JP4813292B2 - Organic thin film thickness measuring device and organic thin film forming device - Google Patents

Organic thin film thickness measuring device and organic thin film forming device Download PDF

Info

Publication number
JP4813292B2
JP4813292B2 JP2006229306A JP2006229306A JP4813292B2 JP 4813292 B2 JP4813292 B2 JP 4813292B2 JP 2006229306 A JP2006229306 A JP 2006229306A JP 2006229306 A JP2006229306 A JP 2006229306A JP 4813292 B2 JP4813292 B2 JP 4813292B2
Authority
JP
Japan
Prior art keywords
film thickness
organic
thin film
absorbance
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006229306A
Other languages
Japanese (ja)
Other versions
JP2008051699A (en
Inventor
和男 宇田川
淳二 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shinku Co Ltd
Original Assignee
Showa Shinku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co Ltd filed Critical Showa Shinku Co Ltd
Priority to JP2006229306A priority Critical patent/JP4813292B2/en
Publication of JP2008051699A publication Critical patent/JP2008051699A/en
Application granted granted Critical
Publication of JP4813292B2 publication Critical patent/JP4813292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、有機薄膜の膜厚測定装置及び有機薄膜形成装置に関し、特に、膜厚を光学的に測定する有機EL用の光学式膜厚測定装置に関する。   The present invention relates to an organic thin film thickness measuring apparatus and an organic thin film forming apparatus, and more particularly to an optical film thickness measuring apparatus for organic EL that optically measures the film thickness.

有機ELデバイスは、高速応答性、高視認性、薄型化が可能であることから、次世代ディスプレイとして注目されている。図9に示すように、一般的な有機ELは、ガラス基板30上に透明導電膜31を形成した後、有機薄膜32〜34を形成し、次いで、有機薄膜34表面に電極35を積層し、最後に缶36による封止を行うことで全体を保護している。
このように作製される有機EL素子は、各有機薄膜32〜34を、正孔輸送層、発光層、電子輸送層として機能させ、透明導電膜31に正電圧、電極35に負電圧を印加すると、透明電極から注入された正孔と陰極から注入された電子が有機薄膜33に到達して、電子と正孔の再結合が行われ、そのとき、電気エネルギーが光エネルギーに変換されて有機発光層から光が放出され、ガラス基板30を透過したEL光37が外部に放射される。
Organic EL devices are attracting attention as next-generation displays because of their high-speed response, high visibility, and thinness. As shown in FIG. 9, in general organic EL, after forming the transparent conductive film 31 on the glass substrate 30, the organic thin films 32 to 34 are formed, and then the electrode 35 is laminated on the surface of the organic thin film 34, Finally, the whole is protected by sealing with the can 36.
In the organic EL device fabricated in this manner, when each organic thin film 32 to 34 functions as a hole transport layer, a light emitting layer, and an electron transport layer, a positive voltage is applied to the transparent conductive film 31 and a negative voltage is applied to the electrode 35. Then, the holes injected from the transparent electrode and the electrons injected from the cathode reach the organic thin film 33 to recombine the electrons and holes. At that time, the electric energy is converted into light energy and the organic light emission is performed. Light is emitted from the layer, and EL light 37 transmitted through the glass substrate 30 is emitted to the outside.

上述の透明導電膜31は、一般にはITO(Indium-Tin Oxide)薄膜が用いられている。その表面に有機薄膜32〜34を積層する場合には、透明導電膜31が形成されたガラス基板30を用意し、透明導電膜31の表面処理を行った後、有機薄膜形成装置の真空槽内に設置する。真空槽内には、少なくとも一個以上の有機材料用蒸発源が配置されており、設置されたガラス基板30の透明導電膜31を有機材料用蒸発源に対向させ、該真空槽内を所定圧力まで排気する。前記有機材料用蒸発源には、予め有機蒸発材料を充填しておき、前記有機材料用蒸発源を加熱すると、該真空槽内に該有機蒸発材料の蒸気が放出されるようになる。   The transparent conductive film 31 generally uses an ITO (Indium-Tin Oxide) thin film. When the organic thin films 32 to 34 are laminated on the surface, a glass substrate 30 on which the transparent conductive film 31 is formed is prepared, and after the surface treatment of the transparent conductive film 31 is performed, the inside of the vacuum chamber of the organic thin film forming apparatus Install in. At least one organic material evaporation source is disposed in the vacuum chamber, the transparent conductive film 31 of the installed glass substrate 30 is opposed to the organic material evaporation source, and the inside of the vacuum chamber reaches a predetermined pressure. Exhaust. When the organic material evaporation source is filled in advance with the organic material evaporation source and the organic material evaporation source is heated, the vapor of the organic evaporation material is released into the vacuum chamber.

有機ELデバイスを構成する各機能層の膜厚はデバイスの効率や色純度を支配する主要な要因の一つであり、その膜厚を高精度に制御することは極めて重要である。従来、各層の膜厚制御には水晶式膜厚計が用いられ、水晶センサ上に堆積した膜厚と実基板上の膜厚との相関関係から膜厚制御するのが一般的であるが、蒸発速度の変動や蒸発源に用いる坩堝内の蒸発材料表面の変化に伴う蒸発分布変化により水晶センサ上と実基板上との膜厚相関関係が崩れ、膜厚精度が低下してしまう場合があった。   The film thickness of each functional layer constituting the organic EL device is one of the main factors governing the efficiency and color purity of the device, and it is extremely important to control the film thickness with high accuracy. Conventionally, a crystal thickness meter has been used to control the film thickness of each layer, and it is common to control the film thickness from the correlation between the film thickness deposited on the crystal sensor and the film thickness on the actual substrate. The film thickness correlation between the quartz sensor and the actual substrate may be disrupted due to changes in the evaporation rate due to fluctuations in the evaporation rate and changes in the surface of the evaporation material in the crucible used as the evaporation source. It was.

そこで、水晶センサを用いない膜厚測定方法として、実基板上の膜厚を非接触かつ直接的に計測する方法が提案されている(例えば、特許文献1)。特許文献1には、有機薄膜を形成する有機物に、その成膜工程中に励起光を照射し、それによって励起された蛍光又は反射光を検知し、その蛍光の量又は反射の量に基づいて膜厚を算出・制御する構成が開示されている。   Therefore, as a film thickness measurement method that does not use a quartz sensor, a method for directly and non-contactly measuring the film thickness on an actual substrate has been proposed (for example, Patent Document 1). In Patent Document 1, an organic material that forms an organic thin film is irradiated with excitation light during the film formation process, and fluorescence or reflected light excited thereby is detected. Based on the amount of fluorescence or the amount of reflection. A configuration for calculating and controlling the film thickness is disclosed.

より具体的には、例えば、図10に示すように、有機物としてAlq3を用いた場合、波長400nmの励起光を照射した場合、波長530nm付近に蛍光が顕著に発生することが知られている。この蛍光の強度と膜厚とは単調増加の関係にあり、波長530nmでの蛍光強度の時間的変化と膜厚の時間的変化との相関関係を予め計算及び記憶しておき、波長400nmの励起光の照射と同時に波長530nmの蛍光強度を観測しておく。そして、記憶された相関関係からその時点での膜厚を特定し、成膜動作の終了時を決定するものである。
特開2006−16660号公報
More specifically, for example, as shown in FIG. 10, when Alq3 is used as an organic substance, it is known that fluorescence is remarkably generated in the vicinity of a wavelength of 530 nm when excitation light having a wavelength of 400 nm is irradiated. The fluorescence intensity and the film thickness are in a monotonically increasing relationship, and the correlation between the temporal change in fluorescence intensity and the temporal change in film thickness at a wavelength of 530 nm is calculated and stored in advance, and excitation at a wavelength of 400 nm. Simultaneously with the light irradiation, the fluorescence intensity at a wavelength of 530 nm is observed. Then, the film thickness at that time is specified from the stored correlation, and the end time of the film forming operation is determined.
JP 2006-16660 A

しかし、特許文献1の測定方法は、単一の有機物からなる単層膜の膜厚測定には問題ないが、有機物がドーピング材料を含む場合や複数の有機物からなる多層膜の場合には適していない。有機物がドーピング材料を含む場合を説明すると、例えば、Alq3にDCM2をドーピングした場合、Alq3単体では波長400nmの照射光に対して波長530nmに蛍光が発生していたのに対し、DCM2をドーピングしたことにより、DCM2がその蛍光を吸収してしまい、530nmには全く蛍光が発生しなくなることが特許文献1に示されている(同文献図8参照)。被測定物が複数の有機物の積層からなる場合についても同様に、ある有機物が発した蛍光を他の有機物が吸収してしまうなどして正確な測定ができなくなることが予想される。   However, the measuring method of Patent Document 1 has no problem in measuring the thickness of a single layer film made of a single organic material, but is suitable for a case where the organic material contains a doping material or a multilayer film made of a plurality of organic materials. Absent. Explaining the case where the organic material contains a doping material. For example, when Alq3 is doped with DCM2, the Alq3 single substance generates fluorescence at a wavelength of 530 nm with respect to irradiation light with a wavelength of 400 nm, whereas it is doped with DCM2. Thus, it is shown in Patent Document 1 that DCM2 absorbs the fluorescence and no fluorescence is generated at 530 nm (see FIG. 8). Similarly, when the object to be measured is composed of a stack of a plurality of organic substances, it is expected that accurate measurement cannot be performed because other organic substances absorb the fluorescence emitted by one organic substance.

そして、同文献では、ドーピング材料を含む場合には蛍光の測定が困難であることから、励起光に対する反射率を別途測定し、その測定値に対応する膜厚(理論値)と比較するようにしている。なお、図11は、上記のAlq3にDCM2をドーピングした場合の膜厚と反射率との関係を示すものである。しかし、同図に示すように、ホスト材料からの反射光がドーピング材料に吸収され、膜厚の増加に対する反射率の振幅は減衰する特性を示す(即ち、グラフがx軸に平行な直線に近づいていく)。従って、この減衰のために、膜厚の増加に伴い正確に膜厚を特定するのがより困難なものとなる。   In this document, since it is difficult to measure fluorescence when a doping material is included, the reflectance with respect to excitation light is separately measured and compared with the film thickness (theoretical value) corresponding to the measured value. ing. In addition, FIG. 11 shows the relationship between the film thickness and the reflectance when the above-mentioned Alq3 is doped with DCM2. However, as shown in the figure, the reflected light from the host material is absorbed by the doping material, and the reflectance amplitude with respect to the increase in film thickness is attenuated (that is, the graph approaches a straight line parallel to the x-axis). To go). Therefore, this attenuation makes it more difficult to specify the film thickness accurately as the film thickness increases.

当然に、単層の有機物がドーピング材料を含む場合だけでなく複数の有機物からなる多層膜の場合についても、ある有機物からの反射光を他の有機物が吸収してしまうことになる。その結果として、膜厚の増加に対する反射率の振幅は減衰してしまうことになり、従って、ある層における膜厚の増加のみならず層数の増加による膜厚の増加に伴い、正確な膜厚測定がより困難なものとなる。
特に本発明で成膜される薄膜は有機ELなどに用いるものであり、赤、青及び緑の3色の発光色に関連する多層薄膜を成膜する場合にも対応しなければならないので、この課題への対処は重要である。
Naturally, not only when the organic material of a single layer contains a doping material but also in the case of a multilayer film composed of a plurality of organic materials, the other organic materials absorb the reflected light from the certain organic material. As a result, the amplitude of the reflectivity with respect to the increase in the film thickness is attenuated. Therefore, as the film thickness increases due to the increase in the number of layers as well as the film thickness in a certain layer, the accurate film thickness increases. Measurement becomes more difficult.
In particular, the thin film formed in the present invention is used for organic EL and the like, and it is necessary to cope with the case of forming a multilayer thin film related to three emission colors of red, blue and green. Dealing with issues is important.

また、この関数を求めるには多くの計算要素(照射光強度、その照射強度に対する各有機物の蛍光強度、その蛍光強度に対する各有機物の吸光度等)を要するので誤差要因が増えることになり、この関数を正確に求めるのが難しくなる。
またさらに、別の問題として、成膜中の構造体に励起光を照射して蛍光を発光させることによる構造体の劣化が懸念される。原理上明確ではないが、一度励起させた構造体においては、膜厚を正確に制御できたとしても、構造体の膜厚以外の特性について所望の化学的性能又は有機ELとしての所望の発光特性を得られない場合があった。
Moreover, since many calculation elements (irradiation light intensity, fluorescence intensity of each organic substance with respect to the irradiation intensity, absorbance of each organic substance with respect to the fluorescence intensity, etc.) are required to obtain this function, an error factor increases. It becomes difficult to calculate accurately.
Furthermore, as another problem, there is a concern about deterioration of the structure caused by emitting fluorescence by irradiating the structure being formed with excitation light. Although it is not clear in principle, in a structure once excited, even if the film thickness can be accurately controlled, desired chemical performance or desired light emission characteristics as an organic EL with respect to characteristics other than the film thickness of the structure There was a case that I could not get.

本発明では、上記の問題点を解決するため、励起波長を含まない照射光を用いて膜厚の測定・制御を行うことを基本的なコンセプトとしている。
本発明の第1の側面は、構造体に成膜される有機薄膜の膜厚を測定する膜厚測定装置であって、少なくとも成膜中に構造体に所定の波長の照射光を投光する手段、照射光に対する構造体からの反射光強度又は透過光強度を検出する手段、及びその反射光強度又は透過光強度に基づいて有機薄膜の膜厚を特定する手段からなり、所定の波長が、有機薄膜を構成する有機物の吸収スペクトルについて、吸光度のピーク値に対して20%以下、好ましくは10%以下、の吸光度を与える波長範囲に含まれるようにした。
In the present invention, in order to solve the above problems, the basic concept is to measure and control the film thickness using irradiation light that does not include an excitation wavelength.
A first aspect of the present invention is a film thickness measuring device for measuring the film thickness of an organic thin film formed on a structure, and projects irradiation light of a predetermined wavelength onto the structure at least during the film formation. Means for detecting the reflected light intensity or transmitted light intensity from the structure with respect to the irradiation light, and means for specifying the film thickness of the organic thin film based on the reflected light intensity or transmitted light intensity, and the predetermined wavelength is The absorption spectrum of the organic matter constituting the organic thin film was included in a wavelength range that gives an absorbance of 20% or less, preferably 10% or less, with respect to the absorbance peak value.

ここで、膜厚を特定する手段が、有機物についての反射光強度又は透過光強度と有機薄膜の膜厚との関係を示す理論値が記憶されたメモリ、及び受光器で検出された反射光強度又は透過光強度と理論値に基づいて有機物の膜厚を求めるプロセッサを備える構成とした。なお、理論値を表す関数は膜厚に対する反射光強度又は透過光強度の減衰のない(又は小さい)関数である。   Here, the means for specifying the film thickness is a memory in which a theoretical value indicating the relationship between the reflected light intensity or transmitted light intensity of the organic substance and the film thickness of the organic thin film is stored, and the reflected light intensity detected by the light receiver. Or it was set as the structure provided with the processor which calculates | requires the film thickness of organic substance based on a transmitted light intensity and a theoretical value. The function representing the theoretical value is a function without (or small) attenuation of the reflected light intensity or the transmitted light intensity with respect to the film thickness.

さらに、構造体に複数の有機物の層からなる有機薄膜が形成される場合、所定の波長が、それら複数の有機物の各吸収スペクトルについて、吸光度のピーク値に対して20%以下、好ましくは10%以下、の吸光度を与える波長範囲に含まれるようにした。   Furthermore, when an organic thin film composed of a plurality of organic layers is formed on the structure, the predetermined wavelength is 20% or less, preferably 10%, with respect to the absorbance peak value for each absorption spectrum of the plurality of organic materials. In the following, it was included in the wavelength range giving the absorbance.

本発明の第2の側面は、有機薄膜形成装置であって、上記第1の側面の膜厚測定装置、真空槽、真空槽内部で有機物を蒸発させる1以上の蒸発源、及び膜厚測定装置による測定結果に基づいて有機薄膜形成の終了タイミングを決定する制御手段からなる有機薄膜形成装置である。   A second aspect of the present invention is an organic thin film forming apparatus, the film thickness measuring apparatus of the first aspect, a vacuum chamber, one or more evaporation sources for evaporating organic matter inside the vacuum chamber, and a film thickness measuring device. It is an organic thin film formation apparatus which consists of a control means which determines the completion | finish timing of organic thin film formation based on the measurement result by.

本発明第3の側面は、構造体に成膜される有機薄膜の膜厚を測定する膜厚測定方法であって、投光手段によって成膜中に構造体に所定の波長の照射光を投光するステップ、受光手段によって照射光に対する構造体からの反射光強度又は透過光強度を検出するステップ、並びに受光手段に接続されたコンピュータによって、受光手段によって検出された反射光強度又は透過光強度及びコンピュータに予め記憶した反射光強度又は透過光強度と膜厚との関係の理論値に基づいて、有機薄膜の膜厚を特定するステップからなり、所定の波長を、有機薄膜を構成する有機物の吸収スペクトルについて、吸光度のピーク値に対して20%以下、好ましくは10%以下、の吸光度を与える波長範囲に含まれるように選択した。   According to a third aspect of the present invention, there is provided a film thickness measuring method for measuring a film thickness of an organic thin film formed on a structure, wherein a light having a predetermined wavelength is projected onto the structure during film formation by a light projecting unit. A step of detecting light, a step of detecting a reflected light intensity or transmitted light intensity from the structure with respect to irradiation light by the light receiving means, and a reflected light intensity or transmitted light intensity detected by the light receiving means by a computer connected to the light receiving means; It consists of the step of specifying the film thickness of the organic thin film based on the theoretical value of the relationship between the reflected light intensity or transmitted light intensity and the film thickness stored in advance in the computer, and absorbs a predetermined wavelength of the organic matter constituting the organic thin film. The spectrum was selected so as to be included in a wavelength range giving an absorbance of 20% or less, preferably 10% or less, with respect to the absorbance peak value.

本発明は膜厚の測定に際して励起波長を含まない照射光を用いるようにしたので、照射光の吸収が起こらず、複数の有機物からなる多層膜やドーピングが行われた有機物からなる薄膜に対しても正確に膜厚を測定・制御できる。
さらに、照射光の吸収が起こらない波長を用いているので、膜厚が増加しても反射率の減衰がなく(又は少なく)、例えば多層膜を形成した結果膜厚が大きくなっても正確に膜厚測定を行うことができる。これより、膜厚が大きい場合でも高い成膜精度を得ることができる。
従って、複数の有機物を用いて比較的厚みが大きい多層膜を成膜する場合に本発明は特に有用である。また、有機物を励起させないので蛍光による構造物の劣化を回避できる。
Since the present invention uses irradiation light that does not include an excitation wavelength when measuring the film thickness, absorption of irradiation light does not occur, and a multilayer film made of a plurality of organic substances or a thin film made of a doped organic substance is used. Can accurately measure and control film thickness.
Furthermore, since a wavelength at which irradiation light absorption does not occur is used, there is no attenuation (or less) in reflectance even when the film thickness increases. For example, even if the film thickness increases as a result of forming a multilayer film, it is accurate. The film thickness can be measured. Accordingly, even when the film thickness is large, high film formation accuracy can be obtained.
Therefore, the present invention is particularly useful when a multilayer film having a relatively large thickness is formed using a plurality of organic substances. In addition, since organic substances are not excited, deterioration of the structure due to fluorescence can be avoided.

図1は本発明の一実施形態を説明する有機薄膜形成装置であり、真空槽1を有している。該真空槽1の底面には独立する複数の有機蒸発源4が配置されており、天井側には基板ホルダ3が配置されている。同図では有機蒸発源4を2つ設けているが、蒸発源の数は適宜選択すればよい。各有機蒸発源4は、容器内に充填した有機蒸発材料5を蒸発又は昇華させ、真空槽1内に蒸気17を発生させる。有機蒸発源4には、例えばセラミックス等により構成される坩堝の周囲に抵抗加熱ヒータを巻回し、通電加熱により蒸気を発生させる蒸発源等を用いればよい。あるいはこれ以外の加熱方法、材質、構造であってもよい。容器内には、例えば図3Aおよび図3Bに示す粉末状の昇華性有機化合物であるAlq3[Tris(8-hydroxy-quinoline)alminium]やα-NPD[N,N'-di-α-naphthyl-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine等の有機蒸発材料を充填すればよい。   FIG. 1 shows an organic thin film forming apparatus for explaining an embodiment of the present invention, which has a vacuum chamber 1. A plurality of independent organic evaporation sources 4 are disposed on the bottom surface of the vacuum chamber 1, and a substrate holder 3 is disposed on the ceiling side. Although two organic evaporation sources 4 are provided in the figure, the number of evaporation sources may be appropriately selected. Each organic evaporation source 4 evaporates or sublimates the organic evaporation material 5 filled in the container, and generates a vapor 17 in the vacuum chamber 1. For the organic evaporation source 4, for example, an evaporation source that wraps a resistance heater around a crucible made of ceramics and generates steam by energization heating may be used. Alternatively, other heating methods, materials, and structures may be used. In the container, for example, Alq3 [Tris (8-hydroxy-quinoline) alminium] or α-NPD [N, N'-di-α-naphthyl-] which is a powdery sublimable organic compound shown in FIGS. 3A and 3B is used. An organic evaporation material such as N, N′-diphenyl- [1,1′-biphenyl] -4,4′-diamine may be filled.

前記基板ホルダ3下の近接位置上には基板2を設置し、基板2下には成膜領域を制限するマスク6を配置する。以下、基板2上に堆積され有機薄膜機能素子を構成する部分を、素子の形成段階であるものも含めて以下構造体と称する。マスク6に、本出願人の提案する特願2003−390319号開示のコンビナトリアル用マスクを用いれば、複数の素子を効率良く成膜することも可能となる。   A substrate 2 is placed on a close position under the substrate holder 3, and a mask 6 for restricting a film formation region is placed under the substrate 2. Hereinafter, the portion constituting the organic thin film functional element deposited on the substrate 2 is hereinafter referred to as a structure including the element forming stage. If the combinatorial mask disclosed in Japanese Patent Application No. 2003-390319 proposed by the present applicant is used for the mask 6, a plurality of elements can be formed efficiently.

基板2と有機蒸発源4の間には該蒸気を遮蔽するシャッター7が開閉自在に配置され、制御装置16に制御される。また、基板蒸発源間には、蒸気17の蒸発速度を検出する蒸着速度検出手段15が配置される。蒸着速度検出手段15には、例えば、堆積する物質量の時系列変化を検出しうる手段の中で好適なものとして水晶振動子を利用し、水晶振動子の固有振動数の変化から蒸着速度を検出すればよい。蒸着速度検出手段15は蒸着速度を制御装置16に出力し、制御装置16は蒸発源4を制御して蒸発速度を安定させる。   A shutter 7 that shields the vapor is disposed between the substrate 2 and the organic evaporation source 4 so as to be openable and closable, and is controlled by the control device 16. Further, a deposition rate detecting means 15 for detecting the evaporation rate of the vapor 17 is disposed between the substrate evaporation sources. For the vapor deposition rate detecting means 15, for example, a quartz resonator is used as a suitable means capable of detecting a time-series change in the amount of deposited material, and the vapor deposition rate is determined from the change in the natural frequency of the quartz resonator. What is necessary is just to detect. The vapor deposition rate detection means 15 outputs the vapor deposition rate to the control device 16, and the control device 16 controls the evaporation source 4 to stabilize the evaporation rate.

ガラス基板2近傍にはY分岐形状光ファイバ8のバンドルされた先端11が配置される。Y分岐形状光ファイバ8の分岐した一端の光ファイバ9は光源12に接続され、他端の光ファイバ10は光検知器13に接続される。光源12は、任意の波長範囲の光又は任意の単一波長の光を選択して投光する手段を有し、光検知器13は、受光した光を波長分離して光強度を感知する分光光度計のような光強度感知手段を有するが、波長分離の機能は必ずしも必要ではない。光ファイバ8は、先端11からガラス基板2に光を照射し、ガラス基板2からの反射光を、同じく光ファイバ8の先端11で集光する。光の照射および集光は例えば基板2上に形成される構造体のデッドポイントにより行えばよい。実施例では、実基板の膜厚又は材料組成を実測することにより成膜精度を向上させているが、モニターガラスを用意し、モニターガラス上近傍に前記光ファイバ8を設置して計測、制御を行うことも可能である。光検知器13は、コンピュータ14に接続され、コンピュータ14は制御装置16に接続される。   Near the glass substrate 2, a bundled tip 11 of the Y-branch optical fiber 8 is disposed. The branched optical fiber 9 at one end of the Y-branched optical fiber 8 is connected to a light source 12, and the optical fiber 10 at the other end is connected to a photodetector 13. The light source 12 has means for selecting and projecting light of an arbitrary wavelength range or light of an arbitrary single wavelength, and the light detector 13 is a spectroscope that senses light intensity by wavelength-separating the received light. Although it has a light intensity sensing means such as a photometer, the function of wavelength separation is not necessarily required. The optical fiber 8 irradiates the glass substrate 2 with light from the tip 11, and collects reflected light from the glass substrate 2 at the tip 11 of the optical fiber 8. Light irradiation and light collection may be performed, for example, according to a dead point of a structure formed on the substrate 2. In the embodiment, the film forming accuracy is improved by actually measuring the film thickness or material composition of the actual substrate. However, a monitor glass is prepared, and the optical fiber 8 is installed in the vicinity of the monitor glass to perform measurement and control. It is also possible to do this. The light detector 13 is connected to a computer 14, and the computer 14 is connected to a control device 16.

コンピュータ14は、光検知器13からの反射光強度の時系列変化が入力される(図示しない)プロセッサ、及び反射光強度と膜厚との関係が理論値として格納される(図示しない)メモリを含む。測定は、プロセッサの入力を実測値として、予めメモリに記憶されたプログラムにより計算された理論値又はメモリに記憶されたテーブルに基づく理論値とを逐次比較することにより行う。
なお、ここでいう時系列変化とは、予め設定された蒸着速度に、蒸着開始からの経過時間を乗じて得られたパラメータに対する入射光強度の変化のことをいう。同様に、理論値とは、上記パラメータに基づいて算出又は参照される入射光強度の値である。
The computer 14 has a processor (not shown) to which the time-series change of the reflected light intensity from the light detector 13 is inputted, and a memory (not shown) in which the relationship between the reflected light intensity and the film thickness is stored as a theoretical value. Including. The measurement is performed by sequentially comparing a theoretical value calculated by a program stored in the memory in advance or a theoretical value based on a table stored in the memory with the input of the processor as an actual measurement value.
Here, the time series change means a change in incident light intensity with respect to a parameter obtained by multiplying a preset deposition rate by an elapsed time from the start of deposition. Similarly, the theoretical value is a value of incident light intensity calculated or referred to based on the above parameters.

制御装置16は、コンピュータ14の出力する膜厚の実測値をもとに蒸発源4又はシャッター7を制御する。具体的には、コンピュータ14が前記プログラムを用いて算出する理論値に対して予め目標範囲を設定し、実測値が目標範囲内となるようにあるいは実測値が目標範囲内となった時点で成膜を終了させるように制御すればよい。   The control device 16 controls the evaporation source 4 or the shutter 7 based on the actually measured value of the film thickness output from the computer 14. Specifically, a target range is set in advance for the theoretical value calculated by the computer 14 using the program, and the measurement is performed when the measured value falls within the target range or when the measured value falls within the target range. What is necessary is just to control so that a film | membrane may be complete | finished.

なお、実施例でY分岐光ファイバ8を用いることにより、真空槽内部への導入ポートを1つにすることが可能となり構成の簡略化に貢献するが、光源から導出する光ファイバ9と光検知器13に導入する光ファイバ10をそれぞれ独立に設けて導入ポートを2つにしてもよい。この場合光の出射位置と入射位置を別に設ければよい。また、光検知器13に接続する光ファイバ10と基板2との間に集光レンズを配置することや、波長カットフィルタを配置することも考えられる。   In addition, by using the Y branch optical fiber 8 in the embodiment, it is possible to make one introduction port into the vacuum chamber and contribute to simplification of the configuration. However, the optical fiber 9 derived from the light source and the light detection are used. The optical fibers 10 to be introduced into the device 13 may be provided independently to provide two introduction ports. In this case, the light emission position and the incident position may be provided separately. It is also conceivable to arrange a condensing lens or a wavelength cut filter between the optical fiber 10 connected to the light detector 13 and the substrate 2.

ここで、照射光の選択について説明する。
本発明では構造体に照射する光の波長は、吸収を起こさない帯域で選択される。より具体的には、照射光の波長を、有機物の吸収スペクトルにおいて吸光度のピーク値に対して所定値以下の吸光度を与える波長範囲に含まれるように選択する。
Here, selection of irradiation light will be described.
In the present invention, the wavelength of light applied to the structure is selected in a band that does not cause absorption. More specifically, the wavelength of the irradiation light is selected so as to be included in a wavelength range that gives an absorbance of a predetermined value or less with respect to the absorbance peak value in the absorption spectrum of the organic matter.

まず、有機物Alq3の単層の場合について説明する。図2に有機物がAlq3の場合の照射光波長に対する吸光度を示す。照射光の波長が400nm付近で吸光度がピークとなり、波長が450nm以上では吸収が少なくなり、500nm以上ではほとんど吸収がない。図3に波長500nmの照射光を投光した場合の有機物Alq3の膜厚と反射率との関係を示す。図示するように、膜厚に対する反射率は(実測でも理論計算においても)ほとんど減衰のない関数となる。そして、図4に示すように、図3を予め設定された蒸発速度に基づいて時間軸のグラフとすることもできる。
なお、図3又は図4で示す反射率の数値(%)は測定の便宜のため適宜スケーリングしたものであり、グラフ中での相対値を示すものである。以降の反射率を示す各グラフについても同様である。
First, the case of a single layer of organic substance Alq3 will be described. FIG. 2 shows the absorbance with respect to the irradiation light wavelength when the organic substance is Alq3. Absorbance peaks when the wavelength of the irradiated light is around 400 nm, and the absorption decreases when the wavelength is 450 nm or more, and there is almost no absorption when the wavelength is 500 nm or more. FIG. 3 shows the relationship between the film thickness of the organic substance Alq3 and the reflectance when irradiation light with a wavelength of 500 nm is projected. As shown in the figure, the reflectivity with respect to the film thickness is a function with almost no attenuation (in both actual measurement and theoretical calculation). And as shown in FIG. 4, FIG. 3 can also be made into a time-axis graph based on the preset evaporation rate.
Incidentally, the numerical value (%) of the reflectance shown in FIG. 3 or FIG. 4 is appropriately scaled for convenience of measurement, and indicates a relative value in the graph. The same applies to each graph showing the subsequent reflectance.

このように、吸収の起こらない波長の照射光を用いることにより、減衰のない(又は少ない)関数に基づいて膜厚制御を行うことができる。従って、膜厚が大きい場合、即ち、グラフの横軸の原点から数波先に目標ポイントがあるような場合でも、正確な膜厚測定を行うことができる。   In this way, by using irradiation light having a wavelength that does not cause absorption, the film thickness can be controlled based on a function without attenuation (or little). Accordingly, accurate film thickness measurement can be performed even when the film thickness is large, that is, when the target point is several waves ahead from the origin of the horizontal axis of the graph.

表1に、照射光の波長、吸光度のピークに対する割合、及びその評価を示す。なお、評価における○は、図3又は4に相当するグラフにおいてほとんど減衰のない関数となるもの、△は関数に多少の減衰はあるものの一般的な水晶式の膜厚計よりも同じ成膜条件下での膜厚精度が高いもの、×は水晶式の膜厚計よりも膜厚精度が低いものを示している。

Figure 0004813292
Table 1 shows the wavelength of the irradiated light, the ratio of the absorbance to the peak, and the evaluation thereof. In the evaluation, ○ is a function with almost no attenuation in the graph corresponding to FIG. 3 or 4, and Δ is the same film formation condition as that of a general crystal type film thickness meter although there is some attenuation in the function. The film thickness accuracy below is high, and x indicates that the film thickness accuracy is lower than that of a quartz-type film thickness meter.
Figure 0004813292

先に述べたように、本発明の構造体は主に有機EL等に用いるものであるから、通常は赤、緑及び青色発光用の有機物の薄膜が積層される。そこで、次に多層膜の場合について説明する。なお、上述してきたAlq3は緑色発光用であり、青色発光用有機物にはα−NPD、赤色発光用有機物にはホスト材料をAlq3、ドーピング材料をDCM10%とした有機物(以下、「Alq3+DCM10%」という)を用いる。ここで、上記3つの有機物を積層した多層膜の場合、全ての有機物に対して吸収(即ち、蛍光)を起こさない照射光波長を選択する必要がある。   As described above, since the structure of the present invention is mainly used for an organic EL or the like, usually, organic thin films for emitting red, green and blue light are laminated. Then, the case of a multilayer film will be described next. The Alq3 described above is for green light emission, the organic material for blue light emission is α-NPD, the organic material for red light emission is Alq3 as the host material, and the doping material is 10% DCM (hereinafter referred to as “Alq3 + DCM10%”). ) Is used. Here, in the case of a multilayer film in which the above three organic substances are laminated, it is necessary to select an irradiation light wavelength that does not cause absorption (that is, fluorescence) with respect to all the organic substances.

ここで、Alq3の場合と同様に、α−NPD単層、及びAlq3+DCM10%単層の特性について説明する。図5にα−NPD及びAlq3+DCM10%の照射光波長に対する吸収スペクトルを示す。なお、比較のためAlq3の吸収スペクトルも併せてプロットしてある。
表2及び表3に、それぞれα−NPD及びAlq3+DCM10%の場合の照射光の波長、吸光度のピークに対する割合、及びその評価を示す。なお、評価の基準は先に示した表1と同様である。

Figure 0004813292

Figure 0004813292
Here, as in the case of Alq3, the characteristics of the α-NPD single layer and the Alq3 + DCM 10% single layer will be described. FIG. 5 shows absorption spectra with respect to the irradiation light wavelength of α-NPD and Alq3 + DCM 10%. For comparison, the absorption spectrum of Alq3 is also plotted.
Tables 2 and 3 show the wavelength of irradiated light, the ratio to the absorbance peak, and the evaluation in the case of α-NPD and Alq3 + DCM 10%, respectively. The evaluation criteria are the same as in Table 1 shown above.
Figure 0004813292

Figure 0004813292

また、図6(a)及び(b)にそれぞれ波長400nm及び波長500nmの照射光を投光した場合の有機物α−NPDの膜厚と反射率との関係を示す。図6(a)、(b)にそれぞれ示すように、吸光度がピークの24%(表2参照)の場合には減衰が大きく、ピークの0%(表2参照)では減衰がないことが分かる。   FIGS. 6A and 6B show the relationship between the film thickness of the organic α-NPD and the reflectance when irradiation light having a wavelength of 400 nm and a wavelength of 500 nm is projected, respectively. As shown in FIGS. 6 (a) and 6 (b), it can be seen that when the absorbance is 24% of the peak (see Table 2), the attenuation is large, and when the absorbance is 0% (see Table 2), there is no attenuation. .

表1〜3に示すように、単層の場合、照射光の波長を、各有機物の吸収スペクトルにおいて吸光度のピーク値に対して20%以下の吸光度を与える波長範囲に含まれるよう選択することが必須であり、より好ましくは10%以下の吸光度を与える波長範囲に含まれるよう選択することが望ましい。そして、多層膜の場合においても、上記3つの有機物を積層した多層膜の場合、全ての有機物に対して吸収(即ち、蛍光)を起こさない照射光波長を選択すればよい。   As shown in Tables 1 to 3, in the case of a single layer, the wavelength of irradiation light may be selected so as to be included in a wavelength range that gives an absorbance of 20% or less with respect to the peak value of absorbance in the absorption spectrum of each organic matter. It is essential, and more preferably, it is selected to be included in a wavelength range that gives an absorbance of 10% or less. Even in the case of a multilayer film, in the case of a multilayer film in which the above three organic substances are laminated, it is only necessary to select an irradiation light wavelength that does not cause absorption (that is, fluorescence) with respect to all the organic substances.

具体的には、図5及び表1〜3を参照して、照射光波長を575nmとすれば、吸光度はAlq3及びα−NPDの吸光度ピークに対して約0%であり、Alq3+DCM10%に対して19%であるので、問題なく測定できる。さらに、照射光波長を590nm以上とすれば、全ての有機物の吸光度ピークに対して10%以下となるのでより好ましい。
なお、上記実施例において、選択する照射光波長の上限は可視光の範囲、即ち、約800nm以下であればよい。
Specifically, referring to FIG. 5 and Tables 1 to 3, when the irradiation light wavelength is 575 nm, the absorbance is about 0% with respect to the absorbance peaks of Alq3 and α-NPD, and with respect to Alq3 + DCM of 10%. Since it is 19%, it can be measured without problems. Furthermore, if the irradiation light wavelength is set to 590 nm or more, it is more preferable because it becomes 10% or less with respect to the absorbance peak of all organic substances.
In the above embodiment, the upper limit of the irradiation light wavelength to be selected may be in the visible light range, that is, about 800 nm or less.

なお、吸収を起こさない波長における膜厚と反射率の関係については、基板の屈折率をn、薄膜の屈折率をn、薄膜の厚さをd、波長をλとして、
δ=(2π/λ)ndとした場合、
膜厚dに対する反射率R(d)は、
R(d)=1−4n /{n (1+n+(1−n(n −n )Sinδ}
と表せることが知られている。
上式から分かるように、膜厚dの増加に対して単層膜の反射率R(d)の振幅は減衰することはない。
ここで、多層膜の反射率は各単層の反射率R(d)に対応する四端子行列の積で表されることから、多層膜においても、層数又は膜厚dの増加に対して反射率の振幅は減衰することはない。また、わずかに吸収があり反射率に減衰的な要素が加わったとしても上式が支配的である範囲であれば、ほとんど減衰しない関数を得ることができる。
Note that the relationship between the film thickness and the reflectance at a wavelength that does not cause absorption, a n g refractive index of the substrate, the refractive index n m of the thin film, the thickness of the thin film d, the wavelength lambda,
When δ = (2π / λ) n m d,
The reflectance R (d) with respect to the film thickness d is
R (d) = 1-4n m 2 n g / {n m 2 (1 + n g) 2 + (1-n m) 2 (n g 2 -n m 2) Sin 2 δ}
It is known that
As can be seen from the above equation, the amplitude of the reflectivity R (d) of the single layer film does not attenuate as the film thickness d increases.
Here, since the reflectance of the multilayer film is expressed by the product of the four-terminal matrix corresponding to the reflectance R (d) of each single layer, even in the multilayer film, the increase in the number of layers or the film thickness d The amplitude of the reflectance is not attenuated. In addition, even if there is a slight absorption and an attenuating factor is added to the reflectance, a function that hardly attenuates can be obtained as long as the above equation is dominant.

このように、複数の有機材料による多層膜の成膜においても、いずれの有機材料に対しても吸収の起こらない波長の照射光を用いれば、膜厚が増加しても振幅がほとんど減衰しない反射率を得ることができる。そして、有機薄膜を積層した結果として膜厚が増加しても、膜厚測定の精度は維持され、成膜精度は低下しない。   In this way, even in the formation of a multilayer film using a plurality of organic materials, if irradiation light having a wavelength that does not absorb any of the organic materials is used, the reflection is hardly attenuated even when the film thickness is increased. Rate can be obtained. And even if a film thickness increases as a result of laminating | stacking an organic thin film, the precision of a film thickness measurement is maintained and the film-forming precision does not fall.

図7(a)及び(b)に厚さ40nmのα−NPD、厚さ60nmのAlq3及び厚さ20nmの電荷発生層からなる多層膜に対して、波長400nmの照射光を投光した場合の反射率を示す。図7(a)に上記3種を1ユニット積層したものを示し、図7(b)に10ユニット積層したものを示す。また、図8(a)及び(b)に、照射光の波長を500nmとした場合の反射率を示す(他の条件は図7(a)及び(b)と同じである)。表1及び表2を参照すると、波長400nmではAlq3及びα−NPD双方で吸収が起こってしまうため、図7(b)に示すように、層数が増えて膜厚が大きくなるにつれて反射率は大きく減衰する。一方、同様に表1及び表2を参照すると、波長500nmではAlq3については吸光度がピークの約7%であり、α−NPDについては吸光度がピーク対して0%であり吸収は起こらない。従って、図8(b)に示すように、層数が増えて膜厚が大きくなっても反射率は減衰することなく、膜厚測定に好適であることが分かる。   FIGS. 7A and 7B show a case where irradiation light having a wavelength of 400 nm is projected onto a multilayer film composed of α-NPD having a thickness of 40 nm, Alq3 having a thickness of 60 nm, and a charge generation layer having a thickness of 20 nm. Reflectance is shown. FIG. 7 (a) shows a stack of 1 unit of the above three types, and FIG. 7 (b) shows a stack of 10 units. 8A and 8B show the reflectance when the wavelength of irradiation light is 500 nm (other conditions are the same as those in FIGS. 7A and 7B). Referring to Tables 1 and 2, since absorption occurs in both Alq3 and α-NPD at a wavelength of 400 nm, the reflectance increases as the number of layers increases and the film thickness increases as shown in FIG. Attenuates greatly. Similarly, referring to Tables 1 and 2, at a wavelength of 500 nm, Alq3 has an absorbance of about 7% of the peak, and α-NPD has an absorbance of 0% of the peak and no absorption occurs. Therefore, as shown in FIG. 8B, it can be seen that the reflectance is not attenuated even when the number of layers is increased and the film thickness is increased, which is suitable for film thickness measurement.

なお、上記実施例では先端11が基板2からの反射光を測定する構成を示したが、基板2の透過光を測定するように構成してもよい。この場合、先端11について投光側と受光側とを分離し、投光側と受光側とが基板を挟んで対向するように配置すればよい。そして、反射率と透過率とは略反比例の関係にあるのでその特性を利用すればよい。   In the above embodiment, the tip 11 measures the reflected light from the substrate 2. However, the tip 11 may measure the transmitted light of the substrate 2. In this case, the light projecting side and the light receiving side of the tip 11 may be separated, and the light projecting side and the light receiving side may be arranged so as to face each other with the substrate interposed therebetween. Since the reflectance and the transmittance are in an approximately inversely proportional relationship, the characteristics may be used.

本発明による有機薄膜形成装置を示す図The figure which shows the organic thin film formation apparatus by this invention 有機物の吸収スペクトルを示す図Diagram showing absorption spectrum of organic matter 本発明による有機薄膜の膜厚と反射率の関係を示す図The figure which shows the relationship between the film thickness of the organic thin film by this invention, and a reflectance 本発明による有機薄膜の時系列的な反射率を示す図The figure which shows the time-sequential reflectance of the organic thin film by this invention 有機物の吸収スペクトルを示す図Diagram showing absorption spectrum of organic matter 本発明を説明するための図Diagram for explaining the present invention 本発明を説明するための図Diagram for explaining the present invention 本発明を説明するための図Diagram for explaining the present invention 一般的な有機ELの構成を示す図Diagram showing the structure of a general organic EL 有機物の励起と蛍光の関係を示す図Diagram showing the relationship between organic excitation and fluorescence 従来の膜厚測定による有機薄膜の膜厚と反射率の関係を示す図The figure which shows the relationship between the film thickness of organic thin film by conventional film thickness measurement, and reflectance

符号の説明Explanation of symbols

1.真空槽
2.基板
3.基板ホルダ
4.有機蒸発源
5.有機蒸発材料
6.マスク
7.シャッター
8.Y分岐形状光ファイバ
9、10.光ファイバ
11.Y分岐形状光ファイバ先端
12.光源
13.光検知器
14.コンピュータ
15.蒸着速度検出手段
16.制御装置
17.蒸気
30.ガラス基板
31.透明導電膜
32.正孔輸送層
33.発光層
34.電子輸送層
35.陰極金属
36.缶
37.EL光
1. Vacuum chamber 2. Substrate 3. Substrate holder 4. 4. Organic evaporation source 5. Organic evaporative material Mask 7. Shutter 8. Y-branch shaped optical fibers 9, 10. Optical fiber 11. 11. Y branch optical fiber tip Light source 13. Photodetector 14. Computer 15. Deposition rate detection means 16. Control device 17. Steam 30. Glass substrate 31. Transparent conductive film 32. Hole transport layer 33. Light emitting layer 34. Electron transport layer 35. Cathode metal 36. Can 37. EL light

Claims (7)

構造体に成膜される有機薄膜の膜厚を測定する膜厚測定装置であって、少なくとも成膜中に該有機薄膜に所定の波長の照射光を投光する手段、該照射光に対する該有機薄膜からの反射光強度又は透過光強度を検出する手段、及び該反射光強度又は該透過光強度に基づいて該有機薄膜の膜厚を特定する手段からなり、
該所定の波長が、該有機薄膜を構成する有機物の吸収スペクトルについて、吸光度のピーク値に対して20%以下の吸光度を与える波長範囲に含まれることを特徴とする膜厚測定装置。
A film thickness measuring device for measuring a film thickness of an organic thin film formed on a structure, at least means for projecting irradiation light of a predetermined wavelength onto the organic thin film during film formation, the organic to the irradiation light Comprising: means for detecting reflected light intensity or transmitted light intensity from the thin film; and means for determining the film thickness of the organic thin film based on the reflected light intensity or transmitted light intensity;
The film thickness measuring apparatus characterized in that the predetermined wavelength is included in a wavelength range that gives an absorbance of 20% or less with respect to a peak value of absorbance of an absorption spectrum of an organic substance constituting the organic thin film.
請求項1記載の膜厚測定装置において、さらに、前記所定の波長が、前記吸光度のピーク値に対して10%以下の吸光度を与える波長範囲に含まれることを特徴とする膜厚測定装置。   2. The film thickness measuring apparatus according to claim 1, wherein the predetermined wavelength is included in a wavelength range that gives an absorbance of 10% or less with respect to the peak value of the absorbance. 請求項1又は請求項2記載の膜厚測定装置において、前記構造体に複数の有機物の層からなる有機薄膜が形成され、
前記所定の波長が、該複数の有機物の吸収スペクトルについて、吸光度のピーク値に対して20%以下の吸光度を与える波長範囲に含まれることを特徴とする膜厚測定装置。
In the film thickness measuring device according to claim 1 or 2, an organic thin film composed of a plurality of organic layers is formed on the structure,
The film thickness measuring apparatus, wherein the predetermined wavelength is included in a wavelength range that gives an absorbance of 20% or less with respect to an absorbance peak value in the absorption spectrum of the plurality of organic substances.
請求項3記載の膜厚測定装置において、さらに、前記所定の波長が、全ての該有機物の各吸収スペクトルについて、吸光度のピーク値に対して10%以下の吸光度を与える波長範囲に含まれることを特徴とする膜厚測定装置。   4. The film thickness measuring apparatus according to claim 3, wherein the predetermined wavelength is included in a wavelength range that gives an absorbance of 10% or less with respect to a peak value of absorbance for each absorption spectrum of all the organic substances. A film thickness measuring device. 有機薄膜形成装置であって、請求項1から請求項4いずれか一項に記載の膜厚測定装置、真空槽、該真空槽内部で有機物を蒸発させる1以上の蒸発源、及び該膜厚測定装置による測定結果に基づいて有機薄膜形成の終了タイミングを決定する制御手段からなる有機薄膜形成装置。   It is an organic thin film forming apparatus, Comprising: The film thickness measuring apparatus as described in any one of Claims 1-4, a vacuum chamber, 1 or more evaporation sources which evaporate organic substance inside this vacuum chamber, and this film thickness measurement An organic thin film forming apparatus comprising control means for determining an end timing of organic thin film formation based on a measurement result by the apparatus. 構造体に成膜される有機薄膜の膜厚を測定する膜厚測定方法であって、
投光手段によって成膜中に該構造体に所定の波長の照射光を投光するステップ、
受光手段によって該照射光に対する該構造体からの反射光強度又は透過光強度を検出するステップ、及び
該受光手段に接続されたコンピュータによって、該受光手段によって検出された反射光強度又は透過光強度、及び該コンピュータに予め記憶した反射光強度又は透過光強度と膜厚との関係の理論値に基づいて、該有機薄膜の膜厚を特定するステップ
からなり、該所定の波長が、該有機薄膜を構成する有機物の吸収スペクトルについて、吸光度のピーク値に対して20%以下の吸光度を与える波長範囲に含まれるように選択されることを特徴とする膜厚測定方法。
A film thickness measuring method for measuring a film thickness of an organic thin film formed on a structure,
Projecting irradiation light of a predetermined wavelength onto the structure during film formation by light projecting means;
Detecting the reflected light intensity or transmitted light intensity from the structure with respect to the irradiation light by the light receiving means, and the reflected light intensity or transmitted light intensity detected by the light receiving means by a computer connected to the light receiving means; And the step of specifying the film thickness of the organic thin film based on the theoretical value of the relationship between the reflected light intensity or transmitted light intensity and the film thickness stored in advance in the computer, and the predetermined wavelength A method for measuring a film thickness, wherein an absorption spectrum of an organic substance to be constituted is selected so as to be included in a wavelength range that gives an absorbance of 20% or less with respect to a peak value of absorbance.
請求項6記載の膜厚測定方法において、さらに、前記所定の波長が、該吸光度のピーク値に対して10%以下の吸光度を与える波長範囲に含まれるように選択されることを特徴とする膜厚測定方法。
7. The film thickness measuring method according to claim 6, wherein the predetermined wavelength is selected so as to be included in a wavelength range that gives an absorbance of 10% or less with respect to the peak value of the absorbance. Thickness measurement method.
JP2006229306A 2006-08-25 2006-08-25 Organic thin film thickness measuring device and organic thin film forming device Active JP4813292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229306A JP4813292B2 (en) 2006-08-25 2006-08-25 Organic thin film thickness measuring device and organic thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229306A JP4813292B2 (en) 2006-08-25 2006-08-25 Organic thin film thickness measuring device and organic thin film forming device

Publications (2)

Publication Number Publication Date
JP2008051699A JP2008051699A (en) 2008-03-06
JP4813292B2 true JP4813292B2 (en) 2011-11-09

Family

ID=39235885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229306A Active JP4813292B2 (en) 2006-08-25 2006-08-25 Organic thin film thickness measuring device and organic thin film forming device

Country Status (1)

Country Link
JP (1) JP4813292B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358822B2 (en) * 2008-04-30 2013-12-04 大塚電子株式会社 State measuring device and state measuring method
CN101363768B (en) * 2008-09-28 2010-06-09 厦门大学 Method for detecting optical constant and thickness of mono-layer optical film
KR102160394B1 (en) * 2009-03-13 2020-09-28 미쯔비시 케미컬 주식회사 Process for manufacturing organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting
EP2508645B1 (en) * 2011-04-06 2015-02-25 Applied Materials, Inc. Evaporation system with measurement unit
CN104395690B (en) * 2012-06-13 2017-05-31 株式会社新柯隆 Film thickness measurement device and film formation device
US11856833B2 (en) 2020-01-22 2023-12-26 Applied Materials, Inc. In-line monitoring of OLED layer thickness and dopant concentration
EP4094307A4 (en) 2020-01-22 2024-02-28 Applied Materials, Inc. In-line monitoring of oled layer thickness and dopant concentration

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978640A (en) * 1972-12-06 1974-07-29
JPH08339982A (en) * 1995-06-13 1996-12-24 Toshiba Corp Semiconductor manufacturing equipment, and manufacture of semiconductor device
JP2000249520A (en) * 1999-03-03 2000-09-14 Asahi Chem Ind Co Ltd Method for measuring thickness of multilayer thin film
JP3944693B2 (en) * 2001-10-04 2007-07-11 オムロン株式会社 Film thickness measuring device
JP3895599B2 (en) * 2002-01-04 2007-03-22 古河電気工業株式会社 Film thickness monitor light wavelength determining method and apparatus, and program
JP4622219B2 (en) * 2003-09-17 2011-02-02 凸版印刷株式会社 Color resist film thickness measuring device
JP2006162513A (en) * 2004-12-09 2006-06-22 Ricoh Co Ltd Method and instrument for measuring film thickness

Also Published As

Publication number Publication date
JP2008051699A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4813292B2 (en) Organic thin film thickness measuring device and organic thin film forming device
KR100906135B1 (en) Sample analyzing method, sample analyzing apparatus, and recording medium
TWI299758B (en) Method and apparatus for measuring the thickness of deposited film, method and apparatus for forming material layer
JP3848571B2 (en) Thin film forming method and apparatus
Taverne et al. Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED cathode
US20070002325A1 (en) Fluorescence measurement apparatus
TWI753166B (en) Method for controlling properties of single layer or multiple layer stack being applied on blank or coated substrate, use thereof, and feedback system, display device, and vacuum deposition system related thereto
TW200410309A (en) Arrangement for monitoring a thickness of a layer depositing on the sidewall of a processing chamber
JP5564089B2 (en) Infrared optical filter and manufacturing method thereof
CN112162343B (en) Medium-far infrared filter for sensor and preparation method thereof
US20060147613A1 (en) Deposition system and method for measuring deposition thickness in the deposition system
JP6363819B2 (en) Film thickness measuring method and film thickness measuring apparatus
US9897539B2 (en) Apparatus and method for measuring deposition rate
JP2010186145A (en) Infrared optical filter and method for manufacturing the same
TWI452257B (en) State measurement device and state measurement method
US6501598B2 (en) Prism and optical device using the same
Misiano et al. 4.4 Co-sputtered optical films
JP2006016660A (en) Apparatus for forming organic thin film, and method therefor
US20090242543A1 (en) Monitoring Witness Structures for Temperature Control in RTP Systems
Saxe et al. Ion bombardment-induced retarded moisture adsorption in optical thin films
US7504154B2 (en) Moisture barrier coatings for infrared salt optics
JP2011195871A (en) Mixture film forming device with device for measuring film thickness and composition
JP2009054382A (en) Design method of organic electroluminescent element, and organic electroluminescent element
JP2000171630A (en) Formation of multilayered optical thin film
JP4862295B2 (en) Method and apparatus for manufacturing organic EL element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Ref document number: 4813292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250