JP4810721B2 - Manufacturing method of fuel cell reformer - Google Patents

Manufacturing method of fuel cell reformer Download PDF

Info

Publication number
JP4810721B2
JP4810721B2 JP2000234771A JP2000234771A JP4810721B2 JP 4810721 B2 JP4810721 B2 JP 4810721B2 JP 2000234771 A JP2000234771 A JP 2000234771A JP 2000234771 A JP2000234771 A JP 2000234771A JP 4810721 B2 JP4810721 B2 JP 4810721B2
Authority
JP
Japan
Prior art keywords
fuel cell
metal shell
catalyst
sealing material
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000234771A
Other languages
Japanese (ja)
Other versions
JP2002050381A (en
Inventor
政直 安形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2000234771A priority Critical patent/JP4810721B2/en
Publication of JP2002050381A publication Critical patent/JP2002050381A/en
Application granted granted Critical
Publication of JP4810721B2 publication Critical patent/JP4810721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【技術分野】
本発明は,例えば自動車に搭載する燃料電池用改質器,及びその製造方法に関し,特に保持シール材を触媒保持体と金属シエルとの間に組み付ける方法に関する。
【0002】
【従来技術】
水素をエネルギー源として用いる燃料電池は,これに水素を供給するための燃料電池用改質器を併設することがある。
この燃料電池用改質器は,メタノール,メタン,ブタン等の炭化水素化合物を水素に改質する触媒を保持する触媒保持体と,該触媒保持体の外方を覆う金属シエルと,触媒保持体と金属シエルとの間に配置される保持シール材とを具備している(後述する図3参照)。
【0003】
上記保持シール材は,主としてセラミック繊維などの無機質繊維マットからなる。
上記保持シール材は,触媒保持体が振動等により触媒保持体と当接した際に,触媒保持体が破損することを防止するため,及び触媒保持体と金属シエルとの間から上記炭化水素化合物が漏洩することを防止するために配置されている。
【0004】
【解決しようとする課題】
しかしながら,上記保持シール材は,上記機能を果すため,クッション性を有し,嵩高である。そのため,保持シール材を触媒保持体とともに金属シエル内に装着するときに,保持シール材が両者の間の適正位置に位置し難く,装着性が低下するおそれがある。
そこで,保持シール材にバインダーを含浸させて保持シール材の嵩高性を抑え,その状態で金属シエル内に圧入することが考えられる。しかし,この場合には,燃料電池用改質器の使用時にバインダーが燃焼してバインダー燃焼ガスが発生し,これが水素ガス中に混入するおそれがある。
【0005】
本発明は,かかる問題点に鑑み,金属シエル内への触媒保持体及び保持シール材の装着作業がしやすく,バインダー燃焼ガスの発生がない,燃料電池用改質器及びその製造方法を提供しようとするものである。
【0006】
【課題の解決手段】
請求項1の発明は,炭化水素化合物を水素に改質する改質触媒を保持する触媒保持体と,該触媒保持体の外方を覆う金属シエルと,上記触媒保持体と金属シエルとの間に配置される無機質繊維マットからなる保持シール材とを有する燃料電池用改質器を製造する方法において,
上記触媒保持体を,上記保持シール材により被覆する工程と,
上記保持シール材により被覆された触媒保持体を,上記燃料電池用改質器における金属シエルの製品内側径よりも大きい初期内径を有するパイプ状の金属シエルの中に挿入する工程と,
上記触媒保持体及び保持シール材を挿入配設した上記金属シエルの外周にスピニング加工を施して,上記挿入配設部分における金属シエルの初期内径を上記製品内側径まで小さくする工程と
その後,上記金属シエルにおける上記触媒保持体が位置していない両端部分を,スピニング加工により徐々に開口部に向けて狭く加工し,上記両端部分にフランジ部を設ける工程とからなることを特徴とする燃料電池用改質器の製造方法である。
【0007】
本発明においては,触媒保持体を保持シール材により被覆し,これを製品内側径よりも大きい初期内径のパイプ状の金属シエルの中に挿入した後,該触媒保持体及び保持シール材が位置する配設部分にスピニング加工を施す。
そのため,このスピニング加工により,触媒保持体を挿入した当初のパイプ状の金属シエルの外径が小さくなり,それに伴い該金属シエルの初期内径も小さくなる。
つまり,金属シエルにおける触媒保持体挿入時の初期内径が,上記スピニング加工により小さくなり,燃料電池用改質器における金属シエルの製品内側径が上記初期内径よりも小さくなる。
【0008】
また,これにより触媒保持体と金属シエルの間に充填されている保持シール材も金属シエルの内壁により圧縮される。そのため,触媒保持体は,適度な面圧の保持シール材によって保持されることになる。
上記スピニング加工は,しぼり加工の一種で,例えば金属シエルまたは成形用ローラの一方を回転させながら,金属シエルに成形用ローラを押し付けることにより,金属シエルを塑性変形させる加工である。
【0009】
以上のように,本発明においては,金属シエルの中に保持シール材で被覆した触媒保持体を配設するに当って,製品内側径よりも大きい初期内径の金属シエルの中に触媒保持体及び保持シール材を挿入し,その後上記スピニング加工をしている。そのため,金属シエル内への触媒保持体の挿入が容易となり,またスピニング加工によって保持シール材の適度な面圧で金属シエルが保持される。
【0010】
また,本発明においては,上記方法を採用するので,保持シール材が触媒保持体と金属シエルの間に密に圧縮配置される。そのため,保持シール材にバインダーを含浸させて,嵩高性を抑制し,薄肉化する工程も必要ない。また,バインダーを含浸させる必要がないので,触媒保持体によって改質された改質ガス,特に水素ガス中にバインダーの燃焼によって生ずる燃焼ガスが混入するということもない。
【0011】
次に,請求項2の発明のように,上記保持シール材は,燃料電池用改質器の使用時に燃焼ガスを発生するバインダー含浸されていないことが好ましい。
これにより,保持シール材中から燃焼ガスが排出されるということがないと共に,耐熱性が向上する。
【0012】
上記無機質繊維マットは,アルミナまたはシリカを含有する無機質繊維からなることが好ましい。これにより,無機質繊維マットの耐熱性が一層向上する。
特に,無機質繊維マットは,70〜100重量%のアルミナ繊維を含有していることが好ましい。なお,かかるアルミナ繊維としては,アルミナ比率が60重量%以上であることが好ましい。これにより,高温時の弾性力が高くなり,金属シエルと触媒保持体との熱膨張差を吸収することができ,触媒保持体を保持する力が高まる。
【0013】
無機質繊維マットには,ニードルパンチング処理が施されていることが好ましい。これにより,繊維同士が絡み合い,マットの層間強度が向上するため,金属シエル内へ挿入することが容易となる。
【0014】
次に,請求項3の発明のように,上記無機質繊維マットは,その中のAl23,SiO2以外の物質,つまり不純物が1重量%未満であることが好ましい。
この場合には,燃料電池用改質器において生成される水素を高純度に維持することができ,燃料電池の発電効率を高めることができる。上記不純物が1重量%以上の場合には,燃料電池用改質器の使用中に,保持シール材中から徐々に不純物が改質ガス中に混入し,燃料電池に用いる水素ガスを汚染し,燃料電池の発電効率を低下させるおそれがある。
上記不純物としては,塩素,硫黄,リンなどがある。
【0015】
次に,請求項4の発明のように,無機質繊維マットはその中の塩素,硫黄又はリンの1種以上が合計で300ppm未満であることが好ましい。
この場合には,燃料電池の発電効率を高くすることができる。
上記の塩素,硫黄,リンの1種以上の合計が300ppm以上含有されている場合には,上記のごとく,燃料電池用改質器の使用中に上記塩素等の電池作用有害物質が水素中に混入し,燃料電池における電気化学作用を阻害し,燃料電池の発電効率を低下させるおそれがある。
【0016】
次に,請求項5の発明のように,スピニング加工前の上記保持シール材の厚みは,4〜12mmであることが好ましい。4mm未満では,金属シエルの内径を小さくできる厚みが小さく,スピニング加工の際に触媒保持体が破損するおそれがある。一方,12mmを超える場合には,保持シール材が所望の充填密度になるまで金属シエルの内径を小さくする前に,金属シエルが破損するおそれがある。
【0017】
請求項6の発明のように,スピニング加工後の上記保持シール材の充填密度は,0.20〜0.60g/cmであることが好ましい。0.20g/cm未満では,保持シール材による触媒保持体の保持力が低下する。一方,0.60g/cmを超える場合には,保持シール材の中の繊維が折れ,反発力が低下して,触媒保持体を保持する性能が低下するおそれがある。
【0023】
上記において,上記炭化水素化合物としては,メタノール,エタノール,プロパノール,ブタノール,メタン,エタン,プロパン,ブタンなどが用いられる。
また,上記触媒保持体は,コージエライト,アルミナ,炭素珪素,窒化珪素等のセラミックスで作製されたハニカム等のモノリスの通気性多孔質体が用いられる。また,金属シエルは,ステンレス鋼等の金属を用いた,円形,楕円形などのパイプを用いる。
また,上記触媒保持体に担持する触媒は,使用する炭化水素化合物の改質に応じたものを用いるが,例えば炭化水素化合物としてメタノールを用いる場合には,触媒として銅化合物等を用いる。
【0024】
【発明の実施の形態】
実施形態例1
本発明の実施形態例に係る燃料電池用改質器の製造方法について,図1〜図3を用いて説明する。
本例の燃料電池用改質器4は,図1に示すごとく,炭化水素化合物を水素に改質する改質触媒を保持する触媒保持体3と,該触媒保持体3の外方を覆う金属シエル2と,上記触媒保持体3と金属シエル2との間に配置される保持シール材1とからなる。
【0025】
そして,上記改質器を製造するに当っては,図1〜図3に示すごとく,まず,触媒保持体3を,保持シール材1により被覆する工程(図2a,b)と,上記保持シール材1により被覆された触媒保持体3(図2b)を,上記燃料電池用改質器における金属シエル2の製品内側径dよりも大きい初期内径Dを有するパイプ状の金属シエル2の中に挿入する工程(図2c,d,図3a)を行なう。
次に,上記金属シエル2における少なくとも上記触媒保持体3が位置する配設部分L(図3b)に,スピニング加工を施して,該配設部分Lの初期内径Dを上記製品内側径dまで小さくする工程を行なう。
【0026】
本例において,上記触媒保持体3は,セラミックの一種であるコーディエライト製である。触媒保持体3は,図1に示すごとく,多数のセル31の集合体からなるモノリスのハニカム構造体である。上記セル31は,断面6角形状の通路であり,ハニカム壁33の間に形成されている。
そして,上記セル31の間に,ガス状態の炭化水素化合物を通過させる。
この間に,炭化水素化合物は触媒作用によって水素を主成分とする改質ガスに改質される。
【0027】
上記燃料電池用改質器4には,入口側に炭化水素化合物としてのメタノールを貯蔵した原料タンク9が入口パイプ91を介して接続されている。一方,燃料電池用改質器4の出口側には水素を含む改質ガスを燃料電池5へ導出する出口パイプ92が接続されている。なお,燃料電池5は,改質ガス中の水素を精製する装置を有する(図示略)。
【0028】
また,燃料電池5には,上記水素と反応させて電池作用を惹起させるための酸素ガスを供給する。燃料電池5において得られた電気エネルギーは,例えば自動車走行用,車両電装品の駆動用などに用いるモータ51に供給する。燃料電池5において,生じた水はリサイクル及び排水される。
また,上記燃料電池用改質器4において,上記金属シエル2は,入口パインプ91に接続するフランジ部28,出口パイプ92に接続するフランジ部29を有する。
また,上記触媒保持体には,触媒としての白金が担持されている。
【0029】
次に,本例の燃料電池用改質器の製造方法について,具体的に説明する。
まず,70重量%のアルミナ繊維と30重量%のシリカ繊維とを混合し,ウェッブを形成する。ウェッブにニードルパンチング処理を施す。これにより,ウェッブ内の繊維同士に絡み合いが形成され,無機質繊維マットからなる保持シール材1が形成される。このときの保持シール材1の厚みは12mmであり,嵩密度は0.1g/cmである。
【0030】
次に,図2(a)に示すごとく,保持シール材1に切断加工をして,長尺体とするとともに,その両端に,触媒保持体3の外周を巻回したときに互いに係合する凹部11と凸部12とを形成する。
また,図2(b),(c)に示すごとく,外径130mm,長さ100mmの触媒保持体3,及び初期内径Dが155mm,厚み1.5mm,長さ300mmのパイプ状の金属シエル2を準備する。
【0031】
また,図2(b)に示すごとく,触媒保持体3の外周を保持シール材1により巻回被覆して,凹部11と凸部12とを係合させる。そして,この状態で,図2(d)に示すごとく,金属シエル2の中に挿入する。
即ち,触媒保持体3の軸方向外周に保持シール材1を被覆した状態(図2b)で,これらを金属シエル2の中に挿入し,触媒保持体3と金属シエル2との間に保持シール材1を位置させる(図2d,図3a)。
【0032】
次に,図3(a)に示すごとく,触媒保持体3及び保持シール材1を挿入配置した上記金属シエル2の外周に,スピニング加工を施す。スピニング加工は,成形用ローラ6を,回転する金属シエル2の軸方向に移動させ,金属シエル2の半径方向に徐々に加圧することにより行う。これにより,図4(b)に示すごとく,金属シエル2において触媒保持体3が位置する配設部分Lの初期の初期内径D(155mm)を製品内側径d(138mm)にまで小さくする。
【0033】
また,図1に示すごとく,触媒保持体3が位置していない両端部分は徐々に開口部に向けて狭くし,両末端にフランジ部28,29を設ける。
スピニング加工後の保持シール材1の厚みは約4mmであり,充填密度は0.3g/cmである。
以上により,本例の燃料電池用改質器が得られる。
【0034】
本例においては,保持シール材1により巻回した触媒保持体3を,上記製品内側径dよりも大きい初期内径Dの金属シエル2の中に挿入しているため,保持シール材1の配置を無理なく行うことができる。
また,挿入後は,スピニング加工により,金属シエル2の初期内径Dを所定の製品内側径dにまで小さくしている。そのため,金属シエル2内に挿入されている保持シール材1が触媒保持体3の内壁面によって圧縮される。これにより,保持シール材1は,触媒保持体3にある程度の面圧を与え,金属シエル2内に触媒保持体3を安定して保持することができる。
また,本例の燃料電池用改質器においては保持シール材1に,バインダを含浸させていないため,使用中にバインダーの燃焼が起きることはなく,その燃焼ガスが排出されることはない。
【0035】
【発明の効果】
本発明によれば,金属シエル内への触媒保持体及び保持シール材の装着作業がしやすく,バインダー燃焼ガスの発生がない,燃料電池用改質器及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1における燃料電池用改質器及びその周辺機器等の説明図。
【図2】実施形態例1における,燃料電池用改質器の製造方法を示す説明図(a)〜(d)。
【図3】図2に続く,燃料電池用改質器の製造方法を示す説明図(a)〜(b)。
【符号の説明】
1...保持シール材,
2...金属シエル,
3...触媒保持体,
4...燃料電池用改質器,
5....燃料電池,
6...成形用ローラ,
[0001]
【Technical field】
The present invention relates to a reformer for a fuel cell mounted on, for example, an automobile, and a manufacturing method thereof, and more particularly to a method of assembling a holding seal material between a catalyst holder and a metal shell.
[0002]
[Prior art]
A fuel cell using hydrogen as an energy source may be provided with a fuel cell reformer for supplying hydrogen to the fuel cell.
The fuel cell reformer includes a catalyst holder that holds a catalyst that reforms a hydrocarbon compound such as methanol, methane, and butane into hydrogen, a metal shell that covers the outside of the catalyst holder, and a catalyst holder. And a holding seal material disposed between the metal shell and the metal shell (see FIG. 3 to be described later).
[0003]
The holding sealing material is mainly composed of an inorganic fiber mat such as ceramic fiber.
The holding sealing material is used to prevent the catalyst holding body from being damaged when the catalyst holding body abuts on the catalyst holding body due to vibration or the like, and between the catalyst holding body and the metal shell. Is arranged to prevent leakage.
[0004]
[Problems to be solved]
However, since the holding sealing material performs the above function, it has cushioning properties and is bulky. Therefore, when the holding sealing material is mounted in the metal shell together with the catalyst holding body, the holding sealing material is difficult to be positioned at an appropriate position between them, and there is a possibility that the mounting performance is lowered.
Therefore, it is conceivable to impregnate the holding sealing material with a binder to suppress the bulkiness of the holding sealing material and press-fit into the metal shell in that state. In this case, however, the binder burns when the fuel cell reformer is used, and a binder combustion gas is generated, which may be mixed into the hydrogen gas.
[0005]
In view of such problems, the present invention is to provide a reformer for a fuel cell and a method for manufacturing the same, in which a catalyst holder and a holding sealing material are easily mounted in a metal shell, and no binder combustion gas is generated. It is what.
[0006]
[Means for solving problems]
The invention according to claim 1 is a catalyst holder that holds a reforming catalyst for reforming a hydrocarbon compound into hydrogen, a metal shell that covers the outside of the catalyst holder, and a gap between the catalyst holder and the metal shell. In a method of manufacturing a fuel cell reformer having a holding sealing material made of an inorganic fiber mat disposed in
Coating the catalyst holding body with the holding sealing material;
Inserting the catalyst holding body coated with the holding sealing material into a pipe-shaped metal shell having an initial inner diameter larger than the inner diameter of the metal shell in the fuel cell reformer;
Applying a spinning process to the outer periphery of the metal shell in which the catalyst holder and the holding seal material are inserted and arranged , and reducing the initial inner diameter of the metal shell in the insertion arrangement portion to the inner diameter of the product ;
Thereafter, both ends of the metal shell where the catalyst holding body is not positioned are gradually narrowed toward the opening by spinning, and flanges are provided at both ends. It is a manufacturing method of the reformer for fuel cells.
[0007]
In the present invention, the catalyst holding body is covered with the holding sealing material and inserted into a pipe-shaped metal shell having an initial inner diameter larger than the inner diameter of the product, and then the catalyst holding body and the holding sealing material are positioned. Spinning is applied to the arrangement part.
Therefore, by this spinning process, the outer diameter of the original pipe-shaped metal shell into which the catalyst holder is inserted is reduced, and accordingly, the initial inner diameter of the metal shell is also reduced.
That is, the initial inner diameter of the metal shell when the catalyst holder is inserted is reduced by the spinning process, and the product inner diameter of the metal shell in the fuel cell reformer is smaller than the initial inner diameter.
[0008]
In addition, the holding sealing material filled between the catalyst holder and the metal shell is also compressed by the inner wall of the metal shell. Therefore, the catalyst holder is held by the holding sealing material having an appropriate surface pressure.
The spinning process is a kind of squeezing process, for example, a process of plastically deforming the metal shell by pressing the molding roller against the metal shell while rotating one of the metal shell or the molding roller.
[0009]
As described above, in the present invention, when the catalyst holder covered with the holding sealing material is disposed in the metal shell, the catalyst holder and the metal shell having an initial inner diameter larger than the inner diameter of the product are disposed. A holding sealing material is inserted, and then the above spinning process is performed. Therefore, the catalyst holder can be easily inserted into the metal shell, and the metal shell is held at an appropriate surface pressure of the holding sealing material by spinning.
[0010]
In the present invention, since the above method is adopted, the holding sealing material is densely compressed and arranged between the catalyst holding body and the metal shell. Therefore, there is no need for a process of impregnating the holding sealing material with a binder to suppress bulkiness and reducing the thickness. Moreover, it is not necessary to impregnate the binder, the reformed gas reformed by the catalyst retainer, particularly hydrogen gas, the combustion gas produced by combustion of the binder is never called mixed.
[0011]
Then, as in the invention of claim 2, in the holding sealing material, a binder for generating combustion gases during use of the reformer for a fuel cell is preferably not impregnated.
Thus, the combustion gas from within the holding sealing material with no that is discharged, heat resistance is improved.
[0012]
The inorganic fiber mat is preferably made of inorganic fibers containing alumina or silica. Thereby, the heat resistance of the inorganic fiber mat is further improved.
In particular, the inorganic fiber mat preferably contains 70 to 100% by weight of alumina fibers. In addition, as this alumina fiber, it is preferable that an alumina ratio is 60 weight% or more. Thereby, the elastic force at a high temperature is increased, the difference in thermal expansion between the metal shell and the catalyst holding body can be absorbed, and the force for holding the catalyst holding body is increased.
[0013]
The inorganic fiber mat is preferably subjected to needle punching. As a result, the fibers are intertwined and the interlayer strength of the mat is improved, so that it can be easily inserted into the metal shell.
[0014]
Next, as in the invention of claim 3, the inorganic fiber mat preferably contains less than 1% by weight of substances other than Al 2 O 3 and SiO 2 , that is, impurities.
In this case, the hydrogen produced in the fuel cell reformer can be maintained at a high purity, and the power generation efficiency of the fuel cell can be increased. When the above impurities are 1% by weight or more, impurities are gradually mixed into the reformed gas from the holding sealing material during use of the fuel cell reformer, contaminating the hydrogen gas used in the fuel cell, There is a risk of reducing the power generation efficiency of the fuel cell.
Examples of the impurities include chlorine, sulfur, and phosphorus.
[0015]
Next, as in the invention of claim 4, the inorganic fiber mat preferably has a total of less than 300 ppm of one or more of chlorine, sulfur or phosphorus therein.
In this case, the power generation efficiency of the fuel cell can be increased.
When the total of one or more of the above chlorine, sulfur, and phosphorus is 300 ppm or more, as described above, the cell action harmful substances such as chlorine are contained in hydrogen during use of the fuel cell reformer. The mixture may interfere with the electrochemical action of the fuel cell and reduce the power generation efficiency of the fuel cell.
[0016]
Next, as in the invention of claim 5, the thickness of the holding sealing material before spinning is preferably 4 to 12 mm. If it is less than 4 mm, the metal shell has a small thickness that can reduce the inner diameter, and the catalyst holder may be damaged during the spinning process. On the other hand, if it exceeds 12 mm, the metal shell may be damaged before the inner diameter of the metal shell is reduced until the holding sealing material has a desired filling density.
[0017]
As in the sixth aspect of the invention, the filling density of the holding sealing material after the spinning process is preferably 0.20 to 0.60 g / cm 3 . If it is less than 0.20 g / cm 3 , the holding power of the catalyst holding body by the holding sealing material decreases. On the other hand, if it exceeds 0.60 g / cm 3 , the fibers in the holding sealing material are broken, and the repulsive force is lowered, which may reduce the performance of holding the catalyst holding body.
[0023]
In the above, methanol, ethanol, propanol, butanol, methane, ethane, propane, butane and the like are used as the hydrocarbon compound.
The catalyst holder is a monolithic porous body such as a honeycomb made of a ceramic such as cordierite, alumina, carbon silicon, or silicon nitride. The metal shell is a circular or elliptical pipe using a metal such as stainless steel.
Further, the catalyst supported on the catalyst carrier is used in accordance with the reforming of the hydrocarbon compound to be used. For example, when methanol is used as the hydrocarbon compound, a copper compound or the like is used as the catalyst.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A method for manufacturing a reformer for a fuel cell according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the fuel cell reformer 4 of this example includes a catalyst holder 3 that holds a reforming catalyst that reforms a hydrocarbon compound into hydrogen, and a metal that covers the outside of the catalyst holder 3. It comprises a shell 2 and a holding sealing material 1 disposed between the catalyst holder 3 and the metal shell 2.
[0025]
In manufacturing the reformer, as shown in FIGS. 1 to 3, first, the step of covering the catalyst holder 3 with the holding sealing material 1 (FIGS. 2a and 2b), and the holding seal The catalyst holder 3 (FIG. 2b) coated with the material 1 is inserted into a pipe-shaped metal shell 2 having an initial inner diameter D larger than the product inner diameter d of the metal shell 2 in the fuel cell reformer. Steps (FIGS. 2c and 2d, FIG. 3a) are performed.
Next, a spinning process is applied to at least the arrangement portion L (FIG. 3b) where the catalyst holder 3 is located in the metal shell 2, so that the initial inner diameter D of the arrangement portion L is reduced to the product inner diameter d. The process to perform is performed.
[0026]
In this example, the catalyst holding body 3 is made of cordierite, which is a kind of ceramic. As shown in FIG. 1, the catalyst holding body 3 is a monolith honeycomb structure including an aggregate of a large number of cells 31. The cell 31 is a passage having a hexagonal cross section and is formed between the honeycomb walls 33.
Then, a hydrocarbon compound in a gas state is passed between the cells 31.
During this time, the hydrocarbon compound is reformed into a reformed gas containing hydrogen as a main component by catalytic action.
[0027]
A raw material tank 9 storing methanol as a hydrocarbon compound is connected to the fuel cell reformer 4 via an inlet pipe 91 on the inlet side. On the other hand, an outlet pipe 92 for leading the reformed gas containing hydrogen to the fuel cell 5 is connected to the outlet side of the fuel cell reformer 4. The fuel cell 5 has a device for purifying hydrogen in the reformed gas (not shown).
[0028]
The fuel cell 5 is supplied with oxygen gas for reacting with the hydrogen and causing cell action. The electric energy obtained in the fuel cell 5 is supplied to a motor 51 used, for example, for driving a car or driving a vehicle electrical component. In the fuel cell 5, the generated water is recycled and drained.
In the fuel cell reformer 4, the metal shell 2 has a flange portion 28 connected to the inlet pipe 91 and a flange portion 29 connected to the outlet pipe 92.
Further, platinum as a catalyst is supported on the catalyst holder.
[0029]
Next, the manufacturing method of the fuel cell reformer of this example will be specifically described.
First, 70% by weight of alumina fibers and 30% by weight of silica fibers are mixed to form a web. A needle punching process is applied to the web. As a result, the fibers in the web are entangled with each other, and the holding sealing material 1 made of the inorganic fiber mat is formed. At this time, the holding sealing material 1 has a thickness of 12 mm and a bulk density of 0.1 g / cm 3 .
[0030]
Next, as shown in FIG. 2 (a), the holding sealing material 1 is cut into a long body and engaged with each other when the outer periphery of the catalyst holding body 3 is wound around both ends thereof. The concave portion 11 and the convex portion 12 are formed.
Further, as shown in FIGS. 2B and 2C, a catalyst holding body 3 having an outer diameter of 130 mm and a length of 100 mm, and a pipe-shaped metal shell 2 having an initial inner diameter D of 155 mm, a thickness of 1.5 mm, and a length of 300 mm. Prepare.
[0031]
Further, as shown in FIG. 2B, the outer periphery of the catalyst holding body 3 is wound and covered with the holding sealing material 1 to engage the concave portion 11 and the convex portion 12. In this state, it is inserted into the metal shell 2 as shown in FIG.
That is, in a state where the holding seal material 1 is coated on the outer periphery in the axial direction of the catalyst holder 3 (FIG. 2b), these are inserted into the metal shell 2 and the holding seal is placed between the catalyst holder 3 and the metal shell 2. The material 1 is positioned (FIGS. 2d and 3a).
[0032]
Next, as shown in FIG. 3A, a spinning process is performed on the outer periphery of the metal shell 2 in which the catalyst holder 3 and the holding sealing material 1 are inserted and arranged. The spinning process is performed by moving the forming roller 6 in the axial direction of the rotating metal shell 2 and gradually pressurizing it in the radial direction of the metal shell 2. As a result, as shown in FIG. 4B, the initial initial inner diameter D (155 mm) of the portion L where the catalyst holder 3 is located in the metal shell 2 is reduced to the product inner diameter d (138 mm).
[0033]
Further, as shown in FIG. 1, both end portions where the catalyst holding body 3 is not located are gradually narrowed toward the opening, and flange portions 28 and 29 are provided at both ends.
The thickness of the holding sealing material 1 after the spinning process is about 4 mm, and the filling density is 0.3 g / cm 3 .
Thus, the fuel cell reformer of this example is obtained.
[0034]
In this example, since the catalyst holder 3 wound by the holding sealing material 1 is inserted into the metal shell 2 having an initial inner diameter D larger than the product inner diameter d, the holding sealing material 1 is arranged. It can be done without difficulty.
After the insertion, the initial inner diameter D of the metal shell 2 is reduced to a predetermined product inner diameter d by spinning. Therefore, the holding sealing material 1 inserted into the metal shell 2 is compressed by the inner wall surface of the catalyst holding body 3. As a result, the holding sealing material 1 can apply a certain surface pressure to the catalyst holding body 3 and stably hold the catalyst holding body 3 in the metal shell 2.
Further, in the fuel cell reformer of this example, since the holding seal material 1 is not impregnated with the binder, the binder does not burn during use, and the combustion gas is not discharged.
[0035]
【The invention's effect】
According to the present invention, it is possible to provide a reformer for a fuel cell and a method for manufacturing the same, in which a catalyst holder and a holding seal material are easily mounted in a metal shell, and no binder combustion gas is generated.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of a fuel cell reformer and peripheral devices thereof in Embodiment 1;
2 is an explanatory view (a) to (d) showing a method of manufacturing a fuel cell reformer in Embodiment 1. FIG.
3 is an explanatory diagram (a) to (b) showing a method for manufacturing a reformer for a fuel cell, following FIG. 2. FIG.
[Explanation of symbols]
1. . . Holding sealing material,
2. . . Metal shell,
3. . . Catalyst support,
4). . . Fuel cell reformer,
5. . . . Fuel cell,
6). . . Molding roller,

Claims (6)

炭化水素化合物を水素に改質する改質触媒を保持する触媒保持体と,該触媒保持体の外方を覆う金属シエルと,上記触媒保持体と金属シエルとの間に配置される無機質繊維マットからなる保持シール材とを有する燃料電池用改質器を製造する方法において,
上記触媒保持体を,上記保持シール材により被覆する工程と,
上記保持シール材により被覆された触媒保持体を,上記燃料電池用改質器における金属シエルの製品内側径よりも大きい初期内径を有するパイプ状の金属シエルの中に挿入する工程と,
上記触媒保持体及び保持シール材を挿入配設した上記金属シエルの外周にスピニング加工を施して,上記挿入配設部分における金属シエルの初期内径を上記製品内側径まで小さくする工程と,
その後,上記金属シエルにおける上記触媒保持体が位置していない両端部分を,スピニング加工により徐々に開口部に向けて狭く加工し,上記両端部分にフランジ部を設ける工程とからなることを特徴とする燃料電池用改質器の製造方法。
A catalyst holding body for holding a reforming catalyst for reforming a hydrocarbon compound into hydrogen, a metal shell for covering the outside of the catalyst holding body, and an inorganic fiber mat disposed between the catalyst holding body and the metal shell A method of manufacturing a reformer for a fuel cell having a holding sealing material comprising:
Coating the catalyst holding body with the holding sealing material;
Inserting the catalyst holding body coated with the holding sealing material into a pipe-shaped metal shell having an initial inner diameter larger than the inner diameter of the metal shell in the fuel cell reformer;
Applying a spinning process to the outer periphery of the metal shell in which the catalyst holder and the holding seal material are inserted and arranged, and reducing the initial inner diameter of the metal shell in the insertion arrangement portion to the inner diameter of the product;
Thereafter, both ends of the metal shell where the catalyst holding body is not positioned are gradually narrowed toward the opening by spinning, and flanges are provided at both ends. A method for producing a reformer for a fuel cell.
請求項1において,上記保持シール材には,燃料電池用改質器の使用時に燃焼ガスを発生するバインダーは含浸されていないことを特徴とする燃料電池用改質器の製造方法。  2. The method of manufacturing a fuel cell reformer according to claim 1, wherein the holding sealing material is not impregnated with a binder that generates combustion gas when the fuel cell reformer is used. 請求項2において,上記無機質繊維マットは,その中のAl23,SiO2以外の物質が1重量%未満であることを特徴とする燃料電池用改質器の製造方法。 3. The method of manufacturing a fuel cell reformer according to claim 2, wherein the inorganic fiber mat contains less than 1% by weight of substances other than Al 2 O 3 and SiO 2 . 請求項2又は3において,無機質繊維マットはその中の塩素,硫黄又はリンの1種以上が合計で300ppm未満であることを特徴とする燃料電池用改質器の製造方法。4. The method for producing a reformer for a fuel cell according to claim 2, wherein at least one of chlorine, sulfur and phosphorus in the inorganic fiber mat is less than 300 ppm in total. 請求項1〜4のいずれか一項において,スピニング加工前の上記保持シール材の厚みは4〜12mmであることを特徴とする燃料電池用改質器の製造方法。  The method for manufacturing a fuel cell reformer according to any one of claims 1 to 4, wherein the thickness of the holding sealing material before spinning is 4 to 12 mm. 請求項1〜5のいずれか1項において,スピニング加工後の上記保持シール材の充填密度は,0.20〜0.60g/cmであることを特徴とする燃料電池用改質器の製造方法。6. The fuel cell reformer according to claim 1, wherein a filling density of the holding sealing material after the spinning process is 0.20 to 0.60 g / cm 3. Method.
JP2000234771A 2000-08-02 2000-08-02 Manufacturing method of fuel cell reformer Expired - Fee Related JP4810721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000234771A JP4810721B2 (en) 2000-08-02 2000-08-02 Manufacturing method of fuel cell reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000234771A JP4810721B2 (en) 2000-08-02 2000-08-02 Manufacturing method of fuel cell reformer

Publications (2)

Publication Number Publication Date
JP2002050381A JP2002050381A (en) 2002-02-15
JP4810721B2 true JP4810721B2 (en) 2011-11-09

Family

ID=18727097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000234771A Expired - Fee Related JP4810721B2 (en) 2000-08-02 2000-08-02 Manufacturing method of fuel cell reformer

Country Status (1)

Country Link
JP (1) JP4810721B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701617B2 (en) * 2002-08-06 2004-03-09 Visteon Global Technologies, Inc. Spin-forming method for making catalytic converter
KR100570754B1 (en) 2004-02-26 2006-04-12 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250269A (en) * 1992-05-21 1993-10-05 Minnesota Mining And Manufacturing Company Catalytic converter having a metallic monolith mounted by a heat-insulating mat of refractory ceramic fibers
JP2000007304A (en) * 1998-06-29 2000-01-11 Ngk Insulators Ltd Reforming reactor
JP2000045762A (en) * 1998-07-30 2000-02-15 Tokyo Roki Co Ltd Catalyst converter and manufacture thereof
JP3490947B2 (en) * 2000-01-20 2004-01-26 株式会社三五 Manufacturing method of gas processing equipment
JP2001280124A (en) * 2000-03-31 2001-10-10 Ngk Insulators Ltd Cell structural body storage container and its assembly

Also Published As

Publication number Publication date
JP2002050381A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
JP4802048B2 (en) Holding sealing material, exhaust gas treatment apparatus, and manufacturing method thereof
JP4557976B2 (en) Contamination control element holding material and contamination control device
EP1736644B1 (en) Holding and sealing material for catalytic converter and corresponding manufacturing method
EP1138892A2 (en) Cell structure mounting container and assembly thereof
JPH10121953A (en) Method of manufacturing catalyst converter used in internal combustion engine
JP2010223083A (en) Exhaust gas control apparatus and method for manufacturing exhaust gas control apparatus
JP2002147229A (en) Catalytic converter, manufacturing method thereof, and holding sealant for catalytic converter
WO2006088733A2 (en) Pollution control element-mounting member and pollution control device
JPH10339132A (en) Catalyst converter used in internal combustion engine, and manufacture thereof
JP4810721B2 (en) Manufacturing method of fuel cell reformer
US20020119084A1 (en) Reactor for a fuel cell system and method of making a reactor
JP4714969B2 (en) Fuel cell reformer and manufacturing method thereof
JP4362159B2 (en) Holding seal material for fuel cell reformer
JP4259654B2 (en) Carbon monoxide reduction catalyst
JP4747400B2 (en) Fuel cell reformer and manufacturing method thereof
JP2000281310A (en) Reforming device
JP4730496B2 (en) Holding seal material for catalytic converter and method for producing the same, ceramic fiber assembly, ceramic fiber
JP2002201933A (en) Holding seal material for catalytic converter, ceramic fiber aggregate, ceramic fiber, and method of manufacturing ceramic fiber
JP4240625B2 (en) Method for manufacturing catalytic converter
EP1416132A1 (en) Exhaust emission control devices and method of making the same
JP2001289041A (en) Exhaust emission controlling catalytic converter, diesel particulate filter system, and their manufacturing methods
US8632620B2 (en) Holding sealing material, exhaust gas purifying apparatus, and method for manufacturing exhaust gas purifying apparatus
JP4491939B2 (en) Fuel cell reformer
JP4671536B2 (en) Holding seal material for catalytic converter and manufacturing method thereof
JP4363934B2 (en) Reforming reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4810721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees