JP4811267B2 - Microchip and analytical device using the same - Google Patents

Microchip and analytical device using the same Download PDF

Info

Publication number
JP4811267B2
JP4811267B2 JP2006345516A JP2006345516A JP4811267B2 JP 4811267 B2 JP4811267 B2 JP 4811267B2 JP 2006345516 A JP2006345516 A JP 2006345516A JP 2006345516 A JP2006345516 A JP 2006345516A JP 4811267 B2 JP4811267 B2 JP 4811267B2
Authority
JP
Japan
Prior art keywords
microchip
fluid
inlet
shape
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006345516A
Other languages
Japanese (ja)
Other versions
JP2008157708A (en
Inventor
知裕 来島
勝 中北
賢治 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006345516A priority Critical patent/JP4811267B2/en
Publication of JP2008157708A publication Critical patent/JP2008157708A/en
Application granted granted Critical
Publication of JP4811267B2 publication Critical patent/JP4811267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchip which prevents air bubbles from mixing in a sample liquid, does not have measurement errors caused by deficiency in the collection of sample liquids, and enhances the distribution accuracy of the sample liquid. <P>SOLUTION: The microchip for sampling liquid droplets by capillary action is equipped with an injection port 1, having an injection width larger than the liquid droplets and having a recessed part in the projection part, projected from the body part on which the microchip is mounted and the capillary cavity 3 connected to a holding chamber 4 for holding the liquid sampled through the injection port 1, and the capillary cavity 3 that communicates with the injection port 1 is constituted so that the side part of the projection part is opened so as to come into contact with the open air. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、生物学的流体を電気化学的、もしくは光学的に分析するマイクロチップ及びそれを用いた分析デバイスに関するものである。   The present invention relates to a microchip for electrochemically or optically analyzing a biological fluid and an analysis device using the microchip.

従来、マイクロ流路を形成したマイクロチップを用いて生物学的流体を電気化学的にあるいは光学的に分析する方法がある。電気化学的に分析する方法としては、試料液中の特定の成分を分析するバイオセンサーとして、例えば、血液中のグルコースとセンサー中に担持したグルコースオキシダーゼ等の試薬との反応により得られる電流値を測定することにより、血糖値などを求めるものがある。   Conventionally, there is a method of electrochemically or optically analyzing a biological fluid using a microchip in which a microchannel is formed. As a method for electrochemical analysis, as a biosensor for analyzing a specific component in a sample solution, for example, a current value obtained by a reaction between glucose in blood and a reagent such as glucose oxidase supported in the sensor is obtained. Some measure blood glucose levels by measuring them.

また、マイクロチップを用いて分析する方法では、水平軸を有する回転装置を使って流体の制御をすることが可能であり、遠心力を利用して試料液の計量、細胞質材料の分離、分離された流体の移送分配、液体の混合/攪拌等を行うことができるため、種々の生物化学的な分析を行うことが可能である。   In the analysis method using a microchip, the fluid can be controlled using a rotating device having a horizontal axis, and the sample liquid is measured, the cytoplasmic material is separated and separated using a centrifugal force. Therefore, various biochemical analyzes can be performed.

マイクロチップに試料を導入するための従来の試料液採取方法としては、図8に示す電気化学式バイオセンサーがあり、試料液は吸引口208から毛細管現象によりキャビティ212内に導入され、作用極201、対極202と試薬層210のある位置まで導かれる。この時キャビティ212の容積で試料の定量採取を行っている。そして作用極201、対極202での試料液と試薬との反応により生じる電流値は、リード203,204を通じて図示しない外部の測定装置に接続して読み取られる(特許文献1)。   As a conventional sample liquid collecting method for introducing a sample into a microchip, there is an electrochemical biosensor shown in FIG. 8, and the sample liquid is introduced into the cavity 212 by capillary action from the suction port 208, and the working electrode 201, It is guided to a position where the counter electrode 202 and the reagent layer 210 are located. At this time, the sample is quantitatively collected with the volume of the cavity 212. The current value generated by the reaction between the sample solution and the reagent at the working electrode 201 and the counter electrode 202 is read by connecting to an external measuring device (not shown) through leads 203 and 204 (Patent Document 1).

また、図9に示す遠心移送式バイオセンサーでは、試料液は入り口313から毛細管現象により第1の毛細管キャビティ312内に定量採取され、次に遠心力を作用させることで、毛細管キャビティ312内の試料液は第1の流路314を介して受入キャビティ317に移送され、受入キャビティ317で試薬と反応したものを遠心分離させ、第2のキャビティ316に溶液成分のみを毛細管力によって採取し、光学的に反応状態を読み取られる(特許文献2)。   Further, in the centrifugal transfer biosensor shown in FIG. 9, the sample liquid is quantitatively collected from the inlet 313 into the first capillary cavity 312 by capillary action, and then the centrifugal force is applied to the sample liquid in the capillary cavity 312. The liquid is transferred to the receiving cavity 317 via the first flow path 314, and the reagent that has reacted with the reagent in the receiving cavity 317 is centrifuged, and only the solution component is collected in the second cavity 316 by capillary force, and optically collected. Can read the reaction state (Patent Document 2).

また、図10に示す遠心移送式バイオセンサーでは、試料を入口ポート409から出口ポート410まで毛細管力で移送し、各毛細管キャビティ404a−fを試料液で満たした後、バイオセンサーの回転によって発生する遠心力によって、それぞれの毛細管キャビティ内の試料液を各通気孔406a−gの位置で分配し、各連結微小導管407a−fを通って、次の処理室(図示省略)へ移送される(特許文献3)。
特開2001−159618号公報 特表平4−504758号公報 特表2004−529333号公報
Further, in the centrifugal transfer biosensor shown in FIG. 10, the sample is transferred from the inlet port 409 to the outlet port 410 by capillary force, and each capillary cavity 404a-f is filled with the sample solution, and then generated by rotation of the biosensor. The sample liquid in each capillary cavity is distributed at the position of each vent hole 406a-g by centrifugal force and transferred to the next processing chamber (not shown) through each connected microconduit 407a-f (patented) Reference 3).
JP 2001-159618 A Japanese National Publication No. 4-504758 JP-T-2004-529333

しかしながら、前記従来の構成では、毛細管キャビティの充填前に試料液が無くなったり、試料採取中に試料液を入口から離してしまった場合に、入口付近の表面張力の影響による気泡が混入したり、取り扱い時にデバイスの向きを変えてしまうことで、毛細管キャビティ内の試料が動いてしまって気泡が混入したりする可能性があり、気泡が混入すると不足している試料液を後から追加して吸引させようとしても毛細管キャビティ内の気泡を外部に逃がすことができないため、気泡部分を充填することができず一定量の試料液を採取できないという課題を有していた。   However, in the conventional configuration, when the sample liquid disappears before filling the capillary cavity, or when the sample liquid is separated from the inlet during sampling, bubbles due to the influence of the surface tension near the inlet are mixed, If the orientation of the device is changed during handling, the sample in the capillary cavity may move and bubbles may be mixed in. If bubbles are mixed in, the missing sample solution will be added later and aspirated. Even if it tries to make it, since the bubble in a capillary cavity cannot escape outside, it had the subject that a bubble part could not be filled and a fixed amount of sample liquid could not be extract | collected.

本発明は、マイクロチップの注入口の形状として中央が凹となるようにし、試料液を点着の際流路の端から流入させることにより記従来の課題を解決するもので、毛細管キャビティ内への気泡の混入を防ぐことができ、試料液の採取が毛細管キャビティを満たすまで何度でもできるマイクロチップを提供することを目的とする。   The present invention solves the conventional problem by making the center of the injection port of the microchip concave so that the sample liquid flows from the end of the flow channel when spotted, and into the capillary cavity. It is an object of the present invention to provide a microchip that can prevent air bubbles from being mixed and can collect a sample solution any number of times until the capillary cavity is filled.

前記従来の課題を解決するために、本発明の分析デバイスは、流体の液滴を毛細管作用により採取するマイクロチップにおいて、前記流体の液滴径より大きい注入幅を有し前記マイクロチップが装着される本体部より突起する突起部に凹部を有する注入口と、前記注入口に通じ採取された流体を保持する保持チャンバに連結される毛細管キャビティと、を備え、前記注入口に連通する毛細管キャビティは、前記突起部の側部も開口して外気に接することを特徴とするマイクロチップを備える分析デバイスであって、前記マイクロチップの前記注入口に注入された前記流体を前記マイクロチップの前記毛細管キャビティを介して所定量だけ一時的に保持する前記保持チャンバーに移送し、前記保持チャンバーが必要な流体の量になるまで気泡を発生することなく複数回の点着を可能として前記保持チャンバーに蓄積し、前記保持チャンバーから蓄積した前記流体を毛細管流路を介して前記流体を光学的に測定するための測定チャンバーに移送して前記流体を測定し分析することを特徴としたものである。 In order to solve the above conventional problems, the analysis device of the present invention is the microchip which droplets of fluid collected by capillary action, wherein the microchip is mounted has a droplet size larger injection width of said fluid that includes an inlet having a concave protrusion which protrudes from the main body portion, and a capillary cavity which is connected to the holding chamber over holding a fluid taken through said inlet capillary cavity communicating with said inlet Is an analytical device comprising a microchip, wherein the side of the protrusion is also opened to contact the outside air, and the fluid injected into the injection port of the microchip is used as the capillary of the microchip. Air bubbles are transferred to the holding chamber that temporarily holds a predetermined amount through the cavity and the holding chamber reaches the required amount of fluid. Accumulate in the holding chamber by enabling multiple spotting without occurrence, and transfer the fluid accumulated from the holding chamber to a measuring chamber for optically measuring the fluid through a capillary channel. The fluid is measured and analyzed .

本発明は、マイクロチップの注入口の形状を試料液の進入方向に対して凹形状を構成する事で、従来の課題を解決するもので、毛細管キャビティ内への気泡の混入を防ぐことができ、試料液の採取が毛細管キャビティを満たすまで何度でもでき、所定量の試料液を確実に採取できるマイクロチップを提供することを目的とする。     The present invention solves the conventional problem by configuring the shape of the inlet of the microchip to be concave with respect to the direction in which the sample solution enters, and can prevent air bubbles from being mixed into the capillary cavity. An object of the present invention is to provide a microchip capable of collecting a sample solution any number of times until it fills the capillary cavity and reliably collecting a predetermined amount of sample solution.

