JP4814128B2 - Vehicle driving force distribution control device - Google Patents

Vehicle driving force distribution control device Download PDF

Info

Publication number
JP4814128B2
JP4814128B2 JP2007063912A JP2007063912A JP4814128B2 JP 4814128 B2 JP4814128 B2 JP 4814128B2 JP 2007063912 A JP2007063912 A JP 2007063912A JP 2007063912 A JP2007063912 A JP 2007063912A JP 4814128 B2 JP4814128 B2 JP 4814128B2
Authority
JP
Japan
Prior art keywords
driving force
force distribution
rear wheel
distribution ratio
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007063912A
Other languages
Japanese (ja)
Other versions
JP2008222065A (en
Inventor
真二郎 齋藤
篤 横山
進也 井村
九五 浜井
大介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2007063912A priority Critical patent/JP4814128B2/en
Publication of JP2008222065A publication Critical patent/JP2008222065A/en
Application granted granted Critical
Publication of JP4814128B2 publication Critical patent/JP4814128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、前後輪間で駆動力を配分できる車両における駆動力配分制御装置に係り、特に、左右輪で独立に駆動力を配分できる車両における、その左右輪を含めた駆動力配分を制御する車両の駆動力配分制御装置に関する。   The present invention relates to a driving force distribution control device in a vehicle that can distribute driving force between front and rear wheels, and in particular, controls driving force distribution including left and right wheels in a vehicle that can distribute driving force independently between left and right wheels. The present invention relates to a vehicle driving force distribution control device.

前輪と後輪の駆動力を独立に制御可能で、前後輪間で駆動力を配分できる自動車等の車両として、例えば、前輪を内燃機関(エンジン)で駆動し、後輪を電動機(モータ)で駆動するものがある。この車両では、エンジン出力軸とモータ出力軸には、機械的な接合はなく、それぞれが独立してトルクを出力することができる。   As a vehicle such as an automobile capable of independently controlling the driving force of the front wheels and the rear wheels and distributing the driving force between the front and rear wheels, for example, the front wheels are driven by an internal combustion engine (engine) and the rear wheels are driven by an electric motor (motor). There is something to drive. In this vehicle, the engine output shaft and the motor output shaft are not mechanically joined, and each can output torque independently.

また、前左右輪を一つのエンジンで駆動し、後左右輪をそれぞれ個別のモータがトルクを出力するような車両があるが、該車両では、前後輪駆動力配分比を決定する他に、左右輪での駆動力配分比を決定することにより、車両にヨーモーメントを適宜に発生させることができる。   In addition, there is a vehicle in which the front left and right wheels are driven by a single engine, and the rear left and right wheels each output torque, but in this vehicle, in addition to determining the front and rear wheel driving force distribution ratio, By determining the driving force distribution ratio in the wheels, the yaw moment can be appropriately generated in the vehicle.

このような車両における駆動力配分制御として、車両状態量に応じて前輪軸駆動・後輪軸駆動・四輪駆動などの走行モードを切り替えるものもある。このような駆動力配分制御装置として、前後輪駆動力配分比を最も燃料消費の少ない配分にするように、エンジンとモータなどの異動力源の駆動力を配分し、走行状態または走行条件によって車両運動が安定する範囲内で、燃料消費量を極力抑えるようにするものがある(例えば、特許文献1)。   As such driving force distribution control in a vehicle, there is one that switches traveling modes such as front wheel shaft driving, rear wheel shaft driving, and four wheel driving according to the vehicle state quantity. As such a driving force distribution control device, the driving force of different power sources such as an engine and a motor is distributed so that the front and rear wheel driving force distribution ratio is the distribution with the least fuel consumption, and the vehicle according to the traveling state or traveling condition. There is one that suppresses fuel consumption as much as possible within a range in which the movement is stable (for example, Patent Document 1).

特開2005−53317号公報JP 2005-53317 A

特許文献1に記載の従来技術では、運転者の要求駆動力を前後輪に配分するとき、前後輪どちらかの車輪の最大摩擦力を超えてしまうような前輪駆動力配分率を除いた範囲内で、最も燃料消費量が少なくなる配分比しか計算していない。このため、車輪はスリップしないものの、車両が最も安定する配分比そのものを計算していないため、外乱に弱い場合がある。また車両が不安定化すると判断する情報が一つであり、必ずしも車両の安定化をも含めた最善の駆動力配分になっているとはいえない。   In the prior art described in Patent Document 1, when the driver's required driving force is distributed to the front and rear wheels, the range excluding the front wheel driving force distribution ratio that exceeds the maximum frictional force of one of the front and rear wheels is excluded. Therefore, only the distribution ratio with the smallest fuel consumption is calculated. For this reason, although a wheel does not slip, since the distribution ratio itself in which a vehicle is most stable is not calculated, it may be weak to a disturbance. In addition, there is only one piece of information that determines that the vehicle is destabilized, and it cannot necessarily be said that the best driving force distribution including the stabilization of the vehicle is achieved.

本発明は前記課題に鑑みてなされたものであって、その目的とするところは、燃料消費量を抑える前後輪駆動力配分比と車両を安定させる前後輪駆動力配分比のトレードオフ的な関係を解消し、燃費良化と車両安定化をより適切に両立させ、車両の安定化をも含めた最善の駆動力配分を実現する車両の駆動力配分制御装置を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is a trade-off relationship between the front and rear wheel driving force distribution ratio that suppresses fuel consumption and the front and rear wheel driving force distribution ratio that stabilizes the vehicle. It is an object of the present invention to provide a vehicle driving force distribution control device that achieves the best driving force distribution including the stabilization of the vehicle by resolving the above problem, more appropriately achieving better fuel efficiency and vehicle stabilization.

前記目的を達成するために、本発明による車両の駆動力配分制御装置は、前輪と後輪の駆動力を独立に制御可能な車両において、該車両の全体の目標駆動力に対して、前輪の目標駆動力と後輪の目標駆動力を決定する駆動力配分制御装置であって、前記車両の旋回安定性または直進安定性を考慮した第一前後輪駆動力配分比を算出する第一前後輪駆動力配分比算出手段と、燃料消費量を考慮した第二前後輪駆動力配分比を算出する第二前後輪駆動力配分比算出手段と、前記第一前後輪駆動力配分比算出手段によって算出された第一前後輪駆動力配分比と前記第二前後輪駆動力配分比算出手段によって算出された第二前後輪駆動力配分比との間の特定値を最終前後輪駆動力配分比として算出する最終前後輪駆動力配分比算出手段とを有し、前記最終値前後輪駆動力配分比に基づいて、前輪の目標駆動力と後輪の目標駆動力を設定することを特徴としている。   In order to achieve the above object, a vehicle driving force distribution control device according to the present invention is a vehicle capable of independently controlling the driving force of the front wheels and the rear wheels, with respect to the overall target driving force of the vehicle. A driving force distribution control device for determining a target driving force and a rear wheel target driving force, wherein the first front and rear wheels calculate a first front and rear wheel driving force distribution ratio in consideration of turning stability or straight running stability of the vehicle. Calculated by the driving force distribution ratio calculating means, the second front and rear wheel driving force distribution ratio calculating means for calculating the second front and rear wheel driving force distribution ratio in consideration of the fuel consumption, and the first front and rear wheel driving force distribution ratio calculating means. A specific value between the calculated first front / rear wheel driving force distribution ratio and the second front / rear wheel driving force distribution ratio calculated by the second front / rear wheel driving force distribution ratio is calculated as the final front / rear wheel driving force distribution ratio. A final front and rear wheel driving force distribution ratio calculating means Based on the closing front-rear wheel driving force distribution ratio, it is characterized by setting a target driving force of the front wheel target driving force and the rear wheel.

本発明による車両の駆動力配分制御装置は、好ましくは、前記車両の旋回安定性または直進安定性を判断する車両安定性指標を有し、最終前後輪駆動力配分比算出手段は、前記車両安定性指標が高い安定性を示すに従って前記最終前後輪駆動力配分比を前記第二前後輪駆動力配分比へ近づけ、前記車両安定性指標が低い安定性を示すに従って前記最終前後輪駆動力配分比を前記第一前後輪駆動力配分比へ近づけることを特徴としている。   The vehicle driving force distribution control device according to the present invention preferably has a vehicle stability index for judging the turning stability or straight running stability of the vehicle, and the final front and rear wheel driving force distribution ratio calculating means includes the vehicle stability The final front and rear wheel driving force distribution ratio approaches the second front and rear wheel driving force distribution ratio as the stability index indicates high stability, and the final front and rear wheel driving force distribution ratio as the vehicle stability index indicates low stability. Is close to the first front and rear wheel driving force distribution ratio.

本発明による車両の駆動力配分制御装置は、更に、前輪の左右輪、後輪の左右輪または前後輪両方の左右輪の駆動力をそれぞれ異なる駆動力に制御可能な車両において、前記前後輪駆動力配分比、操舵量、速度に応じた左右輪の目標駆動力を予め設定しておき、前記左右輪目標駆動力を考慮して前記第一前後輪駆動力配分比と前記第二前後輪駆動力配分比を決定することを特徴としている。   The vehicle driving force distribution control device according to the present invention further includes the front and rear wheel driving in a vehicle capable of controlling the driving forces of the left and right wheels of the front wheel, the left and right wheels of the rear wheel, and the left and right wheels of both the front and rear wheels to different driving forces. The left and right wheel target driving force is set in advance according to the force distribution ratio, the steering amount, and the speed, and the first front and rear wheel driving force distribution ratio and the second front and rear wheel drive are set in consideration of the left and right wheel target driving force. It is characterized by determining the power distribution ratio.

本発明による車両の駆動力配分制御装置は、好ましくは、前後輪駆動力配分比に応じて予め設定しておく前記左右輪目標駆動力として、車両が所定のヨーレートとなるためのヨーモーメントを生成するように目標駆動力を左右輪に配分することを特徴としている。   The vehicle driving force distribution control device according to the present invention preferably generates a yaw moment for the vehicle to have a predetermined yaw rate as the left and right wheel target driving force set in advance according to the front and rear wheel driving force distribution ratio. In this way, the target driving force is distributed to the left and right wheels.

本発明による車両の駆動力配分制御装置は、好ましくは、前記第一前後輪駆動力配分比算出手段が、車両安定性指標をある前後輪駆動力配分比のときに四輪それぞれのタイヤに掛かっている力に応じて算出し、その指標に基づいて第一前後輪駆動力配分比を算出することを特徴としている。   In the vehicle driving force distribution control device according to the present invention, preferably, the first front and rear wheel driving force distribution ratio calculating means applies the vehicle stability index to the tires of the four wheels when the front and rear wheel driving force distribution ratio is a certain value. The first front-and-rear wheel driving force distribution ratio is calculated based on the index.

本発明による車両の駆動力配分制御装置は、好ましくは、前記第二前後輪駆動力配分比算出手段が、車両の燃料消費量の指標を、車両の動力構成、もしくは動力構成とエネルギ蓄積媒体の両方の効率に応じて算出し、その指標に基づいて第二前後輪駆動力配分比を算出することを特徴としている。   In the vehicle driving force distribution control device according to the present invention, preferably, the second front and rear wheel driving force distribution ratio calculation means uses the vehicle fuel consumption index as a vehicle power configuration, or a power configuration and an energy storage medium. It is calculated according to both efficiency, and the second front and rear wheel driving force distribution ratio is calculated based on the index.

本発明による車両の駆動力配分制御装置によれば、車両が不安定な状態では車両が安定する第一前後輪駆動力配分比を出力し、車両が安定して走行し続けられる状態では燃料消費量を抑える第二前後輪駆動力配分比を出力し、車両状態量が両者の間にある場合は、車両状態量に応じて前後輪駆動力配分比の最終値を出力することができる。   According to the vehicle driving force distribution control device of the present invention, when the vehicle is unstable, the first front and rear wheel driving force distribution ratio is output when the vehicle is stable, and when the vehicle continues to travel stably, the fuel consumption is increased. When the second front / rear wheel driving force distribution ratio that suppresses the amount is output and the vehicle state quantity is between the two, the final value of the front / rear wheel driving force distribution ratio can be output according to the vehicle state quantity.

これにより、車両の状態に応じた適切な駆動力配分を行うことができ、燃料消費量を抑える前後輪駆動力配分比と車両を安定させる前後輪駆動力配分比のトレードオフ的な関係を解消し、燃費良化と車両安定化をより適切に両立させ、スピンやドリフトアウトをする前に車両を安定させる前後輪駆動力配分にすることができる。   As a result, appropriate driving force distribution according to the state of the vehicle can be performed, eliminating the trade-off relationship between the front and rear wheel driving force distribution ratio that suppresses fuel consumption and the front and rear wheel driving force distribution ratio that stabilizes the vehicle. Therefore, it is possible to achieve both front and rear wheel driving force distribution that balances fuel consumption improvement and vehicle stabilization more appropriately, and stabilizes the vehicle before spinning or drifting out.

以下に、本発明の車両の駆動力配分制御装置の実施の形態を図面を参照して説明する。
図1は、本発明による駆動力配分制御装置を適用する車両の標準的な構成の一つの実施形態を示している。該車両は、左右の前輪(タイヤ)1、2の駆動源としてエンジン(内燃機関)105とフロントモータ(電動機)104を有し、左右の後輪(タイヤ)3、4の駆動源としてリアモータ(電動機)109を有する。
Embodiments of a vehicle driving force distribution control apparatus according to the present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment of a standard configuration of a vehicle to which a driving force distribution control device according to the present invention is applied. The vehicle has an engine (internal combustion engine) 105 and a front motor (electric motor) 104 as drive sources for the left and right front wheels (tires) 1, and a rear motor (drive motor for the left and right rear wheels 3 and 4). Electric motor) 109.

エンジン105は、直噴型内燃機関等、燃料消費を抑えられる良燃費型のものを採用することができる。フロントモータ104、リアモータ109は、力行と回生が可能な電動モータで、三相同期モータや三相誘導モータなどを採用する。   The engine 105 may be a fuel-efficient engine that can suppress fuel consumption, such as a direct injection internal combustion engine. The front motor 104 and the rear motor 109 are electric motors capable of power running and regeneration, and employ a three-phase synchronous motor, a three-phase induction motor, or the like.

エンジン105の出力軸は、クラッチ111bを介して動力分割機構112にトルク伝達関係で接続されている。フロントモータ104の出力軸はクラッチ111aを介して動力分割機構112にトルク伝達関係で接続されている。動力分割機構112は、フロントモータ104の出力トルクとエンジン105の出力トルクとを足し合わせてトルクコンバータ103へ動力を伝達する。   The output shaft of the engine 105 is connected to the power split mechanism 112 via the clutch 111b in a torque transmission relationship. The output shaft of the front motor 104 is connected to the power split mechanism 112 via the clutch 111a in a torque transmission relationship. The power split mechanism 112 adds the output torque of the front motor 104 and the output torque of the engine 105 and transmits the power to the torque converter 103.

この機構では、クラッチ111aを締結、クラッチ111bを非締結状態にすることで、車両はフロントモータ104の動力のみの走行することができる。また、クラッチ111aを非締結、クラッチ111bを締結状態にすれば、車両はエンジン105の動力のみで走行することができる。また、動力分割機構112によって、前輪1、2に出力すべきトルクをフロントモータ104とエンジン105とで分け持つことにより、両者の動力を効率よく用いることができる。   In this mechanism, the vehicle can travel only with the power of the front motor 104 by engaging the clutch 111a and disengaging the clutch 111b. Further, if the clutch 111 a is not engaged and the clutch 111 b is engaged, the vehicle can travel only with the power of the engine 105. In addition, the power split mechanism 112 can share the torque to be output to the front wheels 1 and 2 between the front motor 104 and the engine 105, so that the power of both can be used efficiently.

トルクコンバータ103の出力トルクは、トランスミッション(自動変速機)102に伝達され、これにより、ディファレンシャル101を介して前輪軸100aに伝達される。これにより、左右の前輪1、2が回転駆動される。   The output torque of the torque converter 103 is transmitted to the transmission (automatic transmission) 102, and is thereby transmitted to the front wheel shaft 100a via the differential 101. Thereby, the left and right front wheels 1 and 2 are rotationally driven.

リアモータ109には後輪軸100bが駆動連結されており、リアモータ109の出力トルクによって後輪3、4が回転駆動される。   A rear wheel shaft 100 b is drivingly connected to the rear motor 109, and the rear wheels 3 and 4 are rotationally driven by the output torque of the rear motor 109.

フロントモータ104とリアモータ109とを作動させる電力の電源は、バッテリ107である。バッテリ107は、リチウムイオン電池やニッケル水素電池が使用されるが、バッテリ以外に、コンデンサなど、可逆的にエネルギを入出力できるものであればよい。   A power source for operating the front motor 104 and the rear motor 109 is a battery 107. As the battery 107, a lithium ion battery or a nickel metal hydride battery is used. However, any battery other than a battery that can input and output energy reversibly may be used.

バッテリ107には、フロントモータ104用のインバータ106と、リアモータ109用のインバータ108が接続されている。インバータ106、108は、バッテリ107から出力される直流電流を交流に変換し、フロントモータ104、リアモータ109で生成された交流電流を直流へ変換する機能を持っている。   An inverter 106 for the front motor 104 and an inverter 108 for the rear motor 109 are connected to the battery 107. The inverters 106 and 108 have a function of converting the direct current output from the battery 107 into alternating current and converting the alternating current generated by the front motor 104 and the rear motor 109 into direct current.

フロントモータ104とリアモータ109とが力行動作する場合には、バッテリ107に蓄えられた直流電流が、それぞれインバータ106、108によって交流電流に変換され、交流電流がフロントモータ104、リアモータ109に供給される。ここで、バッテリ107の直流電流は、DC/DCコンバータなどによって昇圧されてインバータ106、108に送る構成も考えられる。   When the front motor 104 and the rear motor 109 perform a power running operation, the direct current stored in the battery 107 is converted into alternating current by the inverters 106 and 108, respectively, and the alternating current is supplied to the front motor 104 and the rear motor 109. . Here, a configuration in which the direct current of the battery 107 is boosted by a DC / DC converter or the like and sent to the inverters 106 and 108 is also conceivable.

フロントモータ104、リアモータ109が回生動作する場合には、それぞれのモータ104、109で生成された交流電流がインバータ106、108によって直流電流に変換され、その直流電流がバッテリ107に蓄えられる。   When the front motor 104 and the rear motor 109 perform regenerative operations, the alternating currents generated by the motors 104 and 109 are converted into direct currents by the inverters 106 and 108, and the direct currents are stored in the battery 107.

コントローラ110は、車両に搭載された各コンポーネントを統括するマイクロコンピュータによるECUである。コントローラ110は、バッテリ107に蓄えられた電力量SOC(State Of Charge:バッテリ残量)、エンジン105から出力されるトルク、バッテリ107に流れる電流値、前輪1、2、後輪3、4の回転速度、図示されていないアクセルペダル、ブレーキペダルの踏込量、車両の前後方向の加速度および横方向の加速度、車両のヨーレートといったセンサ値と、トランスミッション102の変速比を取り込み、これらの値を基にして各駆動源を作動させる指令値を出力する。   The controller 110 is an ECU by a microcomputer that controls each component mounted on the vehicle. The controller 110 stores the amount of power SOC (State Of Charge) stored in the battery 107, the torque output from the engine 105, the current value flowing through the battery 107, the rotation of the front wheels 1, 2, and the rear wheels 3, 4. Sensor values such as speed, accelerator pedal (not shown), amount of brake pedal depression, vehicle longitudinal and lateral acceleration, vehicle yaw rate, and gear ratio of transmission 102 are taken in, and based on these values A command value for operating each drive source is output.

ここで、便宜的に、駆動力配分の配分刻み番号iを導入する。iは前輪駆動力配分率αを適当な間隔で刻む際のそれぞれの前輪駆動力配分率αに付与した番号であり、ドライバ要求駆動力をn等分した場合、αiは、下式(1)のように定義できる。
αi = 1/n・i …(1)
αi(α0、…αi、…αn)
Here, for convenience, a distribution step number i of the driving force distribution is introduced. i is a number assigned to each front wheel driving force distribution rate α when the front wheel driving force distribution rate α is engraved at an appropriate interval. When driver required driving force is divided into n equal parts, α i is expressed by the following equation (1). Can be defined as
αi = 1 / n · i (1)
αi (α0, ... αi, ... αn)

前後輪駆動力配分比は、式(2)により表される。
前輪駆動力配分率:後輪駆動力配分率 = αi:(1−αi) …(2)
The front / rear wheel driving force distribution ratio is expressed by equation (2).
Front wheel driving force distribution ratio: Rear wheel driving force distribution ratio = αi: (1-αi) (2)

図1に示すように、前後輪間で駆動力配分ができる車両に対しては、前輪駆動力配分率αを決定すれば、各駆動源へのトルク指令値を決定することができる。本実施形態では、前輪駆動力配分率αを算出し、これをもとに各駆動源のトルク指令値(目標駆動力)を設定する。   As shown in FIG. 1, for a vehicle capable of distributing driving force between front and rear wheels, the torque command value to each driving source can be determined by determining the front wheel driving force distribution rate α. In the present embodiment, the front wheel driving force distribution ratio α is calculated, and the torque command value (target driving force) of each driving source is set based on this.

図2は、コントローラ110によって具現される駆動力配分制御装置の一つの実施形態を示している。本実施形態の駆動力配分制御装置は、ドライバ要求駆動力算出部200と、最大摩擦力対応の前後輪駆動力配分比算出部201と、車両安定性重視の第一前後輪駆動力配分比算出部202と、燃費重視の第二前後輪駆動力配分比算出部203と、最終前後輪駆動力配分比算出部204とを有する。   FIG. 2 shows an embodiment of the driving force distribution control apparatus embodied by the controller 110. The driving force distribution control device of the present embodiment includes a driver required driving force calculation unit 200, a front and rear wheel driving force distribution ratio calculation unit 201 corresponding to the maximum frictional force, and a first front and rear wheel driving force distribution ratio calculation that emphasizes vehicle stability. Unit 202, second front and rear wheel driving force distribution ratio calculation unit 203 that emphasizes fuel consumption, and final front and rear wheel driving force distribution ratio calculation unit 204.

ドライバ要求駆動力算出部200は、モータ出力マップとエンジン出力マップから現車両速度Vにおいて出力できる車両の最大トルクを100として、アクセル踏込量Ap(0〜100)からドライバ要求駆動力(トルク)Treqを算出する。現車両速度Vは各輪の回転速度の平均値として算出する。   The driver required driving force calculation unit 200 sets the maximum vehicle torque that can be output at the current vehicle speed V from the motor output map and the engine output map as 100, and calculates the driver required driving force (torque) Treq from the accelerator depression amount Ap (0 to 100). Is calculated. The current vehicle speed V is calculated as an average value of the rotation speed of each wheel.

現車両速度Vにおけるフロントモータ104の最大出力トルクをTmfmax、リアモータ109の最大出力トルクをTmrmax、エンジン105の最大出力トルクをTenmaxとすると、ドライバ要求トルクTreqは、下式(3)により算出できる。
Treq = (Tmfmax+Tmrmax+Tenmax)Ap …(3)
When the maximum output torque of the front motor 104 at the current vehicle speed V is Tmfmax, the maximum output torque of the rear motor 109 is Tmrmax, and the maximum output torque of the engine 105 is Tenmax, the driver request torque Treq can be calculated by the following equation (3).
Treq = (Tmfmax + Tmrmax + Tenmax) Ap (3)

前後輪駆動力配分比算出部201は、最大摩擦力を超えない前後輪駆動力配分比(本実施形態では前輪駆動力配分率)を算出する。   The front / rear wheel driving force distribution ratio calculation unit 201 calculates a front / rear wheel driving force distribution ratio (in this embodiment, a front wheel driving force distribution ratio) that does not exceed the maximum frictional force.

前後輪駆動力配分比算出部201では、車両に搭載した加速度センサより現車両前後方向加速度ax、現車両横方向加速度ayを入力し、ドライバ要求トルクTreqから、車両速度による走行抵抗Fresを考慮し、タイヤ半径をRt、車両重量をWとして、下式(4)のように、路面摩擦係数μを定義する。
μ = 1−(Treq/Rt−Fres)/W/g−ax−ay …(4)
但し、g:重力加速度
The front-rear wheel driving force distribution ratio calculation unit 201 inputs the current vehicle longitudinal acceleration ax and the current vehicle lateral acceleration ay from an acceleration sensor mounted on the vehicle, and considers the driving resistance Fres due to the vehicle speed from the driver required torque Treq. The road surface friction coefficient μ is defined as in the following equation (4), where Rt is the tire radius and W is the vehicle weight.
μ = 1− (Treq / Rt−Fres) / W / g−ax−ay (4)
Where g: gravity acceleration

ここで、ドライバ要求駆動力Treqをn当分し、前輪1、2の最大摩擦力を超えないときの前輪駆動力配分率αをαmax(i=max)とし、後輪3、4の最大摩擦力を超えない前輪駆動力配分率αをαmin(i=min)とする(αmin、…αi、…α_max)。
このときの刻み幅nは、十分精度ある範囲で、適宜変えてもよい。
Here, the driver requested drive force Treq is divided into n, the front wheel drive force distribution ratio α when the maximum friction force of the front wheels 1 and 2 is not exceeded is αmax (i = max), and the maximum friction force of the rear wheels 3 and 4 is set. Is set to αmin (i = min) (αmin,... Αi,... Α_max).
The step width n at this time may be appropriately changed within a sufficiently accurate range.

αmaxとαminは、前輪荷重をWf、後輪荷重をWrとすると、以下の式(5)〜(8)のように定義できる。
(Treq/Rt≦μWfの時)
αmax = 1 …(5)
(Treq/Rt>μWfの時)
αmax = μWf/Treq …(6)
(Treq/Rt≦μWrの時)
αmin = 1 …(7)
(Treq/Rt>μWrの時)
αmin = μWr/Treq …(8)
αmax and αmin can be defined as the following equations (5) to (8), where Wf is the front wheel load and Wr is the rear wheel load.
(When Treq / Rt ≦ μWf)
αmax = 1 (5)
(When Treq / Rt> μWf)
αmax = μWf / Treq (6)
(When Treq / Rt ≦ μWr)
αmin = 1 (7)
(When Treq / Rt> μWr)
αmin = μWr / Treq (8)

従って、最大摩擦力を超えない前後輪駆動力配分比を算出する前後輪駆動力配分比算出部201は、前輪駆動力配分率αとして、αmaxとαminの二つの値を出力する。   Therefore, the front and rear wheel driving force distribution ratio calculation unit 201 that calculates the front and rear wheel driving force distribution ratio that does not exceed the maximum frictional force outputs two values of αmax and αmin as the front wheel driving force distribution ratio α.

次に、第一前後輪駆動力配分比算出部202について説明する。第一前後輪駆動力配分比算出部202は、車両が安定する駆動力配分比として、タイヤ四輪で発生している力が均一に使われているかを判断するために四輪の標準偏差を算出し、偏差が最も小さい時の前後輪駆動力配分比を用いる。   Next, the first front and rear wheel driving force distribution ratio calculation unit 202 will be described. The first front / rear wheel driving force distribution ratio calculation unit 202 uses the standard deviation of the four wheels as a driving force distribution ratio for stabilizing the vehicle to determine whether the force generated in the tire four wheels is used uniformly. Calculate and use the front and rear wheel driving force distribution ratio when the deviation is the smallest.

第一前後輪駆動力配分比算出部202の制御フローを、図3に示すフローチャートを参照手段説明する。   The control flow of the first front / rear wheel driving force distribution ratio calculation unit 202 will be described with reference to the flowchart shown in FIG.

まず、車両の加速度センサから車両に現在掛かっている前後加速度axと左右加速度ayを入力する(ステップS301)。この加速度により車両は前後左右に振られ、各輪の荷重が輪間で移動する。   First, the longitudinal acceleration ax and the lateral acceleration ay currently applied to the vehicle are input from the vehicle acceleration sensor (step S301). Due to this acceleration, the vehicle is swung back and forth and left and right, and the load of each wheel moves between the wheels.

次に、このことに基づいて各輪の荷重移動量を算出する(ステップS302)。各輪の初期輪荷重をW1、W2、W3、W4、車両トレッドをt、車両重心高さをh、重力加速度をgとすると、荷重移動後の各輪の輪荷重W1t、W2t、W3t、W4tは、定常状態では、以下の式(9)〜(12)により表される。   Next, the load movement amount of each wheel is calculated based on this (step S302). If the initial wheel load of each wheel is W1, W2, W3, W4, the vehicle tread is t, the height of the center of gravity of the vehicle is h, and the gravitational acceleration is g, the wheel load W1t, W2t, W3t, W4t of each wheel after the load is moved. Is expressed by the following equations (9) to (12) in a steady state.

なお、輪荷重Wの添字1〜4は、図1における車輪番号に対応し、W1は右側前輪荷重、W2は左側前輪荷重、W3は右側後輪荷重、W4は左側前輪荷重である。
W1t = W1−W/g・ax・h/L+W/g・ay・h/t …(9)
W2t = W2−W/g・ax・h/L−W/g・ay・h/t …(10)
W3t = W3+W/g・ax・h/L+W/g・ay・h/t …(11)
W4t = W4+W/g・ax・h/L−W/g・ay・h/t …(12)
The subscripts 1 to 4 of the wheel load W correspond to the wheel numbers in FIG. 1, W1 is the right front wheel load, W2 is the left front wheel load, W3 is the right rear wheel load, and W4 is the left front wheel load.
W1t = W1-W / g.ax.h / L + W / g.ay.h / t (9)
W2t = W2-W / g.ax.h / L-W / g.ay.h / t (10)
W3t = W3 + W / g.ax.h / L + W / g.ay.h / t (11)
W4t = W4 + W / g.ax.h / L-W / g.ay.h / t (12)

次に、各輪(1、2、3、4)の最大摩擦力Ffmax1、Ffmax2、Ffmax3、Ffmax4を算出する(ステップS303)。式(4)によって路面摩擦係数μを算出しているので、これに基づいて各輪の最大摩擦力Ffmaxj(j=1、2、3、4)を算出することができる。   Next, the maximum frictional forces Ffmax1, Ffmax2, Ffmax3, Ffmax4 of each wheel (1, 2, 3, 4) are calculated (step S303). Since the road surface friction coefficient μ is calculated by the equation (4), the maximum frictional force Ffmaxj (j = 1, 2, 3, 4) of each wheel can be calculated based on this.

次に、現在タイヤからでている力が、摩擦力のどのくらいを占めているかの摩擦力使用率を算出する(ステップS304)。   Next, the usage rate of the frictional force is calculated to determine how much of the frictional force is currently occupied by the tire (step S304).

ここで、摩擦力使用率の算出方法について、図4、図5を参照して説明する。
図4は、車両に掛かる前後方向加速度、横方向加速度によって各輪(1、2、3、4)の荷重が変化し、各輪(1、2、3、4)が発生できる最大摩擦力Ffmax1、Ffmax2、Ffmax3、Ffmax4の大きさが異なることを示している。
Here, a method of calculating the frictional force usage rate will be described with reference to FIGS. 4 and 5.
FIG. 4 shows the maximum frictional force Ffmax1 that can be generated by each wheel (1, 2, 3, 4) by changing the load of each wheel (1, 2, 3, 4) depending on the longitudinal acceleration and lateral acceleration applied to the vehicle. , Ffmax2, Ffmax3, and Ffmax4 are different in size.

図5に示されているように、一般に、各タイヤで発生する駆動力Fxjと横力Fyjの合力Frjは、最大摩擦力Ffmaxjの範囲内に抑えられる。車両の重心Gに掛かる横力Fygは、式(13)により求められる。
Fyg = 1/(1+A・V2 )・V2 /L・W/g …(13)
但し、Vは車両速度、Aはスタビリティファクタと呼ばれる車両固有の定数であり、車両速度に応じた値である。
As shown in FIG. 5, generally, the resultant force Frj of the driving force Fxj and the lateral force Fyj generated in each tire is suppressed within the range of the maximum friction force Ffmaxj. The lateral force Fyg applied to the center of gravity G of the vehicle is obtained by Expression (13).
Fyg = 1 / (1 + A · V2) · V2 / L · W / g (13)
However, V is a vehicle speed, A is a vehicle-specific constant called a stability factor, and is a value corresponding to the vehicle speed.

また、車両の重心Gに掛かる前後力Fxgは、走行抵抗Wresを加味し、ドライバ要求タイヤ軸トルクTreqfから、下式(14)によって推定される。
Fxg = W/g・Treqf・Rt+Wres …(14)
Further, the longitudinal force Fxg applied to the center of gravity G of the vehicle is estimated by the following equation (14) from the driver request tire shaft torque Treqf in consideration of the running resistance Wres.
Fxg = W / g · Treqf · Rt + Wres (14)

次に、それぞれの配分刻み番号iで、前輪1、2への駆動力Fx1、Fx2と、後輪3、4への駆動力Fx3、Fx4を算出する。つまり、四輪の駆動力は、式(15)〜(18)のように定義される。
Fx1 = Fx・αi/2 …(15)
Fx2 = Fx・αi/2 …(16)
Fx3 = Fx・(1−αi)/2 …(17)
Fx4 = Fx・(1−αi)/2 …(18)
Next, the driving forces Fx1 and Fx2 for the front wheels 1 and 2 and the driving forces Fx3 and Fx4 for the rear wheels 3 and 4 are calculated for each distribution step number i. That is, the driving force of the four wheels is defined as in the equations (15) to (18).
Fx1 = Fx · αi / 2 (15)
Fx2 = Fx · αi / 2 (16)
Fx3 = Fx · (1-αi) / 2 (17)
Fx4 = Fx · (1-αi) / 2 (18)

車両の重心Gに掛かる横力Fygは、各車輪へ荷重配分比と同じように掛かるため、各輪(j=1〜4)に掛かる横力Fyjは、下式(19)により定義できる。
Fyj = Fyj・Wj/W …(19)
Since the lateral force Fyg applied to the center of gravity G of the vehicle is applied to each wheel in the same manner as the load distribution ratio, the lateral force Fyj applied to each wheel (j = 1 to 4) can be defined by the following equation (19).
Fyj = Fyj · Wj / W (19)

従って、前輪駆動力配分率αi(i:配分刻み番号、min≦i≦max)の時の各輪の摩擦力使用率Uj(j=1〜4)は、下式(20)によって求められる。
Uj = √(Fxj2 +Fyj2 )/μ・Wj …(20)
但し、0≦Uj≦1
Accordingly, the frictional force usage rate Uj (j = 1 to 4) of each wheel when the front wheel driving force distribution rate αi (i: distribution step number, min ≦ i ≦ max) is obtained by the following equation (20).
Uj = √ (Fxj2 + Fyj2) / μ · Wj (20)
However, 0 ≦ Uj ≦ 1

次に、最大摩擦力を超えない最小の前輪駆動力配分率αmin〜最大摩擦力を超えない最大の前輪駆動力配分率αmaxにおける摩擦力使用率の標準偏差Adisiを算出する(ステップS305)。各輪の摩擦力使用率Ujが算出されたので、まず、配分刻み番号iにおける各輪の摩擦力使用率Ujの平均値Aiを下式(21)によって求める。
Ai = ΣUj/4 …(21)
但し、j=1〜4
Next, the standard deviation Adisi of the frictional force usage rate is calculated from the minimum front wheel driving force distribution rate αmin not exceeding the maximum frictional force to the maximum front wheel driving force distribution rate αmax not exceeding the maximum frictional force (step S305). Since the frictional force usage rate Uj of each wheel is calculated, first, an average value Ai of the frictional force usage rate Uj of each wheel at the distribution step number i is obtained by the following equation (21).
Ai = ΣUj / 4 (21)
However, j = 1-4

続いて、(式)22によって摩擦力使用率の標準偏差Adisiを求める。
Adisi = √(1/4・Σ(Uj−Ai)2 ) …(22)
但し、j=1〜4
Subsequently, the standard deviation Adisi of the frictional force usage rate is obtained by (Expression) 22.
Addi = √ (1/4 · Σ (Uj−Ai) 2) (22)
However, j = 1-4

これによって、ある前後輪駆動力配分比の時の標準偏差が最も小さいものMin(Adisi)が、最も各輪の摩擦力を均一に使っていることを示す。   Thus, Min (Adisi) having the smallest standard deviation at a certain front and rear wheel driving force distribution ratio indicates that the frictional force of each wheel is used most uniformly.

次に、車両の安定性指標として摩擦力使用率の標準偏差を用い、それが最小値Min(Adisi)になる前輪駆動力配分率αdを求める。従って、第一前後輪駆動力配分比算出部202が出力する前輪駆動力配分率αdは、αd=αiで、iはMin(Adisi)における配分番号となり、これを第一前輪駆動力配分率αdとして出力する(ステップS306)。   Next, the standard deviation of the frictional force usage rate is used as a vehicle stability index, and the front wheel driving force distribution rate αd that is the minimum value Min (Adisi) is obtained. Accordingly, the front wheel driving force distribution ratio αd output by the first front and rear wheel driving force distribution ratio calculating unit 202 is αd = αi, i is the distribution number in Min (Adisi), and this is the first front wheel driving force distribution ratio αd. (Step S306).

このときの第一後輪駆動力配分率は(1−αd)であり、第一前後輪駆動力配分比は、αd:(1−αd)である。   The first rear wheel driving force distribution ratio at this time is (1−αd), and the first front and rear wheel driving force distribution ratio is αd: (1−αd).

つまり、第一前後輪駆動力配分比算出部202は、車両安定性指標を、ある前後輪駆動力配分比のときに四輪それぞれのタイヤに掛かっている力に応じて算出し、その指標に基づいて第一前後輪駆動力配分比を出力するものであり、具体的には、車両が安定する駆動力配分比として、タイヤ四輪で発生している力が均一に使われているかを判断するために四輪の標準偏差を算出し、偏差が最も小さい時の前後輪駆動力配分比を用いる。   That is, the first front / rear wheel driving force distribution ratio calculation unit 202 calculates a vehicle stability index according to the force applied to the tires of the four wheels at a certain front / rear wheel driving force distribution ratio. Based on this, the first front / rear wheel drive force distribution ratio is output. Specifically, it is determined whether the force generated in the tires is uniformly used as the drive force distribution ratio that stabilizes the vehicle. Therefore, the standard deviation of the four wheels is calculated, and the front / rear wheel driving force distribution ratio when the deviation is the smallest is used.

上述したように、本実施形態では、タイヤの摩擦力使用率の標準偏差を算出し、最も偏差が少ない配分比としたが、これに限らず、車両の安定性を示す物理量は、タイヤ速度と車両速度との比を表すスリップ率でも構わない。また、旋回安定性、旋回安定性においては、第一前後輪駆動力配分比としてそのときの車両前後輪荷重配分比を採用してもよい。  As described above, in the present embodiment, the standard deviation of the tire friction force usage rate is calculated and the distribution ratio with the smallest deviation is set. However, the physical quantity indicating the stability of the vehicle is not limited to this and is the tire speed. A slip ratio representing a ratio to the vehicle speed may be used. Further, in turning stability and turning stability, the vehicle front and rear wheel load distribution ratio at that time may be adopted as the first front and rear wheel driving force distribution ratio.

例えば、図6のように、車両の安定性を考慮した何らかの指標に基づき、その指標において、最もよい評価を得られる(i)を検索し、そのときの前輪駆動力配分率αiを第一前輪駆動力配分率αdとしてもよい。   For example, as shown in FIG. 6, based on some index that considers the stability of the vehicle, (i) that obtains the best evaluation is searched for that index, and the front wheel driving force distribution ratio αi at that time is determined as the first front wheel. The driving force distribution rate αd may be used.

つまり、第一前後輪駆動力配分比算出部202は、車両安定性指標を、ある前後輪駆動力配分比のときに四輪それぞれのタイヤに掛かっている力に応じて算出し、その指標に基づいて第一前後輪駆動力配分比(第一前輪駆動力配分率αd)を算出する。   That is, the first front / rear wheel driving force distribution ratio calculation unit 202 calculates a vehicle stability index according to the force applied to the tires of the four wheels at a certain front / rear wheel driving force distribution ratio. Based on this, the first front and rear wheel driving force distribution ratio (first front wheel driving force distribution ratio αd) is calculated.

次に、第二前後輪駆動力配分比算出部203について説明する。第二前後輪駆動力配分比算出部203は、燃費重視の前後輪駆動力配分比として、燃料消費量を軽減するための前後輪駆動力配分比を算出する。   Next, the second front / rear wheel driving force distribution ratio calculation unit 203 will be described. The second front / rear wheel driving force distribution ratio calculation unit 203 calculates a front / rear wheel driving force distribution ratio for reducing fuel consumption as a front / rear wheel driving force distribution ratio with an emphasis on fuel consumption.

第二前後輪駆動力配分比算出部203の制御フローを、図7に示すフローチャートを参照して説明する。   The control flow of the second front / rear wheel driving force distribution ratio calculation unit 203 will be described with reference to the flowchart shown in FIG.

まず、前輪駆動力配分率αの範囲αminとαmaxを前後輪駆動力配分比算出部201より入力する(ステップS401)。   First, the range αmin and αmax of the front wheel driving force distribution ratio α are input from the front and rear wheel driving force distribution ratio calculation unit 201 (step S401).

次に、ある前輪駆動力配分率αi(i:配分刻み番号、min≦i≦max)におけるリアモータ負担トルクTrmを下式(23)により算出し、後輪負担トルクTrmと、図8に示されているようなリアモータ109の出力特性に基づいてリアモータ電流要求量Armを算出する(ステップS402)。
Trm = Treq・(1−αi) …(23)
Next, the rear motor burden torque Trm at a certain front wheel driving force distribution ratio αi (i: distribution step number, min ≦ i ≦ max) is calculated by the following equation (23), and the rear wheel burden torque Trm is shown in FIG. The required rear motor current Arm is calculated based on the output characteristics of the rear motor 109 as described above (step S402).
Trm = Treq · (1-αi) (23)

次に、バッテリ充放電要求量よりフロントモータ要求発電量を算出する(ステップS403)。ここでは、バッテリ充電残量SOCから、バッテリ107が要求する発電量Creqを、図9に示されているようなマップにより算出する。このマップではバッテリ充電残量SOCが少なければ少ないほど充電要求量を増加し、バッテリ充電残量SOCが多ければ多いほどバッテリ107から放電される。   Next, the front motor required power generation amount is calculated from the battery charge / discharge request amount (step S403). Here, the power generation amount Creq required by the battery 107 is calculated from the remaining battery charge SOC using a map as shown in FIG. In this map, the smaller the remaining battery charge SOC is, the more the required charge amount is increased. The more the remaining battery charge SOC is, the more the battery 107 is discharged.

発電量Creqは、本実施形態では、フロントモータ104による発電によって得られる。ここで、例えば、バッテリ充電残量SOCが50%を切る場合には、フロントモータ104に発電要求をするため、フロントモータ104は発電(回生)を行い、逆にバッテリ充電残量SOCが50%を上回る場合には、フロントモータ104は力行をする。   In this embodiment, the power generation amount Creq is obtained by power generation by the front motor 104. Here, for example, when the remaining battery charge SOC is less than 50%, the front motor 104 generates power (regeneration) in order to make a power generation request to the front motor 104. Conversely, the remaining battery charge SOC is 50%. If the value exceeds the value, the front motor 104 performs power running.

次に、フロントモータ104の力行トルク、発電トルクの算出方法について説明する。例として、バッテリ充電残量SOCが50%以下になっている状態で、発電要求が出たものとし、そのトルクの大きさをTpreqとする。フロントモータ104が負担するトルクTfmは次式(24)によって算出する。
Tfm = Treq・αi …(24)
Next, a method for calculating the power running torque and power generation torque of the front motor 104 will be described. As an example, it is assumed that a power generation request is issued in a state where the remaining battery charge SOC is 50% or less, and the magnitude of the torque is Tpreq. The torque Tfm borne by the front motor 104 is calculated by the following equation (24).
Tfm = Treq · αi (24)

次に、エンジン最適燃費線を参照してフロントモータ104とエンジン105のトルク配分量を算出する(ステップS404)。ここでは、図10に示すようなエンジントルクマップにおいて最適燃費線Sを算出しておき、あるエンジン回転数Nengの時の最適燃費線Sに従ったエンジントルクをTenoptとし、下記の各状態に応じて発電要求トルクTprepを算出する。   Next, the torque distribution amount between the front motor 104 and the engine 105 is calculated with reference to the engine optimum fuel consumption line (step S404). Here, the optimal fuel consumption line S is calculated in the engine torque map as shown in FIG. 10, and the engine torque according to the optimal fuel consumption line S at a certain engine speed Neng is defined as Tenopt, and according to the following states. The power generation request torque Tprep is calculated.

(Tfm<TenoptかつTfm+Tpreq≧Tenoptの時)
Tprep = Tfm−Tenopt …(25)
これにより発電量が抑制される。
(When Tfm <Tenopt and Tfm + Tpreq ≧ Tenopt)
Tprep = Tfm-Tenopt (25)
Thereby, the power generation amount is suppressed.

(Tfm<TenoptかつTfm+Tpreq<Tenoptの時)
Tprep = Tenopt−Tfm …(26)
(Tfm <Tenopt and Tfm + Tpreq <Tenopt)
Tprep = Tenopt−Tfm (26)

また、発電要求トルクTprepが負(放電要求)の場合でも、同様の手順を踏むことによって、バッテリ充電残量SOCを50%付近に保ち、さらにエンジン効率が最も良い点で動作することができる。   Further, even when the power generation request torque Tprep is negative (discharge request), the battery charge remaining SOC can be kept near 50% and the engine can be operated at the best engine efficiency by following the same procedure.

次に、実際にどの程度のエネルギを消費したか(燃料消費量と電力消費量)を算出する(ステップS405)。エンジン105は、そのときの要求トルクと回転数から、エンジン105が実際に消費したエネルギ量Consengを計算することができる。これは、予め、実験などによってエンジン105の出力特性を求め、そのときの燃料消費量特性としてマップ化したものを用いる。   Next, how much energy is actually consumed (fuel consumption and power consumption) is calculated (step S405). The engine 105 can calculate the amount of energy Conseng actually consumed by the engine 105 from the required torque and the rotation speed at that time. For this, an output characteristic of the engine 105 is obtained in advance by experiments or the like, and a map of the fuel consumption characteristic at that time is used.

一方、フロントモータ104で消費もしくは生産したエネルギはバッテリ107に流れる電流値とバッテリ電圧から換算し、電力消費量(生産量)Consmoとして求めることができる。これらを基に、あるiにおける総エネルギ消費量Conssumは、下式(27)により表される。
Conssum(i) = Conseng+Consmo …(27)
On the other hand, the energy consumed or produced by the front motor 104 can be calculated from the value of the current flowing through the battery 107 and the battery voltage, and obtained as the power consumption (production amount) Consmo. Based on these, the total energy consumption Consum for a given i is expressed by the following equation (27).
Conssum (i) = Conseng + Consmo (27)

このとき、図11に示されているように、燃料消費量が少なくなる(i)を算出し(ステップS406)、そのときの前輪駆動力配分率αiを第二前輪駆動力配分率αfとして出力する(ステップS470)。   At this time, as shown in FIG. 11, (i) at which the fuel consumption is reduced is calculated (step S406), and the front wheel driving force distribution rate αi at that time is output as the second front wheel driving force distribution rate αf. (Step S470).

このときの第二後輪駆動力配分率は(1−αf)であり、第二前後輪駆動力配分比は、αf:(1−αf)である。   The second rear wheel driving force distribution ratio at this time is (1-αf), and the second front and rear wheel driving force distribution ratio is αf: (1-αf).

上述したように、本実施形態では、バッテリ発電要求量を50%付近に保つように、フロントモータ104のトルクを算出し、エンジン105の最適燃費線に合わせるようにフロントモータ104とエンジン105の駆動力配分を行い、燃料消費量と電力消費量の和が最も少なくなる前輪駆動力配分率を第二前輪駆動力配分率αfとした。   As described above, in this embodiment, the torque of the front motor 104 is calculated so that the required amount of battery power generation is kept near 50%, and the front motor 104 and the engine 105 are driven so as to match the optimum fuel consumption line of the engine 105. The front wheel driving force distribution rate at which the sum of the fuel consumption and the power consumption is minimized is defined as the second front wheel driving force distribution rate αf.

つまり、第二前後輪駆動力配分比算出部203は、車両の燃料消費量の指標を、車両の動力構成、もしくは動力構成とエネルギ蓄積媒体の両方の効率に応じて算出し、その指標に基づいて第二前後輪駆動力配分比(第二前輪駆動力配分率αf)を算出する。   That is, the second front / rear wheel driving force distribution ratio calculation unit 203 calculates a fuel consumption index of the vehicle according to the power configuration of the vehicle or the efficiency of both the power configuration and the energy storage medium, and based on the index. The second front and rear wheel driving force distribution ratio (second front wheel driving force distribution ratio αf) is calculated.

このときのフロントモータ104とエンジン105のトルク配分比は、バッテリ充放電要求量とエンジン最適燃費効率線に基づいて配分する方法のように、エネルギ使用に関する指標を設け、図11に示されているように、その指標に従って前後輪駆動力配分比を決定する。なお、第二前後輪駆動力配分比によって燃料消費量を軽減する制御方法は、公知例を含め様々なものがある。   The torque distribution ratio between the front motor 104 and the engine 105 at this time is provided with an index relating to energy use, as shown in FIG. 11, as in a method of distributing based on the battery charge / discharge request amount and the engine optimum fuel efficiency line. Thus, the front and rear wheel driving force distribution ratio is determined according to the index. There are various control methods for reducing the fuel consumption by the second front / rear wheel driving force distribution ratio including known examples.

第一前後駆動力配分比、第二前後駆動力配分比ともに、前後輪駆動力配分比としてみなせる出力をすれば実現できるため、第一前後駆動力配分比および第二前後駆動力配分比は本実施形態に限るものではない。   Since the first front / rear driving force distribution ratio and the second front / rear driving force distribution ratio can be realized by providing an output that can be regarded as the front / rear wheel driving force distribution ratio, the first front / rear driving force distribution ratio and the second front / rear driving force distribution ratio are It is not limited to the embodiment.

次に、最終前後輪駆動力配分比算出部204について説明する。最終前後輪駆動力配分比算出部204は、第一前後輪駆動力配分比算出部202が算出した第一前輪駆動力配分率αdと、第二前後輪駆動力配分比算出部203が算出した第二前輪駆動力配分率αfと、車両状態量を入力し、最終前輪駆動力配分率αmを出力する。   Next, the final front and rear wheel driving force distribution ratio calculation unit 204 will be described. The final front and rear wheel driving force distribution ratio calculating unit 204 calculates the first front wheel driving force distribution ratio αd calculated by the first front and rear wheel driving force distribution ratio calculating unit 202 and the second front and rear wheel driving force distribution ratio calculating unit 203. The second front wheel driving force distribution rate αf and the vehicle state quantity are input, and the final front wheel driving force distribution rate αm is output.

車両状態量の入力は、車両の運動状態の指標に用いるための必要な情報量を行列として入力する。本実施形態では、ヨーレートを入力する。ヨーレートと、操舵角、車両速度から求める規範ヨーレートとの偏差量Δを算出し、偏差量Δに応じて評価量(重み)Evを、図12に示すようなマップを用いて設定し、下式(28)に従って最終前輪駆動力配分率αmを演算し、出力する。
αm = αf・Ev+αd(1−Ev) …(28)
In the input of the vehicle state quantity, a necessary amount of information to be used as an index of the motion state of the vehicle is inputted as a matrix. In this embodiment, the yaw rate is input. A deviation amount Δ between the yaw rate and the reference yaw rate obtained from the steering angle and the vehicle speed is calculated, and an evaluation amount (weight) Ev is set according to the deviation amount Δ using a map as shown in FIG. The final front wheel driving force distribution ratio αm is calculated and output according to (28).
αm = αf · Ev + αd (1-Ev) (28)

この場合、規範ヨーレートからの偏差量Δが少なければ、評価量Evは1に近づき、結果として、最終前後輪駆動力配分比算出部204は、最終前輪駆動力配分率αmとして第二前輪駆動力配分率αfを出力する。これに対し、ヨーレート偏差量Δが増大し、評価量EVが0になった場合には、最終前後輪駆動力配分比算出部204は、最終前輪駆動力配分率αmとして第一前輪駆動力配分率αdを出力する。   In this case, if the deviation amount Δ from the reference yaw rate is small, the evaluation amount Ev approaches 1, and as a result, the final front and rear wheel driving force distribution ratio calculating unit 204 sets the second front wheel driving force as the final front wheel driving force distribution rate αm. The distribution rate αf is output. On the other hand, when the yaw rate deviation amount Δ increases and the evaluation amount EV becomes 0, the final front and rear wheel driving force distribution ratio calculation unit 204 sets the first front wheel driving force distribution as the final front wheel driving force distribution rate αm. The rate αd is output.

0<Ev1<ならば、式(28)に従って第一前輪駆動力配分率αdと第二前輪駆動力配分率αfの中間の値を最終前輪駆動力配分率αmとして出力する。つまり、第一前輪駆動力配分率αdと第二前輪駆動力配分率αfの第一前後輪駆動力配分比αdと第二前後輪駆動力配分比αfの中間の値αm(端点も含む)を車両状態量という指標に従って出力する。   If 0 <Ev1 <, an intermediate value between the first front wheel driving force distribution rate αd and the second front wheel driving force distribution rate αf is output as the final front wheel driving force distribution rate αm according to the equation (28). That is, an intermediate value αm (including end points) between the first front and rear wheel driving force distribution ratio αd and the second front and rear wheel driving force distribution ratio αf of the first front wheel driving force distribution ratio αd and the second front wheel driving force distribution ratio αf. Output according to an index called vehicle state quantity.

つまり、最終前後輪駆動力配分比算出部204は、車両の旋回安定性または直進安定性を判断する車両安定性指標が高い安定性を示すに従って最終前後輪駆動力配分比(最終前輪駆動力配分率αm)を第二前後輪駆動力配分比(第二前輪駆動力配分率αf)へ近づけ、車両安定性指標が低い安定性を示すに従って最終前後輪駆動力配分比(最終前輪駆動力配分率αm)を第一前後輪駆動力配分比(第一前輪駆動力配分率αd)へ近づける。   That is, the final front / rear wheel driving force distribution ratio calculation unit 204 determines that the final front / rear wheel driving force distribution ratio (final front wheel driving force distribution distribution) increases as the vehicle stability index for determining the turning stability or straight-line stability of the vehicle shows high stability. Rate αm) approaches the second front and rear wheel driving force distribution ratio (second front wheel driving force distribution ratio αf), and the final front and rear wheel driving force distribution ratio (final front wheel driving force distribution ratio) as the vehicle stability index indicates low stability. αm) is made closer to the first front and rear wheel driving force distribution ratio (first front wheel driving force distribution ratio αd).

そして、最終値前後輪駆動力配分率αmに基づいて、前輪の目標駆動力と後輪の目標駆動力を設定する。   Then, based on the final value front and rear wheel driving force distribution ratio αm, the front wheel target driving force and the rear wheel target driving force are set.

これにより、車両の状態に応じた適切な駆動力配分を行うことができ、燃料消費量を抑える前後輪駆動力配分比と車両を安定させる前後輪駆動力配分比のトレードオフ的な関係を解消し、燃費良化と車両安定化をより適切に両立させ、スピンやドリフトアウトするような不適切な車両状態になる以前に、車両を未安定させる前後輪駆動力配分にすることができる。   As a result, appropriate driving force distribution according to the state of the vehicle can be performed, eliminating the trade-off relationship between the front and rear wheel driving force distribution ratio that suppresses fuel consumption and the front and rear wheel driving force distribution ratio that stabilizes the vehicle. Thus, it is possible to achieve both front and rear wheel driving force distribution that makes the vehicle unstabilized before achieving an inappropriate vehicle state such as spinning or drifting out more appropriately by improving fuel efficiency and stabilizing the vehicle.

図13は、本発明による駆動力配分制御装置を適用する車両(後輪独立駆動車両)の実施形態を示している。なお、図13において、図1に対応する部分は、図1に付した符号と同一の符号を付けて、その説明を省略する。   FIG. 13 shows an embodiment of a vehicle (rear wheel independent drive vehicle) to which the driving force distribution control device according to the present invention is applied. In FIG. 13, parts corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted.

この実施形態では、左右の後輪3、4が、個別のリヤモータ109R、リヤモータ109Lによって個々に独立して駆動される構成になっている。リヤモータ109R、リヤモータ109Lは、各モータ毎のインバータ108R、108Lより個別に電力供給され、個別に独立制御される。   In this embodiment, the left and right rear wheels 3 and 4 are configured to be independently driven by individual rear motors 109R and 109L. The rear motor 109R and the rear motor 109L are individually supplied with electric power from the inverters 108R and 108L for each motor, and are independently controlled independently.

なお、ここで、諸インバータ106、108R、108Lは、コンバータを介してバッテリ107と接続してもよい。   Here, the inverters 106, 108R, and 108L may be connected to the battery 107 via a converter.

このような車両では、前後輪間の駆動力配分比と、後輪の左右輪間の駆動力配分比も決定しなければならないため、図1で示した車両の駆動構成よりも、目標駆動力の決定の自由度が一つ増える。   In such a vehicle, since the driving force distribution ratio between the front and rear wheels and the driving force distribution ratio between the left and right wheels of the rear wheel must be determined, the target driving force is more than the driving configuration of the vehicle shown in FIG. Increases the degree of freedom of decision.

そこで、前後輪の駆動力配分比に対して左右輪で出力すべきトルクの大きさを、操舵角、車両速度に応じて設定しておく。前後輪駆動力配分比を変化させることができる車両において、その配分比を旋回中に変化させると、車両に発生するヨーレートが変化するため、ドライバは、前後輪駆動力配分比が変化する度に適切に操舵する必要があり、ドライバ負担となる。   Therefore, the magnitude of the torque to be output by the left and right wheels with respect to the driving force distribution ratio of the front and rear wheels is set according to the steering angle and the vehicle speed. In a vehicle that can change the front-rear wheel driving force distribution ratio, if the distribution ratio is changed during a turn, the yaw rate generated in the vehicle changes. It is necessary to steer properly, which is a burden on the driver.

このことに対し、本実施形態の後輪独立駆動車両では、左右輪の駆動力配分差で、車両重心周りにヨーモーメントを生成することによって所定のヨーレートへ補償することができる。   On the other hand, in the rear wheel independent drive vehicle of the present embodiment, it is possible to compensate for a predetermined yaw rate by generating a yaw moment around the center of gravity of the vehicle due to a difference in driving force distribution between the left and right wheels.

図14に示されているように、ある前輪駆動力配分率αの時の操舵角および車両速度に応じて、車両の重心に生成すべきヨーモーメントΔTの大きさを算出しておく。そして、左右輪に同じ大きさで向きが逆になるように駆動力を生成することで、ヨーモーメントΔTを出力する。なお、図13において、ΔTmaxはαmaxにおける重心に生成すべきヨーモーメントの大きさ、ΔTminはαminにおける重心に生成すべきヨーモーメントの大きさである。   As shown in FIG. 14, the magnitude of the yaw moment ΔT to be generated at the center of gravity of the vehicle is calculated in accordance with the steering angle and vehicle speed at a certain front wheel driving force distribution rate α. Then, the yaw moment ΔT is output by generating a driving force so that the left and right wheels have the same size and opposite directions. In FIG. 13, ΔTmax is the magnitude of the yaw moment to be generated at the center of gravity at αmax, and ΔTmin is the magnitude of the yaw moment to be generated at the center of gravity at αmin.

このようにして、後輪駆動力配分率に対して左右輪で出力すべき駆動力の大きさを規定すれば、前後輪駆動力配分比によって二つの指標(直進・旋回 安定性、燃料消費量)を実施例1と同様の手順で評価することができる。   In this way, if the magnitude of the driving force that should be output by the left and right wheels is defined relative to the rear wheel driving force distribution ratio, two indicators (straight / turning stability, fuel consumption) are determined by the front / rear wheel driving force distribution ratio. ) Can be evaluated in the same procedure as in Example 1.

このときの所定のヨーレートは操舵角、車両速度、および車両諸元によって決まる旋回軌道を通るときのヨーレートにしてもよい。もしくは旋回中の各輪の摩擦力を平均化するような駆動力を左右輪へ配分してもよい。   The predetermined yaw rate at this time may be a yaw rate when passing a turning trajectory determined by a steering angle, a vehicle speed, and vehicle specifications. Alternatively, a driving force that averages the frictional force of each wheel during turning may be distributed to the left and right wheels.

つまり、前後輪駆動力配分比、操舵量、速度に応じた左右輪の目標駆動力を予め設定しておき、左右輪目標駆動力を考慮して第一前後輪駆動力配分比と第二前後輪駆動力配分比を決定する。そして、前後輪駆動力配分比に応じて予め設定しておく左右輪目標駆動力として、車両が所定のヨーレートとなるためのヨーモーメントを生成するように目標駆動力を左右輪に配分する。   In other words, the left and right wheel target driving force is set in advance according to the front and rear wheel driving force distribution ratio, the steering amount, and the speed, and the first front and rear wheel driving force distribution ratio and the second front and rear wheel driving force are determined in consideration of the left and right wheel target driving force. Determine the wheel drive force distribution ratio. Then, the target driving force is distributed to the left and right wheels so as to generate a yaw moment for the vehicle to have a predetermined yaw rate as the left and right wheel target driving force set in advance according to the front and rear wheel driving force distribution ratio.

なお、左右輪の独立駆動は、後輪に限られることはなく、前輪であってもよい。   The independent driving of the left and right wheels is not limited to the rear wheels, and may be front wheels.

本発明による駆動力配分制御装置を適用する車両の標準的な構成の一つの実施形態を示す構成図。The block diagram which shows one embodiment of the standard structure of the vehicle to which the driving force distribution control apparatus by this invention is applied. 本発明による駆動力配分制御装置の一つの実施形態を示すブロック図。The block diagram which shows one Embodiment of the driving force distribution control apparatus by this invention. 本発明による駆動力配分制御装置の第一前後輪駆動力配分比算出部の制御フローを示すフローチャート。The flowchart which shows the control flow of the 1st front-and-rear wheel driving force distribution ratio calculation part of the driving force distribution control apparatus by this invention. 旋回中の各輪におけるタイヤにかかる力、最大摩擦力を示す説明図。Explanatory drawing which shows the force applied to the tire in each wheel during turning, and the maximum frictional force. タイヤにかかる力と最大摩擦力の関係を示す説明図。Explanatory drawing which shows the relationship between the force concerning a tire, and the maximum frictional force. 第一前後輪駆動力配分比および第二前後輪駆動力配分比の算出において、それぞれで評価すべき指標に対して最適値となる(i)を検索する概念図。The conceptual diagram which searches (i) used as an optimal value with respect to the parameter | index which should be evaluated in calculation of 1st front-and-rear wheel driving force distribution ratio and 2nd front-and-rear wheel driving force distribution ratio, respectively. 本発明による駆動力配分制御装置の第二前後輪駆動力配分比算出部の制御フローを示すフローチャート。The flowchart which shows the control flow of the 2nd front-and-rear wheel drive force distribution ratio calculation part of the drive force distribution control apparatus by this invention. リアモータの出力特性を示すグラフ。The graph which shows the output characteristic of a rear motor. バッテリの充放電要求特性を示すグラフ。The graph which shows the charging / discharging required characteristic of a battery. エンジンの最適燃費線とフロントモータ負担トルク、前輪負担トルクの関係例を示すグラフ。The graph which shows the example of a relationship between the optimal fuel consumption line of an engine, front motor burden torque, and front wheel burden torque. 燃料消費量と電力消費量の和が最も小さくなる(i)の検索する概念図。The conceptual diagram to search of (i) where the sum of fuel consumption and electric power consumption becomes the smallest. 第一前後輪駆動力配分比と第二前後輪駆動力配分比との間の値を車両状態量に応じて算出するための評価マップ。An evaluation map for calculating a value between the first front and rear wheel driving force distribution ratio and the second front and rear wheel driving force distribution ratio according to the vehicle state quantity. 本発明による駆動力配分制御装置を適用する車両の標準的な構成の他の実施形態を示す構成図。The block diagram which shows other embodiment of the standard structure of the vehicle to which the driving force distribution control apparatus by this invention is applied. 前後輪駆動力配分比に対する左右輪で出力すべきヨーモーメント量の規定マップ。A prescribed map of the amount of yaw moment that should be output by the left and right wheels relative to the front and rear wheel drive force distribution ratio.

符号の説明Explanation of symbols

11、12 前輪
13、14 後輪
101 ディファレンシャル
102 トランスミッション
103 トルクコンバータ
104 フロントモータ
105 エンジン
106 インバータ
107 バッテリ
108 インバータ
109、109R、109L リアモータ
110 コントローラ
111a、111b クラッチ
200 ドライバ要求駆動力算出部
201 前後輪駆動力配分比算出部
202 第一前後輪駆動力配分比算出部
203 第二前後輪駆動力配分比算出部
204 最終前後輪駆動力配分比算出部
DESCRIPTION OF SYMBOLS 11, 12 Front wheel 13, 14 Rear wheel 101 Differential 102 Transmission 103 Torque converter 104 Front motor 105 Engine 106 Inverter 107 Battery 108 Inverter 109, 109R, 109L Rear motor 110 Controller 111a, 111b Clutch 200 Driver required driving force calculation part 201 Front-rear wheel drive Force distribution ratio calculation unit 202 First front and rear wheel driving force distribution ratio calculation unit 203 Second front and rear wheel driving force distribution ratio calculation unit 204 Final front and rear wheel driving force distribution ratio calculation unit

Claims (6)

前輪と後輪の駆動力を独立に制御可能な車両において、該車両全体の目標駆動力に対して、前輪の目標駆動力と後輪の目標駆動力を決定する駆動力配分制御装置であって、
車両の旋回安定性又は直進安定性を考慮した第一前後輪駆動力配分比を算出する第一前後輪駆動力配分比算出手段と、
燃料消費量を考慮した第二前後輪駆動力配分比を算出する第二前後輪駆動力配分比算出手段と、
前記第一前後輪駆動力配分比算出手段によって算出された第一前後輪駆動力配分比と前記第二前後輪駆動力配分比算出手段によって算出された第二前後輪駆動力配分比との間の特定値を最終前後輪駆動力配分比として算出する最終前後輪駆動力配分比算出手段とを有し、
前記最終値前後輪駆動力配分比に基づいて、前輪の目標駆動力と後輪の目標駆動力を設定することを特徴とする車両の駆動力配分制御装置。
A driving force distribution control device for determining a front wheel target driving force and a rear wheel target driving force with respect to a target driving force of the entire vehicle in a vehicle capable of independently controlling front and rear wheel driving forces. ,
First front and rear wheel driving force distribution ratio calculating means for calculating a first front and rear wheel driving force distribution ratio in consideration of turning stability or straight running stability of the vehicle;
Second front and rear wheel driving force distribution ratio calculating means for calculating a second front and rear wheel driving force distribution ratio in consideration of fuel consumption;
Between the first front and rear wheel driving force distribution ratio calculated by the first front and rear wheel driving force distribution ratio calculating means and the second front and rear wheel driving force distribution ratio calculated by the second front and rear wheel driving force distribution ratio calculating means. A final front and rear wheel driving force distribution ratio calculating means for calculating a specific value of
A vehicle driving force distribution control device that sets a front wheel target driving force and a rear wheel target driving force based on the final value front and rear wheel driving force distribution ratio.
前記車両の旋回安定性または直進安定性を判断する車両安定性指標を有し、前記最終前後輪駆動力配分比算出手段は、前記車両安定性指標が高い安定性を示すに従って前記最終前後輪駆動力配分比を前記第二前後輪駆動力配分比へ近づけ、前記車両安定性指標が低い安定性を示すに従って前記最終前後輪駆動力配分比を前記第一前後輪駆動力配分比へ近づけることを特徴とする請求項1に記載の車両の駆動力配分制御装置。   The vehicle has a vehicle stability index for determining turning stability or straight running stability of the vehicle, and the final front and rear wheel driving force distribution ratio calculating means drives the final front and rear wheel as the vehicle stability index shows high stability. Bringing the force distribution ratio closer to the second front and rear wheel driving force distribution ratio, and bringing the final front and rear wheel driving force distribution ratio closer to the first front and rear wheel driving force distribution ratio as the vehicle stability index indicates low stability. The vehicle driving force distribution control device according to claim 1, wherein 前輪の左右輪、後輪の左右輪または前後輪両方の左右輪の駆動力をそれぞれ異なる駆動力に制御可能な車両において、前記前後輪駆動力配分比、操舵量、速度に応じた左右輪の目標駆動力を予め設定しておき、前記左右輪目標駆動力を考慮して前記第一前後輪駆動力配分比と前記第二前後輪駆動力配分比を決定することを特徴とする請求項1又は請求項2に記載の車両の駆動力配分制御装置。   In a vehicle that can control the driving force of the left and right wheels of the front wheel, the left and right wheels of the rear wheel, and the left and right wheels of the front and rear wheels to different driving forces, the right and left wheels according to the front and rear wheel driving force distribution ratio, the steering amount, and the speed The target driving force is set in advance, and the first front and rear wheel driving force distribution ratio and the second front and rear wheel driving force distribution ratio are determined in consideration of the left and right wheel target driving force. Alternatively, the driving force distribution control device for a vehicle according to claim 2. 前後輪駆動力配分比に応じて予め設定しておく前記左右輪目標駆動力として、車両が所定のヨーレートとなるためのヨーモーメントを生成するように目標駆動力を左右輪に配分することを特徴とする請求項3に記載の車両の駆動力配分制御装置。   The target driving force is distributed to the left and right wheels so as to generate a yaw moment for the vehicle to have a predetermined yaw rate as the left and right wheel target driving force set in advance according to the front and rear wheel driving force distribution ratio. The vehicle driving force distribution control device according to claim 3. 前記第一前後輪駆動力配分比算出手段は、車両安定性指標を、ある前後輪駆動力配分比のときに四輪それぞれのタイヤに掛かっている力に応じて算出し、その指標に基づいて第一前後輪駆動力配分比を算出することを特徴とする請求項1から4の何れか一項に記載の車両の駆動力配分制御装置。   The first front and rear wheel driving force distribution ratio calculating means calculates a vehicle stability index according to the force applied to each tire of the four wheels at a certain front and rear wheel driving force distribution ratio, and based on the index The vehicle driving force distribution control device according to any one of claims 1 to 4, wherein a first front and rear wheel driving force distribution ratio is calculated. 前記第二前後輪駆動力配分比算出手段は、車両の燃料消費量の指標を、車両の動力構成、もしくは動力構成とエネルギ蓄積媒体の両方の効率に応じて算出し、その指標に基づいて第二前後輪駆動力配分比を算出することを特徴とする請求項1から5の何れか一項に記載の車両の駆動力配分制御装置。   The second front and rear wheel driving force distribution ratio calculating means calculates a fuel consumption index of the vehicle according to the power configuration of the vehicle or the efficiency of both the power configuration and the energy storage medium, and based on the index 6. The vehicle driving force distribution control device according to claim 1, wherein a two-front and rear wheel driving force distribution ratio is calculated.
JP2007063912A 2007-03-13 2007-03-13 Vehicle driving force distribution control device Expired - Fee Related JP4814128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063912A JP4814128B2 (en) 2007-03-13 2007-03-13 Vehicle driving force distribution control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063912A JP4814128B2 (en) 2007-03-13 2007-03-13 Vehicle driving force distribution control device

Publications (2)

Publication Number Publication Date
JP2008222065A JP2008222065A (en) 2008-09-25
JP4814128B2 true JP4814128B2 (en) 2011-11-16

Family

ID=39841168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063912A Expired - Fee Related JP4814128B2 (en) 2007-03-13 2007-03-13 Vehicle driving force distribution control device

Country Status (1)

Country Link
JP (1) JP4814128B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538960A (en) * 1991-08-07 1993-02-19 Mazda Motor Corp Power transmission control device for vehicle
JPH09284911A (en) * 1996-04-08 1997-10-31 Toyota Motor Corp Driving controller for four wheel driving type hybrid vehicle
JP3710085B2 (en) * 2000-11-08 2005-10-26 本田技研工業株式会社 Control device for front and rear wheel drive vehicle

Also Published As

Publication number Publication date
JP2008222065A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
US8924055B2 (en) Vehicle control apparatus
JP4291823B2 (en) Vehicle control device
JP4462224B2 (en) Vehicle hybrid system
US8744713B2 (en) Method for controlling braking of vehicle
US7523797B2 (en) Power output apparatus, method of controlling power output apparatus, and automobile with power output apparatus mounted thereon
US20120123624A1 (en) Running Control Device for Electric Vehicle
JP2004106663A (en) Integrated drive control system and integrated drive control method
JP5596756B2 (en) Electric vehicle
JP2007210586A (en) Vehicle drive system
JP2009159682A (en) Driving force controller
JP2007210418A (en) Controller for vehicle
JP5538633B2 (en) Electric vehicle
JPH11164402A (en) Controller and controlling method for hybrid vehicle
CN104245387A (en) Vehicle, and vehicle control method
CN111137139B (en) Electric vehicle
CN110816281A (en) Control unit, device and method for recuperative brake control of a vehicle
Barman et al. Energy efficient torque allocation design emphasis on payload in a light-duty distributed drive electric vehicle
JP2018033290A (en) Electric automobile
JP4814128B2 (en) Vehicle driving force distribution control device
KR101927183B1 (en) Motor controlling apparatus and method for vehicle
Vignati et al. Optimal cooperative brake distribution strategy for IWM vehicle accounting for electric and friction braking torques
KR102353411B1 (en) Controlling apparatus and method of vehicle
JP5829872B2 (en) vehicle
US10173664B2 (en) Expanding regenerative capacity up to vehicle dynamic limits through integration with mitigative subsystems
JP7456867B2 (en) Hybrid vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees