JP4815117B2 - Coagulation of natural rubber latex - Google Patents

Coagulation of natural rubber latex Download PDF

Info

Publication number
JP4815117B2
JP4815117B2 JP2004286592A JP2004286592A JP4815117B2 JP 4815117 B2 JP4815117 B2 JP 4815117B2 JP 2004286592 A JP2004286592 A JP 2004286592A JP 2004286592 A JP2004286592 A JP 2004286592A JP 4815117 B2 JP4815117 B2 JP 4815117B2
Authority
JP
Japan
Prior art keywords
acid
coagulation
natural rubber
latex
rubber latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004286592A
Other languages
Japanese (ja)
Other versions
JP2006096926A (en
Inventor
康之 田中
ジトラッダー・サクダーピパニッチ
巖 谷山
文武 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2004286592A priority Critical patent/JP4815117B2/en
Priority to PCT/JP2005/017913 priority patent/WO2006035851A1/en
Priority to MYPI20054598 priority patent/MY148418A/en
Publication of JP2006096926A publication Critical patent/JP2006096926A/en
Application granted granted Critical
Publication of JP4815117B2 publication Critical patent/JP4815117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • C08C1/15Coagulation characterised by the coagulants used

Description

本発明は天然ゴムラテックスの凝固方法に関する。さらに詳しくは天然ゴムラテックスの連続凝固方法に関する。   The present invention relates to a method for coagulating natural rubber latex. More particularly, the present invention relates to a method for continuously coagulating natural rubber latex.

天然ゴムラテックスの凝固は現在次のような方法で行われている。凝固槽に新鮮天然ゴムラテックスを投入し、ほぼ等量のセラム水で希釈し、ギ酸を加えてラテックスのpHを4.5〜5.5に調節し、その後そのまま静置する。静置約9時間で凝固したクラムが液表面に分離される。静置する代わりに攪拌を行うこともあるが、その場合でも凝固には3〜4時間を要している。いずれの場合にも、凝固したクラムは厚いマット状となる。これを凝固槽から引き上げ、脱水、細片化と水洗の処理を行う。それぞれの凝固槽の操作は回分方式であるが、凝固槽を並列に設置し切り替え操作することにより後の脱水、細片化と水洗の工程は連続運転できるように工夫されている。しかしながら、このような現状の天然ゴムラテックスの凝固方法は工業的に見て次のような多くの問題を抱えている:(1)凝固速度が遅い、(2)そのため回分操作とならざるを得ない、(3)凝固したクラムが厚いマット状であるため、後の脱水、細片化と水洗の工程で多くの動力と労力を要し多額の費用がかかる、(4)凝固したクラムが厚いマット状であるため、クラムに含有される不純物を除去し難いため、不純物の含有量が多い、(5)細片化クラムの乾燥に多くのエネルギーと時間を要する、(6)設備費が高い、(7)ギ酸と残存ゴム粒子を含む排水に公害の問題がある。   Coagulation of natural rubber latex is currently performed by the following method. Fresh natural rubber latex is put into a coagulation tank, diluted with an approximately equal amount of serum water, formic acid is added to adjust the pH of the latex to 4.5 to 5.5, and then left as it is. The crumb solidified after standing for about 9 hours is separated on the liquid surface. Although it may stir instead of leaving still, even in that case, solidification requires 3 to 4 hours. In either case, the solidified crumb becomes a thick mat. This is pulled out of the coagulation tank and subjected to dehydration, fragmentation and washing. Although the operation of each coagulation tank is a batch system, it is devised so that the subsequent steps of dehydration, fragmentation and water washing can be performed continuously by installing the coagulation tanks in parallel and switching them. However, the current natural rubber latex coagulation method has many problems from the industrial viewpoint as follows: (1) Coagulation rate is slow, (2) Therefore, batch operation is unavoidable. No, (3) Since the solidified crumb is a thick mat, it requires a lot of power and labor in the subsequent dehydration, fragmentation and water washing processes, and it costs a lot of money. (4) The solidified crumb is thick Because it is mat-like, it is difficult to remove impurities contained in the crumb, so the content of impurities is large. (5) It takes a lot of energy and time to dry the crushed crumb. (6) Equipment costs are high. (7) There is a problem of pollution in wastewater containing formic acid and residual rubber particles.

本発明の目的は、天然ゴムラテックスの凝固法の上記の如き問題を解決するため、凝固速度が速く、連続操作が可能なそして運転コストと設備費の安い凝固法を提供することにある。   An object of the present invention is to provide a coagulation method having a high coagulation rate, capable of continuous operation, and low operating cost and equipment cost in order to solve the above-mentioned problems of the natural rubber latex coagulation method.

本発明の他の目的は、それらの諸課題を解決するための革新的な連続凝固法と凝固プロセスを提供することにある。   Another object of the present invention is to provide an innovative continuous solidification method and a solidification process for solving these problems.

本発明のさらに他の目的は天然ゴムラテックスの連続凝固法を提供することにある。   Still another object of the present invention is to provide a continuous coagulation method for natural rubber latex.

本発明のさらに他の目的および利点は、以下の説明から明らかになろう。   Still other objects and advantages of the present invention will become apparent from the following description.

本発明によれば、本発明の上記目的および利点は、新鮮天然ゴムラテックスまたはアンモニア添加天然ゴムラテックスのいずれかの天然ゴムラテックスに、(1)酸、ならびに(2)(i)硝酸、硫酸、炭酸、リン酸、塩酸およびギ酸のそれぞれの酸のカルシウム塩またはアンモニウム塩よりなる群から選ばれる少なくとも1種の塩および/または(ii)高分子凝集剤を攪拌下に添加して多孔性凝固物スラリーを生成せしめることを特徴とする天然ゴムラテックスの凝固方法によって達成される。


In accordance with the present invention, the above objects and advantages of the present invention include: (1) acid, and (2) (i) nitric acid, sulfuric acid, natural rubber latex, either fresh natural rubber latex or ammonia-added natural rubber latex . Porous coagulum obtained by adding at least one salt selected from the group consisting of calcium salt or ammonium salt of carbonic acid, phosphoric acid, hydrochloric acid and formic acid and / or (ii) a polymer flocculant with stirring. This is achieved by a natural rubber latex coagulation method characterized in that a slurry is produced.


本発明によれば、天然ゴムラテックスを速やかに凝固することができ且つ凝固後の後処理が容易でしかも不純物含量の少ない天然ゴムを与える凝固法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the coagulation method which can coagulate | curing natural rubber latex rapidly and can give the natural rubber which is easy to post-process after coagulation | solidification and has few impurity contents is provided.

乳化重合SBRの凝固法はSBRラテックスに塩化ナトリウムと硫酸を添加して瞬間的な連続凝固を行っている。得られた凝固ゴムは多孔性クラムのスラリーとなって以後の洗滌と乾燥を容易にしている。天然ゴムラテックスは、ゴム自身が高分子量であること、ラテックス粒子の保護膜の成分が合成ゴムラテックスと異なること、粘着性の高い非ゴム成分が含まれることなどから、単純に塩化ナトリウムと硫酸を添加しても凝固がうまくいかない。本発明者は鋭意検討の結果、天然ゴムラテックスの凝固に適した特定の凝固系を用いることにより、天然ゴムラテックスの凝固がすばやく起こり、好ましくは連続操作で天然ゴムラテックスを凝固できる方法およびプロセスを見出した。これによって、従来の天然ゴムラテックスの凝固プロセスが抱える問題点が克服され、生産性を飛躍的に高めることができる。すなわち、本発明における凝固系を用いることにより、凝固がすばやく起こり、生成するクラムも多孔性のスラリー状であり、乾燥しやすい形態で得られるようになり、セラムも透明になることが判明した。   The coagulation method of emulsion polymerization SBR performs instantaneous continuous coagulation by adding sodium chloride and sulfuric acid to SBR latex. The resulting coagulated rubber becomes a porous crumb slurry to facilitate subsequent washing and drying. Natural rubber latex has a high molecular weight, the latex particle protective film component is different from synthetic rubber latex, and contains non-rubber components with high adhesion. Even if added, solidification does not go well. As a result of intensive studies, the present inventor has devised a method and process capable of coagulating natural rubber latex quickly, preferably by continuous operation, by using a specific coagulation system suitable for coagulating natural rubber latex. I found it. This overcomes the problems associated with the conventional natural rubber latex coagulation process, and can dramatically increase productivity. That is, it was found that by using the solidification system in the present invention, solidification occurs quickly, the crumb to be produced is in the form of a porous slurry and can be obtained in a form that is easy to dry, and the serum is also transparent.

本発明に用いられる天然ゴムラテックスとしては、新鮮天然ゴムラテックス、アンモニア添加天然ゴムラテックスいずれでもよい。   The natural rubber latex used in the present invention may be either fresh natural rubber latex or ammonia-added natural rubber latex.

本発明において用いられる凝固系は、上記のとおり、(1)酸と(2)特定の塩および/または高分子凝集剤とからなる。   As described above, the coagulation system used in the present invention comprises (1) an acid and (2) a specific salt and / or polymer flocculant.

酸としては有機酸および無機酸のいずれを用いることもできる。有機酸としては、例えばギ酸、酢酸などが好ましく、無機酸としては、例えば硫酸、塩酸、炭酸などが好ましい。これらの酸は1種または2種以上一緒に用いられる。   Either an organic acid or an inorganic acid can be used as the acid. As the organic acid, for example, formic acid and acetic acid are preferable, and as the inorganic acid, for example, sulfuric acid, hydrochloric acid, carbonic acid and the like are preferable. These acids are used alone or in combination of two or more.

特定の塩は、硝酸、硫酸、炭酸、リン酸、塩酸および蟻酸それぞれの酸の、カルシウム塩またはアンモニウム塩である。これらの塩は1種または2種以上一緒に用いられる。   Specific salts are the calcium or ammonium salts of the respective acids of nitric acid, sulfuric acid, carbonic acid, phosphoric acid, hydrochloric acid and formic acid. These salts are used alone or in combination of two or more.

高分子凝集剤としてはアニオン型、カチオン型、ノニオン型高分子凝集剤のいずれでも使用できる。アニオン型高分子凝集剤としては、例えばアルギン酸ナトリウム、CMC−Na、ポリアクリル酸ナトリウム、アクリルアミド−アクリル酸ナトリウム共重合体、ポリアクリルアミド部分加水分解物などが挙げられる。   As the polymer flocculant, any of anionic, cationic, and nonionic polymer flocculants can be used. Examples of the anionic polymer flocculant include sodium alginate, CMC-Na, sodium polyacrylate, acrylamide-sodium acrylate copolymer, polyacrylamide partial hydrolyzate, and the like.

カチオン型高分子凝集剤としては、例えば水溶性アニリン樹脂塩酸塩、ポリエチレンイミン、ポリアミン、ポリジアリルジメチルアンモニウムクロライド、キトサン、ヘキサメチレンジアミン−エピクロルヒドリン縮合物、ポリビニルイミダゾリン、ポリアルキルアミノ(メタ)アクリレート、ポリアクリルアミドマンニッヒ変成物などが挙げられる。ノニオン型高分子凝集剤としては、例えばでん粉、グアーガム、ゼラチン、ポリアクリルアミド、ポリエチレンオキサイドなどが挙げられる。   Examples of the cationic polymer flocculant include water-soluble aniline resin hydrochloride, polyethyleneimine, polyamine, polydiallyldimethylammonium chloride, chitosan, hexamethylenediamine-epichlorohydrin condensate, polyvinyl imidazoline, polyalkylamino (meth) acrylate, poly Examples include acrylamide Mannich modified products. Examples of nonionic polymer flocculants include starch, guar gum, gelatin, polyacrylamide, and polyethylene oxide.

上記凝固系においては、凝固のpHを好ましくは3.0〜6.5、より好ましくは3.5〜5.5となるように酸の添加量を調節し、塩は全混合液中での濃度が、好ましくは0.5〜3.0重量%、より好ましくは1.0〜2.0重量%となるよう添加する。また、高分子凝集剤はラテックス中のゴム成分100重量部に対し、好ましくは0.001〜1.0重量部、より好ましくは0.01〜0.75重量部を使用する。   In the above coagulation system, the amount of acid added is adjusted so that the coagulation pH is preferably 3.0 to 6.5, more preferably 3.5 to 5.5, and the salt in the total mixture The concentration is preferably 0.5 to 3.0% by weight, more preferably 1.0 to 2.0% by weight. The polymer flocculant is preferably used in an amount of 0.001 to 1.0 part by weight, more preferably 0.01 to 0.75 part by weight, based on 100 parts by weight of the rubber component in the latex.

操作の手順としては、天然ゴムラテックスに特定の塩および/または高分子凝集剤をあらかじめ添加し均一に混合した後、酸を加えて凝固してもよいし、あるいは天然ゴムラテックスにあらかじめ酸を添加した後、特定の塩および/または高分子凝集剤を加えて凝固してもよい。勿論、天然ゴムラテックスに特定の塩および/または高分子凝集剤と酸を同時に添加してもよい。いずれの方法を用いても迅速に凝固が起こり、水洗と乾燥に好適な表面積の大きな多孔性のクラムスラリーが得られる。   As a procedure of operation, a specific salt and / or polymer flocculant is added to natural rubber latex in advance and mixed uniformly, and then an acid may be added to coagulate, or an acid is added to natural rubber latex in advance. Then, a specific salt and / or polymer flocculant may be added to solidify. Of course, a specific salt and / or polymer flocculant and acid may be added simultaneously to the natural rubber latex. Either method can be rapidly solidified to obtain a porous crumb slurry having a large surface area suitable for washing and drying.

実験室の実験結果を工業生産に適した連続操作に開発するに当たって、凝固操作のような相変化のある系では多くの困難に直面するのが常である。連続操作の凝固プロセスの代表例は乳化重合SBRであるが、天然ゴムの凝固にこのシステムを適用しても天然ゴムが持つ特有の粘着性のため凝固槽から排出されるクラムが大きな固まりになり、乳化重合SBRのように良好な分散状態のクラムスラリーを得ることができない。   In developing laboratory results into continuous operations suitable for industrial production, systems with phase changes such as solidification operations often face many difficulties. A typical example of the continuous operation coagulation process is emulsion polymerization SBR, but even if this system is applied to the coagulation of natural rubber, the crumb discharged from the coagulation tank becomes a large mass due to the inherent stickiness of natural rubber. Thus, it is impossible to obtain a crumb slurry in a good dispersion state as in the case of emulsion polymerization SBR.

このため、我々は新しく見出した天然ゴムラテックスに適した凝固系を工業生産に適用するに際して、全く新しい発想に基づく連続操作の凝固プロセスを究明した。これにより脱水、洗滌、乾燥の容易な表面積の大きな凝固クラムスラリーを後工程に供給することができ、天然ゴムの凝固と仕上げ工程の連続操作が可能となった。   For this reason, when applying the newly found coagulation system suitable for natural rubber latex to industrial production, we have investigated a continuous operation coagulation process based on a completely new concept. As a result, a coagulated crumb slurry having a large surface area that can be easily dehydrated, washed and dried can be supplied to the subsequent process, and the natural rubber coagulation and finishing processes can be continuously performed.

連続凝固プロセスは基本的には、供給される凝固のための薬液の均一混合に用いられる一段目の装置と、凝固を完結させる二段目の装置で構成される。一段目の装置は薬液と天然ゴムラテックスの均一混合と該ラテックスのクリ−ミングと凝集の開始が目的である。攪拌機による攪拌を行うことが一般的であるが、ラインミックスやスタティックミキサーなどを使用してもよい。二段目の装置は凝固を完結させるための滞留時間を確保する容量が必要であり、かつまた凝固を促進するため液の攪拌を行う必要がある。しかしながら、必ずしも二段の装置を必要とするのではなく、クリーミング、凝集、凝固を1つの装置(凝固槽)で行うことも可能である。連続凝固プロセスの要点は、凝固クラムを大きな固まりとしない凝固操作と後工程にとって好ましい形状での凝固槽からの排出の二点である。我々は凝固操作の条件と凝固槽の構造に工夫を凝らすことにより、この問題を解決することができた。   The continuous coagulation process basically comprises a first stage apparatus used for uniform mixing of the supplied chemical solution for coagulation and a second stage apparatus for completing the coagulation. The purpose of the first stage apparatus is to uniformly mix the chemical solution and natural rubber latex, and to start creaming and aggregation of the latex. Although stirring with a stirrer is generally performed, a line mix, a static mixer, or the like may be used. The second-stage apparatus needs a capacity for securing a residence time for completing the coagulation, and it is necessary to stir the liquid to promote the coagulation. However, a two-stage apparatus is not necessarily required, and creaming, agglomeration, and solidification can be performed in one apparatus (coagulation tank). The main points of the continuous solidification process are two points: a solidification operation that does not make the solidified crumb into a large mass, and discharge from the solidification tank in a shape that is favorable for the subsequent process. We were able to solve this problem by devising the solidification operation conditions and the solidification tank structure.

図1に示すのは、凝固槽内での固形物濃度(クラムスラリー濃度)が低い場合(例えば20重量%以下の場合)の操作である。ここでは、ラテックス、酸、高分子凝集剤を攪拌機付きクリーム槽でクリーム状とする。凝固槽へ供給されたクリームは凝固の進行とともに多孔性のクラムスラリーとなる。これを凝固槽からオーバーフローさせ、脱水機へ供給する。得られた凝固物は多孔性で脱水、洗滌が容易な形状となる。図1には、凝固槽内の液攪拌に、セラム水の循環による強制流動を用いる形式が示されているが、攪拌機を用いる形式でもよい。また手順としては、クリーム槽でラテックスと酸を混合しこれに高分子凝集剤を更に添加するように図示されているが、これは手順の1例であり、添加順序は限定されない。   FIG. 1 shows an operation when the solid matter concentration (crumb slurry concentration) in the coagulation tank is low (for example, 20% by weight or less). Here, the latex, acid, and polymer flocculant are creamed in a cream tank with a stirrer. The cream supplied to the coagulation tank becomes a porous crumb slurry as the coagulation progresses. This is overflowed from the coagulation tank and supplied to the dehydrator. The obtained solidified product is porous and has a shape that can be easily dehydrated and washed. Although FIG. 1 shows a form in which forced flow by circulating serum water is used for liquid stirring in the coagulation tank, a form using a stirrer may be used. Further, the procedure is illustrated as mixing latex and acid in a cream tank and further adding a polymer flocculant thereto, but this is an example of the procedure, and the order of addition is not limited.

図2は凝固槽内での固形物濃度(クラムスラリー濃度)が高い場合(例えば10重量%を超える場合)の操作である。この場合は混練機が用いられる。ラテックス、酸、高分子凝集剤は混練機の中で均一混合され、同時に凝固が進行する。凝固物は細かいクラムあるいは適度の大きさの多孔性ブロックとなり、脱水機に供給される。ブロックの大きさは混練機の構造と操作条件で調節できる。図2にも、手順としてラテックスと酸を一緒にし、次いで高分子凝集剤と一緒にして混練機に添加するように図示されているが、これも手順の1例であり、添加順序は限定されない。   FIG. 2 shows an operation when the solid matter concentration (crumb slurry concentration) in the coagulation tank is high (for example, when it exceeds 10% by weight). In this case, a kneader is used. Latex, acid and polymer flocculant are uniformly mixed in a kneader and coagulation proceeds at the same time. The coagulum becomes a fine crumb or an appropriately sized porous block and is supplied to a dehydrator. The size of the block can be adjusted by the structure and operating conditions of the kneader. FIG. 2 also shows that the procedure is to combine latex and acid together, and then add together with the polymer flocculant to the kneader, but this is also an example of the procedure, and the order of addition is not limited. .

これらの連続的凝固方法では、クラムを固液分離した後のセラム水や洗滌に用いた洗滌水は凝固槽の液流動やラテックスの固形分調整と酸や高分子凝集剤や塩の希釈に循環使用することも可能である。   In these continuous coagulation methods, the serum water and rinsing water used for washing after solid-liquid separation of crumb are circulated for liquid flow in the coagulation tank, solid content adjustment of latex, and dilution of acid, polymer flocculant and salt. It is also possible to use it.

用いる天然ゴムラテックスの固形分濃度(Dry Rubber Content(DRC),重量%)に特に制限はないが、好ましくは1〜60重量%程度であり、さらに好ましいDRCは5〜40重量%程度である。凝固温度は特に制限はないが一般的には室温から80℃程度の温度が好ましい。   Although there is no restriction | limiting in particular in solid content concentration (Dry Rubber Content (DRC), weight%) of the natural rubber latex to be used, Preferably it is about 1-60 weight%, More preferably, DRC is about 5-40 weight%. The coagulation temperature is not particularly limited, but generally a temperature from room temperature to about 80 ° C. is preferable.

以下に実施例を挙げて、本発明を説明するが、これらの実施例はなんら本発明を限定するものではない。   EXAMPLES The present invention will be described below with reference to examples, but these examples do not limit the present invention.

実験に使用したラテックスと薬液は下記のとおりである。
FL―latex
天然ゴム新鮮ラテックスにアンモニアを加えてpHを10〜11に調整したラテックス(FL−latex)(DSC約30重量%)
Floerger
カチオン性ポリマー(0.025%(w/v)水溶液)(ジメチルアミノエチルアクリレート/アクリルアミド 共重合体)
Water Flocculent
アニオン性ポリマー(0.025%(w/v)水溶液)(ナトリウムアクリレート/アクリルアミド共重合体)
ギ酸
5%(w/v)水溶液
なお、phrはゴム100部当りの部数を示す。
The latex and chemicals used in the experiment are as follows.
FL-latex
Latex (FL-latex) adjusted to pH 10-11 by adding ammonia to natural rubber fresh latex (DSC about 30% by weight)
Floerger
Cationic polymer (0.025% (w / v) aqueous solution) (dimethylaminoethyl acrylate / acrylamide copolymer)
Water Fracculent
Anionic polymer (0.025% (w / v) aqueous solution) (sodium acrylate / acrylamide copolymer)
Formic acid 5% (w / v) aqueous solution phr indicates the number of parts per 100 parts of rubber.

実施例1〜6および比較例1〜3
塩・酸凝固法の例を示す。
Examples 1-6 and Comparative Examples 1-3
An example of the salt / acid coagulation method is shown.

FL−latex(DRC10重量%に調整)に1%(w/v)濃度に相当する量の、表1に示した塩を添加して十分混合し、この50mlを用意した。これに5%(w/v)に調整した、表1に示した酸2mlを攪拌しながら滴下した。凝固時間が著しく短縮され、洗滌が容易な表面積の大きなクラム状の固形分が得られた。   An amount corresponding to a concentration of 1% (w / v) was added to FL-latex (adjusted to 10% by weight of DRC) and mixed well, and 50 ml of this was prepared. To this, 2 ml of the acid shown in Table 1 adjusted to 5% (w / v) was added dropwise with stirring. The solidification time was remarkably shortened and a crumb-like solid content having a large surface area that was easy to wash was obtained.

結果を表1に示した。洗滌が容易な表面積が大きいクラムが得られた。
比較例として、ギ酸あるいは硫酸と塩化ナトリウムの凝固例を合わせて示した。いずれも、凝固速度の遅いことが分かった。
The results are shown in Table 1. A crumb with a large surface area that was easy to clean was obtained.
As a comparative example, coagulation examples of formic acid or sulfuric acid and sodium chloride are also shown. Both were found to have a slow solidification rate.

Figure 0004815117
Figure 0004815117

実施例7〜10
高分子凝集剤・酸凝固法の例を示す
FL−latex(DRC10重量%に調整)に、表2に示した高分子凝集剤を0.01phr添加して十分攪拌混合した。この20mlに0.2mlの、表2に示した酸を攪拌しながら滴下した。酸の濃度は硫酸では1%、ギ酸では5%に調製した。高分子凝集剤によっても凝固時間が短縮された。
Examples 7-10
The polymer flocculant shown in Table 2 was added to FL-latex (adjusted to DRC 10 wt%) showing an example of the polymer flocculant / acid coagulation method, and sufficiently stirred and mixed. To 20 ml, 0.2 ml of the acid shown in Table 2 was added dropwise with stirring. The acid concentration was adjusted to 1% for sulfuric acid and 5% for formic acid. The polymer flocculant also shortened the coagulation time.

結果を表2に示す。洗滌が容易な表面積の大きいクラムが得られた。   The results are shown in Table 2. A crumb with a large surface area that was easy to clean was obtained.

Figure 0004815117
Figure 0004815117

実施例11〜14
酸・塩凝固および酸・高分子凝固の例を示す。
Examples 11-14
Examples of acid / salt coagulation and acid / polymer coagulation are shown.

FL−latex(DRC10重量%に調整)50mlに、表3に示した酸を加えてpHが4.5〜5.5になるように調整した。このラテックス溶液に攪拌しながら、表3に示した高分子凝集剤または塩を続けて加えた。加えた高分子凝集剤または塩の水溶液は5%濃度で10mlであった。凝固までの時間およびセラム水の様子を表3にまとめた。洗滌が容易な表面積の大きいクラムが得られた。   The acid shown in Table 3 was added to 50 ml of FL-latex (adjusted to DRC 10% by weight) to adjust the pH to 4.5 to 5.5. While stirring the latex solution, the polymer flocculant or salt shown in Table 3 was continuously added. The added polymer flocculant or salt aqueous solution was 10 ml at a 5% concentration. Table 3 summarizes the time until solidification and the state of serum water. A crumb with a large surface area that was easy to clean was obtained.

添加順の差がないことが判明した。   It was found that there was no difference in the order of addition.

Figure 0004815117
Figure 0004815117

実施例15〜23および比較例4〜9
無機塩の効果を確認した例を示す。
下記(A)を、下記(B)中に攪拌しながら滴下し、凝固時間を測定した。同時に凝固終了後のセラム水の透明度を観察した。
(A)ラテックス:5ml(FL−latex100ml(DRC30重量%)に対し5grの、表4に示した無機塩を添加しておき、所定のDRCに調整したものを用いた)
(B)ギ酸(5%の濃度):20ml
結果を表4に示した。実施例15〜23では洗滌が容易な表面積の大きいクラムが得られた。
Examples 15 to 23 and Comparative Examples 4 to 9
The example which confirmed the effect of inorganic salt is shown.
The following (A) was dropped into the following (B) while stirring, and the coagulation time was measured. At the same time, the transparency of serum water after coagulation was observed.
(A) Latex: 5 ml of an inorganic salt shown in Table 4 added to 5 ml of FL-latex 100 ml (DRC 30 wt%) and adjusted to a predetermined DRC was used)
(B) Formic acid (5% concentration): 20 ml
The results are shown in Table 4. In Examples 15 to 23, crumbs having a large surface area that were easily washed were obtained.

Figure 0004815117
Figure 0004815117

実施例24〜29
高分子凝集剤の効果を確認した例を示す。
Examples 24-29
The example which confirmed the effect of the polymer flocculent is shown.

下記(A)を、下記(B)中に攪拌しながら滴下し、凝固時間を測定した。同時に凝固終了後のセラム水の透明度を観察した。
(A)ラテックス:5ml(FL−latex(DRC30重量%)に、表5に示した高分子凝集剤を0.025phr添加した上で、所定のDRCを調整したものを用いた)
(B)ギ酸(5%の濃度):20ml
結果を表5に示した。実施例24〜29では、いずれも洗滌が容易な表面積の大きなクラムが得られた。
The following (A) was dropped into the following (B) while stirring, and the coagulation time was measured. At the same time, the transparency of serum water after coagulation was observed.
(A) Latex: 5 ml (using FL-latex (DRC 30 wt%) prepared by adding 0.025 phr of the polymer flocculant shown in Table 5 and adjusting a predetermined DRC)
(B) Formic acid (5% concentration): 20 ml
The results are shown in Table 5. In Examples 24-29, crumbs with a large surface area that could be easily washed were obtained.

Figure 0004815117
Figure 0004815117

実施例30〜35
攪拌の効果を確認した例を示す。
Examples 30-35
The example which confirmed the effect of stirring is shown.

FL−latex(DRC30重量%)100重量部に0.025%(w/v)の Floerger水溶液を50重量部添加し、表6に示した所定のDRCに調整した。凝固後のセラムのpHが4.5〜5.5となる様に5%(w/v)のギ酸を攪拌下または非攪拌下に加え凝固させた。攪拌の効果が確認できた。結果を表6に示した。   50 parts by weight of 0.025% (w / v) Floerger aqueous solution was added to 100 parts by weight of FL-latex (DRC 30% by weight) to adjust to a predetermined DRC shown in Table 6. 5% (w / v) formic acid was added with stirring or non-stirring so that the serum pH after coagulation was 4.5-5.5. The effect of stirring was confirmed. The results are shown in Table 6.

Figure 0004815117
Figure 0004815117

実施例36〜41
攪拌の効果を確認した例を示す。
Examples 36-41
The example which confirmed the effect of stirring is shown.

FL−latex(DRC30重量%)100重量部に5%(w/v)のギ酸を添加した。ギ酸の量は凝固後のセラムのpHが4.5〜4.5となる様に調整し、所定のDRCになる様に水を加えた。これに0.025%(w/v)の Floerger水溶液を攪拌下または非攪拌下に50部添加した。この凝固操作でも攪拌の効果を確認できた。   5% (w / v) formic acid was added to 100 parts by weight of FL-latex (DRC 30% by weight). The amount of formic acid was adjusted so that the pH of the serum after coagulation was 4.5 to 4.5, and water was added so as to obtain a predetermined DRC. To this, 50 parts of 0.025% (w / v) Floerger aqueous solution was added with stirring or without stirring. The effect of stirring was confirmed even in this coagulation operation.

結果を表7に示した。   The results are shown in Table 7.

Figure 0004815117
Figure 0004815117

実施例42〜47
攪拌の効果を確認した例を示す。
Examples 42-47
The example which confirmed the effect of stirring is shown.

あらかじめ、Floergerとギ酸を溶解した水溶液を準備した。この水溶液とFL−latex(DRC30重量%)とを所定のクラム濃度になる比率で混合し、攪拌の有り無しで凝固実験を行った。準備する水溶液のFloerger濃度とギ酸濃度はクラム濃度によって異なる。Floergerに関しては、FL−latex量(DRC30重量%)とFloerger量(0.025%(w/v)水溶液)との比が1:0.5を保つように、ギ酸に関しては、凝固後のセラムのpHが4.5〜5.5となるように、それぞれの量を調節して、水溶液を調製した。攪拌は凝固の促進に効果的であることが確認された。なお、クラム濃度とはこの水溶液とFL−latex(DRC30重量%)との混合物中のDry Rubber量である。   In advance, an aqueous solution in which Floerger and formic acid were dissolved was prepared. This aqueous solution and FL-latex (DRC 30% by weight) were mixed at a ratio to give a predetermined crumb concentration, and a solidification experiment was conducted with and without stirring. The Floerger concentration and formic acid concentration of the aqueous solution to be prepared differ depending on the crumb concentration. With respect to Floeger, with respect to formic acid, the serum after the coagulation is maintained so that the ratio of FL-latex amount (DRC 30 wt%) and Floeger amount (0.025% (w / v) aqueous solution) is kept at 1: 0.5. The aqueous solution was prepared by adjusting the amount of each so that the pH of the solution became 4.5 to 5.5. Agitation was confirmed to be effective in promoting solidification. The crumb concentration is the amount of Dry Rubber in the mixture of this aqueous solution and FL-latex (DRC 30% by weight).

結果を表8に示した。   The results are shown in Table 8.

Figure 0004815117
Figure 0004815117

固形分濃度が低い場合に実施するのに好適な本発明方法の説明図。Explanatory drawing of this invention method suitable to implement when solid content concentration is low. 固形分濃度が高い場合に実施するのに好適な本発明方法の説明図。Explanatory drawing of this invention method suitable to implement when solid content concentration is high.

Claims (3)

新鮮天然ゴムラテックスまたはアンモニア添加天然ゴムラテックスのいずれかの天然ゴムラテックスに、(1)酸、ならびに(2)(i)硝酸、硫酸、炭酸、リン酸、塩酸および蟻酸のそれぞれの酸のカルシウム塩またはアンモニウム塩よりなる群から選ばれる少なくとも1種の塩および/または(ii)高分子凝集剤を攪拌下に添加して多孔性凝固ゴムを生成せしめる、ことを特徴とする天然ゴムラテックスの凝固方法。 To any natural rubber latex fresh natural rubber latex or ammonia added natural rubber latex, (1) acid, and (2) (i) nitric acid, sulfuric acid, carbonic acid, phosphoric acid, calcium salt of respective acid of hydrochloric acid and formic acid Or at least one salt selected from the group consisting of ammonium salts and / or (ii) a polymer coagulant with stirring to form a porous coagulated rubber, and a method for coagulating natural rubber latex . 天然ゴムラテックスの連続流に、(1)酸、ならびに(2)上記塩(i)および/または高分子凝集剤(ii)を攪拌下に添加して多孔性凝集ゴムを連続流上に浮遊状態で生成せしめる、請求項1に記載の凝固方法。 To the continuous flow of natural rubber latex, (1) acid and (2) the above-mentioned salt (i) and / or polymer flocculant (ii) are added with stirring to float the porous agglomerated rubber on the continuous flow. The coagulation method according to claim 1, wherein 攪拌が攪拌機により行われるかまたは連続流の強制的流動により行われる請求項1〜2のいずれかに記載の凝固方法。 The solidification method according to any one of claims 1 to 2, wherein the stirring is performed by a stirrer or by forced flow of a continuous flow.
JP2004286592A 2004-09-30 2004-09-30 Coagulation of natural rubber latex Active JP4815117B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004286592A JP4815117B2 (en) 2004-09-30 2004-09-30 Coagulation of natural rubber latex
PCT/JP2005/017913 WO2006035851A1 (en) 2004-09-30 2005-09-21 Method for coagulating natural rubber latex
MYPI20054598 MY148418A (en) 2004-09-30 2005-09-29 Coagulation method of natural rubber latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004286592A JP4815117B2 (en) 2004-09-30 2004-09-30 Coagulation of natural rubber latex

Publications (2)

Publication Number Publication Date
JP2006096926A JP2006096926A (en) 2006-04-13
JP4815117B2 true JP4815117B2 (en) 2011-11-16

Family

ID=36118997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286592A Active JP4815117B2 (en) 2004-09-30 2004-09-30 Coagulation of natural rubber latex

Country Status (3)

Country Link
JP (1) JP4815117B2 (en)
MY (1) MY148418A (en)
WO (1) WO2006035851A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015283A2 (en) 2014-10-08 2016-05-04 Sumitomo Rubber Industries Limited Rubber composition for tires and pneumatic tire

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5172159B2 (en) * 2007-01-25 2013-03-27 住友ゴム工業株式会社 Rubber composition and tire using the same
CA2713449C (en) * 2008-01-29 2016-08-30 Lanxess Deutschland Gmbh Nitrile rubbers which optionally contain alkylthio terminal groups and which are optionally hydrogenated
JP2010144001A (en) * 2008-12-17 2010-07-01 Sumitomo Rubber Ind Ltd Method for manufacturing natural rubber
US20120172517A1 (en) * 2009-09-17 2012-07-05 Xuan Zhang Elastomer composite blends, method and apparatus for producing same
CN102892788B (en) 2010-06-10 2015-03-25 住友橡胶工业株式会社 Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
JP5469151B2 (en) 2011-11-11 2014-04-09 住友ゴム工業株式会社 Rubber composition for pneumatic tire and pneumatic tire
JP5616369B2 (en) 2012-01-24 2014-10-29 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP5687671B2 (en) * 2012-09-03 2015-03-18 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP2014133829A (en) 2013-01-10 2014-07-24 Sumitomo Rubber Ind Ltd Composite body and production method of the same, rubber composition, and pneumatic tire
KR101644675B1 (en) * 2013-05-03 2016-08-02 주식회사 엘지화학 Coagulum of emulsion polyerization latex, method for coagulation by using thereof, and method for preparing extrusion and injection formed products
CN104341540B (en) * 2013-08-05 2016-08-10 海南大学 A kind of method of rapid solidification Heveatex
JP5814410B2 (en) 2014-03-17 2015-11-17 住友ゴム工業株式会社 Rubber composition for studless tire and studless tire
EP3222773B1 (en) 2016-03-22 2018-09-05 Polytex Sportbeläge Produktions-GmbH Tufted surface coverings comprising an anti-blistering agent
EP3222766A1 (en) * 2016-03-22 2017-09-27 Polytex Sportbeläge Produktions-GmbH Machine for manufacturing artificial turf
IT201600086155A1 (en) * 2016-08-19 2018-02-19 Versalis Spa Solidification of natural rubber latex using polyquaternary polymers.
KR102489409B1 (en) * 2019-08-16 2023-01-17 주식회사 엘지화학 Method for preparing vinylcyan compound-conjugated diene compound-aromatic vinyl compound graft copolymer and thermoplastic resin composition contatining the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3261204B2 (en) * 1993-05-13 2002-02-25 花王株式会社 Coagulation aid for deproteinized natural rubber latex and method for producing raw rubber using the same
JP3673502B2 (en) * 2001-02-26 2005-07-20 住友ゴム工業株式会社 Deproteinized natural rubber latex, process for producing the same and rubber product using the same
JP2003221402A (en) * 2001-11-06 2003-08-05 Tokuyama Corp Method for manufacturing rubber filled with silica
EP1652862B1 (en) * 2003-08-04 2012-02-15 Sumitomo Rubber Industries, Ltd. Deproteinized natural rubber, its composition and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015283A2 (en) 2014-10-08 2016-05-04 Sumitomo Rubber Industries Limited Rubber composition for tires and pneumatic tire
US10138359B2 (en) 2014-10-08 2018-11-27 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire

Also Published As

Publication number Publication date
WO2006035851A1 (en) 2006-04-06
JP2006096926A (en) 2006-04-13
MY148418A (en) 2013-04-30

Similar Documents

Publication Publication Date Title
WO2006035851A1 (en) Method for coagulating natural rubber latex
JP4633703B2 (en) Proteolytic natural rubber production method
AU654135B2 (en) Purification of aqueous liquor
WO1992000248A1 (en) Purification of aqueous liquor
JPS6364452B2 (en)
JP2003137906A (en) Method for concentrating polymer latex
WO2005012396A1 (en) Rubber master batch and method for production thereof
CN110272511B (en) Process for recovering polymer from polymer emulsion
JP5258639B2 (en) Sludge dewatering method
JP2008080185A (en) Sludge dewatering method
JP3633726B2 (en) Sludge treatment method
JP3740423B2 (en) Method for treating waste liquid containing emulsion polymerization polymer
JP2009084553A (en) Method for producing rubbery polymer for electronic material and rubbery polymer for electronic material
JPH0976000A (en) Sludge dehydrating method
JP3446621B2 (en) Sludge coagulation granulator and sludge dewatering method
JP3267043B2 (en) Coagulation method of polymer latex
JP3547113B2 (en) How to treat waste milk
JPH09286815A (en) Method for recovering polymer from latex
JP2002192199A (en) Method and apparatus for dehydrating sludge
JP3608094B2 (en) Organic sludge dehydrating agent and method for producing the same
KR101711243B1 (en) Method and apparatus for preparing resin powders
KR100684424B1 (en) Method for Preparing a Polymer Latex Resin Powder Using a Pressureless Slow Coagulation-Pressurized Aging Process
JPH10192899A (en) Method for treating dredged sludge
JP7218859B2 (en) Method for producing rubber-like polymer
JPH08206699A (en) Dehydrating method for anaerobic digestion sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

R150 Certificate of patent or registration of utility model

Ref document number: 4815117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250