以下に、本発明のマイクロチップの実施の形態を図面とともに詳細に説明する。
(実施の形態1)
図1に本発明の実施の形態1における注入口形状の斜視図について示す。(a)は本実施例の気泡対策を施した注入口形状、(b)は、注入口を単に突起させる形状で気泡の混入を十分に防ぐことができない場合を示すものである。また図2に本発明の実施の形態1のマイクロチップ200における注入口および注入口の形状を示す。実施の形態1では、一例として断面形状が矩形の場合を示すもので、図2(a)は、上から順に、マイクロチップ200の上面図、正面図を示し、図2(b)は、A−A断面を、図2(c)は、マイクロチップ200を含む分析デバイス100の下部基板を示すものである。
Hereinafter, embodiments of the microchip of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 shows a perspective view of the inlet shape in the first embodiment of the present invention. (A) shows the shape of the injection port in which the bubble countermeasure of this embodiment is taken, and (b) shows the case where the mixing of the bubble cannot be sufficiently prevented with a shape in which the injection port is simply projected. FIG. 2 shows the inlet and the shape of the inlet in the microchip 200 according to the first embodiment of the present invention. In the first embodiment, the case where the cross-sectional shape is rectangular is shown as an example. FIG. 2A shows a top view and a front view of the microchip 200 in order from the top, and FIG. FIG. 2C shows a lower substrate of the analysis device 100 including the microchip 200. FIG.

分析デバイス100の構造は、図5で説明するが、マイクロチップ200は、分析デバイス100の下部基板と一体的に成形して形成される。ここで図2(a)、(b)は、分析デバイス100に示す流路の一部を形成する当該注入口1を含む毛細管キャビティ3を模式的に表示したものである。マイクロチップ200は、分析デバイス100の流路形成の際に一体的に成形されて流路が連結され形成される。本実施の形態1に示すマイクロチップ200は、毛細管キャビティ3、注入口1、出口2で構成される。本実施例では、マイクロチップ200の毛細管キャビティ3の断面形状が矩形状であり、注入口1の形状は、図2(a)に示すように、上からみてV字状であり、試料液を点着する側、すなわち、正面からみると矩形状をなす。また、注入口1の幅Lは、試料液の液滴径より大きく設定し、試料液を点着した際に注入口1の左右端同時もしくは片側一方から流入させるためである。このように設定することにより、マイクロチップ200を重力方向に向けた場合においても毛細管キャビティ3内に気泡ができない構造となっている。   Although the structure of the analysis device 100 will be described with reference to FIG. 5, the microchip 200 is formed integrally with the lower substrate of the analysis device 100. Here, FIGS. 2A and 2B schematically show the capillary cavity 3 including the inlet 1 that forms part of the flow path shown in the analysis device 100. The microchip 200 is integrally formed when the flow path of the analysis device 100 is formed, and the flow paths are connected and formed. The microchip 200 shown in the first embodiment includes a capillary cavity 3, an inlet 1, and an outlet 2. In this example, the cross-sectional shape of the capillary cavity 3 of the microchip 200 is rectangular, and the shape of the injection port 1 is V-shaped when viewed from above, as shown in FIG. It is rectangular when viewed from the side to be spotted, that is, from the front. Further, the width L of the injection port 1 is set to be larger than the droplet diameter of the sample liquid so that when the sample liquid is spotted, it flows from the left and right ends of the injection port 1 or from one side. By setting in this way, even when the microchip 200 is directed in the direction of gravity, there is a structure in which bubbles are not generated in the capillary cavity 3.

一例として、本発明では、注入口1の幅Lを4mmとし、分析デバイス100より突起する部分hをh=1.8mmとしている。注入口1の厚みtは毛細管キャビティ3と同様にt=0.02mmに設けている。注入口1の中央部は凹形状となっており、突起部の側部も開口して外気に接しているため、どこからでも点着できるようになっている。このマイクロチップ200の大きさは、分析デバイス100の試料液採取部として適当な大きさとするため、適宜変更することができる。マイクロチップ200が一体構造となる下部基板10の厚みwは3mm、上部基板9の厚みは5mmで、略65mm角で構成する。試料液の流路を形成する毛細管キャビティ3の厚さ、即ち、流路の深さは、0.02mmである。   As an example, in the present invention, the width L of the injection port 1 is 4 mm, and the portion h protruding from the analysis device 100 is h = 1.8 mm. The thickness t of the injection port 1 is set to t = 0.02 mm like the capillary cavity 3. The central part of the injection port 1 has a concave shape, and the side part of the projection part is also open and in contact with the outside air, so that it can be spotted from anywhere. The size of the microchip 200 can be changed as appropriate in order to obtain an appropriate size for the sample liquid collecting portion of the analysis device 100. The thickness w of the lower substrate 10 in which the microchip 200 is integrated is 3 mm, the thickness of the upper substrate 9 is 5 mm, and is approximately 65 mm square. The thickness of the capillary cavity 3 forming the flow path of the sample solution, that is, the depth of the flow path is 0.02 mm.

一方、毛細菅キャビティ3と連結され分析デバイス100の下部基板に形成される保持チャンバー4の深さは、0.3mm〜0.5mmと毛細菅キャビティ3の厚み(即ち、流路となる深さ)より深く形成する。このように設定することにより、毛細管キャビティ3内に注入された試料液は、毛細管力だけでは、保持チャンバー4に進まず、分析デバイス100を回転して得られる遠心力を利用して、試料液を移送するためである。
もちろん、毛細管キャビティ3の断面形状が矩形状以外でも毛細管力が作用する形状であれば、円形、楕円形状などいかなる形状でも同様の効果が得られることは当然である。
On the other hand, the depth of the holding chamber 4 connected to the capillary cavities 3 and formed on the lower substrate of the analysis device 100 is 0.3 mm to 0.5 mm and the thickness of the capillary cavities 3 (that is, the depth of the flow path). ) Form deeper. By setting in this way, the sample liquid injected into the capillary cavity 3 does not proceed to the holding chamber 4 only by the capillary force, and utilizes the centrifugal force obtained by rotating the analysis device 100, thereby using the sample liquid. It is for transporting.
Of course, the same effect can be obtained with any shape such as a circle or an ellipse as long as the capillary cavity 3 has a cross-sectional shape other than a rectangular shape as long as the capillary force acts.

さらに注入口1を構成する壁面は、図3に示すように親水性を有する材料で形成し、接触角を所定の角度未満になるようにする。具体的には、注入口1の壁面との接触角を一般的に親水性を言われる90度未満となるように設ける。この接触角が小さくなるほど流路内を試料液が進みやすくなることは当然であり、即ち毛細管力が強く働く事を意味する。   Further, the wall surface constituting the injection port 1 is formed of a hydrophilic material as shown in FIG. 3 so that the contact angle is less than a predetermined angle. Specifically, the contact angle with the wall surface of the inlet 1 is provided to be less than 90 degrees, which is generally said to be hydrophilic. Naturally, the smaller the contact angle, the easier it is for the sample liquid to travel in the flow path, which means that the capillary force works strongly.

図4は、注入口形状の差による流れパターンの違いについて示す。
図4(a)は、分析デバイス100より突出した注入口1の中央部が凹んでV字状をし、幅L=4mm、突出高さh=1.8mmのもの、(b)は(a)と同形状で幅L=2mm、突出高さh=0.8mmのもの、(c)は分析デバイス100より突出した注入口1が半径R=2mmの円弧状に突起した場合、(d)は(c)と同形状で半径R=1mmの円弧状に突起した場合のものを示す。また図にそれぞれの2度付け、3度付けを行った時の動きについて示す。
FIG. 4 shows the difference in flow pattern due to the difference in inlet shape.
FIG. 4 (a) shows a case where the central portion of the injection port 1 protruding from the analysis device 100 is concave and V-shaped, with a width L = 4 mm and a protruding height h = 1.8 mm. ) Having a width L = 2 mm and a protruding height h = 0.8 mm, (c) is a case where the injection port 1 protruding from the analysis device 100 protrudes in an arc shape with a radius R = 2 mm, (d) Is the same shape as (c) and projects in a circular arc shape with a radius R = 1 mm. In addition, the figure shows the movement when the second and third times are applied.

図4(c)に関しては、最初に注入口1を介して流入した試料液が毛細管キャビティ3内に流れ込み、注入口1に近い試料液の界面と注入口1が離れて距離ができた場合、2度付けを行うと液と液との間に気泡を含んだ状態で毛細管キャビティ3に流入してしまう。これは注入口1にこのような突出した形状を設けない場合も同様で、一度点着した液体を再度、注入口1の中央部から点着する場合、注入口1の点着部に生じた気泡の逃げ道がなくなってしまうためである。   As for FIG. 4C, when the sample liquid that first flows in through the inlet 1 flows into the capillary cavity 3 and the interface between the sample liquid near the inlet 1 and the inlet 1 are separated, If it is applied twice, it will flow into the capillary cavity 3 with air bubbles contained between the liquids. This also applies to the case where such a protruding shape is not provided in the injection port 1. When the liquid once spotted is spotted again from the center of the inlet 1, it has occurred in the spotted portion of the inlet 1. This is because the escape route of bubbles disappears.

即ち、2度付けを行った場合、2度目の点着時に空気層を介して試料液が流入するが、注入口1が凸上に形成される場合には、注入口1の点着部に生じたすべての空気がキャビティから出て行かず、注入口1の付近に気泡となって試料液中に残ってしまうからである。従って、気泡を残さないためには、注入口1の2度目の点着の際に、空気の逃げ道を形成する必要がある。   That is, when the application is performed twice, the sample liquid flows in through the air layer at the time of the second application, but when the injection port 1 is formed to be convex, This is because all the generated air does not go out of the cavity and remains in the sample liquid as bubbles near the inlet 1. Therefore, in order not to leave bubbles, it is necessary to form an air escape path when the inlet 1 is spotted for the second time.

図4(a)に示す場合には、気泡を含むことなく毛細管キャビティ3内に流入させることができる。これは点着した液滴が、液滴よりも大きい注入口1の中央部に点着する前に左右のV字状の注入端から同時もしくはV字状の注入端の片側一方から流入し、注入口1の中央部分のV字状の谷間または点着していないもう一方の片側壁面部から空気を逃がす事ができるため気泡を含まず点着させることが可能となる。   In the case shown in FIG. 4A, it is possible to flow into the capillary cavity 3 without including bubbles. This is because the spotted droplets flow from the left and right V-shaped injection ends at the same time or from one side of the V-shaped injection end before spotting the center of the injection port 1 larger than the droplets, Since air can be released from the V-shaped valley in the central portion of the injection port 1 or the other one side wall surface portion that is not spotted, it can be spotted without containing bubbles.

すなわち、2度目の点着の際には、図4(a)(1)に示すように、注入口1に空気を挟んで試料液を点着することになるが、凹状に形成された注入口1には、傾斜をもったキャビティが注入口1の側壁部のトップからボトムまで繋がっており、この注入口1の側壁部のトップからボトムまでのキャビティが空気の逃げ道となるからである。   That is, at the time of the second spotting, as shown in FIGS. 4A and 4A, the sample liquid is spotted with air sandwiched in the inlet 1 but is formed in a concave shape. This is because an inclined cavity is connected to the inlet 1 from the top to the bottom of the side wall portion of the inlet 1, and the cavity from the top to the bottom of the side wall portion of the inlet 1 becomes an air escape path.

ここで図4(b)では、(a)と同形状であるが注入口1の幅Lが2mmと狭く点着する液摘径よりも小さくて、突出高さhも0.8mmと低い。この場合、図4(b)(1)に示すように液滴が注入口1全体を覆うように流入するため2度点着する場合において、生じた気泡の逃げ道がなく気泡が発生し試料液中に残る可能性がある。図4(d)についても同様である。すなわち、図4(c)に比べ注入口形状は同じで、注入口の幅の円弧状の半径をR=1と狭く設定した場合、2度点着する場合において、生じた気泡の逃げ道がなく試料液中に残る可能性がある。   Here, in FIG. 4B, the shape is the same as that in FIG. 4A, but the width L of the injection port 1 is 2 mm, which is smaller than the diameter of the liquid drop, and the protrusion height h is also low, 0.8 mm. In this case, as shown in FIGS. 4 (b) and (1), when the liquid droplets are spotted twice so as to cover the entire injection port 1, there is no escape route for the generated bubbles, and bubbles are generated and the sample liquid is generated. May remain inside. The same applies to FIG. 4D. That is, the shape of the inlet is the same as that in FIG. 4C, and when the arc-shaped radius of the inlet is set to be narrow as R = 1, there is no escape route for the generated bubbles when spotted twice. It may remain in the sample solution.

図5に寸法変更による可否について示す。図1に示す(a)と(b)においてそれぞれ注入口幅1を2〜4mm、突出高さを0.8〜1.8mmまで変更した場合について示す。図1(a)のような本実施例の形状でも、点着する液量に対し狭い注入口1の幅2mmでは気泡を含んだ状態で流入させてしまうため注入口1の幅は2mmより大きく設定する事が望ましい。ただし一度に点着する液滴の大きさから幅、突出高さとも10mm以下に設計する事が分析デバイス100を設計する際に占有面積上望ましい。もちろん、分析デバイス100の大きさに応じて他の値をとることができる。本実施の形態では、分析デバイス100の大きさは、65mm×54mm×10mmであり、注入口の幅は4mm、突出高さは2mm以下程度が適当である。またこのような効果が得られる凹形状であればこれに限定されるものではない。   FIG. 5 shows whether the dimensions can be changed. In FIGS. 1A and 1B, the case where the inlet width 1 is changed to 2 to 4 mm and the protruding height is changed to 0.8 to 1.8 mm is shown. Even in the shape of the present embodiment as shown in FIG. 1 (a), if the width of the inlet 1 is narrow with respect to the amount of liquid to be spotted, the inlet 1 will flow in a state containing bubbles, so the width of the inlet 1 is larger than 2 mm. It is desirable to set. However, it is desirable in terms of the occupied area when designing the analysis device 100 that the width and protrusion height are designed to be 10 mm or less from the size of the droplets to be spotted at one time. Of course, other values can be taken depending on the size of the analysis device 100. In the present embodiment, it is appropriate that the size of the analysis device 100 is 65 mm × 54 mm × 10 mm, the width of the injection port is 4 mm, and the protrusion height is about 2 mm or less. Moreover, if it is a concave shape from which such an effect is acquired, it will not be limited to this.

図6に本発明の実施の形態1におけるその他の注入口形状の例についてマイクロチップの上面図の形状を示す。本実施例では突出した2箇所の注入口1において着滴した液滴を先にどちらか一方に導入するか、中央から導入しても左右の端から空気が逃げられる構造を有していれば良い。よって(a)〜(e)に示す構造で、注入口1の幅を3mm以上、突出高さを1.2mm以上にすることで気泡が入ることなく2度付け、3度付けさせることができる。図6(a)は、注入口1の上面形状が凹状、(b)は、U字状の場合、(c)は、片側三角形状に突起する場合、(d)は、片側矩形状に突起する場合、(e)は、両側三角形状に突起する場合を示す。いずれの場合も生じた気泡の逃げ道を考慮した注入口1の形状である。
(実施の形態2)
図7に、マイクロチップ200を装着した分析デバイス100を示す。
FIG. 6 shows the shape of the top view of the microchip for another example of the inlet shape in the first embodiment of the present invention. In the present embodiment, the droplets deposited at the two protruding inlets 1 are first introduced into either one, or even if introduced from the center, the structure allows the air to escape from the left and right ends. good. Therefore, with the structure shown in (a) to (e), by setting the width of the injection port 1 to 3 mm or more and the projection height to 1.2 mm or more, it can be attached twice without causing bubbles. . 6A shows a case where the top surface shape of the injection port 1 is concave, FIG. 6B shows a case where it is U-shaped, FIG. 6C shows a case where it protrudes in a triangular shape on one side, and FIG. (E) shows the case where it protrudes in a both-sides triangle shape. In any case, the shape of the injection port 1 takes into account the escape route of the generated bubbles.
(Embodiment 2)
FIG. 7 shows the analysis device 100 to which the microchip 200 is attached.

図7(a)は、分析デバイス100の上部基板9を示し、図7(b)は、分析デバイス100の下部基板10を示す。   FIG. 7A shows the upper substrate 9 of the analysis device 100, and FIG. 7B shows the lower substrate 10 of the analysis device 100.

図7(b)において、分析デバイス100は、実施の形態1に示したマイクロチップ200の注入口1に注入された血液などの試料液を毛細管キャビティ3を介して所定量だけ保持チャンバー4に一時的に保持する。保持チャンバー4には、分析試薬(図示せず)が担持されている。そして、試料液と分析試薬とが混合され、当該混合液が測定チャンバー5に毛細管流路6を介して移送される。測定チャンバー5は、大気開放孔8を有する毛細管流路7と連通している。測定チャンバー5に移送された試料液と分析試薬とが混合物は、光学的手法により所定の項目が測定され分析される。   In FIG. 7B, the analysis device 100 temporarily puts a sample solution such as blood injected into the injection port 1 of the microchip 200 shown in Embodiment 1 into the holding chamber 4 by a predetermined amount via the capillary cavity 3. Hold on. The holding chamber 4 carries an analysis reagent (not shown). Then, the sample solution and the analysis reagent are mixed, and the mixed solution is transferred to the measurement chamber 5 via the capillary channel 6. The measurement chamber 5 communicates with a capillary channel 7 having an air opening hole 8. The mixture of the sample liquid and the analysis reagent transferred to the measurement chamber 5 is analyzed by measuring predetermined items by an optical method.

試料液の測定は、測定チャンバ5に光を照射して、検査すべき液体試料と分析試薬の反応状態を光学的に分析する。試料液と分析試薬との反応の割合で吸光度が変化するため照射する光の吸光度を測定することにより所定の項目が測定され、反応状態を分析することができる。   In the measurement of the sample liquid, the measurement chamber 5 is irradiated with light, and the reaction state between the liquid sample to be examined and the analysis reagent is optically analyzed. Since the absorbance changes depending on the rate of reaction between the sample solution and the analysis reagent, predetermined items are measured by measuring the absorbance of the irradiated light, and the reaction state can be analyzed.

ここで、本発明では、毛細管キャビティ3、流路6、流路7の深さは0.02mmから0.3mm未満で形成されているが、毛細管力で試料液が流れるのであれば、この寸法に限定されるものではない。一般的には、血液などの液体を測定し分析するので、0.02mmから0.3mm未満が望ましい。   Here, in the present invention, the capillary cavity 3, the flow path 6, and the flow path 7 are formed with a depth of 0.02 mm to less than 0.3 mm. However, if the sample liquid flows by capillary force, this dimension is used. It is not limited to. In general, since liquid such as blood is measured and analyzed, 0.02 mm to less than 0.3 mm is desirable.

また、保持チャンバー4、測定チャンバー5の深さは、0.3mm〜0.5mmで形成しているが、これは、サンプル溶液の量や、吸光度を測定するための条件(光路長、測定波長、サンプル溶液の反応濃度、試薬の種類等)によって調整可能である。そして測定テャンバー5に移送された試料液を光学的に測定する。   The holding chamber 4 and the measurement chamber 5 are formed with a depth of 0.3 mm to 0.5 mm, which is the amount of sample solution and the conditions for measuring the absorbance (optical path length, measurement wavelength). The reaction concentration of the sample solution, the type of reagent, etc.). Then, the sample liquid transferred to the measurement chamber 5 is optically measured.

本実施の形態では、試料液を毛細管力を利用してマイクロチップ200の注入口1に通じる毛細管キャビティ3を介して保持テャンバー4に試料液を保持する。流路6の壁面に親水処理を行っており、親水処理方法としては、プラズマ、コロナ、オゾン、フッ素等の活性ガスを用いた表面処理方法や、界面活性剤や親水性ポリマーによる表面処理が挙げられる。ここで、親水性とは水との接触角が90度未満のことをいう。   In the present embodiment, the sample solution is held in the holding chamber 4 via the capillary cavity 3 that communicates with the inlet 1 of the microchip 200 using the capillary force. The wall surface of the flow path 6 is subjected to a hydrophilic treatment. Examples of the hydrophilic treatment method include a surface treatment method using an active gas such as plasma, corona, ozone, and fluorine, and a surface treatment using a surfactant or a hydrophilic polymer. It is done. Here, hydrophilicity means that the contact angle with water is less than 90 degrees.

また、分析デバイス100は、図7に示すように、上部基板9と下部基板10との貼り合わせで構成されており、下部基板10の上部基板9と対向する面には、微細な凹凸形状をもつマイクロチャネル構造が形成されており、試料液の移送や、所定量の液量を保持するなど、それぞれの機能が働くようになっている。注入口1は、分析デバイス100本体の一側面より突出した形状にすることにより、指先などによる点着がしやすくなり、点着時に注入口1以外の位置に指などが接触して血液が付着するのを防ぐという効果がある。試薬と試料液との混合が所定のレベルに到達すると、保持チャンバー4内の試料液は、毛細管力により流路6内を通じて、測定チャンバー5の入口まで運ばれ、分析デバイスを所定の回転数で回転して発生する遠心力を利用して測定チャンバー5へ移送される。そして移送された試料液は測定チャンバー5にて光学的に所定の項目が測定される。   Further, as shown in FIG. 7, the analysis device 100 is configured by bonding an upper substrate 9 and a lower substrate 10, and a fine uneven shape is formed on the surface of the lower substrate 10 facing the upper substrate 9. A microchannel structure is formed, and each function works such as transfer of a sample solution and holding a predetermined amount of solution. The injection port 1 has a shape protruding from one side of the main body of the analysis device 100, so that it can be easily spotted with a fingertip or the like. It has the effect of preventing it. When the mixing of the reagent and the sample liquid reaches a predetermined level, the sample liquid in the holding chamber 4 is carried by the capillary force through the flow path 6 to the inlet of the measurement chamber 5, and the analysis device is moved at a predetermined number of rotations. The centrifugal force generated by rotation is transferred to the measurement chamber 5. The transferred sample liquid is optically measured for predetermined items in the measurement chamber 5.

本発明にかかるマイクロチップ200は、試料液を採取するための毛細管キャビティ3に気泡が混入するのを防ぎ、毛細管キャビティ3を満たすまで何度でも試料液を採取することができるという効果や、試料液の分配精度を向上させることができるという効果を有し、電気化学式センサーや光学式センサーで生物学的流体の成分測定に使用する分析デバイス100における試料液の採取方法、分配移送方法等として有用である。   The microchip 200 according to the present invention prevents the bubbles from being mixed into the capillary cavity 3 for collecting the sample liquid, and can collect the sample liquid any number of times until the capillary cavity 3 is filled. It has the effect of improving the liquid distribution accuracy, and is useful as a sample liquid collection method, a distribution transfer method, etc. in the analytical device 100 used for measuring the components of biological fluids with an electrochemical sensor or an optical sensor. It is.

本発明の実施の形態1におけるマイクロチップの注入口形状の斜視図1 is a perspective view of an injection port shape of a microchip according to Embodiment 1 of the present invention. (a)本発明の実施の形態1におけるマイクロチップの上面図及び正面図(b)本発明の実施の形態1におけるマイクロチップのA−A断面図(c)本発明の実施の形態1における分析デバイスの下部基板の斜視図(A) Top view and front view of microchip in Embodiment 1 of the present invention (b) AA cross-sectional view of the microchip in Embodiment 1 of the present invention (c) Analysis in Embodiment 1 of the present invention Perspective view of the lower substrate of the device 表面張力の接触角を説明するための図Diagram for explaining contact angle of surface tension 本発明の実施の形態1におけるマイクロチップの注入口形状の差による流れパターンを示す図The figure which shows the flow pattern by the difference in the injection port shape of the microchip in Embodiment 1 of this invention 本発明の実施の形態1におけるマイクロチップの寸法変更による可否を示す図The figure which shows the propriety by the dimension change of the microchip in Embodiment 1 of this invention 本発明の実施の形態1のおけるマイクロチップのその他の注入口形状を示す図The figure which shows the other inlet shape of the microchip in Embodiment 1 of this invention 本発明の実施の形態1における分析デバイスの分解斜視図1 is an exploded perspective view of an analysis device according to Embodiment 1 of the present invention. 従来例の電気化学式バイオセンサーの構成を説明するための図The figure for demonstrating the structure of the electrochemical type biosensor of a prior art example 従来例の遠心移送式バイオセンサーの構成を説明するための図The figure for demonstrating the structure of the centrifugal transfer type biosensor of a prior art example. 従来例の遠心移送式バイオセンサーの試料液分配構成を説明するための図The figure for demonstrating the sample liquid distribution structure of the centrifugal transfer type biosensor of a prior art example

符号の説明Explanation of symbols

1 注入口
2 出口
3 毛細管キャビティ
4 保持チャンバー
5 測定チャンバー
6、7 流路
8 大気開放孔
9 上部基板
10 下部基板
100 分析デバイス
200 マイクロチップ
201 作用極
202 対極
203、204 リード
205 絶縁基板
206 カバー
207 スペーサー
208 吸引口
209 空気逃げ孔
210 試薬層
212 キャビティ
310 壁
312 第1のキャビティ
313 入り口
314 流路
315 濾過材料
316 上区画
317 低区画
318 芯
401 連続微小導管
402、403 上部部分
404a-f 毛細管キャビティ
405a-e 導管部分
406a-g 頂部通気孔
407a-f 連結微小導管
408a-f バルブ機能
409 入口ポート
410 出口ポート

DESCRIPTION OF SYMBOLS 1 Injection port 2 Outlet 3 Capillary cavity 4 Holding chamber 5 Measurement chamber 6, 7 Flow path 8 Atmospheric release hole 9 Upper substrate 10 Lower substrate 100 Analytical device 200 Microchip 201 Working electrode 202 Counter electrode 203, 204 Lead 205 Insulating substrate 206 Cover 207 Spacer 208 Suction port 209 Air escape hole 210 Reagent layer 212 Cavity 310 Wall 312 First cavity 313 Inlet 314 Flow path 315 Filter material 316 Upper compartment 317 Low compartment 318 Core 401 Continuous microconduit 402, 403 Upper part 404a-f Capillary cavity 405a-e Conduit portion 406a-g Top vent 407a-f Connected microconduit 408a-f Valve function 409 Inlet port 410 Outlet port

Claims (3)

流体の液滴を毛細管作用により採取するマイクロチップにおいて、前記流体の液滴径より大きい注入幅を有し前記マイクロチップが装着される本体部より突起する突起部に凹部を有する注入口と、前記注入口に通じ採取された流体を保持する保持チャンバに連結される毛細管キャビティと、を備え、前記注入口に連通する毛細管キャビティは、前記突起部の側部も開口して外気に接することを特徴とするマイクロチップを備える分析デバイスであって、前記マイクロチップの前記注入口に注入された前記流体を前記マイクロチップの前記毛細管キャビティを介して所定量だけ一時的に保持する前記保持チャンバーに移送し、前記保持チャンバーが必要な流体の量になるまで気泡を発生することなく複数回の点着を可能として前記保持チャンバーに蓄積し、前記保持チャンバーから蓄積した前記流体を毛細管流路を介して前記流体を光学的に測定するための測定チャンバーに移送して前記流体を測定し分析することを特徴とする分析デバイス。 The droplets of the fluid in the micro chip be collected by capillary action, an inlet having a concave protrusion the microchip has a droplet size larger injection width of the fluid protruding from the main body to be attached, the a capillary cavity which is connected to the holding chamber over for holding is through the inlet collecting fluid, comprising a capillary cavity communicating with said inlet, that in contact with the outside air to the side even opening of the protrusion An analysis device comprising a microchip characterized in that the fluid injected into the injection port of the microchip is transferred to the holding chamber that temporarily holds a predetermined amount via the capillary cavity of the microchip. The holding chamber can be spotted multiple times without generating bubbles until the required amount of fluid is in the holding chamber. And the fluid accumulated in the holding chamber is transferred to a measurement chamber for optically measuring the fluid through a capillary channel, and the fluid is measured and analyzed. . 前記分析デバイスを回転して発生する遠心力により、前記マイクロチップ注入口より注入された流体前記マイクロチップの出口より前記保持チャンバーに移送することを特徴とする請求項に記載の分析デバイス。 The centrifugal force generated by rotating the analysis device, analysis device according to claim 1, characterized in that transferring the injected from the injection port of the microchip fluid to the holding chamber from the outlet of the microchip . 前記注入口形状は、V字状、凹形状、U字状又は三角形状のいずれかであることを特徴とする請求項に記載の分析デバイス。 The analysis device according to claim 1 , wherein the inlet shape is any one of a V shape, a concave shape, a U shape, and a triangular shape.
JP2006345516A 2006-12-22 2006-12-22 Microchip and analytical device using the same Active JP4811267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345516A JP4811267B2 (en) 2006-12-22 2006-12-22 Microchip and analytical device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345516A JP4811267B2 (en) 2006-12-22 2006-12-22 Microchip and analytical device using the same

Publications (2)

Publication Number Publication Date
JP2008157708A JP2008157708A (en) 2008-07-10
JP4811267B2 true JP4811267B2 (en) 2011-11-09

Family

ID=39658779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345516A Active JP4811267B2 (en) 2006-12-22 2006-12-22 Microchip and analytical device using the same

Country Status (1)

Country Link
JP (1) JP4811267B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101204299B1 (en) * 2010-04-15 2012-11-23 주식회사 인포피아 Improved applicator and measurement strip set comprising the same
KR101147534B1 (en) * 2009-06-02 2012-05-21 주식회사 인포피아 Device for collecting body fluid
WO2013112898A1 (en) * 2012-01-25 2013-08-01 The Regents Of The University Of California Micro-analyzer with passive aggregator
JP5924967B2 (en) * 2012-02-08 2016-05-25 アークレイ株式会社 Spotting device and spotting method
JP6302187B2 (en) * 2012-08-13 2018-03-28 キヤノン株式会社 Microchannel chip and manufacturing method thereof
JP5922791B2 (en) * 2012-10-29 2016-05-24 京セラ株式会社 Surface acoustic wave sensor
US10539582B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and method for removing liquid from liquid that contains magnetic particles
JP6588908B2 (en) 2014-06-30 2019-10-09 Phcホールディングス株式会社 Sample analysis substrate, sample analysis apparatus, sample analysis system, and program for sample analysis system
US10539560B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, and sample analysis apparatus
JP6588910B2 (en) 2014-06-30 2019-10-09 Phcホールディングス株式会社 Sample analysis substrate, sample analysis apparatus, sample analysis system, and program for sample analysis system
CN115825186A (en) 2021-09-16 2023-03-21 爱科来株式会社 Measurement method and measurement device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE465742B (en) * 1989-04-26 1991-10-21 Migrata Uk Ltd KYVETT BEFORE RECORDING FOR AT LEAST ONE FLUID
DE19753850A1 (en) * 1997-12-04 1999-06-10 Roche Diagnostics Gmbh Sampling device
JP3648081B2 (en) * 1999-01-04 2005-05-18 テルモ株式会社 Body fluid component measuring device
US6447657B1 (en) * 2000-12-04 2002-09-10 Roche Diagnostics Corporation Biosensor
US7776608B2 (en) * 2001-07-09 2010-08-17 Bayer Healthcare Llc Volume meter testing device and method of use
US6942770B2 (en) * 2002-04-19 2005-09-13 Nova Biomedical Corporation Disposable sub-microliter volume biosensor with enhanced sample inlet
BRPI0418539A (en) * 2004-03-05 2007-05-22 Egomedical Swiss Ag analyte test system for determining the concentration of an analyte in a physiological fluid

Also Published As

Publication number Publication date
JP2008157708A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4811267B2 (en) Microchip and analytical device using the same
JP5247460B2 (en) Microchip
US10933413B2 (en) Analyzing device having spot application section with inclined face
US20180221880A1 (en) Analyzing apparatus
JP4811247B2 (en) Microchip and analytical device using the same
US7305896B2 (en) Capillary fill test device
US8263025B2 (en) Flow cell
JP2008064701A (en) A device for rotational analysis, measurement method, and testing method
KR102224729B1 (en) Multi-use body fluid sensor assembly
JP5254751B2 (en) Microchip
JP6924263B2 (en) Microfluidic chip with bead integration system
JP5376428B2 (en) Analytical device
JP2009121912A (en) Microchip
JP2009174891A (en) Microchip
JP5178272B2 (en) Micro device
JP5487466B2 (en) Analytical device
JP2009072083A (en) Cell separator
JP5507991B2 (en) applicator
JPH11125630A (en) Testing instrument analyzing liquid sample by capillary tube with groove
JPH11125632A (en) Testing device for analyzing liquid sample with capillary tube having a plurality of exhaust ports
JPH11125626A (en) Testing applyance for analyzing liquid sample with capillary tube having angle
JP2002014093A (en) Well plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090610

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R151 Written notification of patent or utility model registration

Ref document number: 4811267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250