JP2010181517A - Method for driving vacuum fluorescent display, and vacuum fluorescent display - Google Patents

Method for driving vacuum fluorescent display, and vacuum fluorescent display Download PDF

Info

Publication number
JP2010181517A
JP2010181517A JP2009023293A JP2009023293A JP2010181517A JP 2010181517 A JP2010181517 A JP 2010181517A JP 2009023293 A JP2009023293 A JP 2009023293A JP 2009023293 A JP2009023293 A JP 2009023293A JP 2010181517 A JP2010181517 A JP 2010181517A
Authority
JP
Japan
Prior art keywords
phosphor
driving
fluorescent display
luminance
display tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009023293A
Other languages
Japanese (ja)
Other versions
JP5208789B2 (en
Inventor
Shigeki Kikuta
繁樹 菊田
Kenji Nakanishi
健二 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Noritake Itron Corp
Original Assignee
Noritake Co Ltd
Noritake Itron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Noritake Itron Corp filed Critical Noritake Co Ltd
Priority to JP2009023293A priority Critical patent/JP5208789B2/en
Priority to TW098145496A priority patent/TWI444949B/en
Priority to US12/657,843 priority patent/US8378929B2/en
Priority to CN201010104050.6A priority patent/CN101794544B/en
Publication of JP2010181517A publication Critical patent/JP2010181517A/en
Application granted granted Critical
Publication of JP5208789B2 publication Critical patent/JP5208789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the luminance life of a vacuum fluorescent display that is driven according to a dynamic drive scheme and that uses a phosphor having remarkable luminance saturation. <P>SOLUTION: The method for driving the vacuum fluorescent display is provided, which comprises allowing a phosphor layer formed on an anode to display under low-energy electron excitation by dynamic driving, wherein the phosphor included in the phosphor layer is a phosphor in which the luminance increases when a pulse width is reduced under conditions in which the Du is kept the same in the dynamic driving, and in which, after a voltage is applied to the anode and the luminance of the phosphor is saturated, the time at which the luminance value decreases to 10% of the saturation luminance value following stoppage of the voltage application is 200 μsec or more. By the dynamic driving, the pulse width and the pulse repetition period are made variable in the direction of maintaining the initial luminance of the phosphor as driving time elapses. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は蛍光表示管の駆動方法およびその駆動方法を用いた蛍光表示管に関する。   The present invention relates to a fluorescent display tube driving method and a fluorescent display tube using the driving method.

蛍光表示管などの低速電子線励起用蛍光体として、優れた発光特性を示すZnO:Zn(緑色)以外に、SrTiO3:Pr(赤色)、CaTiO3:Pr(赤色)、Gd22S:Eu(赤色)、Y22S:Eu(赤色)、La22S:Eu(赤色)、SnO2:Eu(橙色)、ZnS:Mn(橙色)、ZnGa24(青色)、ZnGa24:Mn(緑色)などにIn23などの導電性物質を添加した蛍光体が数多く研究、開発されてきた(非特許文献1)。
しかし、低速電子線励起用蛍光体として開発されてきている蛍光体は、緑色発光のZnO:Zn以外は寿命の短い蛍光体が多い。
In addition to ZnO: Zn (green) exhibiting excellent light emission characteristics as phosphors for low-energy electron beam excitation such as fluorescent display tubes, SrTiO 3 : Pr (red), CaTiO 3 : Pr (red), Gd 2 O 2 S : Eu (red), Y 2 O 2 S: Eu (red), La 2 O 2 S: Eu (red), SnO 2 : Eu (orange), ZnS: Mn (orange), ZnGa 2 O 4 (blue) Many phosphors in which a conductive substance such as In 2 O 3 is added to ZnGa 2 O 4 : Mn (green) have been studied and developed (Non-patent Document 1).
However, many phosphors that have been developed as phosphors for low-energy electron beam excitation have short lifetimes other than green-emitting ZnO: Zn.

一方、蛍光表示管の駆動方法としてダイナミック駆動方法が知られている。このダイナミック駆動における、パルス幅tpとパルスの繰り返し周期Tとの比(tp/T)として表されるデューティサイクル(以下、Duと略称する)が一定の場合、応答速度の速い蛍光体ではパルス幅tpを変化させても輝度は略同一であるが、応答速度の遅い蛍光体ではパルス幅tpを短くすると輝度が低くなる。それゆえ必要な輝度を得るために応答速度の遅い蛍光体を用いたダイナミック駆動は不利になるとされている(特許文献1、非特許文献2)。
このため、応答速度の遅い蛍光体を用いる場合、パルスの繰り返し周期Tを必要以上に短くする(すなわち、パルス幅を短くする)ことを避けて、繰り返し周期Tを8〜20msecとしている。例えば、Du=1/10〜1/50、T=10msecのとき、パルス幅としては、200〜1000μsecの比較的長いパルス幅で駆動されている。
On the other hand, a dynamic driving method is known as a driving method of a fluorescent display tube. In this dynamic drive, when the duty cycle (hereinafter abbreviated as Du) expressed as the ratio (t p / T) between the pulse width t p and the pulse repetition period T is constant, Even if the pulse width t p is changed, the luminance is substantially the same. However, in the case of a phosphor having a slow response speed, the luminance is lowered when the pulse width t p is shortened. Therefore, dynamic driving using a phosphor having a slow response speed in order to obtain a required luminance is considered disadvantageous (Patent Document 1, Non-Patent Document 2).
For this reason, when using a phosphor with a slow response speed, the repetition period T is set to 8 to 20 msec while avoiding shortening the repetition period T of the pulse more than necessary (that is, shortening the pulse width). For example, when Du = 1/10 to 1/50 and T = 10 msec, the pulse width is driven with a relatively long pulse width of 200 to 1000 μsec.

ダイナミック駆動において、蛍光体の輝度寿命を向上させる方法として、特許文献2に記載の方法が知られている。この方法は、特にリブ・グリッド電極を有する蛍光表示管における使用時間の経過とともに陰極と並行に明暗の輝度ムラが発生するのを防ぐことを目的になされたもので、陽極およびグリッドの少なくとも一方に印加する駆動パルスのパルス幅および電圧の少なくとも一方を、陰極からその陽極までの距離に関連して調節する、また累積行動時間が長くなるほど陰極からの距離に関連するパルス幅および電圧の調節量を大きくするという方法である。
また、蛍光表示管を駆動するのに必要な駆動電圧が供給され、その駆動電圧によって上記蛍光表示管をダイナミック駆動する駆動手段と、該駆動手段の動作環境温度を検出する温度検出手段と、該温度検出手段の温度検出結果に応じて、上記駆動電圧のうち、上記蛍光表示管の陽極電極に対して供給される陽極電圧を所要の電圧値に可変することができる電圧可変手段とを備えていることを特徴とする蛍光表示管駆動装置が知られている(特許文献3)。
しかしながら、低速電子線励起用蛍光体として各種蛍光体が開発され、これらの蛍光体を用いた蛍光表示管が実用化されるにつれて、緑色発光のZnO:Zn蛍光体を除いては、上記改善方法を行なっても、輝度が低く、寿命も短い蛍光体が多く、更なる高輝度化、長寿命化が求められている。
As a method for improving the luminance life of a phosphor in dynamic driving, a method described in Patent Document 2 is known. This method is intended to prevent brightness unevenness from occurring in parallel with the cathode as the usage time elapses, particularly in a fluorescent display tube having a rib / grid electrode. At least one of the anode and the grid is used. Adjust at least one of the pulse width and voltage of the drive pulse to be applied in relation to the distance from the cathode to the anode, and adjust the amount of adjustment of the pulse width and voltage in relation to the distance from the cathode as the cumulative action time increases. It is a method of enlarging.
Further, a driving voltage necessary for driving the fluorescent display tube is supplied, and a driving means for dynamically driving the fluorescent display tube by the driving voltage, a temperature detecting means for detecting an operating environment temperature of the driving means, Voltage varying means capable of varying the anode voltage supplied to the anode electrode of the fluorescent display tube among the driving voltages to a required voltage value according to the temperature detection result of the temperature detecting means. A fluorescent display tube driving device is known (Patent Document 3).
However, as the various phosphors have been developed as phosphors for low-energy electron beam excitation, and the fluorescent display tube using these phosphors has been put into practical use, the above improvement method except for the green-emitting ZnO: Zn phosphor is used. However, there are many phosphors with low brightness and short life, and further higher brightness and longer life are required.

特開2000−250454号公報JP 2000-250454 A 特開2003−195818号公報JP 2003-195818 A 特開平11−95712号公報Japanese Patent Laid-Open No. 11-95712

岸野隆雄編著 蛍光表示管 56頁、産業図書株式会社発行Edited by Takao Kishino, 56 pages of fluorescent display tubes, published by Sangyo Tosho Co., Ltd. 岸野隆雄編著 蛍光表示管 155頁、産業図書株式会社発行Edited by Takao Kishino, 155 pages of fluorescent display tubes, published by Sangyo Tosho

本発明は、このような問題に対処するためになされたもので、ダイナミック駆動方式で駆動され、輝度飽和が顕著な蛍光体を用いた蛍光表示管の輝度寿命を向上できる駆動方法およびこの駆動方法で駆動される蛍光表示管の提供を目的とする。   The present invention has been made to cope with such a problem, and a driving method capable of improving the luminance life of a fluorescent display tube using a phosphor driven by a dynamic driving method and having remarkable luminance saturation, and the driving method. An object of the present invention is to provide a fluorescent display tube driven by the

本発明の駆動方法は、低速電子線励起下で陽極電極上に形成された蛍光体層をダイナミック駆動により表示する蛍光表示管の駆動方法であって、
上記蛍光体層に含まれる蛍光体は、ダイナミック駆動において、Duを同一とする条件下でパルス幅が短くなると輝度が向上する蛍光体であり、かつ上記陽極電極に電圧が印加され、蛍光体の輝度が飽和された後に該電圧印加停止後の上記飽和輝度値の10%輝度値に低下する時間が200μsec以上の蛍光体であり、
上記ダイナミック駆動は、上記蛍光体の初期輝度を維持する方向に、駆動時間の経過とともにパルス幅およびパルスの繰返し周期を可変とすることを特徴とする。
また、駆動時間の経過とともにパルス幅およびパルスの繰返し周期を可変とすることは、陽極電圧、グリッド電圧およびDuを駆動開始時の値を維持しながら行なうことを特徴とする。
A driving method of the present invention is a driving method of a fluorescent display tube that displays a phosphor layer formed on an anode electrode under low-energy electron beam excitation by dynamic driving,
The phosphor included in the phosphor layer is a phosphor whose luminance is improved when the pulse width is shortened under the same Du condition under dynamic driving, and a voltage is applied to the anode electrode, A phosphor whose time to decrease to a luminance value of 10% of the saturated luminance value after the voltage application is stopped after the luminance is saturated is 200 μsec or more;
The dynamic drive is characterized in that the pulse width and the pulse repetition period are made variable as the drive time elapses in a direction to maintain the initial luminance of the phosphor.
Further, making the pulse width and the pulse repetition period variable as the driving time elapses is characterized in that the anode voltage, grid voltage, and Du are maintained while maintaining the values at the start of driving.

本発明の駆動方法において、上記蛍光体が局在形発光中心を有する蛍光体であることを特徴とする。
また、上記蛍光体が遷移金属イオン発光中心および希土類イオン発光中心の少なくとも1つの発光中心を有する蛍光体であることを特徴とする。特に上記発光中心がMnイオン、Prイオン、Euイオン、またはTbイオンであり、また、これら発光中心を有する蛍光体がZnS:Mn、ZnGa24:Mn、SrTiO3:Pr、CaTiO3:Pr、Gd22S:Eu、Y22S:Eu、ZnGa24、Gd22S:Tb、Y23:Eu、La22S:Eu、SnO2:Eu、Zn2SiO4:Mn、および、CaS:Mnから選ばれた少なくとも1つの蛍光体であることを特徴とする。
In the driving method of the present invention, the phosphor is a phosphor having a localized emission center.
The phosphor is a phosphor having at least one emission center of a transition metal ion emission center and a rare earth ion emission center. In particular, the emission center is Mn ion, Pr ion, Eu ion, or Tb ion, and phosphors having these emission centers are ZnS: Mn, ZnGa 2 O 4 : Mn, SrTiO 3 : Pr, CaTiO 3 : Pr. Gd 2 O 2 S: Eu, Y 2 O 2 S: Eu, ZnGa 2 O 4 , Gd 2 O 2 S: Tb, Y 2 O 3 : Eu, La 2 O 2 S: Eu, SnO 2 : Eu, It is at least one phosphor selected from Zn 2 SiO 4 : Mn and CaS: Mn.

本発明の蛍光表示管は、真空容器内に形成された蛍光体層に低速電子線を射突させて発光させる蛍光表示管であって、上記蛍光体層がZnS:Mn、ZnGa24:Mn、SrTiO3:Pr、CaTiO3:Pr、Gd22S:Eu、Y22S:Eu、ZnGa24、Gd22S:Tb、Y23:Eu、La22S:Eu、SnO2:Eu、Zn2SiO4:Mn、および、CaS:Mnから選ばれた少なくとも1つの蛍光体を含み、上記蛍光体層は、同一Duを維持しながら、駆動時間の経過とともにパルス幅およびパルスの繰返し周期を短くするダイナミック駆動方式で発光表示されることを特徴とする。 The fluorescent display tube of the present invention is a fluorescent display tube that emits light by projecting a low-energy electron beam onto a phosphor layer formed in a vacuum vessel, and the phosphor layer is ZnS: Mn, ZnGa 2 O 4 : Mn, SrTiO 3 : Pr, CaTiO 3 : Pr, Gd 2 O 2 S: Eu, Y 2 O 2 S: Eu, ZnGa 2 O 4 , Gd 2 O 2 S: Tb, Y 2 O 3 : Eu, La 2 The phosphor layer includes at least one phosphor selected from O 2 S: Eu, SnO 2 : Eu, Zn 2 SiO 4 : Mn, and CaS: Mn, and the phosphor layer has a driving time while maintaining the same Du. It is characterized in that light emission display is performed by a dynamic drive method in which the pulse width and the pulse repetition period are shortened as time passes.

本発明の駆動方法は、輝度飽和が顕著な蛍光体を用いて、上記蛍光体の初期輝度を維持する方向に、駆動時間の経過とともにDuが同一の条件下でパルス幅およびパルスの繰返し周期を可変とするので、輝度の低下を大幅に抑制し蛍光表示管の長寿命化が図れる。
駆動時間の経過とともに陽極電圧、グリッド電圧、Duのいずれかを大きくする操作をしても輝度を上げることは可能であるが、こうした操作は蛍光体に衝突する電子のエネルギーの増大や電子数の増加をもたらすため、蛍光体の劣化が加速され、やがて輝度の補正ができなくなる。また、消費電力の増大をもたらす。一方、本発明の駆動方法の場合は、上記操作条件を変えずに輝度を上げることができるため、蛍光体の劣化が加速されることはなく、蛍光表示管の消費電力も増加しない。
The driving method of the present invention uses a phosphor having a remarkable luminance saturation, and maintains the initial luminance of the phosphor in the direction of maintaining the initial luminance of the phosphor with the same Du as the pulse width and the repetition period of the pulse. Since it is variable, a decrease in luminance can be greatly suppressed and the life of the fluorescent display tube can be extended.
Although it is possible to increase the luminance even if the anode voltage, the grid voltage, or Du is increased as the driving time elapses, such an operation increases the energy of electrons colliding with the phosphor or the number of electrons. Since the increase is caused, the deterioration of the phosphor is accelerated, and the luminance cannot be corrected. In addition, power consumption is increased. On the other hand, in the case of the driving method of the present invention, the luminance can be increased without changing the operation conditions, so that the deterioration of the phosphor is not accelerated and the power consumption of the fluorescent display tube does not increase.

蛍光表示管の断面図である。It is sectional drawing of a fluorescent display tube. ダイナミック駆動方法におけるタイミングチャート図である。It is a timing chart figure in a dynamic drive method. ZnO:Zn蛍光体における発光効率のDu依存性を示す図である。It is a figure which shows Du dependence of the luminous efficiency in ZnO: Zn fluorescent substance. ZnS:Mn蛍光体における発光効率のDu依存性を示す図である。It is a figure which shows Du dependence of the luminous efficiency in ZnS: Mn fluorescent substance. SrTiO3:Pr蛍光体の発光効率のパルス幅依存性を示す図である。SrTiO 3: is a diagram showing the pulse width dependency of the emission efficiency of Pr phosphor. Gd22S:Eu蛍光体の発光効率のパルス幅依存性を示す図である。Gd 2 O 2 S: is a diagram showing the pulse width dependency of the emission efficiency of the Eu phosphor. CaTiO3:Pr蛍光体の発光効率のパルス幅依存性を示す図である。CaTiO 3: is a diagram showing the pulse width dependency of the emission efficiency of Pr phosphor. ZnS:Mn蛍光体の発光効率のパルス幅依存性を示す図である。It is a figure which shows the pulse width dependence of the luminous efficiency of ZnS: Mn fluorescent substance. ZnGa24:Mn蛍光体の発光効率のパルス幅依存性を示す図である。ZnGa 2 O 4: is a diagram showing the pulse width dependency of the emission efficiency of Mn phosphor. ZnGa24蛍光体の発光効率のパルス幅依存性を示す図である。It is a diagram showing the pulse width dependency of the luminous efficiency of the ZnGa 2 O 4 phosphor. 22S:Eu蛍光体の発光効率のパルス幅依存性を示す図である。Y 2 O 2 S: is a diagram showing the pulse width dependency of the emission efficiency of the Eu phosphor. ZnS:Mn蛍光体の発光効率のパルス幅依存性を示す図である。It is a figure which shows the pulse width dependence of the luminous efficiency of ZnS: Mn fluorescent substance. ZnO:Zn蛍光体の発光効率のパルス幅依存性を示す図である。It is a figure which shows the pulse width dependence of the luminous efficiency of ZnO: Zn fluorescent substance. ZnS:Zn蛍光体の発光効率のパルス幅依存性を示す図である。It is a figure which shows the pulse width dependence of the luminous efficiency of ZnS: Zn fluorescent substance. ZnS:Cu,Al蛍光体の発光効率のパルス幅依存性を示す図である。It is a figure which shows the pulse width dependence of the luminous efficiency of ZnS: Cu, Al fluorescent substance. ZnCdS:Ag蛍光体の発光効率のパルス幅依存性を示す図である。It is a figure which shows the pulse width dependence of the luminous efficiency of ZnCdS: Ag fluorescent substance. ZnO:Zn蛍光体における陽極電流のパルス幅依存性を示す図である。It is a figure which shows the pulse width dependence of the anode current in ZnO: Zn fluorescent substance. ZnS:Mn蛍光体における陽極電流のパルス幅依存性を示す図である。It is a figure which shows the pulse width dependence of the anode current in ZnS: Mn fluorescent substance. 蛍光体の発光の立上がり時間t、立下り時間tを示す図である。Rise time t r of the light emitted from the phosphor is a diagram showing the fall time t f. ZnS:Mn蛍光体の輝度寿命を示す図である。It is a figure which shows the luminance lifetime of a ZnS: Mn fluorescent substance. CaTiO3:Pr蛍光体の輝度寿命を示す図である。CaTiO 3: is a diagram showing the luminance lifetime of Pr phosphor. Gd22S:Eu蛍光体の輝度寿命を示す図である。Gd 2 O 2 S: is a diagram showing the luminance lifetime of Eu phosphor. SrTiO3:Pr蛍光体の輝度寿命を示す図である。SrTiO 3: is a diagram showing the luminance lifetime of Pr phosphor. ZnGa24:Mn蛍光体の輝度寿命を示す図である。ZnGa 2 O 4: a diagram showing the luminance lifetime of Mn phosphor.

本発明の駆動方法は、蛍光表示管のダイナミック駆動方法に関する。図1は蛍光表示管の断面図である。
蛍光表示管1は、陽極基板7の表示面において複数の陽極5上にそれぞれ形成された蛍光体層6を備え、真空空間内においてその蛍光体層6の上方に位置する陰極9から発生させられた電子をそれら蛍光体層6と陰極9との間に設けられた複数のグリッド電極8で制御してそれら複数の蛍光体層6を選択的に発光させる表示管である。
なお、図1において、2はガラス基板であり、3はこのガラス基板上に形成された配線層であり、4は絶縁層であり、4aは配線層3と陽極電極5とを電気的に接続するスルーホールである。また、10はフェースガラス、11はスペーサガラスである。
The driving method of the present invention relates to a dynamic driving method of a fluorescent display tube. FIG. 1 is a cross-sectional view of a fluorescent display tube.
The fluorescent display tube 1 includes phosphor layers 6 respectively formed on a plurality of anodes 5 on the display surface of the anode substrate 7, and is generated from a cathode 9 positioned above the phosphor layer 6 in a vacuum space. In this display tube, the plurality of phosphor layers 6 are selectively emitted by controlling the electrons with a plurality of grid electrodes 8 provided between the phosphor layers 6 and the cathode 9.
In FIG. 1, 2 is a glass substrate, 3 is a wiring layer formed on the glass substrate, 4 is an insulating layer, and 4a electrically connects the wiring layer 3 and the anode electrode 5. It is a through hole. Further, 10 is a face glass and 11 is a spacer glass.

ダイナミック駆動方法を図2により説明する。図2はダイナミック駆動方法におけるタイミングチャート図である。
ダイナミック駆動方法は、上記複数のグリッド電極8(G1〜Gn)に陰極9の電位よりも高い加速電圧を桁信号(グリッドスキャン)のパルス電圧として順次印加して走査し、その走査のタイミングに同期して所定の陽極5にその陰極9の電位よりも高い点灯電圧を、表示の種類に応じて選択的にON(正)またはOFF(負)のセグメント信号のパルス電圧として印加する駆動方法である。図2はa〜gのセグメントで算用数字を表している。このようなダイナミック駆動方法によれば、グリッド電極8が所定の発光単位(発光群)毎に分割して設けられる一方、複数の陽極5のうちその発光単位毎に予め定められた所定位置のものがそれぞれ共通の陽極配線に接続され、グリッド電極8は桁選択電極として、陽極5はセグメント選択電極として、それぞれ作用する。
図2において、TはT1〜Tnを周期とする繰り返し周期であり、tpはパルス幅であり、tbはブランキング時間である。DuはtpとTとの比(tp/T)として定義される。
The dynamic driving method will be described with reference to FIG. FIG. 2 is a timing chart in the dynamic driving method.
In the dynamic driving method, scanning is performed by sequentially applying an acceleration voltage higher than the potential of the cathode 9 as a pulse voltage of a digit signal (grid scan) to the plurality of grid electrodes 8 (G 1 to G n ). A driving method in which a lighting voltage higher than the potential of the cathode 9 is selectively applied to a predetermined anode 5 as a pulse voltage of an ON (positive) or OFF (negative) segment signal in synchronization with It is. FIG. 2 represents arithmetic numbers in the segments ag. According to such a dynamic driving method, the grid electrode 8 is divided and provided for each predetermined light emitting unit (light emitting group), while the one having a predetermined position predetermined for each light emitting unit among the plurality of anodes 5 is provided. Are connected to a common anode wiring, and the grid electrode 8 functions as a digit selection electrode and the anode 5 functions as a segment selection electrode.
In FIG. 2, T is a repetition period having T 1 to T n as a period, t p is a pulse width, and t b is a blanking time. Du is defined as the ratio of t p to T (t p / T).

上記ダイナミック駆動方法において、低速電子線励起用蛍光体の種類によりDu依存性は顕著に異なる。例えば、図3はZnO:Zn蛍光体における発光効率のDu依存性を、図4はZnS:Mn蛍光体における発光効率のDu依存性をそれぞれ示す。ZnO:Zn蛍光体はDuが変化しても、すなわち蛍光体への入射電流を大きくしても小さくしても発光効率は殆ど変化しない。これに対して、ZnS:Mn蛍光体はDuが大きくなると、すなわち蛍光体への入射電流を大きくすると発光効率が大きく低下する。
ZnS:Mn蛍光体は応答速度が遅いため、従来のダイナミック駆動においては、発光が出来るだけ立ち上がるように、200〜1000μsecの比較的長いパルス幅で駆動されている。
In the above dynamic driving method, the Du dependency is remarkably different depending on the type of phosphor for low-energy electron beam excitation. For example, FIG. 3 shows the Du dependence of the luminous efficiency in a ZnO: Zn phosphor, and FIG. 4 shows the Du dependence of the luminous efficiency in a ZnS: Mn phosphor. The light emission efficiency of the ZnO: Zn phosphor hardly changes even if Du changes, that is, the incident current to the phosphor increases or decreases. On the other hand, in the ZnS: Mn phosphor, when the Du becomes large, that is, when the incident current to the phosphor is increased, the light emission efficiency is greatly reduced.
Since the response speed of the ZnS: Mn phosphor is slow, the conventional dynamic drive is driven with a relatively long pulse width of 200 to 1000 μsec so as to rise as much as possible.

しかしながら、ZnS:Mn蛍光体など、特定の蛍光体はDuが同一の場合であってもパルス幅tpを短くすると、これまで考えられてきたこととは逆に大幅に輝度(発光効率)が上昇することを本発明者は見出した。
ZnS:Mn蛍光体などは、所定のDu条件下で、パルス幅を短くすると輝度を大幅に向上させることができるので、駆動時間の経過とともにパルス幅を変動させることにより、初期輝度を維持することができる。また、同じ輝度を得る場合は駆動電圧を下げることができるので、蛍光表示管の長寿命化が図れる。本発明はこのような知見に基づくものである。
However, ZnS: Mn phosphor, etc., certain phosphors when Du is shorter the pulse width t p even when the same, so far it has been considered significant luminance contrary (luminous efficiency) The inventor has found that it rises.
Since the brightness of ZnS: Mn phosphors and the like can be significantly improved by shortening the pulse width under a predetermined Du condition, the initial brightness can be maintained by changing the pulse width over time. Can do. In addition, when the same luminance is obtained, the driving voltage can be lowered, so that the life of the fluorescent display tube can be extended. The present invention is based on such knowledge.

発光効率のパルス幅依存性について測定した結果を図5〜図16に示す。図5〜図12はパルス幅tpを短くすると発光効率が上昇する蛍光体の例であり、図13〜図16はパルス幅tpを変化させても発光効率が変化しない蛍光体の例である。
上記測定は以下の方法で測定した。蛍光表示管のカーボン陽極上に各種低速電子線用蛍光体を塗布後、公知の蛍光表示管製造工程で管球化を行なった。ZnO:Zn以外の蛍光体には、チャージアップを防ぐために導電性の高いIn23を蛍光体とIn23との合計量に対して約10重量%混合した。フィラメント状陰極を通電し約650℃に加熱した状態で陽極・グリッド電極(ebc)を50Vppとして、Duとパルス幅tpとを変えて発光効率特性を測定した。
なお、発光効率は輝度を測定して、パルス幅tpが250μsecの輝度の値を100として、その相対値で表した。
The measurement result about the pulse width dependence of luminous efficiency is shown in FIGS. 5 to 12 are examples of the phosphor emission efficiency and to shorten the pulse width t p is increased, in the example of FIGS. 13 to 16 is a phosphor emission efficiency by changing the pulse width t p is not changed is there.
The said measurement was measured with the following method. After applying various low-speed electron beam phosphors on the carbon anode of the fluorescent display tube, the tube was formed into a tube by a known fluorescent display tube manufacturing process. ZnO: The phosphor other than Zn, the high conductivity In 2 O 3 were mixed for about 10% by weight relative to the total weight of the phosphor and the In 2 O 3 in order to prevent charge-up. In a state where the filament cathode was energized and heated to about 650 ° C., the anode / grid electrode (ebc) was set to 50 V pp , and the light emission efficiency characteristics were measured by changing Du and the pulse width t p .
The luminous efficiency was expressed as a relative value by measuring the luminance and setting the luminance value with a pulse width t p of 250 μsec as 100.

図5〜図12に示すように、蛍光体がSrTiO3:Pr(図5)、Gd22S:Eu(図6)、CaTiO3:Pr(図7)、ZnS:Mn(図8)、ZnGa24:Mn(図9)、ZnGa24(図10)、Y22S:Eu(図11)の場合、パルス幅が短くなると発光効率が大幅に向上する。また、陽極・グリッド電極(ebc)が35Vppの場合の一例としてZnS:Mnの例を図12に示すが、陽極・グリッド電極(ebc)が50Vppよりも低い35Vppにおいても、パルス幅が短くなると発光効率が大幅に向上する。 As shown in FIGS. 5 to 12, the phosphors are SrTiO 3 : Pr (FIG. 5), Gd 2 O 2 S: Eu (FIG. 6), CaTiO 3 : Pr (FIG. 7), ZnS: Mn (FIG. 8). In the case of ZnGa 2 O 4 : Mn (FIG. 9), ZnGa 2 O 4 (FIG. 10), and Y 2 O 2 S: Eu (FIG. 11), the light emission efficiency is greatly improved when the pulse width is shortened. Further, ZnS anode grid electrode (ebc) is an example of a case of 35V pp: an example of Mn are shown in Figure 12, also the anode grid electrode (ebc) is at a lower 35V pp than 50 V pp, the pulse width When it is shortened, the luminous efficiency is greatly improved.

一方、図13〜図16に示すように、蛍光体がZnO:Zn(図13)、ZnS:Zn(図14)、ZnS:Cu,Al(図15)、ZnCdS:Ag(CdS、70重量%)(図16)ではパルス幅が短くなっても発光効率は向上しないで、パルス幅依存性がみられない。この傾向は陽極・グリッド電極(ebc)が35Vppにおいても同様であった。 On the other hand, as shown in FIGS. 13 to 16, the phosphors are ZnO: Zn (FIG. 13), ZnS: Zn (FIG. 14), ZnS: Cu, Al (FIG. 15), ZnCdS: Ag (CdS, 70% by weight). ) (FIG. 16), even if the pulse width is shortened, the light emission efficiency is not improved and no dependence on the pulse width is observed. This tendency was the same even when the anode / grid electrode (ebc) was 35 V pp .

上記図5〜図16に示す測定において、パルス幅(周期)は変更しているが、陽極・グリッド電極(ebc)とDuとは同じであるため、蛍光体へ流れ込む電流(陽極電流)は略一定である。したがって、発光効率の依存性は輝度の依存性と同じである。ZnO:Zn蛍光体における陽極電流のパルス幅依存性を図17に、ZnS:Mn蛍光体における陽極電流のパルス幅依存性を図18にそれぞれ示すが、いずれも陽極電流はパルス幅に依存していない。   In the measurements shown in FIGS. 5 to 16, the pulse width (period) is changed, but since the anode / grid electrode (ebc) and Du are the same, the current flowing into the phosphor (anode current) is substantially the same. It is constant. Therefore, the dependency on luminous efficiency is the same as the dependency on luminance. FIG. 17 shows the pulse width dependence of the anode current in the ZnO: Zn phosphor, and FIG. 18 shows the pulse width dependence of the anode current in the ZnS: Mn phosphor. In each case, the anode current depends on the pulse width. Absent.

ダイナミック駆動において、パルス幅tpを短くすると発光効率が上昇する蛍光体と、パルス幅依存性を示さない蛍光体とを比較すると、前者は主に遷移金属イオン発光中心および希土類イオン発光中心の少なくとも1つの発光中心を有する局在形発光中心を有する蛍光体であり、後者は非局在形発光中心を有する蛍光体であることが分かる。 In a dynamic drive, when comparing a phosphor whose luminous efficiency increases when the pulse width t p is shortened with a phosphor that does not show pulse width dependency, the former mainly includes at least transition metal ion emission centers and rare earth ion emission centers. It can be seen that the phosphor has a localized emission center having one emission center, and the latter is a phosphor having a non-local emission center.

また、上記両蛍光体に図19に示す入力波形のパルス電圧を印加して、蛍光体の輝度が飽和された後に該電圧印加停止後の飽和輝度値の低下傾向を調査した結果を表1および表2に示す。
図19は、蛍光表示管の陽極にパルス電圧を印加したときの蛍光体の発光の立上がり時間tおよび電圧印加停止後の立下り時間tを示す図である。入力波形は陽極・グリッド電極(ebc)が50Vpp、パルス幅tが1msecで、飽和輝度値の10%に低下する時間を「立下り時間t」として測定した。
Table 1 and Table 1 show the results of investigating the decreasing tendency of the saturation luminance value after the voltage application was stopped after applying the pulse voltage of the input waveform shown in FIG. It shows in Table 2.
Figure 19 is a diagram illustrating a rise time of emission of the phosphor t r and fall time t f after the application of a voltage is stopped at the time of applying a pulse voltage to the anode of the fluorescent display tube. Input waveform anode grid electrode (ebc) is 50 V pp, the pulse width t p is 1 msec, the time was measured to decrease to 10% of the saturated luminance value as the "fall time t f."

Figure 2010181517
Figure 2010181517
Figure 2010181517
Figure 2010181517

表2に示すように、パルス幅依存性を示さない蛍光体群の立下り時間が100μsec以下であるのに対して、表1に示すように、パルス幅tpを短くすると発光効率が上昇する蛍光体群の立下り時間は最低でも290μsecである。
本発明に使用できる蛍光体は、ダイナミック駆動の同一Duにおいてパルス幅が短くなると輝度が向上する蛍光体であり、かつ立下り時間が100μsecをこえる蛍光体であり、好ましくは立下り時間が200μsec以上の蛍光体であり、より好ましくは立下り時間が290μsec以上の蛍光体である。そして、そのような特性を示す蛍光体は、主に遷移金属イオン発光中心および希土類イオン発光中心の少なくとも1つの発光中心を有する局在形発光中心を有する蛍光体である。発光中心としては、Mnイオン、Prイオン、Euイオン、またはTbイオンであることが好ましい。
As shown in Table 2, the fall time of the phosphor group is not shown the pulse width dependency whereas the less 100 .mu.sec, as shown in Table 1, the luminous efficiency and to shorten the pulse width t p increases The fall time of the phosphor group is at least 290 μsec.
The phosphor that can be used in the present invention is a phosphor whose luminance is improved when the pulse width is shortened in the same Du of dynamic drive, and a phosphor whose fall time exceeds 100 μsec, and preferably the fall time is 200 μsec or more. More preferably, the phosphor has a fall time of 290 μsec or more. The phosphor exhibiting such characteristics is a phosphor having a localized emission center mainly having at least one emission center of a transition metal ion emission center and a rare earth ion emission center. The emission center is preferably Mn ion, Pr ion, Eu ion, or Tb ion.

具体例としては、ZnS:Mn蛍光体(橙)、ZnGa24:Mn(緑)、SrTiO3:Pr(赤)、CaTiO3:Pr(赤)、Gd22S:Eu(赤)、Y22S:Eu(赤)、Y23:Eu(赤)、ZnGa24(青)、La22S:Eu(赤)、SnO2:Eu(橙)、Zn2SiO4:Mn(緑)、Gd22S:Tb(緑)、CaS:Mn(橙)等を挙げることができる。 As specific examples, ZnS: Mn phosphor (orange), ZnGa 2 O 4 : Mn (green), SrTiO 3 : Pr (red), CaTiO 3 : Pr (red), Gd 2 O 2 S: Eu (red) Y 2 O 2 S: Eu (red), Y 2 O 3 : Eu (red), ZnGa 2 O 4 (blue), La 2 O 2 S: Eu (red), SnO 2 : Eu (orange), Zn 2 SiO 4 : Mn (green), Gd 2 O 2 S: Tb (green), CaS: Mn (orange) and the like.

本発明に使用できる蛍光体は、電子線励起領域内における発光中心の数が少ないことや励起状態から基底状態への遷移確率が低いために、長いパルス幅tpでは励起・発光過程が飽和傾向となり輝度(発光効率)が低下する。反対に短いパルス幅tpにすると相対的に輝度(発光効率)が上がるものと考えられる。 Phosphor that can be used in the present invention, due to the low transition probability from it and the excited state the number of luminescent centers is small in the electron beam excitation region to the ground state, long pulse width t p in the excitation and emission process saturation tendency As a result, the luminance (luminous efficiency) decreases. On the contrary, it is considered that when the pulse width t p is short, the luminance (luminous efficiency) is relatively increased.

本発明のダイナミック駆動は、Duが同一の条件下において、パルス幅tpが短くなると輝度が向上する上記蛍光体群を用いる。パルス幅が短くなると輝度が向上するので、このような蛍光体を用いて、初期輝度を維持する方向に、駆動時間の経過とともにパルス幅tpおよびパルスの繰返し周期Tを可変とする。
蛍光体の輝度は駆動時間の経過とともに低下することが多いため、具体的には、駆動時間の経過とともにパルス幅tpおよびパルスの繰返し周期Tを駆動開始時のtpおよびTよりも短くする。
The dynamic drive of the present invention uses the above phosphor group in which the luminance is improved when the pulse width t p is shortened under the same Du. Since the pulse width is the brightness is improved short, using such a phosphor, in a direction to maintain the initial brightness, and varying the pulse width t p and the pulse repetition period T with the passage of driving time.
Since it is often the brightness of the phosphor to be reduced with the lapse of driving time, specifically, shorter than t p and T of the driving start of the pulse width t p and the pulse repetition period T with the passage of driving time .

pおよびTを短くすることは、Duの同一性を維持しながら行なう。また、陽極電圧およびグリッド電圧を駆動開始時の両電圧を維持したまま行なう。
駆動時間の経過とともにtpおよびTを短くするには、例えば蛍光表示管の駆動回路内に設けられた不揮発性メモリに駆動累積時間を積算保持し、蛍光体の種類および点灯割合などを考慮し所定の時間経過後にコントローラによってパルス幅および周期が変更されるよう公知の方法で設定することができる。
これらの条件とすることにより、本発明のダイナミック駆動は、蛍光体に衝突する電子のエネルギーの増大や電子数の増加、および消費電力の増大をもたらすことなく、初期輝度を維持する方向に輝度の補正をすることができる。さらに、電子のエネルギーの増大や電子数の増加をもたらすことがないので、蛍光体の劣化が加速されることはなく蛍光表示管の寿命が向上する。また、消費電力も増加しない。
Shortening t p and T is performed while maintaining Du identity. The anode voltage and grid voltage are maintained while maintaining both voltages at the start of driving.
To shorten the t p and T with the passage of driving time, for example a driving cumulative time in a nonvolatile memory provided in the drive circuit of the fluorescent display tube integrated holding, in consideration of the type and the turn-on rate of the phosphor It can be set by a known method so that the pulse width and period are changed by the controller after a predetermined time has elapsed.
By satisfying these conditions, the dynamic driving of the present invention can increase the energy of electrons colliding with the phosphor, increase the number of electrons, and increase the power consumption. Corrections can be made. Furthermore, since there is no increase in the energy of electrons and the increase in the number of electrons, deterioration of the phosphor is not accelerated and the life of the fluorescent display tube is improved. Also, power consumption does not increase.

実施例1および比較例1
蛍光表示管のカーボン陽極上にZnS:Mn(橙)にIn23を10重量%添加した蛍光体を塗布後、公知の蛍光表示管製造工程で管球化を行なった。
得られた蛍光表示管を用いて陽極・グリッド電極(ebc)が50Vppで、Duが1/60の条件で点灯して輝度維持率を測定した。結果を図20に示す。
比較例1は、従来の駆動方法であり、パルス幅tpを250μs、および繰り返し周期Tを15msecに固定して蛍光表示管の輝度維持率を測定した。
実施例1は、点灯開始時のパルス幅tpを250μs、および繰り返し周期Tを15msecとしたが、点灯時間の経過とともに、Duが1/60の条件を維持して、tpおよびTをそれぞれ短くした。各時間経過後に変更したtpおよびTの値を表3に示す。
図20に示すように、比較例1が初期輝度を大きく低下させているのに比較して、実施例1は初期輝度を維持することができた。
また、点灯開始してから170時間後では、輝度維持率が比較例1の87%から97%に、530時間後では同79%から102%に、1000時間後では同75%から95%にそれぞれ実施例1の輝度維持率は改善された。
Example 1 and Comparative Example 1
After applying a phosphor in which 10% by weight of In 2 O 3 was added to ZnS: Mn (orange) on the carbon anode of the fluorescent display tube, tube formation was performed in a known fluorescent display tube manufacturing process.
Using the obtained fluorescent display tube, the anode and grid electrode (ebc) was lit at 50 Vpp and Du was 1/60, and the luminance maintenance rate was measured. The results are shown in FIG.
Comparative Example 1 is a conventional driving method, and the luminance maintenance rate of the fluorescent display tube was measured while fixing the pulse width tp to 250 μs and the repetition period T to 15 msec.
In Example 1, the pulse width tp at the start of lighting was set to 250 μs and the repetition period T was set to 15 msec. As the lighting time passed, the condition of Du 1/60 was maintained, and tp and T were shortened, respectively. . Table 3 shows the values of tp and T that were changed after the elapse of each time.
As shown in FIG. 20, compared with the comparative example 1 which greatly reduced the initial luminance, the initial luminance was able to be maintained in the example 1.
In addition, after 170 hours from the start of lighting, the luminance maintenance rate was changed from 87% to 97% in Comparative Example 1, from 79% to 102% after 530 hours, and from 75% to 95% after 1000 hours. In each case, the luminance maintenance rate of Example 1 was improved.

実施例2および比較例2
蛍光表示管のカーボン陽極上にCaTiO3:Pr(赤)にIn23を10重量%添加した蛍光体を塗布後、公知の蛍光表示管製造工程で管球化を行なった。
得られた蛍光表示管を用いて陽極・グリッド電極(ebc)が50Vppで、Duが1/60の条件で点灯して輝度維持率を測定した。結果を図21に示す。
比較例2は、従来の駆動方法であり、パルス幅tpを250μs、および繰り返し周期Tを15msecに固定して蛍光表示管の輝度維持率を測定した。
実施例2は、点灯開始時のパルス幅tpを250μs、および繰り返し周期Tを15msecとしたが、点灯時間の経過とともに、Duが1/60の条件を維持して、tpおよびTをそれぞれ短くした。各時間経過後のtpおよびTの値を表3に示す。
図21に示すように、比較例2が初期輝度を大きく低下させているのに比較して、実施例2は初期輝度の低下が少なかった。
また、点灯開始してから48時間後では、輝度維持率が比較例2の75%から91%に、170時間後では、輝度維持率が比較例2の60%から84%に、530時間後では同52%から80%に、1000時間後では同46%から80%にそれぞれ実施例2の輝度維持率は改善された。
Example 2 and Comparative Example 2
After applying a phosphor in which 10% by weight of In 2 O 3 was added to CaTiO 3 : Pr (red) on the carbon anode of the fluorescent display tube, tube formation was performed in a known fluorescent display tube manufacturing process.
Using the obtained fluorescent display tube, the anode and grid electrode (ebc) was lit at 50 Vpp and Du was 1/60, and the luminance maintenance rate was measured. The results are shown in FIG.
Comparative Example 2 is a conventional driving method, and the luminance maintenance rate of the fluorescent display tube was measured with the pulse width tp fixed at 250 μs and the repetition period T fixed at 15 msec.
In Example 2, the pulse width tp at the start of lighting was set to 250 μs and the repetition period T was set to 15 msec. However, as the lighting time passed, the condition that Du was 1/60 was maintained, and tp and T were shortened, respectively. . Table 3 shows the values of tp and T after the elapse of each time.
As shown in FIG. 21, compared to Comparative Example 2 that greatly reduced the initial luminance, Example 2 showed less decrease in the initial luminance.
In addition, after 48 hours from the start of lighting, the luminance maintenance rate is changed from 75% to 91% of Comparative Example 2, and after 170 hours, the luminance maintenance rate is changed from 60% to 84% of Comparative Example 2 after 530 hours. In Example 2, the luminance maintenance rate was improved from 52% to 80%, and from 1000% to 46% after 1000 hours.

実施例3および比較例3
蛍光表示管のカーボン陽極上にGd22S:Eu(赤)にIn23を14重量%添加した蛍光体を塗布後、公知の蛍光表示管製造工程で管球化を行なった。
得られた蛍光表示管を用いて陽極・グリッド電極(ebc)が50Vppで、Duが1/60の条件で点灯して輝度維持率を測定した。結果を図22に示す。
比較例3は、従来の駆動方法であり、パルス幅tpを250μs、および繰り返し周期Tを15msecに固定して蛍光表示管の輝度維持率を測定した。
実施例3は、点灯開始時のパルス幅tpを250μs、および繰り返し周期Tを15msecとしたが、点灯時間の経過とともに、Duが1/60の条件を維持して、tpおよびTをそれぞれ短くした。各時間経過後のtpおよびTの値を表3に示す。
図22に示すように、比較例3が初期輝度を大きく低下させているのに比較して、実施例3は初期輝度を維持することができた。
また、点灯開始してから48時間後では、輝度維持率が比較例3の92%から100%に、170時間後では、輝度維持率が比較例3の80%から96%に、530時間後では同69%から96%に、1000時間後では同57%から94%にそれぞれ実施例3の輝度維持率は改善された。
Example 3 and Comparative Example 3
After applying a phosphor in which 14% by weight of In 2 O 3 was added to Gd 2 O 2 S: Eu (red) on the carbon anode of the fluorescent display tube, tube formation was performed in a known fluorescent display tube manufacturing process.
Using the obtained fluorescent display tube, the anode and grid electrode (ebc) was lit at 50 Vpp and Du was 1/60, and the luminance maintenance rate was measured. The results are shown in FIG.
Comparative Example 3 is a conventional driving method, and the luminance maintenance rate of the fluorescent display tube was measured with the pulse width tp fixed at 250 μs and the repetition period T fixed at 15 msec.
In Example 3, the pulse width tp at the start of lighting was set to 250 μs and the repetition period T was set to 15 msec. However, as the lighting time passed, the condition that Du was 1/60 was maintained, and tp and T were shortened, respectively. . Table 3 shows the values of tp and T after the elapse of each time.
As shown in FIG. 22, compared with the comparative example 3 which greatly reduced the initial luminance, the example 3 was able to maintain the initial luminance.
In addition, after 48 hours from the start of lighting, the luminance maintenance rate was changed from 92% of Comparative Example 3 to 100%, and after 170 hours, the luminance maintenance rate was changed from 80% of Comparative Example 3 to 96%, after 530 hours. In Example 3, the luminance maintenance rate was improved from 69% to 96%, and from 1000% to 57% after 1000 hours.

実施例4および比較例4
蛍光表示管のカーボン陽極上にSrTiO3:Pr(赤)にIn23を10重量%添加した蛍光体を塗布後、公知の蛍光表示管製造工程で管球化を行なった。
得られた蛍光表示管を用いて陽極・グリッド電極(ebc)が50Vppで、Duが1/60の条件で点灯して輝度維持率を測定した。結果を図23に示す。
比較例4は、従来の駆動方法であり、パルス幅tpを250μs、および繰り返し周期Tを15msecに固定して蛍光表示管の輝度維持率を測定した。
実施例4は、点灯開始時のパルス幅tpを250μs、および繰り返し周期Tを15msecとしたが、点灯時間の経過とともに、Duが1/60の条件を維持して、tpおよびTをそれぞれ短くした。各時間経過後のtpおよびTの値を表3に示す。
図23に示すように、比較例4が初期輝度を大きく低下させているのに比較して、実施例4は初期輝度の低下が少なかった。
また、点灯開始してから48時間後では、輝度維持率が比較例4の77%から104%に、170時間後では、輝度維持率が比較例4の52%から83%に、530時間後では同39%から70%に、1000時間後では同32%から63%にそれぞれ実施例4の輝度維持率は改善された。
Example 4 and Comparative Example 4
After applying a phosphor in which 10% by weight of In 2 O 3 was added to SrTiO 3 : Pr (red) on the carbon anode of the fluorescent display tube, tube formation was performed in a known fluorescent display tube manufacturing process.
Using the obtained fluorescent display tube, the anode and grid electrode (ebc) was lit at 50 Vpp and Du was 1/60, and the luminance maintenance rate was measured. The results are shown in FIG.
Comparative Example 4 is a conventional driving method, and the luminance maintenance rate of the fluorescent display tube was measured with the pulse width tp fixed at 250 μs and the repetition period T fixed at 15 msec.
In Example 4, the pulse width tp at the start of lighting was set to 250 μs and the repetition period T was set to 15 msec. However, as the lighting time passed, the condition that Du was 1/60 was maintained, and tp and T were shortened, respectively. . Table 3 shows the values of tp and T after the elapse of each time.
As shown in FIG. 23, compared with the comparative example 4 which greatly reduced the initial brightness, the fall of the initial brightness was small in the example 4.
In addition, after 48 hours from the start of lighting, the luminance maintenance ratio is changed from 77% of Comparative Example 4 to 104%, and after 170 hours, the luminance maintenance ratio is changed from 52% of Comparative Example 4 to 83% after 530 hours. Then, the luminance maintenance rate of Example 4 was improved from 39% to 70% and from 32% to 63% after 1000 hours.

実施例5および比較例5
蛍光表示管のカーボン陽極上にZnGa24:Mn(緑)にIn23を10重量%添加した蛍光体を塗布後、公知の蛍光表示管製造工程で管球化を行なった。
得られた蛍光表示管を用いて陽極・グリッド電極(ebc)が50Vppで、Duが1/60の条件で点灯して輝度維持率を測定した。結果を図24に示す。
比較例5は、従来の駆動方法であり、パルス幅tpを250μs、および繰り返し周期Tを15msecに固定して蛍光表示管の輝度維持率を測定した。
実施例5は、点灯開始時のパルス幅tpを250μs、および繰り返し周期Tを15msecとしたが、点灯時間の経過とともに、Duが1/60の条件を維持して、tpおよびTをそれぞれ短くした。各時間経過後のtpおよびTの値を表3に示す。
図24に示すように、比較例5が初期輝度を大きく低下させているのに比較して、実施例5は初期輝度を維持することができた。
また、点灯開始してから48時間後では、輝度維持率が比較例5の88%から96%に、170時間後では、輝度維持率が比較例5の85%から102%に、1000時間後では同72%から97%にそれぞれ実施例5の輝度維持率は改善された。
Example 5 and Comparative Example 5
After applying a phosphor in which 10% by weight of In 2 O 3 was added to ZnGa 2 O 4 : Mn (green) on the carbon anode of the fluorescent display tube, tube formation was performed in a known fluorescent display tube manufacturing process.
Using the obtained fluorescent display tube, the anode and grid electrode (ebc) was lit at 50 Vpp and Du was 1/60, and the luminance maintenance rate was measured. The results are shown in FIG.
Comparative Example 5 is a conventional driving method, and the luminance maintenance rate of the fluorescent display tube was measured with the pulse width tp fixed at 250 μs and the repetition period T fixed at 15 msec.
In Example 5, the pulse width tp at the start of lighting was set to 250 μs and the repetition period T was set to 15 msec. However, as the lighting time passed, Du was maintained at 1/60, and tp and T were shortened, respectively. . Table 3 shows the values of tp and T after the elapse of each time.
As shown in FIG. 24, Example 5 was able to maintain the initial luminance, as compared to Comparative Example 5 that greatly reduced the initial luminance.
Further, after 48 hours from the start of lighting, the luminance maintenance rate was changed from 88% of Comparative Example 5 to 96%, and after 170 hours, the luminance maintenance rate was changed from 85% of Comparative Example 5 to 102%, 1000 hours later. Then, the luminance maintenance rate of Example 5 was improved from 72% to 97%, respectively.

Figure 2010181517
Figure 2010181517

本発明の駆動方法は、蛍光表示管の消費電力の低減および長寿命化ができるので、輝度飽和が顕著な蛍光体を用いた蛍光表示管に好適に利用できる。   Since the driving method of the present invention can reduce the power consumption and extend the life of the fluorescent display tube, it can be suitably used for a fluorescent display tube using a phosphor with remarkable luminance saturation.

1 蛍光表示管
2 ガラス基板
3 配線層
4 絶縁層
5 陽極電極
6 蛍光体層
7 陽極基板
8 グリッド
9 陰極
10 フェースガラス
11 スペーサガラス
DESCRIPTION OF SYMBOLS 1 Fluorescent display tube 2 Glass substrate 3 Wiring layer 4 Insulating layer 5 Anode electrode 6 Phosphor layer 7 Anode substrate 8 Grid 9 Cathode 10 Face glass 11 Spacer glass

Claims (7)

低速電子線励起下で陽極電極上に形成された蛍光体層をダイナミック駆動により表示する蛍光表示管の駆動方法であって、
前記蛍光体層に含まれる蛍光体は、前記ダイナミック駆動において、デューティサイクルを同一とする条件下でパルス幅が短くなると輝度が向上する蛍光体であり、かつ前記陽極電極に電圧が印加され、蛍光体の輝度が飽和された後に該電圧印加停止後の前記飽和輝度値の10%輝度値に低下する時間が200μsec以上の蛍光体であり、
前記ダイナミック駆動は、前記蛍光体の初期輝度を維持する方向に、駆動時間の経過とともにパルス幅およびパルスの繰返し周期を可変とすることを特徴とする蛍光表示管の駆動方法。
A fluorescent display tube driving method for displaying a phosphor layer formed on an anode electrode under low-energy electron beam excitation by dynamic driving,
The phosphor included in the phosphor layer is a phosphor whose luminance is improved when the pulse width is shortened under the same duty cycle in the dynamic drive, and a voltage is applied to the anode electrode, A phosphor whose time to decrease to a luminance value of 10% of the saturated luminance value after the voltage application is stopped after the luminance of the body is saturated is 200 μsec or more,
The method for driving a fluorescent display tube, wherein the dynamic driving is such that a pulse width and a repetition period of pulses are made variable as time elapses in a direction in which the initial luminance of the phosphor is maintained.
前記パルス幅およびパルスの繰返し周期を可変とすることは、陽極電圧、グリッド電圧およびデューティサイクルを駆動開始時の値を維持しながら行なうことを特徴とする請求項1記載の蛍光表示管の駆動方法。   2. The method for driving a fluorescent display tube according to claim 1, wherein the pulse width and the pulse repetition period are made variable while maintaining the anode voltage, grid voltage, and duty cycle at the values at the start of driving. . 前記蛍光体が局在形発光中心を有する蛍光体であることを特徴とする請求項1または請求項2記載の蛍光表示管の駆動方法。   3. The method for driving a fluorescent display tube according to claim 1, wherein the phosphor is a phosphor having a localized emission center. 前記蛍光体が遷移金属イオン発光中心および希土類イオン発光中心の少なくとも1つの発光中心を有する蛍光体であることを特徴とする請求項1または請求項2記載の蛍光表示管の駆動方法。   3. The method for driving a fluorescent display tube according to claim 1, wherein the phosphor is a phosphor having at least one emission center of a transition metal ion emission center and a rare earth ion emission center. 前記発光中心がMnイオン、Prイオン、Euイオン、またはTbイオンであることを特徴とする請求項4記載の蛍光表示管の駆動方法。   5. The method of driving a fluorescent display tube according to claim 4, wherein the emission center is Mn ion, Pr ion, Eu ion, or Tb ion. 前記蛍光体がZnS:Mn、ZnGa24:Mn、SrTiO3:Pr、CaTiO3:Pr、Gd22S:Eu、Y22S:Eu、ZnGa24、Gd22S:Tb、Y23:Eu、La22S:Eu、SnO2:Eu、Zn2SiO4:Mn、および、CaS:Mnから選ばれた少なくとも1つの蛍光体であることを特徴とする請求項5記載の蛍光表示管の駆動方法。 The phosphor is ZnS: Mn, ZnGa 2 O 4 : Mn, SrTiO 3 : Pr, CaTiO 3 : Pr, Gd 2 O 2 S: Eu, Y 2 O 2 S: Eu, ZnGa 2 O 4 , Gd 2 O 2 It is at least one phosphor selected from S: Tb, Y 2 O 3 : Eu, La 2 O 2 S: Eu, SnO 2 : Eu, Zn 2 SiO 4 : Mn, and CaS: Mn. The method for driving a fluorescent display tube according to claim 5. 真空容器内に形成された蛍光体層に低速電子線を射突させて発光させる蛍光表示管であって、
前記蛍光体層がZnS:Mn、ZnGa24:Mn、SrTiO3:Pr、CaTiO3:Pr、Gd22S:Eu、Y22S:Eu、ZnGa24、Gd22S:Tb、Y23:Eu、La22S:Eu、SnO2:Eu、Zn2SiO4:Mn、および、CaS:Mnから選ばれた少なくとも1つの蛍光体を含み、
前記蛍光体層は、同一デューティサイクルを維持しながら、駆動時間の経過とともにパルス幅およびパルスの繰返し周期を短くするダイナミック駆動方式で発光表示されることを特徴とする蛍光表示管。
A fluorescent display tube that emits light by projecting a low-energy electron beam onto a phosphor layer formed in a vacuum vessel,
The phosphor layer is ZnS: Mn, ZnGa 2 O 4 : Mn, SrTiO 3 : Pr, CaTiO 3 : Pr, Gd 2 O 2 S: Eu, Y 2 O 2 S: Eu, ZnGa 2 O 4 , Gd 2 O 2 S: Tb, Y 2 O 3 : Eu, La 2 O 2 S: Eu, SnO 2 : Eu, Zn 2 SiO 4 : Mn, and at least one phosphor selected from CaS: Mn,
2. The fluorescent display tube according to claim 1, wherein the phosphor layer is lit and displayed by a dynamic driving method in which a pulse width and a pulse repetition period are shortened with the lapse of driving time while maintaining the same duty cycle.
JP2009023293A 2009-01-30 2009-02-04 Method for driving fluorescent display tube and fluorescent display tube Expired - Fee Related JP5208789B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009023293A JP5208789B2 (en) 2009-02-04 2009-02-04 Method for driving fluorescent display tube and fluorescent display tube
TW098145496A TWI444949B (en) 2009-01-30 2009-12-29 A fluorescent display tube driving method and a fluorescent display tube
US12/657,843 US8378929B2 (en) 2009-01-30 2010-01-26 Driving method for vacuum fluorescent display, and vacuum fluorescent display
CN201010104050.6A CN101794544B (en) 2009-01-30 2010-01-27 Driving method for vacuum fluorescent display, and vacuum fluorescent display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023293A JP5208789B2 (en) 2009-02-04 2009-02-04 Method for driving fluorescent display tube and fluorescent display tube

Publications (2)

Publication Number Publication Date
JP2010181517A true JP2010181517A (en) 2010-08-19
JP5208789B2 JP5208789B2 (en) 2013-06-12

Family

ID=42763112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023293A Expired - Fee Related JP5208789B2 (en) 2009-01-30 2009-02-04 Method for driving fluorescent display tube and fluorescent display tube

Country Status (1)

Country Link
JP (1) JP5208789B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104255A (en) * 2010-11-08 2012-05-31 Noritake Itron Corp Fluorescent display device
TWI607481B (en) * 2015-09-10 2017-12-01 雙葉電子工業股份有限公司 Producing method of fluorescent display tube and fluorescent display tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000250454A (en) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd Driving circuit of fluorescent display device
JP2007041272A (en) * 2005-08-03 2007-02-15 Sony Corp Cold cathode electric field electron emission display device and driving method of cold cathode electric field electron emission display device
JP2007256530A (en) * 2006-03-22 2007-10-04 Ngk Insulators Ltd Electron emitting device
JP2010175983A (en) * 2009-01-30 2010-08-12 Noritake Itron Corp Method for driving fluorescent display tube and fluorescent display tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000250454A (en) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd Driving circuit of fluorescent display device
JP2007041272A (en) * 2005-08-03 2007-02-15 Sony Corp Cold cathode electric field electron emission display device and driving method of cold cathode electric field electron emission display device
JP2007256530A (en) * 2006-03-22 2007-10-04 Ngk Insulators Ltd Electron emitting device
JP2010175983A (en) * 2009-01-30 2010-08-12 Noritake Itron Corp Method for driving fluorescent display tube and fluorescent display tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104255A (en) * 2010-11-08 2012-05-31 Noritake Itron Corp Fluorescent display device
US9068115B2 (en) 2010-11-08 2015-06-30 Noritake Itron Corporation Vacuum fluorescent display apparatus having barium absorbent
TWI607481B (en) * 2015-09-10 2017-12-01 雙葉電子工業股份有限公司 Producing method of fluorescent display tube and fluorescent display tube

Also Published As

Publication number Publication date
JP5208789B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
KR100901474B1 (en) Constant current driving circuit for field emission device
TWI444949B (en) A fluorescent display tube driving method and a fluorescent display tube
KR20070040123A (en) Light emitting device using electron emission and flat display apparatus using the same
JP5208789B2 (en) Method for driving fluorescent display tube and fluorescent display tube
JP5191411B2 (en) Driving method of fluorescent display tube
JP2022515947A (en) Methods and equipment for electroluminescent devices
TWI609362B (en) Fluorescent display tube
JPH0714520A (en) Color display device
JP3953996B2 (en) Display device and display panel driving method
EP1708155A2 (en) Electron emission display device and method of controlling the same
US7687982B2 (en) Electron emission device, electron emission display device including the electron emission device, and method of driving the electron emission device
KR100528893B1 (en) Red light-emitting phosphor and field emission display device using the same
US7652433B2 (en) Method for prolonging life span of planar light source generating apparatus
JPH09255953A (en) Phosphor and preparation thereof
JP5276360B2 (en) Display element
WO2006092981A1 (en) Fluorescent display tube
TWI421831B (en) Field emission structure driving method and display apparatus
KR100719563B1 (en) Light emitting device using electron emission and flat display apparatus using the same
JPWO2005059949A1 (en) Field emission point light source lamp
JP3783543B2 (en) Fluorescent display tube
JP4591956B2 (en) Driving method of field emission type cold cathode fluorescent lamp and driving power source thereof
JPS6217360B2 (en)
KR100708716B1 (en) Light emitting device using electron emission, flat display apparatus using the same and the method of manufacturing the same
CN102714131A (en) Fluorescent lamp and image display device
JP2002120394A (en) Electron beam excited light emission type print head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees