としては、ポリマー中のイオン交換基が導入されたセグメントが挙げられ、イオン交換基としては、例えば−SO3H、−COOH、−PO(OH)2、−POH(OH)、−SO2NHSO2−、−Ph(OH)(Phはフェニル基を表す)等の陽イオン交換基や、−NH2、−NHR、−NRR'、−NRR'R''+、−NH3 +等(R:アルキル基、シクロアルキル基、アリール基等を表す)等の陰イオン交換基が挙げられる。これらの基はその一部または全部が対イオンとの塩を形成していても良い。
また高分子電解質における疎水部としては、ポリマー中の上記のようなイオン交換基が導入されていないセグメントが挙げられる。
As the hydrophilic portion of the polymer electrolyte also include segment ion exchange groups in the polymer was introduced, the ion-exchange groups, for example, -SO 3 H, -COOH, -PO ( OH) 2, -POH ( OH), - SO 2 NHSO 2 -, - Ph (OH) (Ph is and cation exchange groups such as a phenyl group), -NH 2, -NHR, -NRR ', - NRR'R''+, Anion exchange groups such as —NH 3 + (R: represents an alkyl group, a cycloalkyl group, an aryl group, etc.) can be mentioned. A part or all of these groups may form a salt with a counter ion.
Examples of the hydrophobic part in the polymer electrolyte include a segment in which an ion exchange group as described above in the polymer is not introduced.

上記のような2種類のセグメントが、高分子電解質中に共存すると、これらが結合した形であっても、混合された形であっても、これらは化学的に異なるセグメント間の相互作用により、通常、ナノメートルのサイズでそれぞれのセグメントからなる領域すなわち疎水部からなる領域である疎水性ドメインと親水部からなる領域である親水性ドメインに相分離する。
本発明においては、これらのドメインはそれぞれ連続した相分離構造であることが好ましく、膜厚方向に平行に連続した相分離構造であることがより好ましい。
When two types of segments as described above coexist in the polymer electrolyte, whether they are combined or mixed, these are caused by the interaction between chemically different segments, Usually, the phase is separated into a hydrophobic domain, which is a region consisting of each segment, ie, a region consisting of a hydrophobic portion, and a hydrophilic domain, which is a region consisting of a hydrophilic portion, in a nanometer size.
In the present invention, these domains each preferably have a continuous phase separation structure, and more preferably have a phase separation structure continuous in parallel with the film thickness direction.

かかる相分離構造を形成する高分子電解質の代表例としては、例えば(A)主鎖が脂肪族炭化水素からなる高分子であり、スルホン酸基および/またはホスホン酸基が導入された形の高分子電解質;(B)主鎖の一部または全部の水素原子がフッ素で置換された脂肪族炭化水素からなる高分子であり、スルホン酸基および/またはホスホン酸基が導入された形の高分子電解質;(C)主鎖が芳香環を有する高分子であり、スルホン酸基および/またはホスホン酸基が導入された形の高分子電解質;(D)主鎖に実質的に炭素原子を含まないポリシロキサン、ポリホスファゼンなどの高分子であり、スルホン酸基および/またはホスホン酸基が導入された形の高分子電解質;(E)(A)〜(D)のスルホン酸基および/またはホスホン酸基導入前の高分子を構成する繰り返し単位から選ばれるいずれか2種以上の繰り返し単位からなる共重合体であり、スルホン酸基および/またはホスホン酸基が導入された形の高分子電解質;(F)主鎖あるいは側鎖に窒素原子を含み、硫酸やリン酸等の酸性化合物がイオン結合により導入された形の高分子電解質等が挙げられる。
上記(A)の高分子電解質としては、例えば、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリ(α−メチルスチレン)スルホン酸等が挙げられる。
As a typical example of a polymer electrolyte that forms such a phase separation structure, for example, (A) a polymer having a main chain made of an aliphatic hydrocarbon and having a sulfonic acid group and / or a phosphonic acid group introduced therein is used. (B) a polymer composed of an aliphatic hydrocarbon in which some or all of the hydrogen atoms in the main chain are substituted with fluorine, and a polymer in which a sulfonic acid group and / or a phosphonic acid group are introduced (C) a polymer electrolyte in which the main chain has an aromatic ring and a sulfonic acid group and / or phosphonic acid group is introduced; (D) the main chain does not substantially contain a carbon atom. A polymer electrolyte such as polysiloxane and polyphosphazene, into which a sulfonic acid group and / or phosphonic acid group is introduced; (E) the sulfonic acid group and / or phosphonic acid of (A) to (D); Basic A copolymer comprising any two or more repeating units selected from repeating units constituting the preceding polymer, and having a sulfonic acid group and / or phosphonic acid group introduced therein; (F) Examples thereof include a polymer electrolyte having a nitrogen atom in the main chain or side chain and an acidic compound such as sulfuric acid or phosphoric acid introduced by ionic bonding.
Examples of the polymer electrolyte (A) include polyvinyl sulfonic acid, polystyrene sulfonic acid, poly (α-methylstyrene) sulfonic acid, and the like.

また上記(B)の高分子電解質としては、Nafion(デュポン社の登録商標、以下同様)に代表される側鎖にパーフルオロアルキルスルホン酸を有し、主鎖がパーフルオロアルカンである高分子、炭化フッ素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた主鎖と、スルホン酸基を有する炭化水素系側鎖とから構成されるスルホン酸型ポリスチレン−グラフト−エチレン−テトラフルオロエチレン共重合体(ETFE、例えば特開平9−102322号公報)や、炭化フッ素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた膜に、α,β,β-トリフルオロスチレンをグラフト重合させ、これにスルホン酸基を導入して固体高分子電解質膜とした、スルホン酸型ポリ(トリフルオロスチレン)−グラフト−ETFE膜(例えば、米国特許第4,012,303号及び米国特許第4,605,685号)等が挙げられる。   In addition, as the polymer electrolyte of the above (B), a polymer having a perfluoroalkylsulfonic acid in a side chain represented by Nafion (registered trademark of DuPont, the same applies hereinafter) and a main chain being a perfluoroalkane, A sulfonic acid type polystyrene-graft-ethylene-tetrafluoroethylene copolymer composed of a main chain made by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer and a hydrocarbon side chain having a sulfonic acid group Α, β, β-trifluorostyrene is graft-polymerized on a film made by copolymerization (ETFE, for example, JP-A-9-102322) or copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, A sulfonic acid type poly (trifluorostyrene) -graph obtained by introducing a sulfonic acid group into a solid polymer electrolyte membrane -ETFE film (e.g., U.S. Patent No. 4,012,303 and U.S. Pat. No. 4,605,685), and the like.

上記(C)の高分子電解質としては、主鎖が酸素原子等のヘテロ原子で中断されているものであってもよく、例えば、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリ(アリーレンエーテル)、ポリイミド、ポリ((4-フェノキシベンゾイル)-1,4-フェニレン)、ポリフェニレンスルフィド、ポリフェニルキノキサレン等の単独重合体のそれぞれにスルホン酸基が導入されたもの、スルホアリール化ポリベンズイミダゾール、スルホアルキル化ポリベンズイミダゾール、ホスホアルキル化ポリベンズイミダゾール(例えば、特開平9−110982)、ホスホン化ポリ(フェニレンエーテル)(例えば、J. Appl. Polym. Sci., 18, 1969 (1974) )等が挙げられる。   The polymer electrolyte (C) may be one in which the main chain is interrupted by a hetero atom such as an oxygen atom. For example, polyether ether ketone, polysulfone, polyether sulfone, poly (arylene ether) , Polyimide, poly ((4-phenoxybenzoyl) -1,4-phenylene), polyphenylene sulfide, polyphenylquinoxalen, and other homopolymers each having a sulfonic acid group introduced therein, sulfoarylated polybenzimidazole , Sulfoalkylated polybenzimidazole, phosphoalkylated polybenzimidazole (for example, JP-A-9-110882), phosphonated poly (phenylene ether) (for example, J. Appl. Polym. Sci., 18, 1969 (1974)) Etc.

また上記(D)の高分子電解質としては例えば、ポリホスファゼンにスルホン酸基が導入されたもの、Polymer Prep., 41, No.1, 70 (2000) に記載の、ホスホン酸基を有するポリシロキサン等が挙げられる。
上記(E)の高分子電解質としては、ランダム共重合体にスルホン酸基および/またはホスホン酸基が導入されたものでも、交互共重合体にスルホン酸基および/またはホスホン酸基が導入されたものでも、ブロック共重合体にスルホン酸基および/またはホスホン酸基が導入されたものでもよい。ランダム共重合体にスルホン酸基が導入されたものとしては、例えば、スルホン化ポリエーテルスルホン-ジヒドロキシビフェニル共重合体が挙げられる(例えば、特開平11−116679号公報。)
Examples of the polymer electrolyte (D) include polysiloxanes having phosphonic acid groups described in Polymer Prep., 41, No. 1, 70 (2000), in which sulfonic acid groups are introduced into polyphosphazene. Etc.
As the polymer electrolyte of (E), a sulfonic acid group and / or a phosphonic acid group are introduced into a random copolymer, but a sulfonic acid group and / or a phosphonic acid group are introduced into an alternating copolymer. The sulfonic acid group and / or the phosphonic acid group may be introduced into the block copolymer. Examples of the sulfonic acid group introduced into the random copolymer include a sulfonated polyethersulfone-dihydroxybiphenyl copolymer (for example, JP-A-11-116679).

また上記(F)の高分子電解質としては例えば、特表平11−503262号公報に記載の、リン酸を含有せしめたポリベンズイミダゾール等が挙げられる。
上記(E)の高分子電解質に含まれるブロック共重合体において、スルホン酸基および/またはホスホン酸基を持つブロックの具体例としては、例えば特開2001−250567号公報に記載のスルホン酸基および/またはホスホン酸基を持つブロックが挙げられる。
本発明における高分子電解質は、ブロック共重合体、グラフト共重合体であることが好ましく、なかでも上記(C)のような主鎖が芳香環を有する高分子が良く、とりわけスルホン酸基および/またはホスホン酸基が導入された形の高分子が好ましく用いられる。
本発明に使用される高分子電解質の重量平均分子量は、通常1000〜1000000程度であり、イオン交換基当量重量は、通常500〜5000g/モル程度である。
また通常の高分子に使用される可塑剤、安定剤、離型剤等の添加剤を本発明の目的に反しない範囲内で含有できる。例えば、ホスホン酸基を含有したポリマー(特開2003−282096)等は、高分子電解質と相溶し、溶出し難いので、安定剤として好ましく使用し得る。
Examples of the polymer electrolyte (F) include polybenzimidazole containing phosphoric acid described in JP-T-11-503262.
In the block copolymer contained in the polymer electrolyte of the above (E), specific examples of the block having a sulfonic acid group and / or a phosphonic acid group include, for example, a sulfonic acid group described in JP-A-2001-250567 and And / or a block having a phosphonic acid group.
The polyelectrolyte in the present invention is preferably a block copolymer or a graft copolymer, and in particular, a polymer having an aromatic ring in the main chain as in the above (C) is preferable, and in particular, a sulfonic acid group and / or Alternatively, a polymer having a phosphonic acid group introduced is preferably used.
The weight average molecular weight of the polymer electrolyte used in the present invention is usually about 1,000 to 1,000,000, and the ion exchange group equivalent weight is usually about 500 to 5,000 g / mol.
Further, additives such as plasticizers, stabilizers, mold release agents and the like used for ordinary polymers can be contained within a range not contrary to the object of the present invention. For example, a polymer containing a phosphonic acid group (Japanese Patent Laid-Open No. 2003-282096) or the like is compatible with a polymer electrolyte and hardly eluted, and thus can be preferably used as a stabilizer.

本発明においては、上記のような高分子電解質が用いられるが、多孔質基材と組合わせるに当っては、その微細孔の平均細孔直径d(nm)との関係式である前記式(1)を満たすものが選定される。
ここで、多孔質基材の微細孔の平均細孔直径d(nm)としては、バブルポイント法(ASTM F316−86)により求めた値が好ましく用いられる。
平均細孔直径dは、通常1〜1,000,000nm程度、好ましくは30〜10,000nm程度、より好ましくは50〜1,000nm程度である。
In the present invention, the polymer electrolyte as described above is used. In combination with the porous base material, the above formula (which is a relational expression with the average pore diameter d (nm) of the micropores ( Those satisfying 1) are selected.
Here, as the average pore diameter d (nm) of the fine pores of the porous substrate, a value obtained by the bubble point method (ASTM F316-86) is preferably used.
The average pore diameter d is usually about 1 to 1,000,000 nm, preferably about 30 to 10,000 nm, more preferably about 50 to 1,000 nm.

本発明で使用される微細孔を有する多孔質基材は、高分子電解質を充填するための基材となるものであり、高分子電解質膜の強度や柔軟性、耐久性のさらなる向上のために使用される。そのため、上記使用目的を満たす多孔質状のものであれば良く、例えば多孔質膜、織布、不織布、フィブリル等が挙げられ、その形状や材質によらず用いることができる。
また耐熱性の観点や、物理的強度の補強効果を鑑みれば、脂肪族系、芳香族系高分子または、含フッ素高分子が好ましい。
The porous substrate having micropores used in the present invention is a substrate for filling the polymer electrolyte, and for further improving the strength, flexibility, and durability of the polymer electrolyte membrane. used. Therefore, any porous material that satisfies the above purpose of use may be used, and examples thereof include porous membranes, woven fabrics, non-woven fabrics, and fibrils, and they can be used regardless of their shapes and materials.
From the viewpoint of heat resistance and the effect of reinforcing physical strength, aliphatic, aromatic, or fluorine-containing polymers are preferred.

ここで、脂肪族系高分子としてはポリエチレン、ポリプロピレン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体等が挙げられるが、これらに限定されるものではない。なおここで言うポリエチレンとはポリエチレンの結晶構造を有するエチレン系のポリマーの総称であり、例えばエチレンと他のモノマーとの共重合体をも含み、具体的には直鎖状低密度ポリエチレン(LLDPE)と称されるエチレン、α−オレフィンとの共重合体や超高分子量ポリエチレンなどを含む。またここでいうポリプロピレンはポリプロピレンの結晶構造を有するプロピレン系のポリマーの総称であり、一般に使用されているプロピレン系ブロック共重合体、ランダム共重合体など(これらはエチレンや1−ブテンなどとの共重合体である)を含むものである   Examples of the aliphatic polymer include, but are not limited to, polyethylene, polypropylene, polyvinyl alcohol, and ethylene-vinyl alcohol copolymer. In addition, polyethylene here is a general term for ethylene-based polymers having a polyethylene crystal structure, and includes, for example, a copolymer of ethylene and other monomers. Specifically, linear low-density polyethylene (LLDPE) And copolymers of ethylene and α-olefin, ultrahigh molecular weight polyethylene, and the like. Polypropylene here is a general term for propylene-based polymers having a polypropylene crystal structure, such as commonly used propylene-based block copolymers and random copolymers (these are copolymers with ethylene, 1-butene, etc.). Is a polymer)

芳香族系高分子としては、例えばポリエステル、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリスルホン等が挙げられる。
また、含フッ素高分子としては、例えば分子内に炭素−フッ素結合を少なくとも1個有する熱可塑性樹脂が挙げられる。通常は、脂肪族系高分子の水素原子のすべてまたは大部分がフッ素原子によって置換された構造のものが好適に使用される。
その具体例としては、例えばポリトリフルオロエチレン、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリ(テトラフルオロエチレン−ヘキサフルオロプロピレン)、ポリ(テトラフルオロエチレン−ペルフルオロアルキルエーテル)、ポリフッ化ビニリデン等が挙げられるが、これらに限定されるものではない。なかでもポリテトラフルオロエチレン、ポリ(テトラフルオロエチレン−ヘキサフルオロプロピレン)が好ましく、特にポリテトラフルオロエチレンが好ましい。また、これらのフッ素系樹脂は、機械的強度の良好さから平均分子量が10万以上のものが好ましい。
Examples of the aromatic polymer include polyester, polyethylene terephthalate, polycarbonate, polyimide, polysulfone, and the like.
Examples of the fluorine-containing polymer include thermoplastic resins having at least one carbon-fluorine bond in the molecule. Usually, those having a structure in which all or most of the hydrogen atoms of the aliphatic polymer are substituted with fluorine atoms are preferably used.
Specific examples thereof include polytrifluoroethylene, polytetrafluoroethylene, polychlorotrifluoroethylene, poly (tetrafluoroethylene-hexafluoropropylene), poly (tetrafluoroethylene-perfluoroalkyl ether), and polyvinylidene fluoride. Although it is mentioned, it is not limited to these. Of these, polytetrafluoroethylene and poly (tetrafluoroethylene-hexafluoropropylene) are preferable, and polytetrafluoroethylene is particularly preferable. In addition, these fluororesins preferably have an average molecular weight of 100,000 or more because of good mechanical strength.

かかる多孔質基材を固体高分子電解質型燃料電池の隔膜として使用する場合、その膜厚は、通常1〜100μm、好ましくは3〜30μm、さらに好ましくは5〜20μmであり、空隙率は通常20〜98%、好ましくは40〜95%である。
多孔質基材の膜厚が薄すぎると複合化後の強度補強の効果あるいは、柔軟性や耐久性を付与するといった補強効果が不十分となり、ガス漏れ(クロスリーク)が発生しやすくなる。また膜厚が厚すぎると電気抵抗が高くなり、得られた複合膜が固体高分子型燃料電池の隔膜として不十分なものとなる。空隙率が小さすぎると固体電解質膜としての抵抗が大きくなり、大きすぎると一般に多孔質基材自体の強度が弱くなり補強効果が低減する。
When such a porous substrate is used as a diaphragm of a solid polymer electrolyte fuel cell, the film thickness is usually 1 to 100 μm, preferably 3 to 30 μm, more preferably 5 to 20 μm, and the porosity is usually 20 -98%, preferably 40-95%.
If the thickness of the porous substrate is too thin, the effect of reinforcing the strength after compounding or the reinforcing effect of imparting flexibility and durability is insufficient, and gas leakage (cross leak) is likely to occur. On the other hand, if the film thickness is too thick, the electric resistance becomes high, and the obtained composite film becomes insufficient as a diaphragm of the polymer electrolyte fuel cell. If the porosity is too small, the resistance as a solid electrolyte membrane is increased. If it is too large, the strength of the porous substrate itself is generally weakened and the reinforcing effect is reduced.

次に、高分子電解質複合膜の製造方法について説明する。
本発明の製造方法は、前記式(1)を満たす高分子電解質と多孔質基材とを用いる点に大きな特徴をし、高分子電解質と多孔質基材との複合化方法には、特に制限は無い。
複合化方法としては、例えば高分子電解質を溶液にし、この溶液中に多孔膜を含浸し、多孔膜を取り出した後に溶媒を乾燥させて複合膜を得る方法や、この溶液を多孔膜に塗布し、溶媒を乾燥させて複合膜を得る方法、多孔膜に減圧下でこの溶液を接触させ、その後常圧に戻す事で溶液を多孔膜空孔内に含浸させ、溶媒を乾燥させて複合膜を得る方法等が挙げられる。
Next, a method for producing a polymer electrolyte composite membrane will be described.
The production method of the present invention is greatly characterized in that a polymer electrolyte satisfying the above formula (1) and a porous substrate are used, and the method of combining the polymer electrolyte and the porous substrate is particularly limited. There is no.
As a composite method, for example, a polymer electrolyte is made into a solution, a porous membrane is impregnated in this solution, and after removing the porous membrane, a solvent is dried to obtain a composite membrane, or this solution is applied to the porous membrane. , A method of drying the solvent to obtain a composite membrane, contacting the porous membrane with this solution under reduced pressure, then impregnating the solution into the pores of the porous membrane by returning to normal pressure, and drying the solvent to form the composite membrane The method of obtaining etc. are mentioned.

ここで、高分子電解質の溶液を製造する溶媒としては、高分子電解質を溶解可能であり、その後に除去し得るものであるならば特に制限はなく、例えばN,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶媒、メタノール、エタノール、プロパノール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルなどが好適に用いられる。これらは単独で用いることもできるが、必要に応じて2種以上の溶媒を混合して用いることもできる。中でも、ジメチルアセトアミド、ジクロロメタン・メタノール混合溶媒、ジメチルホルムアミド、ジメチルスルホキシドが溶解性が高く好ましい。   Here, the solvent for producing the polyelectrolyte solution is not particularly limited as long as it can dissolve the polyelectrolyte and can be removed thereafter. For example, N, N-dimethylformamide (DMF), Aprotic polar solvents such as N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, etc. Chlorinated solvents, alcohols such as methanol, ethanol and propanol, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Such as is preferably used. These can be used singly, but two or more solvents can be mixed and used as necessary. Among them, dimethylacetamide, dichloromethane / methanol mixed solvent, dimethylformamide, and dimethylsulfoxide are preferable because of high solubility.

また本発明の高分子電解質複合膜は、多層構造であっても良く、例えば(複合層/電解質層)、(電解質層/複合層/電解質層)や、これら上記層構成を重ね合わせた(電解質層/複合層/電解質層/複合層/電解質層)等も好適な態様である。   Further, the polymer electrolyte composite membrane of the present invention may have a multilayer structure, for example, (composite layer / electrolyte layer), (electrolyte layer / composite layer / electrolyte layer), and these layer configurations superimposed (electrolyte) Layer / composite layer / electrolyte layer / composite layer / electrolyte layer) is also a suitable embodiment.

次に本発明の高分子電解質複合膜を用いた燃料電池について説明する。
燃料電池は、互いに対抗して配設されたガス拡散電極のアノード及びカソードと、両電極に接触しながらその間に介在し、イオンを選択的に通過させる高分子電解質膜からなる膜電極接合体によって構成される単位電池を、ガス流通手段を設けたセパレーターを介して交互に複数個積層され構成されている。この燃料電池において、水素、改質ガス、メタノール等の燃料がアノードに、酸素などの酸化剤がカソードに供給されることによって起こる電気化学反応を利用して、すなわち燃料が電気触媒的に酸化されると同時に酸化剤が電気触媒的に還元されて化学反応エネルギーが直接電気エネルギーに変換されることによって発電されるものである。
Next, a fuel cell using the polymer electrolyte composite membrane of the present invention will be described.
A fuel cell is composed of an anode and a cathode of a gas diffusion electrode disposed in opposition to each other, and a membrane electrode assembly comprising a polymer electrolyte membrane that is interposed between and in contact with both electrodes, and selectively allows ions to pass through. A plurality of unit cells to be configured are alternately stacked via a separator provided with a gas flow means. In this fuel cell, a fuel such as hydrogen, reformed gas or methanol is supplied to the anode, and an electrochemical reaction that occurs when an oxidant such as oxygen is supplied to the cathode, that is, the fuel is oxidized electrocatalytically. At the same time, the oxidizing agent is electrocatalytically reduced, and chemical reaction energy is directly converted into electric energy to generate electricity.

ここで、触媒としては、水素または酸素との酸化還元反応を活性化できるものであれば特に制限はなく、公知のものを用いることができるが、白金の微粒子を用いることが好ましい。白金の微粒子はしばしば活性炭や黒鉛などの粒子状または繊維状のカーボンに担持されたものが好ましく用いられる。
集電体としての導電性物質に関しても公知の材料を用いることができるが、多孔質性のカーボン織布またはカーボンペーパーが、原料ガスを触媒へ効率的に輸送するために好ましい。
多孔質性のカーボン織布またはカーボンペーパーに白金微粒子または白金微粒子を担持したカーボンを接合させる方法、およびそれを高分子電解質シートと接合させる方法については、例えば、J. Electrochem. Soc.: Electrochemical Science and Technology, 1988, 135(9), 2209 に記載されている方法等の公知の方法を用いることができる。
Here, the catalyst is not particularly limited as long as it can activate the oxidation-reduction reaction with hydrogen or oxygen, and a known catalyst can be used, but platinum fine particles are preferably used. The platinum fine particles are often preferably those supported on particulate or fibrous carbon such as activated carbon or graphite.
A known material can also be used for the conductive material as the current collector, but porous carbon woven fabric or carbon paper is preferable in order to efficiently transport the raw material gas to the catalyst.
For a method of bonding platinum fine particles or carbon carrying platinum fine particles to a porous carbon woven fabric or carbon paper, and a method of bonding it to a polymer electrolyte sheet, see, for example, J. Org. Electrochem. Soc. : Known methods such as those described in Electrochemical Science and Technology, 1988, 135 (9), 2209 can be used.

以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

<多孔質基材>
特開平2002−309024に準じて製造した下記のポリエチレン製多孔質膜を用いた。平均細孔直径は、バブルポイント法 ASTM F316−86で求めた値を示した。
ポリエチレン製多孔質膜A:平均細孔直径d=60nm
ポリエチレン製多孔質膜B:平均細孔直径d=40nm
<Porous substrate>
The following polyethylene porous membrane produced according to JP-A-2002-309024 was used. The average pore diameter is a value determined by the bubble point method ASTM F316-86.
Polyethylene porous membrane A: average pore diameter d = 60 nm
Polyethylene porous membrane B: average pore diameter d = 40 nm

<高分子電解質複合膜の評価>
高分子電解質複合膜の両面に、繊維状のカーボンに担持された白金触媒と集電体としての多孔質性のカーボン織布を接合した。該ユニットの一面に加湿酸素ガス、他面に加湿水素ガスを流し発電特性を測定した。
<Evaluation of polymer electrolyte composite membrane>
A platinum catalyst supported on fibrous carbon and a porous carbon woven fabric as a current collector were joined to both surfaces of the polymer electrolyte composite membrane. Power generation characteristics were measured by flowing humidified oxygen gas on one surface of the unit and humidified hydrogen gas on the other surface.

参考例1(高分子電解質の製造例)
4,4’ジヒドロキシビフェニル(DOD) 167.59g(900mmol)とベンゾフェノン600gを加熱攪拌溶解させた後、炭酸カリウムを132.68g(960mmol)、トルエン180mlを加えて加熱し共沸脱水後、180℃でm−ジブロモベンゼン200.52g(850mmol)を添加し、続いて臭化銅(I)0.43g(3mmol)を加え、200℃、6時間保温攪拌した。反応液を冷却し、塩酸/メタノール/アセトンの重量比を(2/70/30)とした溶液中に注ぎ、析出したポリマーを濾過し、水洗、メタノール洗浄後減圧乾燥し、ポリマーa1を製造した。
続いてスミカエクセルPES5003P(住友化学工業製、水酸基末端ポリエーテルスルホン)144gと上記のポリマーa1 48gをDMAcに溶解し、続いて炭酸カリウム4.84gとデカフルオロビフェニル9.52gを加え80℃で4h攪拌した。冷却し、希塩酸に反応混合物を注いでポリマーを沈殿させた。水、メタノールで洗浄しブロック共重合体a2を得た。次いでこのa2を濃硫酸でスルホン化することにより、下記スルホン化ブロック共重合体Aを得た。
Reference Example 1 (Polymer electrolyte production example)
167.59 g (900 mmol) of 4,4′dihydroxybiphenyl (DOD) and 600 g of benzophenone were dissolved with heating and stirring, and then 132.68 g (960 mmol) of potassium carbonate and 180 ml of toluene were added and heated to azeotropic dehydration, followed by 180 ° C. Then, m-dibromobenzene (20.52 g, 850 mmol) was added, followed by addition of copper (I) bromide (0.43 g, 3 mmol), and the mixture was stirred at 200 ° C. for 6 hours. The reaction solution was cooled and poured into a solution in which the weight ratio of hydrochloric acid / methanol / acetone was (2/70/30), and the precipitated polymer was filtered, washed with water, washed with methanol, and dried under reduced pressure to produce polymer a1. .
Subsequently, 144 g of SUMIKAEXCEL PES5003P (manufactured by Sumitomo Chemical Co., Ltd., hydroxyl-terminated polyethersulfone) and 48 g of the above polymer a1 were dissolved in DMAc, followed by the addition of 4.84 g of potassium carbonate and 9.52 g of decafluorobiphenyl at 80 ° C. for 4 hours. Stir. Cooled and poured the reaction mixture into dilute hydrochloric acid to precipitate the polymer. The block copolymer a2 was obtained by washing with water and methanol. Next, this a2 was sulfonated with concentrated sulfuric acid to obtain the following sulfonated block copolymer A.

Figure 0004815759
このスルホン化ブロック共重合体Aのイオン交換容量は1.4meq/gであった。
このものは、1H-NMR測定により、a1由来部のみがスルホン化され親水部となり、PES5003P由来部は疎水部となっていることが確認された。
Figure 0004815759
The ion exchange capacity of this sulfonated block copolymer A was 1.4 meq / g.
It was confirmed by 1H-NMR measurement that only the a1-derived part was sulfonated to become a hydrophilic part, and the PES5003P-derived part was a hydrophobic part.

このスルホン化ブロック共重合体Aを用い、DMAcに25wt%の濃度に溶解した高分子電解質溶液を調製し、ガラス板上にキャスト後、80℃で常圧乾燥させた。得られた高分子電解質膜(1)を透過型電子顕微鏡で測定した結果、疎水性ドメインと親水性ドメインの大きさの和a+bは50nmであった。   Using this sulfonated block copolymer A, a polymer electrolyte solution dissolved in DMAc at a concentration of 25 wt% was prepared, cast on a glass plate, and dried at 80 ° C. under normal pressure. As a result of measuring the obtained polymer electrolyte membrane (1) with a transmission electron microscope, the sum a + b of the sizes of the hydrophobic domain and the hydrophilic domain was 50 nm.

参考例2 (高分子電解質の製造例)
(ポリエーテルスルホン類(b1)の合成)
窒素雰囲気下で水酸基末端のポリエーテルスルホン(住友化学工業社製スミカエクセルPES4003P)1500gを4000mlのDMAcに溶解させた。さらに炭酸カリウム13g、トルエン600mlを加え加熱撹拌してトルエンと水の共沸条件下にて脱水後、トルエンを蒸留除去した。室温まで放冷後デカフルオロビフェニル123.2gを加えて100℃まで徐々に加熱しながら反応を行った。その後、反応液をメタノールに投入して重合体を析出させて、ろ過、乾燥を行い、ポリエーテルスルホン類(b1)を得た。このポリエーテルスルホン類(b1)は、末端にノナフルオロビフェニルオキシ基が置換したポリエーテルスルホンである。
Reference Example 2 (Polymer electrolyte production example)
(Synthesis of polyethersulfone (b1))
Under a nitrogen atmosphere, 1500 g of hydroxyl group-terminated polyethersulfone (Sumitomo Chemical PES4003P manufactured by Sumitomo Chemical Co., Ltd.) was dissolved in 4000 ml of DMAc. Further, 13 g of potassium carbonate and 600 ml of toluene were added and heated and stirred. After dehydration under the azeotropic conditions of toluene and water, toluene was distilled off. After allowing to cool to room temperature, 123.2 g of decafluorobiphenyl was added and the reaction was carried out while gradually heating to 100 ° C. Then, the reaction liquid was thrown into methanol, the polymer was deposited, it filtered and dried, and polyether sulfones (b1) were obtained. This polyethersulfone (b1) is a polyethersulfone having a terminal substituted with a nonafluorobiphenyloxy group.

(ブロック共重合体Bの合成)
窒素雰囲気下でヒドロキノンスルホン酸カリウム96.8g(0.424mol)、4、4’−ジフロオロジフェニルスルホン−3,3’−ジスルホン酸カリウム202.9g(0.414mol)および炭酸カリウム61.6g(0.445mol)を2600mlのDMSOに溶解させた。その後トルエン500mlを加え加熱撹拌してトルエンと水の共沸条件下にて脱水後、トルエンを蒸留除去した。170℃にて7時間加熱撹拌しその後室温まで放冷しポリマー(b2)を得た。これに上記ポリエーテルスルホン類(b1)を350g加え、140℃まで徐々に加熱しながら反応を行った。その後、反応液をメタノールに投入して重合体を析出させて、ろ過、95℃で約5倍量の熱水で2回洗浄後、乾燥を行い、下記スルホン化ブロック共重合体Bを得た。

Figure 0004815759
(Synthesis of block copolymer B)
Under a nitrogen atmosphere, 96.8 g (0.424 mol) of potassium hydroquinonesulfonate, 202.9 g (0.414 mol) of potassium 4,4′-difluorophenylsulfone-3,3′-disulfonate and 61.6 g (0.445 of potassium carbonate) mol) was dissolved in 2600 ml DMSO. Thereafter, 500 ml of toluene was added, heated and stirred, dehydrated under the azeotropic conditions of toluene and water, and toluene was distilled off. The mixture was heated and stirred at 170 ° C. for 7 hours and then allowed to cool to room temperature to obtain polymer (b2). To this was added 350 g of the polyethersulfone (b1), and the reaction was conducted while gradually heating to 140 ° C. Thereafter, the reaction solution was poured into methanol to precipitate a polymer, filtered, washed twice with about 5 times the amount of hot water at 95 ° C., and then dried to obtain the following sulfonated block copolymer B. .
Figure 0004815759

スルホン化ブロック共重合体BのGPCによるポリスチレン換算分子量はMn=72000、Mw=390000、イオン交換容量は1.43meq/gであった。このものは、1H-NMR測定により、スルホン化されているポリマー(b2)由来部が親水部となり、ポリエーテルスルホン類(b1)由来部は疎水部となっているブロック共重合体であることが確認された。
このスルホン化ブロック共重合体Bを用い、NMPに25.5wt%の濃度に溶解した高分子電解質溶液を調製し、ガラス板上にキャスト後、80℃で常圧乾燥させた。得られた高分子電解質膜(2)を透過型電子顕微鏡で測定した結果、疎水性ドメインと親水性ドメインの和a+bは19nmであった。
The polystyrene-equivalent molecular weight of the sulfonated block copolymer B by GPC was Mn = 72000, Mw = 390000, and the ion exchange capacity was 1.43 meq / g. According to 1H-NMR measurement, this is a block copolymer in which the sulfonated polymer (b2) -derived part is a hydrophilic part and the polyethersulfone (b1) -derived part is a hydrophobic part. confirmed.
Using this sulfonated block copolymer B, a polymer electrolyte solution dissolved in NMP at a concentration of 25.5 wt% was prepared, cast on a glass plate, and dried at 80 ° C. under normal pressure. As a result of measuring the obtained polymer electrolyte membrane (2) with a transmission electron microscope, the sum a + b of the hydrophobic domain and the hydrophilic domain was 19 nm.

参考例3 (高分子電解質の製造例)
参考例2で得たスルホン化ブロック共重合体Bと下記により合成したホスホン酸基含有ポリマーとの90:10重量比混合物を用い、NMPに27wt%の濃度に溶解した高分子電解質溶液を調製し、ガラス板上にキャスト後、80℃で常圧乾燥させた。得られた高分子電解質膜(3)を透過型電子顕微鏡で測定した結果、疎水性ドメインと親水性ドメインの和a+bは19nmであった。
(安定化添化剤 ホスホン酸基含有ポリマーの合成)
特開平10-021943記載の方法に準拠し、溶媒としてのジフェニルスルホン、炭酸カリウムの存在下、4,4’−ジヒドロキシジフェニルスルホンと4,4’−ジヒドロキシビフェニルと4,4’−ジクロロジフェニルスルホンを7:3:10のモル比にて反応させることにより、下記のランダム共重合体を調整した。

Figure 0004815759
次いで、特開2003−282096に記載の方法に準拠しこの共重合体をブロモ化、ホスホン酸エステル化、加水分解することにより、4,4’−ビフェノール由来のユニット1つに対してBrが約0.1個、ホスホン酸基が約1.7個置換された下記ホスホン酸基含有ポリマーを得た。
Figure 0004815759
Reference Example 3 (Production example of polymer electrolyte)
Using a 90:10 weight ratio mixture of the sulfonated block copolymer B obtained in Reference Example 2 and the phosphonic acid group-containing polymer synthesized below, a polymer electrolyte solution dissolved in NMP at a concentration of 27 wt% was prepared. After being cast on a glass plate, it was dried at 80 ° C. under normal pressure. As a result of measuring the obtained polymer electrolyte membrane (3) with a transmission electron microscope, the sum a + b of the hydrophobic domain and the hydrophilic domain was 19 nm.
(Synthesis of stabilizing additive phosphonic acid group-containing polymer)
In accordance with the method described in JP-A-10-021943, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxybiphenyl and 4,4′-dichlorodiphenylsulfone are used in the presence of diphenylsulfone and potassium carbonate as a solvent. The following random copolymer was prepared by reacting at a molar ratio of 7: 3: 10.
Figure 0004815759
Next, this copolymer is brominated, phosphonated, and hydrolyzed according to the method described in JP-A-2003-282096, whereby Br is reduced to about 4,4′-biphenol-derived unit. The following phosphonic acid group-containing polymer substituted with 0.1 and about 1.7 phosphonic acid groups was obtained.
Figure 0004815759

実施例1〜3
ポリエチレン製多孔質膜Aをガラス板上に固定し、該多孔質膜上に参考例1〜3と同様に調製した高分子電解質溶液を滴下した。ワイヤーコーターを用いて高分子電解質溶液を多孔質膜上に均一に塗り広げ、0.3mmクリアランスのバーコーターを用いて塗工厚みをコントロールし、80℃で常圧乾燥した。その後1mol/Lの塩酸に浸漬し、さらにイオン交換水で洗浄することによって高分子電解質複合膜を得た。
このものについて、燃料電池特性評価を行い、結果を表1に示した。
Examples 1-3
A polyethylene porous membrane A was fixed on a glass plate, and a polymer electrolyte solution prepared in the same manner as in Reference Examples 1 to 3 was dropped onto the porous membrane. The polymer electrolyte solution was uniformly spread on the porous membrane using a wire coater, the coating thickness was controlled using a bar coater having a clearance of 0.3 mm, and the coating was dried at 80 ° C. under normal pressure. Thereafter, it was immersed in 1 mol / L hydrochloric acid and further washed with ion exchange water to obtain a polymer electrolyte composite membrane.
About this thing, the fuel cell characteristic evaluation was performed and the result was shown in Table 1.

比較例1
ポリエチレン製多孔質膜Bを用いる以外は、実施例1に準拠して実施することによって高分子電解質複合膜を得た。このものについて、燃料電池特性評価を行い、結果を表1に示した。
Comparative Example 1
A polymer electrolyte composite membrane was obtained by carrying out according to Example 1 except that the polyethylene porous membrane B was used. About this thing, the fuel cell characteristic evaluation was performed and the result was shown in Table 1.

[表1]
電圧E(V) 0.8 0.6 0.4 0.2
電流値I(A/cm 2 )
実施例1 0.08 0.40 0.98 1.28
実施例2 0.20 0.89 1.40 1.70
実施例3 0.17 0.17 1.10 1.40
比較例1 0.06 0.10 0.21 0.35
[Table 1]
Voltage E (V) 0.8 0.6 0.4 0.2
Current value I (A / cm 2 )
Example 1 0.08 0.40 0.98 1.28
Example 2 0.20 0.89 1.40 1.70
Example 3 0.17 0.17 1.10 1.40
Comparative Example 1 0.06 0.10 0.21 0.35

Claims (3)

微細孔を有する多孔質基材に、疎水部と親水部からなり、主鎖が芳香環を有し、スルホン酸基および/またはホスホン酸基を有する高分子電解質が充填された高分子電解質複合層を有する高分子電解質複合膜であって、該高分子電解質が、固体状態において疎水部と親水部の相分離構造を形成し、かつ下式(1)
a+b≦d (1)
(式中、aは相分離構造における疎水性ドメインの大きさ(nm)、bは親水
性ドメインの大きさ(nm)、dは多孔質基材の微細孔の平均細孔直径(nm
)を表す。)
を満たすことを特徴とする高分子電解質複合膜。
A porous substrate having fine pores, Ri Do from a hydrophobic portion and a hydrophilic portion, the main chain has an aromatic ring, polyelectrolyte complexes polyelectrolyte is filled with a sulfonic acid group and / or phosphonic acid groups A polymer electrolyte composite membrane having a layer, wherein the polymer electrolyte forms a phase separation structure of a hydrophobic part and a hydrophilic part in a solid state, and the following formula (1)
a + b ≦ d (1)
(Wherein, a is the size of the hydrophobic domain in the phase separation structure (nm), b is the size of the hydrophilic domain (nm), and d is the average pore diameter (nm) of the micropores of the porous substrate.
). )
A polymer electrolyte composite membrane characterized by satisfying:
微細孔を有する多孔質基材に、疎水部と親水部からなり、主鎖が芳香環を有し、スルホン酸基および/またはホスホン酸基を有する高分子電解質が充填された高分子電解質複合層を有する高分子電解質複合膜を製造するに当り、高分子電解質として、固体状態において疎水部と親水部の相分離構造を形成し、かつ下式(1)
a+b≦d (1)
(式中、aは相分離構造における疎水性ドメインの大きさ(nm)、bは親水
性ドメインの大きさ(nm)、dは多孔質基材の微細孔の平均細孔直径(nm
)を表す。)
を満たす高分子電解質を用いることを特徴とする高分子電解質複合膜の製造方法。
A porous substrate having fine pores, Ri Do from a hydrophobic portion and a hydrophilic portion, the main chain has an aromatic ring, polyelectrolyte complexes polyelectrolyte is filled with a sulfonic acid group and / or phosphonic acid groups In producing a polymer electrolyte composite membrane having a layer, a phase separation structure of a hydrophobic part and a hydrophilic part is formed as a polymer electrolyte in a solid state, and the following formula (1)
a + b ≦ d (1)
(Wherein, a is the size of the hydrophobic domain in the phase separation structure (nm), b is the size of the hydrophilic domain (nm), and d is the average pore diameter (nm) of the micropores of the porous substrate.
). )
The manufacturing method of the polymer electrolyte composite film characterized by using the polymer electrolyte which satisfy | fills.
請求項1記載の高分子電解質複合膜を用いてなる燃料電池。   A fuel cell comprising the polymer electrolyte composite membrane according to claim 1.
JP2004173666A 2003-06-30 2004-06-11 Polymer electrolyte composite membrane, production method thereof and use thereof Expired - Fee Related JP4815759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173666A JP4815759B2 (en) 2003-06-30 2004-06-11 Polymer electrolyte composite membrane, production method thereof and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003186613 2003-06-30
JP2003186613 2003-06-30
JP2004173666A JP4815759B2 (en) 2003-06-30 2004-06-11 Polymer electrolyte composite membrane, production method thereof and use thereof

Publications (2)

Publication Number Publication Date
JP2005038834A JP2005038834A (en) 2005-02-10
JP4815759B2 true JP4815759B2 (en) 2011-11-16

Family

ID=34220447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173666A Expired - Fee Related JP4815759B2 (en) 2003-06-30 2004-06-11 Polymer electrolyte composite membrane, production method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP4815759B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028828B2 (en) * 2005-03-10 2012-09-19 住友化学株式会社 Polyarylene block copolymer and use thereof
WO2007032541A1 (en) 2005-09-16 2007-03-22 Sumitomo Chemical Company, Limited Polymer electrolyte, polymer electrolyte membrane using same, membrane-electrode assembly and fuel cell
JP4999039B2 (en) * 2005-09-30 2012-08-15 日立化成工業株式会社 Ion conductive binder
US20090317684A1 (en) 2006-08-25 2009-12-24 Sumitomo Chemical Company, Limited Polymer electrolyte membrane, laminate thereof, and their production methods
JP2008053101A (en) 2006-08-25 2008-03-06 Toyota Motor Corp Membrane-electrode assembly for fuel cell, and fuel cell
CA2666748A1 (en) 2006-08-25 2008-02-28 Sumitomo Chemical Company, Limited Polymer electrolyte membrane, laminate thereof, and their production methods
JP2008053084A (en) 2006-08-25 2008-03-06 Sumitomo Chemical Co Ltd Fuel cell and membrane-electrode assembly therefor
CN101578730A (en) 2006-11-09 2009-11-11 住友化学株式会社 Membrane-electrode assembly
TW200847514A (en) 2006-11-27 2008-12-01 Sumitomo Chemical Co Process for producing polymer electrolyte membrane and polymer electrolyte membrane
TW200847513A (en) 2006-11-27 2008-12-01 Sumitomo Chemical Co Method for manufacturing polyelectrolyte membrane, and polyelectrolyte membrane
EP2523243A1 (en) 2007-03-09 2012-11-14 Sumitomo Chemical Company, Limited Membrane-electrode assembly and fuel battery using the same
EP2594997B1 (en) * 2010-07-13 2017-08-23 Canon Kabushiki Kaisha Conductive member for electronic photograph, process cartridge, and electronic photograph device
JP5973861B2 (en) * 2012-09-28 2016-08-23 ダイハツ工業株式会社 Anion exchange resin, electrolyte layer for fuel cell, binder for forming electrode catalyst layer, battery electrode catalyst layer and fuel cell
JP7269567B2 (en) * 2019-04-26 2023-05-09 国立大学法人山梨大学 Polymer electrolyte composite membrane, membrane/electrode assembly using the same, fuel cell, and method for producing polymer electrolyte composite membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162123A (en) * 1994-12-05 1996-06-21 Tanaka Kikinzoku Kogyo Kk Polymer electrolyte-type electro-chemical cell and its manufacture
DE19821978C2 (en) * 1998-05-18 2002-06-06 Freudenberg Carl Kg Membrane electrode unit for a fuel cell
JP3921997B2 (en) * 2001-11-01 2007-05-30 宇部興産株式会社 Ion conductive membrane

Also Published As

Publication number Publication date
JP2005038834A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP5905857B2 (en) Polymer electrolyte, polymer electrolyte membrane, fuel cell catalyst layer binder, and use thereof
JP2005126684A (en) Block copolymer and its use
JP4815759B2 (en) Polymer electrolyte composite membrane, production method thereof and use thereof
JP2011103295A (en) Polymer electrolyte membrane, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2009021228A (en) Membrane-electrode assembly, membrane-electrode gas diffusion layer assembly having the same, solid high polymer fuel cell, and manufacturing method for membrane-electrode assembly
JP2006344578A (en) Solid electrolyte, electrode membrane assembly, and fuel cell
KR20060048879A (en) Polymer elctrolyte fuel cell
US10211474B2 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US20060159972A1 (en) Polymer electrolyte composite film, method for production thereof and use thereof
JP2007109638A (en) Polymer electrolyte, and polymer electrolyte membrane using same, membrane-electrode assembly and fuel cell using same
JP2006066391A (en) Polymer electrolyte fuel cell
JP2007517923A (en) Ion conductive copolymers containing one or more hydrophobic oligomers
JP2007294436A (en) Solid electrolyte, membrane electrode junction, and fuel cell
EP2169751A1 (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
JP2009021233A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
JP2008053084A (en) Fuel cell and membrane-electrode assembly therefor
CN108028407B (en) Ion conductor, method for producing same, and ion exchange membrane, membrane electrode assembly, and fuel cell each comprising same
JP5216392B2 (en) Solid polymer electrolyte for fuel cell
US20090317683A1 (en) Membrane electrode assembly for fuel cell and fuel cell
JP2008311146A (en) Membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
JP2004303541A (en) Polymer laminated film, its method of manufacture and its usage
JP6819047B2 (en) Diphenylsulfone compounds for polymer electrolytes, polymer electrolytes, methods for producing polymer electrolytes, membrane electrode assemblies, and polymer electrolyte fuel cells.
JP2009197220A (en) Polymer electrolyte composition and cell using the same
JP2008545854A (en) Polymer blends containing ionically conductive copolymers and nonionic polymers
JP2004119202A (en) Manufacturing method for modified polymer electrolyte film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4815759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees