JP4814033B2 - 検出素子および検出方法 - Google Patents

検出素子および検出方法 Download PDF

Info

Publication number
JP4814033B2
JP4814033B2 JP2006252638A JP2006252638A JP4814033B2 JP 4814033 B2 JP4814033 B2 JP 4814033B2 JP 2006252638 A JP2006252638 A JP 2006252638A JP 2006252638 A JP2006252638 A JP 2006252638A JP 4814033 B2 JP4814033 B2 JP 4814033B2
Authority
JP
Japan
Prior art keywords
closed circuit
detecting
detection
change
physical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006252638A
Other languages
English (en)
Other versions
JP2008076082A (ja
Inventor
創 岡本
浩司 山口
浩一 仙場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006252638A priority Critical patent/JP4814033B2/ja
Publication of JP2008076082A publication Critical patent/JP2008076082A/ja
Application granted granted Critical
Publication of JP4814033B2 publication Critical patent/JP4814033B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

本発明は、超伝導体閉回路を備えた梁状構造において、超伝導体閉回路に流すことができる最大超伝導電流の変化を通じて梁の変形を検出することにより、力や加速度、電荷量、質量などの物理量を検出する検出素子および検出方法に関するものである。
梁にかかる微小な力を検出する力検出素子は、民生機器用素子として利用されている。このような素子の一例では、リソグラフィーに代表される半導体微細加工技術を用い、シリコン等の半導体薄膜を梁状に加工して、力検出素子の梁が形成される。この力検出素子によれば、梁の弾性的な変形による半導体の物性変化を電気的あるいは光学的に検出することにより、梁に加わった微小な力を検知する。
このような半導体力検出素子は、走査型プローブ顕微鏡のカンチレバーや加速度センサーなどの民生機器用素子として使用されている。特に、梁の表面に形成した導電性半導体の抵抗値の変化を測定することにより、梁の変位を検出するピエゾ抵抗効果力検出器は、光学系等の外部部品を必要としない自己検知型センサーとして広く用いられている(非特許文献1参照)。
一方、ジョセフソン接合を含む超伝導体の閉回路は超伝導量子干渉計(SQUID)として知られている(非特許文献2参照)。SQUIDとは、マクロなスケールで発現した超伝導状態の可干渉性を応用した超高感度磁気センサーであり、地磁気の1億分の1程度の非常に微弱な磁気をも検出することが可能である。このようなSQUIDは、漏洩磁場検出、異物検知、生体磁場計測、ICの非破壊検査などの用途で民生機器用素子として広く用いられている。
SQUIDを用いた磁気検出素子の例として、走査型SQUID顕微鏡が挙げられる(非特許文献3参照)。走査型SQUID顕微鏡は、試料表面の磁気分布をマッピングすることのできる、高感度な磁気検出民生機器として利用されている。この走査型SQUID顕微鏡では、X−Y平面を走査するスライダーあるいはピエゾ駆動スキャナに、ジョセフソン接合を含む超伝導体の閉回路が直接あるいは間接的に固定され、回路を流れる超伝導電流の変化を通じて、試料の磁気を敏感に検出する。この場合、超伝導体閉回路は試料の磁気を電気的に読み取る自己検知型の磁気検出器である。
M.Tortonese,et al.,「Atomic Resolution with an atomic force microscope using piezoresistive detection」,Applied Physics Letters,Volume62,No.8,1993,p.834-836 R.C.Jaklevic,et al.,「QUANTUM INTERFERENCE EFFECTS IN JOSEPHSON TUNNELING」,Physical Review Letters,Volume12,NO.7,1964,p.159-160 R.C.Black,et al.,「Magnetic microscopy using a liquid nitrogen cooled YBa2Cu3O7 superconducting quantum interference device」,Applied Physics Letters,Volume62,No.17,1993,p.2128-2130
通常用いられている自己検知型の力検出器は、導電性半導体薄膜の変形ポテンシャル効果ならびに圧電効果による、抵抗値の変化、すなわちピエゾ抵抗を用いている。この半導体ピエゾ抵抗力検出器は、光学系などの外部検出装置を必要としないため、小型化及び集積化という観点から大きな利点を持つ。しかしその一方で、レーザー干渉計などを用いた力検出器に比較して、感度が低いという問題点があった。
実際、前述した非特許文献1において、トートネス(Tortonese)らが報告しているように、導電性シリコン薄膜を用いて作製した力検出器の感度は、1kHzにおける変位量に換算して、2×10-4nmHz-1/2程度であり、市販のレーザードップラー干渉計を用いた場合の値、1×10-6nmHz-1/2に比べて2桁以上低い。
一方、前述したように、ジョセフソン接合を含む超伝導体閉回路は、極めて高感度な磁気検出を可能とするSQUIDである。SQUIDは、回路を貫く磁束を、回路を流れる超伝導電流の変化を通じて読み取る自己検知型の磁気検出器であり、現在実用化されている磁気センサーの中でも最も高感度なものである。このように、SQUIDは、試料中の微小磁気を感度よく検出する道具として広く利用されている。しかしながら、SQUIDそのものに機械的な変形自由度を与えた構造により、微小な力を高感度に検出する力検出器は従来提案されていなかった。
本発明は、上記課題を解決するためになされたもので、超伝導体閉回路とメカニカル構造との融合により、微小な力を高い感度で検出することができる検出素子および検出方法を提供することを目的とする。
本発明は、外部から加えられる物理量を検出する検出素子であって、梁状の構造体を備えた固体薄膜と、前記構造体の表面あるいは内部に形成された超伝導体材料からなる閉回路と、この閉回路に挿入されたジョセフソン接合と、前記構造体の変形を、前記閉回路に流すことができる最大超伝導電流の変化を通じて検出する物性変化検出手段とを有し、前記物性変化検出手段は、前記構造体にたわみがない状態のときの前記閉回路のループに対して水平な、一様な強度の磁場を前記閉回路に印加する磁場印加手段と、前記閉回路にバイアス電流を印加するバイアス電流印加手段と、前記閉回路に発生した電圧を検出する電圧検出手段とを備えることを特徴とするものである。
また、本発明の検出素子の1構成例において、前記物性変化検出手段は、前記構造体の変形を検出することにより、前記構造体に加わる力、加速度あるいは前記構造体の変位を検出するものである。
また、本発明の検出素子の1構成例は、さらに、電荷量に応じて前記構造体を変形させる帯電体を有し、前記物性変化検出手段は、前記構造体の変形を検出することにより、前記帯電体の電荷量を検出するものである。
また、本発明の検出素子の1構成例は、さらに、前記構造体を励振する励振手段を有し、前記物性変化検出手段は、前記閉回路を貫く磁束に応じた最大超伝導電流の変化を通じて前記構造体の共振周波数の変化を検出することにより、前記構造体の質量変化を検出するものである。
また、本発明は、梁状の構造体を備えた固体薄膜と、前記構造体の表面あるいは内部に形成された超伝導体材料からなる閉回路と、この閉回路に挿入されたジョセフソン接合とを有する検出素子を用いて、物理量を検出する検出方法であって、前記構造体の変形を、前記閉回路を貫く磁束に応じた最大超伝導電流の変化を通じて検出する物性変化検出手順を有し、前記物性変化検出手順は、前記構造体にたわみがない状態のときの前記閉回路のループに対して水平な、一様な強度の磁場を前記閉回路に印加する磁場印加手順と、前記閉回路にバイアス電流を印加するバイアス電流印加手順と、前記閉回路に発生した電圧を検出する電圧検出手順とを備えることを特徴とするものである。
また、本発明の検出方法の1構成例において、前記物性変化検出手順は、前記構造体の変形を検出することにより、前記構造体に加わる力、加速度あるいは前記構造体の変位を検出するものである。
また、本発明の検出方法の1構成例は、さらに、帯電体の電荷量に応じて前記構造体を変形させる手順を有し、前記物性変化検出手順は、前記構造体の変形を検出することにより、前記帯電体の電荷量を検出するものである。
また、本発明の検出方法の1構成例は、さらに、前記構造体を励振する励振手順を有し、前記物性変化検出手順は、前記閉回路を貫く磁束に応じた最大超伝導電流の変化を通じて前記構造体の共振周波数の変化を検出することにより、前記構造体の質量変化を検出するものである。
本発明によれば、梁状の構造体を備えた固体薄膜と、構造体の表面あるいは内部に形成された超伝導体材料からなる閉回路と、閉回路に挿入されたジョセフソン接合とを設けることにより、構造体の変形を、閉回路に流すことができる最大超伝導電流の変化を通じて検出することができ、その結果、構造体に加わる微小な力を高い感度で検出することができる。また、力だけでなく、加速度、電荷量、質量変化などの物理量も検出することができる。また、構造体の質量変化を検出できることから、構造体に付着した分子、原子、微小物質、微小粒子なども高い感度で検出することができる。
また、本発明では、超伝導体閉回路に磁場を印加し、超伝導体閉回路に流すバイアス電流を、超伝導状態と常伝導状態の境界となる超伝導臨界電流値の近傍に固定し、構造体の変形による、超伝導体閉回路を貫通する磁束の変化に伴う超伝導臨界電流の変化を電圧を通じて検出することにより、構造体の変位量を検出することができる。
[発明の原理]
本発明は、以下の点を発明の本質としている。超伝導体と絶縁体との微小接合、すなわちジョセフソン接合を含む超伝導体の閉回路にバイアス電流を流すと、薄い絶縁層をトンネルすることにより回路に超伝導電流が流れる。しかし、この接合部分を通過できる電流量には制限があるため、電流量の制限を超えたところで超伝導状態が壊れて常伝導状態となり、電圧が発生する。
一方、ジョセフソン結合を含む超伝導体閉回路に磁束を加えると、磁束を排出しようとするマイスナー効果が働き、遮蔽電流が発生する。そのため、超伝導状態を保持できる最大電流値、すなわち臨界電流が変化する。
今、超伝導体閉回路に流すバイアス電流を、超伝導状態と常伝導状態の境界となる臨界電流値より僅かに小さな値に固定しておくと、外部から超伝導体閉回路内部を磁束が貫いた際に、遮蔽電流の発生により容易に超伝導状態が壊れ、ジョセフソン接合に電圧が発生する。すなわち、超伝導体閉回路の両端にかかる電圧を検出することにより、敏感に磁束の変化を捉えることができる。
このようなジョセフソン接合を含む超伝導体閉回路を、梁状に加工した固体薄膜あるいは固体素片の表面または内部に組み込み、これを超伝導体閉回路に対してある一定の角度を有する一様な磁場中に置いた場合、梁に微小な力が加わると、固体薄膜あるいは固体素片に弾性的な変形が生じ、これに伴い、梁に組み込まれた超伝導体閉回路の内部を貫通する磁束の本数が変化する。このとき、超伝導体閉回路から磁束を排除しようとするマイスナー効果が働き、回路に遮蔽電流が発生し、これにより、回路を流れる超伝導電流が変調される。つまり、梁に力が加わることにより回路を流れることのできる最大超伝導電流値、すなわち臨界電流が変化する。
したがって、バイアス電流の大きさを臨界電流値付近に固定し、超伝導状態と常伝導状態とのちょうど境界状態を実現すれば、梁が受けるほんの小さな力により、超伝導状態と常伝導状態の切り替わりが起こり、超伝導体閉回路の両端にかかる電圧検出を通じて、梁が受けた微小な力を敏感に検出することができる。つまり、超高感度な力検出が可能となる。
[第1の実施の形態]
次に、本発明の実施の形態について図面を参照して詳しく説明する。図1は本発明の第1の実施の形態に係る超伝導体閉回路を用いた検出素子の模式図である。本実施の形態の検出素子は、シリコン薄膜1と、アルミニウム電極2a,2bと、超伝導体閉回路3とを備えている。
シリコン薄膜1は、微細加工技術によって、その一部に梁状の構造体である片持ち梁11を有する形状に加工される。ここで、片持ち梁とは、一方が固定され、他方が可動な梁のことである。
超伝導体閉回路3は、アルミニウムからなるループ状の超伝導体電極であり、ループ中の対向する2箇所にアルミニウム電極と酸化アルミニウムとの微小接合からなるジョセフソン接合4を有する。
このように、本実施の形態の検出素子は、片持ち梁11を構成する固体薄膜材料としてシリコンを用い、超伝導体閉回路3を構成する超伝導体材料としてアルミニウムを用いたものである。
図2は図1の検出素子の片持ち梁11をA−A線で切断した断面図であり、超伝導体閉回路3の断面を示す図である。図3、図4はそれぞれ片持ち梁11を図1のB−B線、C−C線で切断した断面図であり、超伝導体閉回路3のジョセフソン接合部の断面を示す図である。
図2、図4において、101,102はシリコンからなる片持ち梁11上に形成された超伝導体閉回路3を構成するアルミニウム薄膜である。
図3、図4に示すように、超伝導体閉回路3におけるジョセフソン接合4は、薄い酸化アルミニウム絶縁膜105を下層のアルミニウム薄膜103と上層のアルミニウム薄膜104で挟んだ構造をしている。酸化アルミニウム絶縁膜105の厚みは1ナノメートル程度である。
図4から明らかなように、ジョセフソン接合4の下層のアルミニウム薄膜103は、超伝導体閉回路3を構成する左側のアルミニウム薄膜(図1においてB−B線より手前側のアルミニウム薄膜)101と接続され、上層のアルミニウム薄膜104は、超伝導体閉回路3を構成する右側のアルミニウム薄膜(図1においてB−B線より奥側のアルミニウム薄膜)102と接続されている。
さらに、図1に示すように、アルミニウム薄膜102は、アルミニウム配線5aを介してアルミニウム電極2aと接続され、アルミニウム薄膜101は、アルミニウム配線5bを介してアルミニウム電極2bと接続されている。
次に、本実施の形態の検出素子を用いて力(片持ち梁11の弾性変形)を検出する手法を図5を用いて説明する。
図5において、20は検出素子を冷却する冷却手段、21は超伝導体閉回路3に対して磁場Bを印加する例えば磁石や磁性体材料からなる磁場印加手段、22はアルミニウム電極2a,2bを通じて超伝導体閉回路3にバイアス電流Iを印加するバイアス電流印加手段、23は超伝導体閉回路3に生じた電圧を検出する電圧計である。
まず、冷却手段20によってアルミニウムが超伝導体となる程度に検出素子を冷却し、磁場印加手段21から超伝導体閉回路3のループに対して水平な一様な強度の磁場Bを印加する。
片持ち梁11にたわみのない状態では、超伝導体閉回路3内部に磁束は進入しない。すなわち、超伝導体閉回路3を貫通する磁束の本数は零である。
これに対して、図5に示すように片持ち梁11が変形すると、磁場Bの方向に対して超伝導体閉回路3が傾きを持つため、超伝導体閉回路3を磁束が貫通する。このとき、超伝導体閉回路3から磁束を排除しようとするマイスナー効果が働くため、超伝導体閉回路3に遮蔽電流が発生し、これにより超伝導体閉回路3を流れる超伝導電流が変調される。つまり、片持ち梁11の弾性的な変形により、超伝導体閉回路3を流れることのできる最大超伝導電流値、すなわち臨界電流が変化する。
いま、バイアス電流印加手段22から超伝導体閉回路3にバイアス電流Iを印加し、バイアス電流Iの値を超伝導体閉回路3の臨界電流付近に固定する。片持ち梁11にたわみが生じると、臨界電流が変化し、超伝導体閉回路3に超伝導状態から常伝導状態への切り替わりが起こる。この超伝導状態と常伝導状態との切り替わりは、超伝導体閉回路3の両端にかかる電圧を電圧計23で監視することにより検知可能である。これにより、片持ち梁11のたわみ、すなわち片持ち梁11が受けた微小な力を敏感に検出することができる。電圧で検出した片持ち梁11の変形量は、図示しない換算手段により、片持ち梁11に加えられた力に換算することができる。
ジョセフソン接合を含む超伝導体閉回路、すなわち超伝導量子干渉計は、現在実用化されている磁気センサーの中で最も高感度である。したがって、本実施の形態によれば、従来の手法に比較して、桁違いに高い感度で片持ち梁11に加えられた微小な力を検出することができる。
[第2の実施の形態]
第1の実施の形態では、検出する対象が梁に加えられている力の場合についてのみ示したが、本実施の形態では、第1の実施の形態の検出素子を用いた各種測定について説明する。検出素子の構成は第1の実施の形態と同じであるから、図1の符号を用いて本実施の形態を説明する。
本実施の形態では、例えば片持ち梁11に弾性的な変形を発生させる手段として、片持ち梁11の近傍に帯電体(不図示)を配置する。この帯電体が帯電すると、帯電体と片持ち梁11との間に静電気力が働き、片持ち梁11がしなる。これにより、超伝導体閉回路3を貫通する磁束数が変化し、回路を流れる超伝導電流が変調される。よって、超伝導体閉回路3の両端にかかる電圧を電圧計23で監視し、超伝導体閉回路3を流れる超伝導電流の変化を電圧で検出することにより、帯電体の電荷を検出することができる。電圧で検出した片持ち梁11の変形量は、図示しない換算手段により、帯電体の電荷量に換算することができる。
また、片持ち梁11に弾性的な変形を発生させる手段として、図6に示すように片持ち梁11を励振する励振手段24を設けてもよい。片持ち梁11の質量変化は、片持ち梁11の共振周波数に変化を与える。よって、励振手段により片持ち梁11を強制振動させた状態で、超伝導体閉回路3の両端にかかる電圧を電圧計23で監視し、超伝導体閉回路3を流れる超伝導電流の振動周波数依存性を電圧で調べることにより、片持ち梁11の共振周波数の変化を通じて片持ち梁11の質量変化を高い感度で検出することができる。したがって、片持ち梁11に付着した分子、原子、微小物質、微小粒子なども敏感に検出することができる。電圧で検出した片持ち梁11の共振周波数の変化は、図示しない換算手段により、片持ち梁11の質量変化に換算することができる。
また、第1の実施の形態では、片持ち梁11の変形を片持ち梁11が受けた力として検出しているが、片持ち梁11の変形量、すなわち変位としても検出できることは言うまでもない。
また、検出素子全体に加速度が加わると、この加速度と反対方向に慣性による力が加わり、この慣性による力によって片持ち梁11が変形する。よって、超伝導体閉回路3の両端にかかる電圧を電圧計23で監視し、超伝導体閉回路3を流れる超伝導電流の変化を電圧で検出することにより、検出素子に加わる加速度を検出することができる。電圧で検出した片持ち梁11の変形量は、図示しない換算手段により、片持ち梁11に加えられた加速度に換算することができる。
以上、本発明の第1、第2の実施の形態を詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても、本発明に含まれる。
例えば第1、第2の実施の形態では、超伝導体材料としてアルミニウムを用いたが、ニオブ等の他金属、または窒化ニオブ等の金属化合物、あるいは酸化物系材料を含むあらゆる超伝導体材料の使用が可能であることは言うまでもない。
また、第1、第2の実施の形態では、ジョセフソン接合の絶縁体材料として酸化アルミニウムを用いたが、その他あらゆる種類の絶縁体材料を用いることも可能である。
また、第1、第2の実施の形態では、超伝導体閉回路を組み込む固体薄膜としてシリコン薄膜を用いたが、微細加工が可能な範囲における、その他あらゆる種類の固体薄膜あるいは固体素片の使用が可能であることは言うまでもない。
また、第1、第2の実施の形態では、2つのジョセフソン結合を含む超伝導体閉回路を用いたが、1つ或いは複数のジョセフソン結合を含む超伝導体閉回路を用いることも可能である。
また、第1、第2の実施の形態では、薄い絶縁膜を上層および下層の超伝導体電極で挟んだジョセフソン接合を用いたが、上下左右あらゆる方向から絶縁体を挟むジョセフソン接合を用いても、その本質を失うものでない。
また、第1、第2の実施の形態では、平面視正方形の超伝導体閉回路を用いたが、長方形、三角形、円形、その他あらゆる形状の超伝導体閉回路の使用が可能である。
また、第1、第2の実施の形態では、超伝導体閉回路に対して水平な磁場を印加したが、超伝導体閉回路に対して垂直な磁場を印加してもよく、さらに超伝導体閉回路に対して任意の角度を有する磁場を用いても、その本質を失うものではないことは明らかである。
また、第1、第2の実施の形態では、片持ち梁の弾性的な変形を超伝導体回路に流れる超伝導電流の変化を通じて検出したが、超伝導状態から常伝導状態への変化が引き起こすあらゆる種類の物性変化を通じて検出する場合も、同様に高感度な検出素子の作製が可能である。
また、第1、第2の実施の形態では、片持ち梁構造を用いたが、超伝導体閉回路を形作ることのできる範囲において、両持ち梁やコイルばねなど、弾性変形を引き起こすあらゆる形状を用いることができる。
また、第1、第2の実施の形態では、片持ち梁の弾性変形として「たわみ」が生じる場合を用いたが、他の弾性変形である「ねじり」、「圧縮」、「伸張」など、あらゆる種類の弾性変形を用いても、同様に高感度な検出素子の作製が可能である。
また、第1、第2の実施の形態では、超伝導体閉回路が梁状構造に組み込まれた構造を用いたが、梁状構造が超伝導体閉回路の一部に組み込まれた構造においても、同様に高感度な検出が可能であることは明らかである。
本発明は、力や加速度、電荷量、質量などの物理量を検出する技術に適用することができる。
本発明の第1の実施の形態に係る超伝導体閉回路を用いた検出素子の模式図である。 図1の検出素子の片持ち梁の断面図である。 図1の検出素子の片持ち梁の他の断面図である。 図1の検出素子の片持ち梁の他の断面図である。 図1の検出素子を用いて力を検出する手法を説明する模式図である。 本発明の第2の実施の形態に係る超伝導体閉回路を用いた検出素子の模式図である。
符号の説明
1…シリコン薄膜、2a,2b…アルミニウム電極、3…超伝導体閉回路、4…ジョセフソン接合、5a,5b…アルミニウム配線、11…片持ち梁、20…冷却手段、21…磁場印加手段、22…バイアス電流印加手段、23…電圧計、24…励振手段、101,102,103,104…アルミニウム薄膜、105…酸化アルミニウム絶縁膜。

Claims (8)

  1. 外部から加えられる物理量を検出する検出素子であって、
    梁状の構造体を備えた固体薄膜と、
    前記構造体の表面あるいは内部に形成された超伝導体材料からなる閉回路と、
    この閉回路に挿入されたジョセフソン接合と、
    前記構造体の変形を、前記閉回路に流すことができる最大超伝導電流の変化を通じて検出する物性変化検出手段とを有し、
    前記物性変化検出手段は、
    前記構造体にたわみがない状態のときの前記閉回路のループに対して水平な、一様な強度の磁場を前記閉回路に印加する磁場印加手段と、
    前記閉回路にバイアス電流を印加するバイアス電流印加手段と、
    前記閉回路に発生した電圧を検出する電圧検出手段とを備えることを特徴とする検出素子。
  2. 請求項1記載の検出素子において、
    前記物性変化検出手段は、前記構造体の変形を検出することにより、前記構造体に加わる力、加速度あるいは前記構造体の変位を検出することを特徴とする検出素子。
  3. 請求項1記載の検出素子において、
    さらに、電荷量に応じて前記構造体を変形させる帯電体を有し、
    前記物性変化検出手段は、前記構造体の変形を検出することにより、前記帯電体の電荷量を検出することを特徴とする検出素子。
  4. 請求項1記載の検出素子において、
    さらに、前記構造体を励振する励振手段を有し、
    前記物性変化検出手段は、前記閉回路を貫く磁束に応じた最大超伝導電流の変化を通じて前記構造体の共振周波数の変化を検出することにより、前記構造体の質量変化を検出することを特徴とする検出素子。
  5. 梁状の構造体を備えた固体薄膜と、前記構造体の表面あるいは内部に形成された超伝導体材料からなる閉回路と、この閉回路に挿入されたジョセフソン接合とを有する検出素子を用いて、物理量を検出する検出方法であって、
    前記構造体の変形を、前記閉回路を貫く磁束に応じた最大超伝導電流の変化を通じて検出する物性変化検出手順を有し、
    前記物性変化検出手順は、
    前記構造体にたわみがない状態のときの前記閉回路のループに対して水平な、一様な強度の磁場を前記閉回路に印加する磁場印加手順と、
    前記閉回路にバイアス電流を印加するバイアス電流印加手順と、
    前記閉回路に発生した電圧を検出する電圧検出手順とを備えることを特徴とする検出方法
  6. 請求項5記載の検出方法において、
    前記物性変化検出手順は、前記構造体の変形を検出することにより、前記構造体に加わる力、加速度あるいは前記構造体の変位を検出することを特徴とする検出方法。
  7. 請求項記載の検出方法において、
    さらに、帯電体の電荷量に応じて前記構造体を変形させる手順を有し、
    前記物性変化検出手順は、前記構造体の変形を検出することにより、前記帯電体の電荷量を検出することを特徴とする検出方法。
  8. 請求項5記載の検出方法において、
    さらに、前記構造体を励振する励振手順を有し、
    前記物性変化検出手順は、前記閉回路を貫く磁束に応じた最大超伝導電流の変化を通じて前記構造体の共振周波数の変化を検出することにより、前記構造体の質量変化を検出することを特徴とする検出方法
JP2006252638A 2006-09-19 2006-09-19 検出素子および検出方法 Active JP4814033B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252638A JP4814033B2 (ja) 2006-09-19 2006-09-19 検出素子および検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252638A JP4814033B2 (ja) 2006-09-19 2006-09-19 検出素子および検出方法

Publications (2)

Publication Number Publication Date
JP2008076082A JP2008076082A (ja) 2008-04-03
JP4814033B2 true JP4814033B2 (ja) 2011-11-09

Family

ID=39348330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252638A Active JP4814033B2 (ja) 2006-09-19 2006-09-19 検出素子および検出方法

Country Status (1)

Country Link
JP (1) JP4814033B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834800B2 (ja) * 2011-11-15 2015-12-24 オムロン株式会社 表面電位センサ及び複写機
CN102680147B (zh) * 2012-03-07 2013-10-30 中北大学 基于约瑟夫逊效应的压阻式力敏器件
CN106841834B (zh) * 2015-12-07 2019-12-13 中国电力科学研究院 一种对金属微粒运动过程中带电量的测量方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623090B2 (ja) * 1987-06-03 1997-06-25 キヤノン株式会社 距離測定装置
JPH0483137A (ja) * 1990-07-26 1992-03-17 Nikon Corp 微小力検出器
US5166612A (en) * 1990-11-13 1992-11-24 Tektronix, Inc. Micromechanical sensor employing a squid to detect movement
JPH07311205A (ja) * 1994-05-18 1995-11-28 Hitachi Ltd 走査型プローブ顕微鏡
JP4203617B2 (ja) * 2004-03-09 2009-01-07 日本電信電話株式会社 半導体検出素子および検出方法

Also Published As

Publication number Publication date
JP2008076082A (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
Sadeghian et al. Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability
Rossel et al. Active microlevers as miniature torque magnetometers
Ekreem et al. An overview of magnetostriction, its use and methods to measure these properties
Finkler et al. Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena
US10648786B2 (en) Magnetoelastic sensor for analyzing strain
EP1731895A2 (en) Micro structure, cantilever, scanning probe microscope and a method for measuring deformation quantity for the micro structure
US6611140B1 (en) Magnetic sensing unit for detecting nanometer scale displacements or flections
EP0383323A1 (en) Tunneling acoustic microscope
US6817231B2 (en) Scanning probe microscope for ultra sensitive electro-magnetic field detection and probe thereof
Collomb et al. Frontiers of graphene-based Hall-effect sensors
Willemin et al. Piezoresistive cantilever designed for torque magnetometry
US5959452A (en) Lorentz force magnetometer having a resonator
JP4814033B2 (ja) 検出素子および検出方法
US20090206953A1 (en) Resonant mems device that detects photons, particles and small forces
Kolb et al. Capacitive sensor for micropositioning in two dimensions
Ono et al. Magnetic force and optical force sensing with ultrathin silicon resonator
US7297568B2 (en) Three-dimensional structural body composed of silicon fine wire, its manufacturing method, and device using same
US6396261B1 (en) Scanning AC hall microscope
JP2005300490A (ja) メカニカル検出素子および検出器
Chung et al. SI traceable calibration of an instrumented indentation sensor spring constant using electrostatic force
JP4203617B2 (ja) 半導体検出素子および検出方法
Ju et al. Fabrication of a microscopic four-point probe and its application to local conductivity measurement
JP3147425B2 (ja) 走査型半導体プローブ顕微鏡
US6426621B1 (en) Method and apparatus for generating an output voltage by detecting magnetic field
JP2012203001A (ja) 片持梁を備えたマイクロマシン構成部材及び一体化された電気的な機能エレメント

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R151 Written notification of patent or utility model registration

Ref document number: 4814033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350