JP4814023B2 - Driving method of electron emitter - Google Patents

Driving method of electron emitter Download PDF

Info

Publication number
JP4814023B2
JP4814023B2 JP2006238848A JP2006238848A JP4814023B2 JP 4814023 B2 JP4814023 B2 JP 4814023B2 JP 2006238848 A JP2006238848 A JP 2006238848A JP 2006238848 A JP2006238848 A JP 2006238848A JP 4814023 B2 JP4814023 B2 JP 4814023B2
Authority
JP
Japan
Prior art keywords
electron emitter
waveform
voltage
stage
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006238848A
Other languages
Japanese (ja)
Other versions
JP2008060037A (en
Inventor
方紀 羽場
南 江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pureron Japan Co Ltd
Original Assignee
Pureron Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pureron Japan Co Ltd filed Critical Pureron Japan Co Ltd
Priority to JP2006238848A priority Critical patent/JP4814023B2/en
Publication of JP2008060037A publication Critical patent/JP2008060037A/en
Application granted granted Critical
Publication of JP4814023B2 publication Critical patent/JP4814023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

本発明は、電界放射を行うのに適した形状を備えたnmオーダーの微細突起を多数備えた電子エミッタを駆動する方法に関するものである。   The present invention relates to a method of driving an electron emitter having a number of nanometer-order fine protrusions having a shape suitable for field emission.

上記電子エミッタには、特許文献1等で基板上にシリコンや金属を微小な円錐状に形成したスピント型の構造のものや、特許文献2等で基板上にカーボンナノチューブを形成した構造のものや、その他が知られている。このような電子エミッタの1つの用途として当該電子エミッタをガラス管内で真空封止した状態で陽極と対向配置すると共にこの陽極上に蛍光体を積層したフィールドエミッションランプがある。   Examples of the electron emitter include a spint type structure in which silicon or metal is formed in a minute conical shape on a substrate in Patent Document 1 or the like, or a structure in which carbon nanotubes are formed on a substrate in Patent Document 2 or the like. Others are known. One application of such an electron emitter is a field emission lamp in which the electron emitter is placed opposite to the anode in a vacuum sealed state in a glass tube and a phosphor is laminated on the anode.

このフィールドエミッションランプでは、電子エミッタに電界が印加されカーボンナノチューブ等の微細突起表面から電子放出が行われ、この放出した電子が蛍光体に衝突してこれを発光させることができるようになっている。   In this field emission lamp, an electric field is applied to the electron emitter, and electrons are emitted from the surface of fine projections such as carbon nanotubes. The emitted electrons collide with the phosphor and can emit light. .

上記した微細突起のアスペクト比が不均等な場合では、アスペクト比が特定の微細突起に電界集中が起こって電子放出が行われて、その微細突起が他の微細突起よりも早期に熱蒸発により消耗し、次に別のアスペクト比の微細突起に電界集中が起こるというごとく、電子放出物性が不安定となって発光のちらつきや発光の不均一といった不具合が発生する上に寿命特性も短く不安定化してしまう。
特開平10−223128号公報 特開2005−317415号公報
When the aspect ratio of the fine protrusions is not uniform, electric field concentration occurs in specific fine protrusions with an aspect ratio, and electrons are emitted, and the fine protrusions are consumed by thermal evaporation earlier than other fine protrusions. Then, as the electric field concentration occurs in fine projections with different aspect ratios, the electron emission properties become unstable, causing problems such as flickering of light emission and unevenness of light emission, and the life characteristics become short and unstable. End up.
JP-A-10-223128 JP 2005-317415 A

本発明により解決すべき課題は、電子エミッタの電子放出物性および寿命特性を安定化させる駆動方法を提供することである。   The problem to be solved by the present invention is to provide a driving method that stabilizes the electron emission physical properties and lifetime characteristics of an electron emitter.

本発明第1による電子エミッタの駆動方法は、電界放射が可能な複数の微細突起を備え陽極との間で電界を印加されて微細突起から陽極に向けて電子を放出させる電子エミッタを駆動する方法において、上記陽極と電子エミッタとの間に上記電界を印加するための駆動電圧が、正極性でかつ周期的に繰り返されるパルス状の電圧であり、このパルス状の電圧は、その立ち上がり初期段階の波形が当該初期段階の後に続く他の段階の波形より時間的に短いものであり、波高値が当該初期段階の後に続く他の段階の波形より正極性側に高く、かつ微細突起が電界蒸発し易く電子エミッタの電子放出物性および寿命特性の安定化処理をすることができる電圧値以上に設定され、その初期段階以降の段階の波形の波高値は微細突起が電界蒸発しにくく電界電子放出することができる電圧値以下に設定されていることを特徴とするものである。ここで、電界蒸発とは、数V/nm程度の高い電界下で導電性物質の原子が表面からイオン化される現象である。 An electron emitter driving method according to the first aspect of the present invention is a method of driving an electron emitter having a plurality of fine protrusions capable of field emission and applying an electric field to the anode to emit electrons from the fine protrusions toward the anode. , The driving voltage for applying the electric field between the anode and the electron emitter is a pulse voltage that is positive and periodically repeated , and this pulse voltage is at the initial stage of its rise. The waveform is shorter in time than the waveform of the other stage following the initial stage, the crest value is higher on the positive side than the waveform of the other stage following the initial stage , and the fine protrusions are evaporated. It is easily set to a voltage value that can stabilize the electron emission physical properties and lifetime characteristics of the electron emitter, and the peak value of the waveform after the initial stage is less likely to cause field evaporation of the fine protrusions. And it is characterized in that it is set below the voltage value that can be field electron emission. Here, field evaporation is a phenomenon in which atoms of a conductive substance are ionized from the surface under a high electric field of about several V / nm.

本発明第1では、電子エミッタから電界放射により電子放出させるため陽極と電子エミッタとの間に印加する駆動電圧の波形の立ち上がり初期段階に複数の微細突起のうち、選択されたいずれかの微細突起を電界蒸発させて電子エミッタの寿命特性を安定化させるようにしたから、電子エミッタの寿命を格段に延ばすことができるようになる。この場合、その駆動電圧が正極性でかつ周期的に繰り返されるパルス状の電圧であり、このパルス状の電圧は、その立ち上がり初期段階の波形波高値が当該初期段階の後に続く他の段階の波形より正極性側に高く、かつ微細突起が電界蒸発し易い電圧値以上に設定されているから、駆動中、周期的に継続して電子エミッタの寿命特性を安定化させることができ、従来よりも格段に電子エミッタの電子放出物性の安定化ならびに寿命特性の向上を達成することができるようになる。 In the first aspect of the present invention , any one of a plurality of fine protrusions selected from among a plurality of fine protrusions at the initial rising stage of the waveform of the drive voltage applied between the anode and the electron emitter to emit electrons from the electron emitter by field emission. Since the lifetime of the electron emitter is stabilized by field evaporation, the lifetime of the electron emitter can be significantly extended. In this case, the drive voltage is a pulsed voltage that is positive and is periodically repeated, and this pulsed voltage has a peak value of the waveform at the initial stage of the rising of the other stage following the initial stage. Since it is higher than the waveform on the positive polarity side and is set to a voltage value above which the fine protrusions are easy to evaporate , the lifetime characteristics of the electron emitter can be stabilized periodically during driving, In particular, the electron emission properties of the electron emitter can be stabilized and the life characteristics can be improved.

本発明第2による電子エミッタの駆動方法は、電界放射が可能な複数の微細突起を備え陽極との間で電界を印加されて微細突起から陽極に向けて電子を放出させる電子エミッタを駆動する方法において、上記陽極と電子エミッタとの間に上記電界を印加するための駆動電圧が、周期的に繰り返されるパルス状の電圧であり、このパルス状の電圧は、その立ち上がり初期段階の波形が当該初期段階の後に続く他の段階の波形より時間的に短いものであり、その波高の絶対値が当該初期段階の後に続く他の段階の正極性の波形より負極性側に高く、かつ微細突起が電界蒸発し易く電子エミッタの電子放出物性および寿命特性の安定化処理をすることができる電圧値以上に設定され、その初期段階以降の段階の波形の波高値は正極側において、微細突起が電界蒸発しにくく電界電子放出することができる電圧値以下に設定されていることを特徴とするものである。 An electron emitter driving method according to the second aspect of the present invention is a method of driving an electron emitter having a plurality of fine protrusions capable of field emission and applying an electric field to the anode to emit electrons from the fine protrusions toward the anode. in the drive voltage for applying the electric field between the anode and the electron emitter is a pulsed voltage are repeated periodic manner, the voltage of the pulse-shaped, the waveform of the rising early stage the It is shorter in time than the waveform of the other stage following the initial stage, the absolute value of the wave height is higher on the negative polarity side than the waveform of the positive polarity of the other stage following the initial stage, and the fine protrusion is It is set to a voltage value that can stabilize the electron emission physical properties and lifetime characteristics of the electron emitter, which is easy to evaporate, and the peak value of the waveform after the initial stage is fine on the positive electrode side. It is characterized in that Kiga is set below the voltage value that can be field evaporation difficult field emission.

本発明第2では、電子エミッタから電界放射により電子放出させるため陽極と電子エミッタとの間に印加する駆動電圧の波形の立ち上がり初期段階に複数の微細突起のうち、選択されたいずれかの微細突起を電界蒸発させて電子エミッタの電子放出物性および寿命特性を安定化させるようにしたから、電子エミッタの電子放出が良好になると共にその寿命を格段に延ばすことができるようになる。この場合、その駆動電圧が周期的に繰り返されるパルス状の電圧であり、このパルス状の電圧はその立ち上がり初期段階の波形波高の絶対値が当該初期段階の後に続く他の段階の正極性の波形より負極性側に高く、かつ微細突起が電界蒸発し易い電圧値以上に設定されているから、従来よりも格段に電子エミッタの電子放出物性の安定化ならびに寿命特性の向上を達成することができるようになる。 In the second aspect of the present invention , any one of the selected fine protrusions among the plurality of fine protrusions at the initial rising stage of the waveform of the driving voltage applied between the anode and the electron emitter for emitting electrons from the electron emitter by field emission. Since the electron emission properties and lifetime characteristics of the electron emitter are stabilized by field evaporation, the electron emission of the electron emitter is improved and the lifetime can be greatly extended. In this case, a pulse voltage whose driving voltage is repeated periodic manner, positive other stages following the absolute value the initial stage of the peak of the pulse-shaped voltage waveform of the rising initial stage rather higher than the waveform on the negative polarity side, and since the fine projections is set to more than the electric field easily evaporated voltage value, remarkably to achieve improved stabilization and lifetime of the electron emission properties of the electron emitter than conventional Will be able to.

本発明によれば、電子エミッタの電子放出物性および寿命特性を安定化させるよう電子エミッタを駆動することができる。   According to the present invention, the electron emitter can be driven so as to stabilize the electron emission physical properties and life characteristics of the electron emitter.

以下、添付した図面を参照して本発明の実施の形態に係る電子エミッタの駆動方法を詳細に説明する。この電子エミッタが組み込まれる電子デバイスは一例としてフィールドエミッションランプに適用しているが、実施形態の駆動方法が適用される電子デバイスはフィールドエミッションランプに限定されない。また、フィールドエミッションランプも管状に限定されずフラットパネルタイプも含むことができる。   Hereinafter, an electron emitter driving method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Although the electronic device in which the electron emitter is incorporated is applied to a field emission lamp as an example, the electronic device to which the driving method of the embodiment is applied is not limited to the field emission lamp. Further, the field emission lamp is not limited to a tubular shape, and may include a flat panel type.

図1はそのフィールドエミッションランプ10を模式的に示し、真空封止されたガラス管12の内面に陽極12が形成され、この陽極12上に蛍光体16が積層されている。ガラス管12の略中心に当該ガラス管長手方向にワイヤ状の電子エミッタ18が配設されている。この電子エミッタ18は、導体ワイヤ18aの表面に炭素膜からなるnmオーダーの鋭端を持つ微細突起18bが形成されて構成されている。この微細突起18にはカーボンナノチューブ、カーボンナノウォール、針状炭素膜、その他がある。微細突起18bは金属膜で構成されても構わない。   FIG. 1 schematically shows the field emission lamp 10, in which an anode 12 is formed on the inner surface of a vacuum-sealed glass tube 12, and a phosphor 16 is laminated on the anode 12. A wire-shaped electron emitter 18 is disposed at a substantially center of the glass tube 12 in the longitudinal direction of the glass tube. The electron emitter 18 is configured by forming a fine protrusion 18b having a sharp end in the order of nm made of a carbon film on the surface of a conductor wire 18a. The fine protrusions 18 include carbon nanotubes, carbon nanowalls, acicular carbon films, and others. The fine protrusion 18b may be formed of a metal film.

このフィールドエミッションランプ10においては、陽極12と電子エミッタ18との間に図示略の電源が印加されることにより電子エミッタ18の微細突起18bが電界放射により電子放出し、蛍光体16がその放出した電子の照射を受けて励起発光するようになっている。   In this field emission lamp 10, when a power supply (not shown) is applied between the anode 12 and the electron emitter 18, the fine protrusion 18b of the electron emitter 18 emits electrons by field emission, and the phosphor 16 emits the electrons. Excited light is emitted upon irradiation with electrons.

図2にその電子エミッタ18を拡大して示す。図2は図解の理解のため模式的に誇張して示している。図2で示すように実施形態における導体ワイヤ18a上の微細突起18bは、カーボンナノチューブやカーボンナノウォールやその他の炭素膜になっている。図2で示す微細突起18bは安定化処理前としてアスペクト比が不揃いの状態で示されている。この微細突起は炭素膜に限定されず、金属膜から構成されたものでもよい。   FIG. 2 shows the electron emitter 18 in an enlarged manner. FIG. 2 is schematically exaggerated for understanding the illustration. As shown in FIG. 2, the fine protrusions 18b on the conductor wire 18a in the embodiment are carbon nanotubes, carbon nanowalls, or other carbon films. The fine protrusions 18b shown in FIG. 2 are shown in a state where the aspect ratios are not uniform before the stabilization process. The fine protrusions are not limited to the carbon film but may be composed of a metal film.

図3に電源から陽極14と電子エミッタ18との間に印加して電子エミッタ18を駆動する駆動電圧の波形を示す。図3で横軸は時間(t)、縦軸は電圧(V)を示す。この駆動電圧波形は、パルス状であり、駆動電圧を印加する期間である駆動期間Tonと、駆動電圧の印加を停止させる期間である停止期間Toffとが交互に周期的に繰り返されるようになっている。駆動期間Tonにおける駆動電圧の波形は全体が、正極性でかつ周期的に繰り返される周期的電圧であり、その立ち上がり初期段階が安定化処理段階Taとされその波高値Vaが当該安定化処理段階Taの後に続く他の段階である駆動段階Tdの波高値Vbより正極性側に高くされている。これにより、電子エミッタ18の微細突起18bには駆動電圧の立ち上がり毎の初期段階で高電界が印加されることとなって当該微細突起18bは選択的に電界蒸発されてそのアスペクト比が全体的に均等化処理される。   FIG. 3 shows a waveform of a drive voltage applied from the power source between the anode 14 and the electron emitter 18 to drive the electron emitter 18. In FIG. 3, the horizontal axis represents time (t) and the vertical axis represents voltage (V). This drive voltage waveform is pulse-like, and a drive period Ton that is a period for applying the drive voltage and a stop period Toff that is a period for stopping the application of the drive voltage are alternately and periodically repeated. Yes. The waveform of the drive voltage in the drive period Ton is a periodic voltage that is positive and periodically repeated. The rising initial stage is the stabilization process stage Ta, and the peak value Va is the stabilization process stage Ta. It is made higher on the positive polarity side than the peak value Vb of the driving stage Td, which is another stage that follows. As a result, a high electric field is applied to the fine protrusions 18b of the electron emitter 18 at an initial stage every time the drive voltage rises, and the fine protrusions 18b are selectively evaporated to have an aspect ratio as a whole. It is equalized.

上記波高値Vaは、電子エミッタ18の微細突起18bが電界蒸発し易く均等化処理することができるような電圧値以上に設定することが好ましい。上記波高値Vbは電子エミッタ18の微細突起18bが電界蒸発しにくく電界電子放出することができるような電圧値以下に設定することが好ましい。   The crest value Va is preferably set to be equal to or higher than a voltage value at which the fine protrusions 18b of the electron emitter 18 are easily evaporated and can be equalized. The crest value Vb is preferably set to be equal to or less than a voltage value at which the fine protrusions 18b of the electron emitter 18 are less likely to evaporate in the field and emit field electrons.

駆動期間Tonは安定化処理段階Taと駆動段階Tbとの組み合わせである。この安定化処理について説明すると、実施形態では安定化処理段階Taを極めて短時間としてこの安定化を主に電界蒸発により行うようになっている。微細突起18bを電界蒸発により安定化処理すると、微細突起18b全体のアスペクト比が均等化され、電界に対して不安定な部分が除去されて、電子放出物性が極めて安定化するようになる。   The driving period Ton is a combination of the stabilization processing stage Ta and the driving stage Tb. This stabilization process will be described. In the embodiment, the stabilization process Ta is performed in a very short time, and this stabilization is performed mainly by field evaporation. When the fine protrusions 18b are stabilized by electric field evaporation, the aspect ratio of the entire fine protrusions 18b is equalized, the unstable part with respect to the electric field is removed, and the electron emission physical properties are extremely stabilized.

図4に図2で示す電子エミッタ18に対して安定化処理した後の電子エミッタ18を示す。この安定化処理により、電子エミッタ18表面の微細突起18bは電界蒸発により全体のアスペクト比が均等化され、電界に対して不安定な部分が除去されて、電子放出物性および寿命特性が安定化した電子エミッタ構成となっている。   FIG. 4 shows the electron emitter 18 after stabilizing the electron emitter 18 shown in FIG. As a result of this stabilization treatment, the fine projections 18b on the surface of the electron emitter 18 are made uniform in overall aspect ratio by field evaporation, and the unstable portion with respect to the electric field is removed, and the electron emission physical properties and lifetime characteristics are stabilized. It has an electron emitter configuration.

ここで図5を参照して電界蒸発による安定化処理の原理を説明する。まず、安定化処理に用いる電極(陽極)14と電子エミッタ18との対向距離をdとし、直流電源20の電圧をVとすると、この陽極14と電子エミッタ18全体における平均電界E1はV/dで与えられる。この場合、電子エミッタ18表面の微細突起18bを構成する原子を飛び出させるのに必要な電界はV/nmオーダーであることが必要とされている。この場合、微細突起18bはアスペクト比が不均等であるため、局所的に特定の微細突起18bに電界集中が発生することが起こる。このような場合において個々の微細突起18bに印加される局所電界E2は、ファウラノルドハイム(Fowler−Nordheim)の式における電界集中係数βを用いてE1・βで与えられる。この電界集中係数βは微細突起18bの先端が鋭利であるほど大きい値になるが約1000程度以上であるから、陽極14と電子エミッタ18との対向距離dをμmオーダーに設定すると、電子エミッタ18に電源20から上記高電圧を印加することにより、微細突起18b表面にはV/nmオーダーの高電界が印加されることとなって微細突起18b表面から原子が飛び出されて微細突起18bが電界蒸発される。その結果、微細突起18bのアスペクト比は均等化されてくるようになり、寿命特性が向上する。   Here, the principle of the stabilization process by field evaporation will be described with reference to FIG. First, when the facing distance between the electrode (anode) 14 used for the stabilization process and the electron emitter 18 is d and the voltage of the DC power supply 20 is V, the average electric field E1 in the whole anode 14 and electron emitter 18 is V / d. Given in. In this case, the electric field required for causing the atoms constituting the fine protrusions 18b on the surface of the electron emitter 18 to jump out is required to be on the order of V / nm. In this case, since the aspect ratio of the fine protrusion 18b is not uniform, electric field concentration locally occurs in the specific fine protrusion 18b. In such a case, the local electric field E2 applied to each fine protrusion 18b is given by E1 · β using the electric field concentration factor β in the Fowler-Nordheim equation. The electric field concentration factor β increases as the tip of the fine protrusion 18b becomes sharper, but is about 1000 or more. Therefore, when the facing distance d between the anode 14 and the electron emitter 18 is set to the μm order, the electron emitter 18 By applying the high voltage to the surface of the fine projection 18b, a high electric field on the order of V / nm is applied to the surface of the fine projection 18b, and atoms are ejected from the surface of the fine projection 18b, causing the fine projection 18b to be evaporated. Is done. As a result, the aspect ratio of the fine protrusions 18b is equalized, and the life characteristics are improved.

以上により実施形態では駆動電圧の立ち上がり初期段階を安定化処理段階Taとして駆動電圧の波高値をVaに高く設定することにより微細突起を安定化処理し、その次の駆動段階Tbで駆動電圧の波高値をVbに低く設定して電子エミッタの微細突起から電子放出させるので、寿命特性が格段に向上する。   As described above, in the embodiment, the initial stage of the drive voltage rise is set as the stabilization process stage Ta, and the peak value of the drive voltage is set high to Va to stabilize the fine protrusions. Since the high value is set low to Vb and electrons are emitted from the fine protrusions of the electron emitter, the life characteristics are remarkably improved.

図6に実施形態により安定化処理した場合の電子エミッタの寿命特性を示し、図7に安定化処理しなかった場合の電子エミッタの寿命特性を示す。   FIG. 6 shows the lifetime characteristics of the electron emitter when stabilized according to the embodiment, and FIG. 7 shows the lifetime characteristics of the electron emitter when not stabilized.

図6(a)は実施形態における駆動電圧の波形、図6(b)は実施形態において電流の波形を示す。実施形態では、図6(a)で示すように駆動電圧の立ち上がり初期の期間Taで安定化処理を行ってから次の期間Tbで駆動した場合では、図6(b)で示すように立ち上がり初期の期間Taでは安定化処理により若干の電流減少が見られても、次の期間Tbでは電流が増加しており、電子エミッタの寿命が大幅に延びることが示されている。   FIG. 6A shows the waveform of the drive voltage in the embodiment, and FIG. 6B shows the waveform of the current in the embodiment. In the embodiment, as shown in FIG. 6A, when the driving process is performed in the next period Tb after the stabilization process is performed in the initial period Ta as shown in FIG. Even if a slight current decrease is observed in the period Ta during the stabilization process, the current increases in the next period Tb, which indicates that the lifetime of the electron emitter is greatly extended.

図7(a)は従来における駆動電圧の波形、図7(b)は従来における電流の波形を示す。従来では図7(a)で示すように駆動電圧の全期間Tonで駆動しており安定化処理していないため、図7(b)で示すように、駆動電圧で電子エミッタを駆動する毎に電流に減少が見られて寿命特性が低下してきていることが示されている。   FIG. 7A shows a conventional driving voltage waveform, and FIG. 7B shows a conventional current waveform. Conventionally, as shown in FIG. 7 (a), the driving voltage is driven for the entire period Ton and is not stabilized. Therefore, as shown in FIG. 7 (b), every time the electron emitter is driven with the driving voltage. It is shown that the lifetime characteristics are decreasing due to the decrease in current.

上記の駆動電圧のパルス波形としては図8で示すようにその立ち上がり初期の期間Taを負極性電圧とし、この負極性電圧により電界蒸発させて安定化処理を施すようにしてもよい。   As shown in FIG. 8, the pulse waveform of the drive voltage may be a negative voltage during the initial period Ta, and may be subjected to stabilization by performing field evaporation with this negative voltage.

また駆動電圧の波形の参考例として図9で示すように正弦波であってもよい。そして、駆動電圧の立ち上がり初期段階を正弦波の両極性のうち負極性半波側を安定化処理段階Taとしてその波高値をVaに高く設定し、正極性側半波側を駆動段階Tbとすることができる。 As a reference example of the waveform of the drive voltage, a sine wave may be used as shown in FIG. In the initial stage of rising of the drive voltage, the negative half wave side of both polarities of the sine wave is set as the stabilization processing stage Ta, the peak value is set high to Va, and the positive side half wave side is set as the drive stage Tb. be able to.

以上のように実施形態では、電子エミッタ18から電界放射により電子放出させるため陽極14と電子エミッタ18との間に印加する駆動電圧の波形の立ち上がり初期段階に微細突起18bを選択的に電界蒸発させて安定化処理するようにしたから、電子エミッタ18の寿命を格段に延ばすことができる。   As described above, in the embodiment, in order to emit electrons from the electron emitter 18 by field emission, the fine protrusions 18b are selectively evaporated in the initial stage of the rising of the waveform of the driving voltage applied between the anode 14 and the electron emitter 18. Therefore, the lifetime of the electron emitter 18 can be greatly extended.

図1はフィールドエミッションランプの構成を示す図である。FIG. 1 is a diagram showing the configuration of a field emission lamp. 図2は図1のフィールドエミッションランプにおいて安定化処理前の電子エミッタを拡大して示す図である。FIG. 2 is an enlarged view showing an electron emitter before stabilization processing in the field emission lamp of FIG. 図3は陽極と電子エミッタとの間に印加される駆動電圧の波形を示す図である。FIG. 3 is a diagram showing a waveform of a driving voltage applied between the anode and the electron emitter. 図4は安定化処理した電子エミッタを拡大して示す図である。FIG. 4 is an enlarged view showing the stabilized electron emitter. 図5は電界蒸発の説明に用いる図である。FIG. 5 is a diagram used to explain field evaporation. 図6(a)は駆動電圧の立ち上がり初期に安定化処理波形を含む駆動電圧の波形を示す図、図6(b)は図6(a)の駆動電圧で駆動した場合の電子エミッタの時間に対する電流特性を示す図である。FIG. 6A is a diagram showing a waveform of a drive voltage including a stabilization processing waveform at the beginning of the rise of the drive voltage, and FIG. 6B is a graph showing the time of the electron emitter when driven by the drive voltage of FIG. It is a figure which shows an electric current characteristic. 図7(a)は駆動電圧の立ち上がり初期に安定化処理波形を含まない駆動電圧の波形を示す図、図7(b)は図7(a)の駆動電圧で駆動した場合の電子エミッタの時間に対する電流特性を示す図である。FIG. 7A is a diagram showing a waveform of a drive voltage that does not include a stabilization processing waveform at the beginning of the rise of the drive voltage, and FIG. 7B is a time of an electron emitter when driven by the drive voltage of FIG. It is a figure which shows the electric current characteristic with respect to. 図8は他の駆動電圧の波形を示す図である。FIG. 8 is a diagram showing waveforms of other drive voltages. 図9は参考例に係る駆動電圧の波形を示す図である。FIG. 9 is a diagram illustrating a waveform of the drive voltage according to the reference example .

符号の説明Explanation of symbols

10 電子エミッタ
12 ガラス管
14 陽極
16 蛍光体
18 電子エミッタ
18a 導体ワイヤ
18b 微細突起
DESCRIPTION OF SYMBOLS 10 Electron emitter 12 Glass tube 14 Anode 16 Phosphor 18 Electron emitter 18a Conductor wire 18b Fine protrusion

Claims (2)

電界放射が可能な複数の微細突起を備え陽極との間で電界を印加されて微細突起から陽極に向けて電子を放出させる電子エミッタを駆動する方法において、
上記陽極と電子エミッタとの間に上記電界を印加するための駆動電圧が、正極性でかつ周期的に繰り返されるパルス状の電圧であり、
このパルス状の電圧は、その立ち上がり初期段階の波形が当該初期段階の後に続く他の段階の波形より時間的に短いものであり、波高値が当該初期段階の後に続く他の段階の波形より正極性側に高く、かつ微細突起が電界蒸発し易く電子エミッタの電子放出物性および寿命特性の安定化処理をすることができる電圧値以上に設定され、
その初期段階以降の段階の波形の波高値は微細突起が電界蒸発しにくく電界電子放出することができる電圧値以下に設定されている、ことを特徴とする電子エミッタの駆動方法。
In a method of driving an electron emitter having a plurality of fine projections capable of field emission and applying an electric field between the anode and emitting electrons from the fine projections toward the anode,
The driving voltage for applying the electric field between the anode and the electron emitter is a pulsed voltage that is positive and periodically repeated ,
This pulse-like voltage is such that the waveform of the initial stage of the rising is shorter in time than the waveform of the other stage that follows the initial stage, and the peak value is more positive than the waveform of the other stage that follows the initial stage. Is set to be higher than the voltage value that can stabilize the electron emission physical properties and life characteristics of the electron emitter, and the fine protrusions are easy to evaporate in the electric field,
An electron emitter driving method, characterized in that a peak value of a waveform at a stage after the initial stage is set to be equal to or less than a voltage value at which fine projections are hard to evaporate in a field and field electrons can be emitted .
電界放射が可能な複数の微細突起を備え陽極との間で電界を印加されて微細突起から陽極に向けて電子を放出させる電子エミッタを駆動する方法において、
上記陽極と電子エミッタとの間に上記電界を印加するための駆動電圧が、周期的に繰り返されるパルス状の電圧であり、
このパルス状の電圧は、その立ち上がり初期段階の波形が当該初期段階の後に続く他の段階の波形より時間的に短いものであり、その波高の絶対値が当該初期段階の後に続く他の段階の正極性の波形より負極性側に高く、かつ微細突起が電界蒸発し易く電子エミッタの電子放出物性および寿命特性の安定化処理をすることができる電圧値以上に設定され、
その初期段階以降の段階の波形の波高値は正極側において、微細突起が電界蒸発しにくく電界電子放出することができる電圧値以下に設定されている、ことを特徴とする電子エミッタの駆動方法。
In a method of driving an electron emitter having a plurality of fine projections capable of field emission and applying an electric field between the anode and emitting electrons from the fine projections toward the anode,
Driving voltage for applying the electric field between the anode and the electron emitter is a pulsed voltage are repeated periodic manner,
This pulse-like voltage is such that the waveform at the initial stage of the rise is shorter in time than the waveform of the other stage that follows the initial stage, and the absolute value of the wave height of the other stage that follows the initial stage. Higher than the waveform of the positive polarity on the negative polarity side, and the fine protrusions are easy to evaporate in the electric field , and are set to a voltage value or more that can stabilize the electron emission physical properties and life characteristics of the electron emitter,
The driving method of the electron emitter, wherein the peak value of the waveform after the initial stage is set to be equal to or less than a voltage value at which the fine protrusions are difficult to evaporate in the field and can emit field electrons on the positive electrode side .
JP2006238848A 2006-09-04 2006-09-04 Driving method of electron emitter Active JP4814023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238848A JP4814023B2 (en) 2006-09-04 2006-09-04 Driving method of electron emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238848A JP4814023B2 (en) 2006-09-04 2006-09-04 Driving method of electron emitter

Publications (2)

Publication Number Publication Date
JP2008060037A JP2008060037A (en) 2008-03-13
JP4814023B2 true JP4814023B2 (en) 2011-11-09

Family

ID=39242507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238848A Active JP4814023B2 (en) 2006-09-04 2006-09-04 Driving method of electron emitter

Country Status (1)

Country Link
JP (1) JP4814023B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119762A (en) * 2019-01-24 2020-08-06 国立研究開発法人物質・材料研究機構 Electron source stabilization method and electron beam apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240165A (en) * 1994-02-25 1995-09-12 Jeol Ltd Method for regulating field ionization type gas phase ion source, and ion source
JP2000082387A (en) * 1998-09-04 2000-03-21 Canon Inc Electron source, its manufacture, driving method, image forming device using the electron source, and driving method for the image forming device
JP4675467B2 (en) * 1999-09-24 2011-04-20 東芝モバイルディスプレイ株式会社 Manufacturing method of semiconductor circuit
US6645028B1 (en) * 2000-06-07 2003-11-11 Motorola, Inc. Method for improving uniformity of emission current of a field emission device
JP3673761B2 (en) * 2001-02-09 2005-07-20 キヤノン株式会社 Method of adjusting characteristics of electron source, method of manufacturing electron source, method of adjusting characteristics of image display device, and method of manufacturing image display device
JP2003086084A (en) * 2001-09-10 2003-03-20 Canon Inc Method of manufacturing electron emission element, image forming device, apparatus of manufacturing image forming device, and method of manufacturing image forming device
JP2006059676A (en) * 2004-08-20 2006-03-02 Konica Minolta Holdings Inc Electron emitting element and its manufacturing method
JP2006066169A (en) * 2004-08-26 2006-03-09 Sony Corp Manufacturing method of display device

Also Published As

Publication number Publication date
JP2008060037A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JPH10207416A (en) Method for driving field emission type cold cathode element and field emission type cold cathode electron gun
WO2009057837A1 (en) Constant current driving circuit for field emission device
US7973742B2 (en) Method of driving field emission device (FED) and method of aging FED using the same
JP4814023B2 (en) Driving method of electron emitter
JP2004146365A (en) Light emitting device
US9288885B2 (en) Electrical power control of a field emission lighting system
JP4347252B2 (en) Light emitting device
JP4803760B2 (en) Electron emitter field aging method
JP5010685B2 (en) Field emission device
JP4528926B2 (en) Field emission type device driving apparatus and driving method thereof
JP4631716B2 (en) Discharge plasma generation auxiliary device
JP2007322938A (en) Drive control method for light emitting element
JP2020119762A (en) Electron source stabilization method and electron beam apparatus
JP5354859B2 (en) Cold cathode fluorescent lamp
JP4591956B2 (en) Driving method of field emission type cold cathode fluorescent lamp and driving power source thereof
US20080119104A1 (en) Method of aging field emission devices
JP2008059904A (en) Field emission lamp
JP2010181517A (en) Method for driving vacuum fluorescent display, and vacuum fluorescent display
JP4347253B2 (en) Light emitting device
JP2006216386A (en) Electron emission device and its driving method
JP4628744B2 (en) Backlight device for liquid crystal display device
JP4685457B2 (en) Driving method of cold cathode fluorescent lamp and driving power source thereof
RU2210140C2 (en) Method and device for producing optical radiation
JP2007329095A (en) Discharge lighting device and lighting fixture
JP5237538B2 (en) Discharge plasma equipment

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4814023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250