JP4810481B2 - Composite yarn and intermediate for fiber reinforced resin and fiber reinforced resin molded body using the same - Google Patents

Composite yarn and intermediate for fiber reinforced resin and fiber reinforced resin molded body using the same Download PDF

Info

Publication number
JP4810481B2
JP4810481B2 JP2007082485A JP2007082485A JP4810481B2 JP 4810481 B2 JP4810481 B2 JP 4810481B2 JP 2007082485 A JP2007082485 A JP 2007082485A JP 2007082485 A JP2007082485 A JP 2007082485A JP 4810481 B2 JP4810481 B2 JP 4810481B2
Authority
JP
Japan
Prior art keywords
fiber
yarn
reinforced resin
resin
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007082485A
Other languages
Japanese (ja)
Other versions
JP2008240193A (en
Inventor
忠士 唐川
明 粕谷
一博 中瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP2007082485A priority Critical patent/JP4810481B2/en
Publication of JP2008240193A publication Critical patent/JP2008240193A/en
Application granted granted Critical
Publication of JP4810481B2 publication Critical patent/JP4810481B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、天然繊維を含む繊維強化樹脂用複合糸と中間体及びこれを用いた繊維強化樹脂成形体に関する。   The present invention relates to a composite yarn for fiber reinforced resin containing natural fibers, an intermediate, and a fiber reinforced resin molded product using the same.

自動車や飛行機、車両などの内装にはプラスチックが使用され、金属に比較して軽量化されている。プラスチックだけでは強度が不足するため、プラスチックにガラスの短繊維(一定の長さにカットしたもの)を混入している。しかし廃棄したときに、焼却炉で燃焼させると、プラスチックは分解してCO2と水になるが、ガラスは溶融して固まり、焼却炉内部に付着する。これにより焼却炉の寿命が著しく低下するといった問題が懸念されている。ガラスのような高い強度を持つ材料として、炭素繊維が知られているが、高価で実用的用途には使用できない問題がある。 Plastic is used for the interior of automobiles, airplanes, vehicles, etc., and is lighter than metal. Since plastic alone is insufficient in strength, glass short fibers (cut to a certain length) are mixed in the plastic. However, when discarded, if it is burned in an incinerator, the plastic decomposes into CO 2 and water, but the glass melts and hardens and adheres to the inside of the incinerator. As a result, there is a concern that the life of the incinerator is significantly reduced. Carbon fiber is known as a material having high strength such as glass, but there is a problem that it is expensive and cannot be used for practical use.

そこで、近年天然繊維による繊維強化熱可塑性樹脂成形体(FRTP)は社会的に関心が高まっている。これは、リサイクル可能であり、その中でマテリアルリサイクルとして繰り返し使用可能であること、サーマルリサイクルとして燃焼時に有毒ガスがでないこと、エネルギー問題による移動体の軽量化が可能であり、軽量化することで燃費を向上できること、植物系天然繊維は光合成時に二酸化炭素をその内部に吸収し、燃焼させても排出される二酸化炭素は元と変わらないことから、環境問題を起こさないことが挙げられる。   Therefore, in recent years, a fiber-reinforced thermoplastic resin molded body (FRTP) made of natural fibers has been attracting social interest. This means that it can be recycled and can be used repeatedly as material recycling, that there is no toxic gas at the time of combustion as thermal recycling, and that it is possible to reduce the weight of the moving body due to energy problems. For example, plant-based natural fibers absorb carbon dioxide in the interior during photosynthesis, and the carbon dioxide that is emitted even when burned is the same as the original.

補強繊維に天然繊維を用いた繊維強化樹脂は、特許文献1〜2に提案されている。特許文献1には、麻繊維の短繊維を不織布、織物、編み物に加工して繊維補強樹脂にすることが記載され、特許文献2には、ケナフ繊維の短繊維を不織布、織物に加工して繊維補強樹脂にすることが記載されている。
特開2004−143401号公報 特開2004−149930号公報
Patent Documents 1 and 2 propose fiber reinforced resins using natural fibers as reinforcing fibers. Patent Document 1 describes that hemp fiber short fibers are processed into a non-woven fabric, woven fabric, and knitted fabric to obtain a fiber reinforced resin. Patent Document 2 describes that kenaf fiber short fibers are processed into a non-woven fabric and a woven fabric. It is described that a fiber reinforced resin is used.
JP 2004-143401 A JP 2004-149930 A

しかし、特許文献1〜2は、麻繊維やケナフ繊維の短繊維を用いて不織布、織物、編み物に加工し、樹脂と溶融混合するか含浸して繊維強化樹脂(FRP)にするため、繊維内部に樹脂が浸透しにくく、大掛かりな装置が必要であり、成形も容易でないという問題があった。特に、天然繊維は、ガラス繊維や炭素繊維に比べて分解温度が低く、マトリックス樹脂となる熱可塑性樹脂を、浸透容易となる粘度にまで加熱することができず、浸透性の問題が非常に重要であった。   However, Patent Documents 1 and 2 use a short fiber such as hemp fiber or kenaf fiber to process into a nonwoven fabric, woven fabric, or knitted fabric and melt-mix with the resin or impregnate it into a fiber reinforced resin (FRP). However, there is a problem that a resin is difficult to permeate, a large-scale apparatus is required, and molding is not easy. In particular, natural fibers have a lower decomposition temperature than glass fibers and carbon fibers, and the thermoplastic resin used as a matrix resin cannot be heated to a viscosity that facilitates penetration, so the problem of permeability is very important. Met.

本発明は、前記従来の問題を解決するため、天然繊維糸内部に樹脂が浸透し易く、成形性がよく、環境問題がなく、強度が高く、均一な物性の繊維強化樹脂用複合糸と中間体及びこれを用いた繊維強化樹脂成形体を提供する。   In order to solve the above-mentioned conventional problems, the present invention facilitates penetration of the resin into the natural fiber yarn, has good moldability, has no environmental problems, has high strength, and has uniform physical properties. A body and a fiber-reinforced resin molded body using the same are provided.

本発明の繊維強化樹脂用複合糸は、天然繊維を含む1本又は複数本の糸を芯糸とし、前記芯糸の周囲を合成樹脂繊維糸でカバリングした繊維強化樹脂(FRP)用複合糸を複数本引き揃え、その周囲を前記合成樹脂繊維糸でカバリングした繊維強化樹脂用複合糸であり、前記合成樹脂繊維糸はFRPにしたときにマトリックス樹脂となる熱可塑性合成樹脂材料とすることを特徴とする。 Fiber-reinforced resin composite yarn of the present invention, one or a plurality of yarns comprising a natural fiber as a core yarn, the fiber-reinforced resin (FRP) composite yarn obtained by covering the periphery of a synthetic resin fiber yarn of the core yarns A composite yarn for fiber reinforced resin, in which a plurality of yarns are aligned and covered with the synthetic resin fiber yarn, and the synthetic resin fiber yarn is a thermoplastic synthetic resin material that becomes a matrix resin when FRP is used. And

本発明の繊維強化樹脂用中間体は、前記繊維強化樹脂用複合糸を、織物、編み物、多軸挿入たて編み物、又は組み物としたことを特徴とする。   The intermediate body for fiber reinforced resin of the present invention is characterized in that the composite yarn for fiber reinforced resin is a woven fabric, a knitted fabric, a multi-axis inserted warp knitted fabric, or a braided fabric.

本発明の繊維強化樹脂成形体は、前記繊維強化樹脂用中間体を、前記合成樹脂繊維糸の融点以上、前記天然繊維の分解温度より20℃低い温度以下に加熱してプレス成形したものである。   The fiber-reinforced resin molded article of the present invention is obtained by press-molding the intermediate for fiber-reinforced resin by heating to a temperature not lower than the melting point of the synthetic resin fiber yarn and not higher than 20 ° C. below the decomposition temperature of the natural fiber. .

本発明の別の繊維強化樹脂成形体は、前記繊維強化樹脂用複合糸を少なくとも一方向に配列し、前記合成樹脂繊維糸の融点以上、前記天然繊維の分解温度より20℃低い温度以下に加熱してプレス成形したものである。   Another fiber-reinforced resin molded article according to the present invention has the composite yarn for fiber-reinforced resin arranged in at least one direction and heated to a temperature not lower than the melting point of the synthetic resin fiber yarn and not higher than 20 ° C. below the decomposition temperature of the natural fiber. And press-molded.

本発明は、天然繊維を含む1本又は複数本の糸を芯糸とし、芯糸の周囲をFRPにしたときにマトリックス樹脂となる熱可塑性合成樹脂繊維糸でカバリングする。これにより、芯糸とカバリング糸との接触面積を大きくでき、熱可塑性合成樹脂の融点以上に加熱したときに、溶融した熱可塑性合成樹脂が迅速に天然繊維糸に浸入し、天然繊維糸と溶融熱可塑性合成樹脂の複合一体化が効率的に行われる。すなわち、繊維糸内部に樹脂が浸透し易い。この結果、成形性がよく、強度が高く、均一な物性の繊維強化樹脂が得られる。また、天然繊維を用いていることから、廃棄の際の環境問題を解消することができる。さらに、天然繊維糸を用いることで、連続繊維として扱うことが可能になり、体積含有率(Vf)を向上させることが可能である。また、天然繊維特有の個体差や収穫された場所での差異などがあっても、紡績前工程で混合されることにより安定した物性を得ることができる。   In the present invention, one or a plurality of yarns containing natural fibers are used as a core yarn, and the synthetic yarn is covered with a thermoplastic synthetic resin fiber yarn that becomes a matrix resin when the periphery of the core yarn is FRP. As a result, the contact area between the core yarn and the covering yarn can be increased, and when heated above the melting point of the thermoplastic synthetic resin, the molten thermoplastic synthetic resin quickly infiltrates into the natural fiber yarn and melts with the natural fiber yarn. The composite integration of the thermoplastic synthetic resin is efficiently performed. That is, the resin easily penetrates into the fiber yarn. As a result, a fiber reinforced resin having good moldability, high strength, and uniform physical properties can be obtained. Moreover, since the natural fiber is used, the environmental problem at the time of disposal can be eliminated. Furthermore, by using a natural fiber yarn, it can be handled as a continuous fiber, and the volume content (Vf) can be improved. Moreover, even if there are individual differences peculiar to natural fibers and differences in harvested places, stable physical properties can be obtained by mixing in the pre-spinning process.

本発明においては、天然繊維を含む1本又は複数本の糸を芯糸とし、前記芯糸の周囲を合成樹脂繊維糸でカバリングして繊維強化樹脂(FRP)用複合糸とする。前記合成樹脂繊維糸はFRPにしたときにマトリックス樹脂となる熱可塑性合成樹脂材料とする。このようにすると、前記複合糸を所定の方向に揃えて加熱プレス成形することにより、前記カバリング糸(合成樹脂繊維糸)は溶融してそのままFRPのマトリックス樹脂となる。溶融した熱可塑性合成樹脂は迅速に天然繊維糸に浸入し、天然繊維糸と溶融熱可塑性合成樹脂の複合一体化が効率的に行われる。   In the present invention, one or a plurality of yarns containing natural fibers are used as a core yarn, and the periphery of the core yarn is covered with a synthetic resin fiber yarn to obtain a composite yarn for fiber reinforced resin (FRP). The synthetic resin fiber yarn is a thermoplastic synthetic resin material that becomes a matrix resin when FRP is used. In this case, the covering yarn (synthetic resin fiber yarn) is melted and becomes an FRP matrix resin as it is by hot press molding with the composite yarn aligned in a predetermined direction. The molten thermoplastic synthetic resin quickly penetrates into the natural fiber yarn, and the composite integration of the natural fiber yarn and the molten thermoplastic synthetic resin is efficiently performed.

本発明においては、前記FRP用複合糸をさらに複数本引き揃え、その周囲を前記合成樹脂繊維糸でカバリングすることが非常に好ましい。通常太い糸は樹脂浸透性が悪化する傾向にあるが、このようにすると、樹脂浸透性が良好な状態で繊度の太い糸も使用できる。そして、繊度の太い糸も使用しても、天然繊維糸と溶融熱可塑性合成樹脂の複合一体化を効率的よく行うことができる。   In the present invention, it is very preferable to further align a plurality of the FRP composite yarns and cover the periphery with the synthetic resin fiber yarns. Normally, thick yarns tend to have poor resin permeability, but in this way, thick yarns with good resin permeability can also be used. And even if the yarn having a large fineness is used, the composite integration of the natural fiber yarn and the molten thermoplastic synthetic resin can be efficiently performed.

前記芯糸又は前記複数本のFRP用複合糸に、さらに前記合成繊維糸を加えてもよい。このようにすると、天然繊維糸間の内部における天然繊維と溶融熱可塑性合成樹脂の複合一体化を効率的よく行うことができる。   The synthetic fiber yarn may be further added to the core yarn or the plurality of FRP composite yarns. If it does in this way, the composite integration of the natural fiber and molten thermoplastic synthetic resin in the inside between natural fiber yarns can be performed efficiently.

本発明で使用できる天然繊維としては植物系天然繊維が好ましく、具体的には綿繊維、麻繊維、ケナフ繊維、竹繊維、カポック等が挙げられる。とくに、亜麻糸(リネン)繊維又はラミー等の麻繊維が好ましい。麻繊維は一年草で3ヶ月で収穫でき、原料供給も安定しているからである。前記麻繊維は平衡水分率を有する状態で使用できる。平衡水分率であれば、強度を高く維持できるからである。   The natural fiber that can be used in the present invention is preferably a plant-based natural fiber, and specifically includes cotton fiber, hemp fiber, kenaf fiber, bamboo fiber, kapok and the like. In particular, flax yarn (linen) fibers or hemp fibers such as ramie are preferred. This is because hemp fiber can be harvested as an annual grass in 3 months, and the supply of raw materials is stable. The hemp fibers can be used in a state having an equilibrium moisture content. This is because the strength can be kept high with an equilibrium moisture content.

本発明で使用できる熱可塑性合成樹脂繊維糸は、通常FRPのマトリックス樹脂として使用されている樹脂であって、かつ天然繊維の分解温度より低い融点を有する樹脂が好ましい。例えば天然繊維として麻繊維を使用する場合は、200℃以下の融点を有する樹脂が好ましい。このような熱可塑性合成樹脂繊維糸としては、例えばポリプロピレン(PP)、ポリエチレン(PE)、及びこれらの共重合体、共重合ポリエステル、共重合ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、共重合ポリアセタール、ポリ乳酸、ポリコハク酸ブチルなどの繊維がある。   The thermoplastic synthetic resin fiber yarn that can be used in the present invention is preferably a resin that is usually used as a matrix resin for FRP and has a melting point lower than the decomposition temperature of natural fibers. For example, when hemp fibers are used as natural fibers, a resin having a melting point of 200 ° C. or lower is preferable. Examples of such thermoplastic synthetic resin fiber yarn include polypropylene (PP), polyethylene (PE), and copolymers thereof, copolymerized polyesters, copolymerized polyamides, polyvinyl chloride, polyvinylidene chloride, copolymerized polyacetals, There are fibers such as polylactic acid and polybutyl succinate.

前記天然繊維糸と前記合成繊維糸の配合割合は、重量比で天然繊維糸:合成繊維糸=70:30〜30:70の範囲が好ましい。この範囲であれば、天然繊維糸と溶融熱可塑性合成樹脂の複合一体化を効率よく行える。   The blend ratio of the natural fiber yarn and the synthetic fiber yarn is preferably in the range of natural fiber yarn: synthetic fiber yarn = 70: 30 to 30:70 by weight ratio. Within this range, the composite integration of the natural fiber yarn and the molten thermoplastic synthetic resin can be performed efficiently.

本発明の繊維強化樹脂用複合糸は、糸そのものをロービング法などにより引き揃えてFRPにすることができる。その他、織物、編み物、多軸挿入たて編み物、又は組み物とし、繊維強化樹脂用中間体とすることもできる。これらの中間体は、最終成形体に使用するためのプリプレグとすることもできる。織物、編み物、多軸挿入たて編み物は、シート状に成形して使用でき、組み物はパイプ状に成形して使用できる。織物及び編み物の組織は、公知のいかなる組織でも使用できる。   The composite yarn for fiber reinforced resin of the present invention can be made into FRP by aligning the yarn itself by a roving method or the like. In addition, a woven fabric, a knitted fabric, a multi-axis inserted warp knitted fabric, or a braided fabric may be used as an intermediate for fiber reinforced resin. These intermediates can also be prepregs for use in the final molded body. Woven fabrics, knitted fabrics, and multi-axis inserted warp knitted fabrics can be used in the form of sheets, and braids can be used in the form of pipes. The woven and knitted fabric can be any known tissue.

このような成形体を製造するには、金型温度を、前記合成樹脂繊維糸の融点以上、前記天然繊維の分解温度より20℃低い温度以下に加熱してプレス成形する。また、繊維強化樹脂用複合糸を少なくとも一方向に配列し、金型温度を、前記合成樹脂繊維糸の融点以上、前記天然繊維の分解温度より20℃低い温度以下に加熱してプレス成形して繊維強化樹脂成形体を得ることもできる。特に、天然繊維中への熱可塑性樹脂の含浸性を考慮するならば、上記温度範囲であって、なるべく高い温度、例えば分解温度より20〜40℃低い温度で成形するのが好ましい。天然繊維として麻繊維を使用する場合は、金型温度は200℃以下が好ましく、さらには160〜180℃が好ましい。   In order to produce such a molded body, the mold temperature is heated to a temperature not lower than the melting point of the synthetic resin fiber yarn and not higher than 20 ° C. below the decomposition temperature of the natural fiber, and press-molded. Also, the composite yarn for fiber reinforced resin is arranged in at least one direction, and the mold temperature is heated to a temperature not lower than the melting point of the synthetic resin fiber yarn and not higher than 20 ° C. lower than the decomposition temperature of the natural fiber, and press-molded. A fiber-reinforced resin molded product can also be obtained. In particular, in consideration of the impregnation property of the thermoplastic resin into the natural fiber, it is preferable to mold at a temperature within the above-mentioned temperature range, for example, a temperature 20 to 40 ° C. lower than the decomposition temperature. When hemp fibers are used as natural fibers, the mold temperature is preferably 200 ° C. or lower, and more preferably 160 to 180 ° C.

前記繊維強化熱可塑性樹脂成形体は、従来の公知の成形方法の使用が可能であり、ホットスタンピング法、プリプレグ成形法、SMC成形法等が挙げられる。熱可塑性樹脂のフィルムを溶融して圧縮加工したフィルムスタッキング法により成形してもよい。   The fiber-reinforced thermoplastic resin molded body can use a conventionally known molding method, and examples thereof include a hot stamping method, a prepreg molding method, and an SMC molding method. You may shape | mold by the film stacking method which melted and compressed the film of the thermoplastic resin.

次に図面を用いて説明する。図1は本発明の一実施形態における繊維強化樹脂用複合糸の斜視図である。繊維強化樹脂用複合糸10は、1本の芯糸の天然繊維糸11の周囲を合成樹脂繊維糸12でカバリングしている。天然繊維糸11は撚糸、解撚糸、無撚糸、結束糸、スライバー糸などどのようなものであっても良い。合成樹脂繊維糸12はフィラメントヤーンでも紡績糸でもよい。コスト的にはフィラメントヤーンが好ましい。フィラメントヤーンはマルチフィラメントでもモノフィラメントでも使用できる。天然繊維糸11と合成樹脂繊維糸12の繊度は、10〜1,000texの範囲で使用可能である。   Next, it demonstrates using drawing. FIG. 1 is a perspective view of a composite yarn for fiber reinforced resin in one embodiment of the present invention. The composite yarn 10 for fiber reinforced resin is covered with a synthetic resin fiber yarn 12 around a natural fiber yarn 11 of one core yarn. The natural fiber yarn 11 may be any one of twisted yarn, untwisted yarn, untwisted yarn, bundled yarn, sliver yarn and the like. The synthetic resin fiber yarn 12 may be a filament yarn or a spun yarn. A filament yarn is preferable in terms of cost. The filament yarn can be used as a multifilament or a monofilament. The fineness of the natural fiber yarn 11 and the synthetic resin fiber yarn 12 can be used in the range of 10 to 1,000 tex.

次に図2は本発明の別の実施形態における繊維強化樹脂用複合糸の斜視図である。繊維強化樹脂用複合糸13は、3本の芯糸の天然繊維糸11a〜11cの周囲を合成樹脂繊維糸12でカバリングしている。   Next, FIG. 2 is a perspective view of a composite yarn for fiber-reinforced resin in another embodiment of the present invention. The composite yarn 13 for fiber reinforced resin is covered with a synthetic resin fiber yarn 12 around the natural fiber yarns 11a to 11c of three core yarns.

次に図3は本発明のさらに別の実施形態における繊維強化樹脂用複合糸の斜視図である。繊維強化樹脂用複合糸16は、4本の芯糸の天然繊維糸11a〜11dのそれぞれの周囲を合成樹脂繊維糸12a〜12dでカバリングしたものと、マトリックス樹脂となる合成樹脂繊維14を芯糸とし、その外側周囲を合成樹脂繊維糸15でカバリングしている。この例においては、合成樹脂繊維14は使用しなくても良い。   Next, FIG. 3 is a perspective view of a composite yarn for fiber reinforced resin in still another embodiment of the present invention. The composite yarn 16 for fiber reinforced resin is obtained by covering the periphery of each of the four core fiber natural fiber yarns 11a to 11d with the synthetic resin fiber yarns 12a to 12d and the synthetic resin fiber 14 serving as a matrix resin as the core yarn. The outer periphery is covered with a synthetic resin fiber yarn 15. In this example, the synthetic resin fiber 14 may not be used.

次に図5は、多軸挿入たて編み物の概念斜視図である。複数の方向に各々配列された天然繊維糸(例えば亜麻糸紡績糸)1a〜1fは、編針6に掛けられたステッチング糸7,8によって厚さ方向にステッチング(結束)され、一体化されている。このような多軸挿入たて編み物を繊維補強中間体とし、加熱プレス成形することもできる。この多軸状の積層シートは、多方向に補強効果の優れた繊維強化プラスチックを得ることが可能となる。ステッチング糸の代わりに、又は併用してバインダーを用いても良い。   Next, FIG. 5 is a conceptual perspective view of a multi-axis inserted warp knitted fabric. Natural fiber yarns (for example, flax yarn spun yarns) 1a to 1f arranged in a plurality of directions are stitched (bundled) in the thickness direction by stitching yarns 7 and 8 hung on the knitting needle 6 and integrated. ing. Such a multi-axis inserted warp knitted fabric can be used as a fiber reinforced intermediate, and can be subjected to hot press molding. This multiaxial laminated sheet can obtain a fiber-reinforced plastic having an excellent reinforcing effect in multiple directions. A binder may be used instead of or in combination with the stitching yarn.

以下実施例を用いて本発明を具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。   The present invention will be specifically described below with reference to examples. In addition, this invention is not limited to the following Example.

(実施例1)
本実施例においては、図3に示すような構造の複合糸16を作製した。まずラミー紡績糸(143tex)11a〜11dを、それぞれ340dのPPフィラメント糸12a〜12dでカバリングマシンを用いてカバリングした。この糸4本を配置し、中央にPPフィラメント14を4本引き揃えて配置し、これらをまとめるようにPPフィラメント糸15でカバリングマシンを用いてカバリングすることで1本の複合糸16を形成した。最後の加工時には構造が崩れないように、緩やかにS55の撚りをかけた。ラミー紡績糸とPP糸(1次カバリング+2次カバリング+芯糸の合計)の割合は、重量比で50:50であった。
(Example 1)
In this example, a composite yarn 16 having a structure as shown in FIG. 3 was produced. First, the ramie spun yarns (143tex) 11a to 11d were covered with 340d PP filament yarns 12a to 12d using a covering machine. Four yarns are arranged, four PP filaments 14 are arranged in the center, and one composite yarn 16 is formed by covering the PP filament yarns 15 with a covering machine so as to put them together. . S55 was gently twisted so that the structure did not collapse during the last processing. The ratio of the ramie spun yarn and the PP yarn (primary covering + secondary covering + core yarn) was 50:50 by weight.

初めのカバリングの際に、紡績糸11a〜11dと逆回転の撚りを与えることで紡績糸の撚りを戻す操作を行った。紡績糸11a〜11dの撚りはZ200であったので、下記のように設定した。   During the first covering, an operation of returning the twist of the spun yarn by performing a reverse rotation twist with the spun yarn 11a to 11d was performed. Since the twists of the spun yarns 11a to 11d were Z200, they were set as follows.

Figure 0004810481
これらの糸を用いて、プレス法により成形体を作成した。図6Aは本発明の一実施例の加熱プレス法による成形体の製造方法を示す平面図、図6Bは同製造方法の断面図である。メタルフレーム2に、複合糸1a,1bを図6Aのように一方向に巻き付けた。複合糸の巻きつけ本数は、幅20mmに対し132本、巻きつけ重量3.1gであった。なお、図6Aにあるとおりメタルフレーム2に一定間隔を置いて2カ所巻き付けた。この巻きつけた複合糸に、図6Bに示すように、熱プレス金型4,5によってラミー紡績糸とPPフィラメント糸を加熱加圧し、溶融一体化させた。PPフィラメント糸の融点が134℃、ラミー紡績糸の分解温度約200℃であったので、金型温度は160℃とし、圧力は10MPa、時間を10分とした。
Figure 0004810481
Using these yarns, a molded body was prepared by a pressing method. FIG. 6A is a plan view showing a method for producing a molded body by a hot press method according to an embodiment of the present invention, and FIG. 6B is a cross-sectional view of the production method. The composite yarns 1a and 1b were wound around the metal frame 2 in one direction as shown in FIG. 6A. The number of wound composite yarns was 132 for a width of 20 mm, and the wound weight was 3.1 g. As shown in FIG. 6A, the metal frame 2 was wound at two places at regular intervals. As shown in FIG. 6B, the ramie spun yarn and the PP filament yarn were heated and pressed by the hot press dies 4 and 5 to melt and integrate the wound composite yarn. Since the melting point of the PP filament yarn was 134 ° C. and the decomposition temperature of the ramie spun yarn was about 200 ° C., the mold temperature was 160 ° C., the pressure was 10 MPa, and the time was 10 minutes.

得られた成形品を長さ180mmにカットし、引張試験片(長さ180mm、幅20mm、厚み約1.2mm)を作成した。なお、引張試験は、JISK7054:1995に準じ、オートグラフ(島津製作所製:AG−5000B)を用いて、つかみ具間距離80mm、試験速度1mm/minで行った。これらの成形体の引張試験結果を下記に示す。   The obtained molded product was cut into a length of 180 mm to prepare a tensile test piece (length 180 mm, width 20 mm, thickness about 1.2 mm). The tensile test was conducted according to JISK7054: 1995 using an autograph (manufactured by Shimadzu Corporation: AG-5000B) at a distance between grips of 80 mm and a test speed of 1 mm / min. The tensile test results of these molded products are shown below.

Figure 0004810481
これらの結果から弾性率の大きな差異はないが、強度の点で加工時の解撚操作をしない方が良いことがわかった。
Figure 0004810481
From these results, it was found that there is no great difference in elastic modulus, but it is better not to perform the untwisting operation during processing in terms of strength.

また成形体の各断面を顕微鏡で観察したところ、イ、ロ、ハ共に同様の状態であり、解撚しても樹脂の含浸に影響がないことがわかった。さらに各成形体とも、紡績糸が集合した部分とマトリックス樹脂の部分がはっきりと分かれていることがわかった。   Moreover, when each cross section of the molded body was observed with a microscope, it was found that all of A, B, and C were in the same state, and the resin impregnation was not affected even when untwisted. Furthermore, it was found that in each molded body, the spun yarn gathered portion and the matrix resin portion were clearly separated.

(実施例2)
次に実施例1と同じ143texのラミー紡績糸を用い、PPフィラメント糸でカバリングした。この糸を3本用いて、実施例1と同様の方法で複合糸を作成した。
(Example 2)
Next, the same 143 tex ramie spun yarn as in Example 1 was used and covered with PP filament yarn. A composite yarn was prepared using the same three yarns in the same manner as in Example 1.

この糸を用いて、実施例1と同様にプレス法により成形体を作成した。   Using this yarn, a molded body was produced by the press method in the same manner as in Example 1.

これらの成形体の引張試験結果を表2の結果と比較して下記に示す。   The tensile test results of these molded products are shown below in comparison with the results in Table 2.

Figure 0004810481
実験番号ニの樹脂の含浸状態は、イ〜ハと同様であったが、紡績糸がマトリックス樹脂に均一に分散していることが解った。
Figure 0004810481
The impregnation state of the resin of Experiment No. D was the same as that of A to C, but it was found that the spun yarn was uniformly dispersed in the matrix resin.

(実施例3)
図2に示すように、42texのラミー紡績糸(Z420)を3本引き揃え、PPフィラメント糸でカバリングしたものを作成した。更にこれを4本引き揃えて、図4に示すように構造が崩れないようにPPフィラメント糸15でカバリングした複合糸を作成した。ラミー紡績糸とPP糸(1次カバリング+2次カバリングの合計)の割合は、重量比で50:50であった。
(Example 3)
As shown in FIG. 2, three 42 tex ramie spun yarns (Z420) were aligned and covered with PP filament yarns. Further, four of these were aligned to form a composite yarn covered with PP filament yarn 15 so that the structure did not collapse as shown in FIG. The ratio of ramie spun yarn and PP yarn (total of primary covering + secondary covering) was 50:50 by weight.

成形条件は、実施例1と同様であり、PPフィラメント糸の融点が134℃、ラミー紡績糸の分解温度約200℃であったので、160℃に設定した。圧力は10MPa、時間を10分とした。この実施例は実験番号ホとした。   The molding conditions were the same as in Example 1. The melting point of the PP filament yarn was 134 ° C, and the decomposition temperature of the ramie spun yarn was about 200 ° C. The pressure was 10 MPa and the time was 10 minutes. In this example, experiment number E was used.

これらの成形体の引張試験結果を実施例1〜2の結果と比較して下記に示す。   The tensile test results of these molded products are shown below in comparison with the results of Examples 1-2.

Figure 0004810481
実験番号ホの含浸状態はイ〜ニと同様だが、ホでは紡績糸がマトリックス樹脂により均一に分散していることが解った。
Figure 0004810481
Although the impregnation state of Experiment No. E is the same as that of (i) to (ii), it was found that the spun yarn was uniformly dispersed by the matrix resin.

これらの結果より、紡績糸を細くすることで弾性率と強度を向上でき、なおかつマトリックス樹脂と紡績糸を複数本合わせて複合糸にするので、細い紡績糸を用いて基材を製造するよりも製造時間を短縮できることがわかった。そして成形工程においても、すでに強化基材の状態でマトリックス樹脂と強化繊維が一定比率で複合されているので、成形時にマトリックス樹脂を導入する必要がなく、工程を大幅に省くことが可能である。また、各層にマトリックス樹脂が複合されているので、成形時の時間も短縮されるという利点がある。   From these results, it is possible to improve the elastic modulus and strength by thinning the spun yarn, and also to combine a plurality of matrix resin and spun yarn into a composite yarn, so that the base material is manufactured using a thin spun yarn. It was found that the manufacturing time can be shortened. Also in the molding process, since the matrix resin and the reinforcing fibers are already combined in a certain ratio in the state of the reinforced base material, it is not necessary to introduce the matrix resin at the time of molding, and the process can be greatly omitted. Further, since the matrix resin is compounded in each layer, there is an advantage that the time for molding is shortened.

図1は本発明の一実施形態における繊維強化樹脂用複合糸の斜視図である。FIG. 1 is a perspective view of a composite yarn for fiber reinforced resin in one embodiment of the present invention. 図2は本発明の別の実施形態における繊維強化樹脂用複合糸の斜視図である。FIG. 2 is a perspective view of a composite yarn for fiber reinforced resin according to another embodiment of the present invention. 図3は本発明のさらに別の実施形態における繊維強化樹脂用複合糸の斜視図である。FIG. 3 is a perspective view of a composite yarn for fiber-reinforced resin in still another embodiment of the present invention. 図4は本発明のさらに別の実施形態における繊維強化樹脂用複合糸の斜視図である。FIG. 4 is a perspective view of a composite yarn for fiber-reinforced resin in still another embodiment of the present invention. 図5は本発明の応用例を示す多軸挿入たて編物の概念斜視図である。FIG. 5 is a conceptual perspective view of a multi-axis inserted warp knitted fabric showing an application example of the present invention. 図6Aは本発明の一実施例の加熱プレス法による成形体の製造方法を示す平面図、図6Bは同製造方法の断面図である。FIG. 6A is a plan view showing a method for producing a molded body by a hot press method according to an embodiment of the present invention, and FIG. 6B is a cross-sectional view of the production method.

符号の説明Explanation of symbols

1,1a−1f 麻繊維からなる紡績糸
2 メタルフレーム
3a−3d ポリプロピレン(PP)フィルム
4,5 熱プレス金型
6 編針
7,8 ステッチング糸
10,13,16 繊維強化樹脂用複合糸
11,11a〜11d 天然繊維糸からなる芯糸
12,12a〜12d 合成樹脂繊維糸からなるカバリング糸
14 合成樹脂繊維糸からなる芯糸
15 合成樹脂繊維糸からなる外側カバリング糸
DESCRIPTION OF SYMBOLS 1,1a-1f Spun yarn 2 which consists of hemp fiber Metal frame 3a-3d Polypropylene (PP) film 4,5 Hot press die 6 Knitting needle 7,8 Stitching yarn 10,13,16 Composite yarn 11 for fiber reinforced resin, 11a to 11d Core yarn 12 made of natural fiber yarn, 12a to 12d Covering yarn made of synthetic resin fiber yarn 14 Core yarn made of synthetic resin fiber yarn 15 Outer covering yarn made of synthetic resin fiber yarn

Claims (7)

天然繊維を含む1本又は複数本の糸を芯糸とし、前記芯糸の周囲を合成樹脂繊維糸でカバリングした繊維強化樹脂(FRP)用複合糸を複数本引き揃え、その周囲を前記合成樹脂繊維糸でカバリングした繊維強化樹脂用複合糸であり、
前記合成樹脂繊維糸はFRPにしたときにマトリックス樹脂となる熱可塑性合成樹脂材料とすることを特徴とする繊維強化樹脂用複合糸。
One or a plurality of yarns containing natural fibers are used as a core yarn, and a plurality of composite yarns for fiber reinforced resin (FRP) in which the periphery of the core yarn is covered with a synthetic resin fiber yarn are arranged, and the periphery thereof is the synthetic resin. It is a composite yarn for fiber reinforced resin covered with fiber yarn,
A composite yarn for fiber-reinforced resin, wherein the synthetic resin fiber yarn is a thermoplastic synthetic resin material that becomes a matrix resin when FRP is used.
前記芯糸又は前記複数本のFRP用複合糸に、さらに前記合成繊維糸を加えた請求項1に記載の繊維強化樹脂用複合糸。 The composite yarn for fiber reinforced resin according to claim 1, wherein the synthetic fiber yarn is further added to the core yarn or the plurality of FRP composite yarns. 前記天然繊維糸は、麻の紡績糸である請求項1又は2に記載の繊維強化樹脂用複合糸。 The natural fiber yarns, fiber-reinforced resin composite yarn according to claim 1 or 2, spun yarn of hemp. 前記天然繊維糸と前記合成繊維糸の配合割合は、重量比で天然繊維糸:合成繊維糸=70:30〜30:70の範囲である請求項1〜のいずれか1項に記載の繊維強化樹脂用複合糸。 The mixing ratio of the synthetic fiber yarn and the natural fiber yarns, natural fiber yarns in a weight ratio: synthetic yarn = 70: 30-30: 70 fiber according to any one of claims 1 to 3, which is a range of Composite yarn for reinforced resin. 請求項1〜のいずれかに記載の繊維強化樹脂用複合糸を、織物、編み物、多軸挿入たて編み物、又は組み物とした繊維強化樹脂用中間体。 An intermediate for fiber reinforced resin, wherein the composite yarn for fiber reinforced resin according to any one of claims 1 to 4 is a woven fabric, a knitted fabric, a multi-axis inserted warp knitted fabric, or a braid. 請求項に記載の繊維強化樹脂用中間体を、金型温度で前記合成樹脂繊維糸の融点以上、前記天然繊維の分解温度より20℃低い温度以下に加熱してプレス成形した繊維強化樹脂成形体。 A fiber reinforced resin molded product obtained by press-molding the intermediate for fiber reinforced resin according to claim 5 at a mold temperature to a temperature not lower than the melting point of the synthetic resin fiber yarn and not higher than 20 ° C lower than the decomposition temperature of the natural fiber. body. 請求項1〜のいずれかに記載の繊維強化樹脂用複合糸を少なくとも一方向に配列し、金型温度を前記合成樹脂繊維糸の融点以上、前記天然繊維の分解温度より20℃低い温度以下に加熱してプレス成形した繊維強化樹脂成形体。 The composite yarn for fiber reinforced resin according to any one of claims 1 to 4 is arranged in at least one direction, and a mold temperature is not lower than a melting point of the synthetic resin fiber yarn and not more than a temperature 20 ° C lower than a decomposition temperature of the natural fiber. A fiber-reinforced resin molded product that is heated and pressed.
JP2007082485A 2007-03-27 2007-03-27 Composite yarn and intermediate for fiber reinforced resin and fiber reinforced resin molded body using the same Expired - Fee Related JP4810481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082485A JP4810481B2 (en) 2007-03-27 2007-03-27 Composite yarn and intermediate for fiber reinforced resin and fiber reinforced resin molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082485A JP4810481B2 (en) 2007-03-27 2007-03-27 Composite yarn and intermediate for fiber reinforced resin and fiber reinforced resin molded body using the same

Publications (2)

Publication Number Publication Date
JP2008240193A JP2008240193A (en) 2008-10-09
JP4810481B2 true JP4810481B2 (en) 2011-11-09

Family

ID=39911863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082485A Expired - Fee Related JP4810481B2 (en) 2007-03-27 2007-03-27 Composite yarn and intermediate for fiber reinforced resin and fiber reinforced resin molded body using the same

Country Status (1)

Country Link
JP (1) JP4810481B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713036A (en) * 2009-11-17 2012-10-03 仓敷纺绩株式会社 Spun yarn and intermediate for fiber-reinforced resin, and molded article of fiber-reinforced resin using same
KR101775202B1 (en) * 2014-06-02 2017-09-20 (주)엘지하우시스 Eco-friendly composites and methods for manufacturing the same
JP6137071B2 (en) * 2014-06-26 2017-05-31 トヨタ車体株式会社 Method for producing thermoplastic resin composition and method for producing pellets
CN104499173B (en) * 2014-12-23 2017-12-08 谱拉歌世服饰有限公司 One kind knitting fabric
JP6251925B2 (en) * 2016-01-22 2017-12-27 国立大学法人岐阜大学 Manufacturing method of three-dimensional structure and filament for 3D printer
JP6278488B2 (en) * 2016-12-13 2018-02-14 新日鉄住金マテリアルズ株式会社 VaRTM reinforcing fiber sheet
WO2019013091A1 (en) * 2017-07-10 2019-01-17 倉敷紡績株式会社 Sheath-core composite yarn for fiber-reinforced resins, and fiber-reinforced resin using same
WO2023162811A1 (en) * 2022-02-22 2023-08-31 東レ株式会社 Fiber-reinforced thermoplastic resin filament and molded article thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210036A (en) * 1989-02-09 1990-08-21 Gunze Ltd Conjugated yarn for reinforcement
JPH0457939A (en) * 1990-06-20 1992-02-25 Negi Sangyo Kk Hempen pile fabric
JPH06294033A (en) * 1993-04-06 1994-10-21 Toyobo Co Ltd Hybrid molding material for thermoplastic composite

Also Published As

Publication number Publication date
JP2008240193A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5780968B2 (en) Spun yarn and intermediate for fiber reinforced resin, and fiber reinforced resin molded product using the same
JP4810481B2 (en) Composite yarn and intermediate for fiber reinforced resin and fiber reinforced resin molded body using the same
WO2009131149A1 (en) Composite yarn and intermediate for fiber-reinforced resin and molded fiber-reinforced resin obtained therefrom
JP4748717B2 (en) Fiber reinforced thermoplastic resin molding
CN103119209B (en) The manufacture method of carbon fiber aggregate and the manufacture method of carbon fibre reinforced plastic
KR101518796B1 (en) Reinforcement textile armature and method for making same
JP2018080442A (en) Plane composite material
CN100556672C (en) The semifinished sheet that comprises the textile fabrics of metal wire and non-metallic fibers and comprise this textile fabrics
US20140080961A1 (en) Carbon Fiber Composite Material
JP5911755B2 (en) Manufacturing method of fiber reinforced resin pellet and manufacturing method of fiber reinforced resin molded body
CN101134368A (en) Thermoplasticity composite sheet material winded with composite fiber and technique of preparing the same
CN105258567A (en) Flexible stab-resistant material and preparation method thereof
CN104853893A (en) Method for producing a semi-finished product and semi-finished product for production of a composite molded part, in particular a composite fiber molded part and composite molded part, in particular a composite fiber molded part
CN104178886A (en) Novel three-dimensional woven composite material for automobile ceiling
JP2014234427A (en) Fiber assembly for fiber-reinforced resin, fiber-reinforced resin sheet, and fiber-reinforced resin molded body
KR101817551B1 (en) Scrim reinforced with natural fiber materals and manufacturing method
WO2009130495A3 (en) Producing yarn
JP6912044B2 (en) Heat resistant multi-axis stitch base material
KR101817550B1 (en) Headlining reinforce automobile parts with jute fiber and manufacturing metho
JPH06228837A (en) Thermoplastic yarn for composite
JP2013091252A (en) Carbon fiber reinforced resin-molded article, and method for manufacturing the same
CN206030654U (en) Novel fine blending silk bundle fabric of chemical fibre and glass
US20170144383A1 (en) Component of a Composite Material for a Motor Vehicle
JPH06155460A (en) Yarn for thermoplastic composite
Awais et al. Commingled natural fiber thermoplastic preforms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4810481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees