JP4808752B2 - Gas barrier film and laminate thereof - Google Patents

Gas barrier film and laminate thereof Download PDF

Info

Publication number
JP4808752B2
JP4808752B2 JP2008208217A JP2008208217A JP4808752B2 JP 4808752 B2 JP4808752 B2 JP 4808752B2 JP 2008208217 A JP2008208217 A JP 2008208217A JP 2008208217 A JP2008208217 A JP 2008208217A JP 4808752 B2 JP4808752 B2 JP 4808752B2
Authority
JP
Japan
Prior art keywords
carboxylic acid
gas barrier
unsaturated carboxylic
polyvalent metal
acid compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008208217A
Other languages
Japanese (ja)
Other versions
JP2009018589A (en
Inventor
英一 守屋
晃 野本
智宣 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Tohcello Inc
Original Assignee
Mitsui Chemicals Tohcello Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Tohcello Inc filed Critical Mitsui Chemicals Tohcello Inc
Priority to JP2008208217A priority Critical patent/JP4808752B2/en
Publication of JP2009018589A publication Critical patent/JP2009018589A/en
Application granted granted Critical
Publication of JP4808752B2 publication Critical patent/JP4808752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、透明性を有し、酸素、水蒸気等のガスバリア性、特に高湿度下でのガスバリア性に優れた包装材料に好適なガスバリア性膜の製造方法に関する。   The present invention relates to a method for producing a gas barrier film suitable for a packaging material having transparency and excellent gas barrier properties such as oxygen and water vapor, particularly gas barrier properties under high humidity.

近年、酸素あるいは水蒸気等に対するバリア性材料として、フィルム基材に酸化ケイ素、酸化アルミニウム等の無機酸化物を、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法等で形成してなる透明ガスバリア性フィルムが注目されている。そして、かかる透明ガスバリア性フィルムは、一般には透明性、剛性に優れる二軸延伸ポリエステルフィルムからなる基材面に無機酸化物を蒸着したフィルムであるので、そのままでは蒸着層が使用時の摩擦等に弱く、包装用フィルムとして使用する場合、後加工の印刷やラミネート時、又内容物の充填時に、擦れや伸びにより無機酸化物にクラックが入りガスバリア性が低下することがある。
一方、ガスバリア性を有するポリビニルアルコール、エチレン・ビニルアルコール共重合体を二軸延伸フィルム基材に積層する方法(例えば、特許文献1)、あるいはポリビニルアルコールとポリ(メタ)アクリル酸との組成物を二軸延伸フィルム基材に被覆する方法(例えば、特許文献2)が提案されている。しかしながら、ポリビニルアルコールを積層してなるガスバリア性フィルムは、高湿度下での酸素バリア性が低下し、ポリビニルアルコールとポリ(メタ)アクリル酸との組成物は、エステル化を十分に進行させて、フィルムのガスバリア性を高めるためには高温で長時間の加熱が必要であり生産性に問題があり、また、高湿度下でのガスバリア性は不十分であった。また、高温で長時間反応させることによりフィルムが着色し、外観を損ねるため食品包装用には改善が必要である。
他方、ポリビニルアルコールとポリ(メタ)アクリル酸との組成物はエステル化に高温で長時間の反応が必要なことから、ポリアクリル酸にイソシアネート化合物等の架橋剤成分を添加する方法(例えば、特許文献3)、更には金属イオンと反応させる方法(例えば、特許文献4)等が提案されているが、かかる方法においても、ポリアクリル酸を架橋剤成分で架橋するには、実施例に記載されているように、180〜200℃で5分間と高温での処理を必要とする。
In recent years, as a barrier material against oxygen or water vapor, inorganic oxides such as silicon oxide and aluminum oxide have been formed on film substrates by vacuum deposition, sputtering, ion plating, chemical vapor deposition, etc. A transparent gas barrier film is attracting attention. Such a transparent gas barrier film is a film obtained by depositing an inorganic oxide on a base material surface made of a biaxially stretched polyester film that is generally excellent in transparency and rigidity. When used as a packaging film, the inorganic oxide may be cracked by rubbing or stretching during post-processing printing or laminating or filling the contents, and the gas barrier property may be lowered.
On the other hand, a method of laminating a polyvinyl alcohol having a gas barrier property and an ethylene / vinyl alcohol copolymer on a biaxially stretched film substrate (for example, Patent Document 1), or a composition of polyvinyl alcohol and poly (meth) acrylic acid A method of coating a biaxially stretched film substrate (for example, Patent Document 2) has been proposed. However, the gas barrier film formed by laminating polyvinyl alcohol has a reduced oxygen barrier property under high humidity, and the composition of polyvinyl alcohol and poly (meth) acrylic acid has sufficiently advanced esterification, In order to improve the gas barrier property of the film, heating at a high temperature for a long time is required, which causes a problem in productivity, and the gas barrier property under high humidity is insufficient. Further, since the film is colored by reacting at high temperature for a long time and the appearance is impaired, improvement for food packaging is necessary.
On the other hand, since a composition of polyvinyl alcohol and poly (meth) acrylic acid requires a long reaction at a high temperature for esterification, a method of adding a crosslinking agent component such as an isocyanate compound to polyacrylic acid (for example, a patent) Document 3) and a method of reacting with a metal ion (for example, Patent Document 4) have been proposed. In this method, polyacrylic acid is crosslinked with a crosslinking agent component as described in Examples. As shown, it requires treatment at 180 to 200 ° C. for 5 minutes and at a high temperature.

特開昭60−157830号公報(特許請求の範囲)JP-A-60-157830 (Claims) 特許第3203287号公報(請求項1)Japanese Patent No. 3203287 (Claim 1) 特開2001−310425号公報(請求項1、実施例1)JP 2001-310425 A (Claim 1, Example 1) 特開2003−171419号公報(請求項1、表1)JP 2003-171419 A (Claim 1, Table 1)

そこで本発明は、不飽和カルボン酸化合物を180〜200℃の高温での熱処理による架橋を行わずに、透明性に優れ、且つ高湿度下でのガスバリア性に優れ、しかも低湿度下でのガスバリア性も良好なガスバリア性膜を安定して得る方法を開発することを目的とした。   Therefore, the present invention provides an excellent transparency and gas barrier property under high humidity without crosslinking the unsaturated carboxylic acid compound by heat treatment at a high temperature of 180 to 200 ° C., and a gas barrier under low humidity. The purpose was to develop a method for stably obtaining a gas barrier film having good properties.

本発明は、基材層に重合度が20未満の不飽和カルボン酸化合物の多価金属塩溶液を塗工した後、不飽和カルボン酸化合物の多価金属塩に溶媒の存在下で電子線を照射することを特徴とするガスバリア性膜の製造方法を提供するものである。   In the present invention, after applying a polyvalent metal salt solution of an unsaturated carboxylic acid compound having a polymerization degree of less than 20 to the base material layer, an electron beam is applied to the polyvalent metal salt of the unsaturated carboxylic acid compound in the presence of a solvent. A method for producing a gas barrier film characterized by irradiation is provided.

また、本発明は、基材層に重合度が20未満の不飽和カルボン酸化合物と多価金属化合物とを含む溶液を塗工し、不飽和カルボン酸化合物の多価金属塩を形成させた後、溶媒の存在下で電子線を照射することを特徴とするガスバリア性膜の製造方法を提供するものである。   In the present invention, the base layer is coated with a solution containing an unsaturated carboxylic acid compound having a polymerization degree of less than 20 and a polyvalent metal compound to form a polyvalent metal salt of the unsaturated carboxylic acid compound. The present invention also provides a method for producing a gas barrier film characterized by irradiating an electron beam in the presence of a solvent.

重合度が20未満の不飽和カルボン酸化合物多価金属塩を重合する際に、当該不飽和カルボン酸化合物多価金属塩の溶液に電子線を照射し、不飽和カルボン酸化合物多価金属塩を重合することにより、透明性に優れ、且つガスバリア性に優れたガスバリア性膜を製造し得る。   When polymerizing an unsaturated carboxylic acid compound polyvalent metal salt having a degree of polymerization of less than 20, the solution of the unsaturated carboxylic acid compound polyvalent metal salt is irradiated with an electron beam to produce an unsaturated carboxylic acid compound polyvalent metal salt. By polymerizing, a gas barrier film having excellent transparency and gas barrier properties can be produced.

不飽和カルボン酸化合物
本発明に係わる不飽和カルボン酸化合物は、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のα、β―エチレン性不飽和基を有するカルボン酸化合物であり、重合度が20未満、好ましくは単量体若しくは10以下の重合体である。重合度が20を越える重合体(高分子化合物)は、後述の多価金属化合物との塩を重合して得られる膜は、高湿度下でのガスバリア性が改良されない虞がある。
これら不飽和カルボン酸化合物の中でも単量体が多価金属化合物で完全に中和された塩が形成し易く、当該塩を重合して得られる膜のガスバリア性に優れるので好ましい。
Unsaturated carboxylic acid compound The unsaturated carboxylic acid compound according to the present invention is a carboxylic acid compound having an α, β-ethylenically unsaturated group such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, and the like. Less than, preferably a monomer or 10 or less polymer. A polymer obtained by polymerizing a polymer (polymer compound) having a degree of polymerization exceeding 20 with a polyvalent metal compound described later may not have improved gas barrier properties under high humidity.
Among these unsaturated carboxylic acid compounds, a salt in which a monomer is completely neutralized with a polyvalent metal compound is easy to form, and a film obtained by polymerizing the salt is excellent in gas barrier properties, which is preferable.

多価金属化合物
本発明に係わる多価金属化合物は、具体的には、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)、亜鉛(Zn)、銅(Cu)、コバルト(Co)、ニッケル(Ni)、アルミニウム(Al)、鉄(Fe)等の二価以上の金属、これら金属の酸化物、水酸化物、ハロゲン化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硫酸塩若しくは亜硫酸塩等である。これら金属化合物の中でも、二価の金属化合物が好ましく、特には酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化亜鉛、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化亜鉛等が好ましい。これら二価の金属化合物を用いた場合は、前記不飽和カルボン酸との塩を重合して得られる膜の高湿度下でのガスバリア性が特に優れている。これらは、少なくとも1種が使用され、1種のみの使用であっても、2種以上を併用してもよい。
Polyvalent metal compound The polyvalent metal compound according to the present invention specifically includes magnesium (Mg), calcium (Ca), barium (Ba), zinc (Zn), copper (Cu), cobalt (Co), nickel (Ni), aluminum (Al), iron (Fe) and other divalent or higher metals, oxides, hydroxides, halides, carbonates, phosphates, phosphites, hypophosphorous acid of these metals Salt, sulfate or sulfite. Among these metal compounds, divalent metal compounds are preferable, and magnesium oxide, calcium oxide, barium oxide, zinc oxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, and the like are particularly preferable. When these divalent metal compounds are used, the gas barrier property under high humidity of the film obtained by polymerizing the salt with the unsaturated carboxylic acid is particularly excellent. At least 1 type is used for these, and even 1 type may be used or 2 or more types may be used together.

不飽和カルボン酸化合物の多価金属塩
本発明に係わる不飽和カルボン酸化合物の多価金属塩は、前記重合度が20未満の不飽和カルボン酸化合物と前記多価金属化合物との塩である。これら不飽和カルボン酸化合物多価金属塩は一種でも二種以上の混合物であってもよい。かかる不飽和カルボン酸化合物多価金属塩の中でも、特に(メタ)アクリル酸亜鉛が得られるガスバリア性膜の耐熱水性に優れるので好ましい。
Polyvalent metal salt of unsaturated carboxylic acid compound The polyvalent metal salt of the unsaturated carboxylic acid compound according to the present invention is a salt of an unsaturated carboxylic acid compound having a polymerization degree of less than 20 and the polyvalent metal compound. These unsaturated carboxylic acid compound polyvalent metal salts may be one kind or a mixture of two or more kinds. Among these unsaturated carboxylic acid compound polyvalent metal salts, the gas barrier film from which zinc (meth) acrylate is obtained is particularly excellent in hot water resistance, which is preferable.

基材層
本発明に係わる基材層は、前記不飽和カルボン酸化合物の多価金属塩の溶液を塗工できるものであれば、とくに限定はされず、熱硬化性樹脂、熱可塑性樹脂あるいは紙等の有機質材料、ガラス、陶、セラミック、セメントあるいはアルミニウム、鉄、銅、ステンレス等の金属等の無機質材料、有機質材料同士あるいは有機質材料と無機質材料との組合せからなる多層構造の基材層を例示することができる。
また、基材層の形状も、とくに限定はされず、シートまたはフィルム状物、トレー、カップ、中空体等の形状を有するものを例示することができる。
これら基材層の材料として、熱硬化性樹脂、熱可塑性樹脂あるいは紙等の有機質材料を用いる場合は、不飽和カルボン酸化合物の多価金属塩の重合体からなるガスバリア性膜を備えた積層体として用いることができる。
熱硬化性樹脂としては、種々公知の熱硬化性樹脂、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ユリア・メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリイミド等を例示することができる。
熱可塑性樹脂としては、種々公知の熱可塑性樹脂、例えば、ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ4−メチル・1−ペンテン、ポリブテン等)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド(ナイロン−6、ナイロン−66、ポリメタキシレンアジパミド等)、ポリ塩化ビニル、ポリイミド、エチレン・酢酸ビニル共重合体もしくはその鹸化物、ポリビニルアルコール、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマー、フッ素樹脂あるいはこれらの混合物等を例示することができる。これらのうちでは、ポリプロピレン、ポリエチレンテレフタレート、ポリアミド等、延伸性、透明性が良好な熱可塑性樹脂が好ましい。これら熱可塑性樹脂からなる基材層はガスバリア性膜の用途に応じて、単層であっても、二種以上の熱可塑性樹脂からなる積層体であってもよい。 また、基材層の表面に、アルミニウム、亜鉛若しくはシリカ等の無機化合物あるいはその酸化物等が蒸着されていてもよいし、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン・ビニアルコール共重合体、アクリル樹脂、ウレタン系樹脂等がコーティングされていてもよい。
また、これら基材層は、ガスバリア性膜との接着性を改良するために、その表面を、例えば、コロナ処理、火炎処理、プラズマ処理、アンダーコート処理、プライマーコート処理、フレーム処理等の表面活性化処理を行っておいてもよい。
Base Material Layer The base material layer according to the present invention is not particularly limited as long as it can be applied with a solution of the polyvalent metal salt of the unsaturated carboxylic acid compound, and is not limited to thermosetting resin, thermoplastic resin or paper. Examples of organic materials such as glass, porcelain, ceramics, cement or inorganic materials such as metals such as aluminum, iron, copper, and stainless steel, and base materials with a multilayer structure composed of organic materials or combinations of organic materials and inorganic materials can do.
Further, the shape of the base material layer is not particularly limited, and examples thereof include a sheet or film-like material, a tray, a cup, and a hollow body.
When an organic material such as a thermosetting resin, a thermoplastic resin, or paper is used as a material for these base material layers, a laminate having a gas barrier film made of a polyvalent metal salt polymer of an unsaturated carboxylic acid compound Can be used as
Examples of the thermosetting resin include various known thermosetting resins such as epoxy resins, unsaturated polyester resins, phenol resins, urea / melamine resins, polyurethane resins, silicone resins, and polyimides.
As the thermoplastic resin, various known thermoplastic resins such as polyolefin (polyethylene, polypropylene, poly-4-methyl / 1-pentene, polybutene, etc.), polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), polyamide (Nylon-6, nylon-66, polymetaxylene adipamide, etc.), polyvinyl chloride, polyimide, ethylene / vinyl acetate copolymer or saponified product thereof, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene, ionomer, fluororesin Or the mixture etc. can be illustrated. Of these, thermoplastic resins having good stretchability and transparency, such as polypropylene, polyethylene terephthalate, and polyamide, are preferable. The base material layer made of these thermoplastic resins may be a single layer or a laminate made of two or more kinds of thermoplastic resins depending on the use of the gas barrier film. In addition, an inorganic compound such as aluminum, zinc or silica or an oxide thereof may be deposited on the surface of the base material layer, polyvinylidene chloride, polyvinyl alcohol, ethylene / vinyl alcohol copolymer, acrylic resin, A urethane-based resin or the like may be coated.
In addition, in order to improve the adhesion with the gas barrier film, these base material layers have surface activity such as corona treatment, flame treatment, plasma treatment, undercoat treatment, primer coat treatment, flame treatment, etc. It is also possible to carry out the conversion process.

ガスバリア性膜の製造方法
本発明のガスバリア性膜の製造方法は、基材層に重合度が20未満の不飽和カルボン酸化合物の多価金属塩溶液を塗工した後、不飽和カルボン酸化合物の多価金属塩に溶媒の存在下で電子線を照射することを特徴とするガスバリア性膜の製造方法である。
不飽和カルボン酸化合物多価金属塩の溶液を調整する方法としては、予め前記不飽和カルボン酸と前記多価金属化合物とを反応させて、不飽和カルボン酸化合物の多価金属塩とした後、当該不飽和カルボン酸化合物多価金属塩を水等の溶媒に溶かして溶液としてもよいし、直接溶媒に前記不飽和カルボン酸化合物と前記多価金属化合物を溶かして多価金属塩の溶液としてもよい。
本発明のガスバリア性膜の製造方法として、直接溶媒に前記不飽和カルボン酸化合物と前記多価金属化合物を溶かす場合、即ち、前記不飽和カルボン酸化合物と前記多価金属化合物とを含む溶液を用いる場合は、前記不飽和カルボン酸化合物に対して、0.3化学当量を越える量の前記多価金属化合物を添加することが好ましい。多価金属化合物の添加量が0.3化学当量以下の混合溶液を用いた場合は、遊離のカルボン酸基の含有量が多いガスバリア性膜となり、結果として、ガスバリア性が低い膜となる虞がある。また、多価金属化合物の添加量の上限はとくに限定はされないが、多価金属化合物の添加量が1化学当量を越えると未反応の多価金属化合物が多くなるので、通常、5化学当量以下、好ましくは2化学当量以下で十分である。
また、不飽和カルボン酸化合物と多価金属化合物との混合溶液を用いる場合は、通常、不飽和カルボン酸化合物と多価金属化合物とを溶媒に溶かしている間に、不飽和カルボン酸化合物の多価金属塩が形成されるが、多価金属塩の形成を確実にするために、1分以上混合しておくことが好ましい。
不飽和カルボン酸化合物の多価金属塩の溶液を調整するために用いる溶媒は、水、メチルアルコール、エチルアルコール、イソプロピルアルコール等の低級アルコール若しくはアセトン、メチルエチルケトン等の有機溶媒あるいはそれらの混合溶媒が挙げられるが、水が最も好ましい。
基材層に不飽和カルボン酸化合物の多価金属塩の溶液を塗工する方法としては、当該溶液を基材層表面に塗布する方法、当該溶液に基材層を浸漬する方法、当該溶液を基材層表面に噴霧する方法等種々公知の塗工方法を採り得る。
基材層に不飽和カルボン酸化合物の多価金属塩の溶液を塗布する方法としては、例えば、エアーナイフコーター、ダイレクトグラビアコーター、グラビアオフセット、アークグラビアコーター、グラビアリバースおよびジェットノズル方式等のグラビアコーター、トップフィードリバースコーター、ボトムフィードリバースコーターおよびノズルフィードリバースコーター等のリバースロールコーター、5本ロールコーター、リップコーター、バーコーター、バーリバースコーター、ダイコーター等種々公知の塗工機を用いて、不飽和カルボン酸化合物多価金属塩の溶液中(固形分)の量で0.05〜10g/m、好ましくは0.1〜5g/mとなるよう塗布すればよい。
Method for Producing Gas Barrier Film In the method for producing a gas barrier film of the present invention, after applying a polyvalent metal salt solution of an unsaturated carboxylic acid compound having a degree of polymerization of less than 20 to a base material layer, A method for producing a gas barrier film, comprising irradiating a polyvalent metal salt with an electron beam in the presence of a solvent.
As a method for preparing a solution of an unsaturated carboxylic acid compound polyvalent metal salt, after previously reacting the unsaturated carboxylic acid and the polyvalent metal compound to obtain a polyvalent metal salt of an unsaturated carboxylic acid compound, The unsaturated carboxylic acid compound polyvalent metal salt may be dissolved in a solvent such as water to form a solution, or the unsaturated carboxylic acid compound and the polyvalent metal compound may be directly dissolved in a solvent to form a polyvalent metal salt solution. Good.
As a method for producing a gas barrier film of the present invention, when the unsaturated carboxylic acid compound and the polyvalent metal compound are directly dissolved in a solvent, that is, a solution containing the unsaturated carboxylic acid compound and the polyvalent metal compound is used. In this case, it is preferable to add the polyvalent metal compound in an amount exceeding 0.3 chemical equivalents relative to the unsaturated carboxylic acid compound. When a mixed solution having a polyvalent metal compound addition amount of 0.3 chemical equivalent or less is used, a gas barrier film having a large content of free carboxylic acid groups may be formed, resulting in a film having a low gas barrier property. is there. The upper limit of the amount of polyvalent metal compound is not particularly limited, but when the amount of polyvalent metal compound exceeds 1 chemical equivalent, the amount of unreacted polyvalent metal compound increases. Preferably, 2 chemical equivalents or less are sufficient.
In addition, when a mixed solution of an unsaturated carboxylic acid compound and a polyvalent metal compound is used, the unsaturated carboxylic acid compound is usually added while the unsaturated carboxylic acid compound and the polyvalent metal compound are dissolved in a solvent. Although a valent metal salt is formed, it is preferable to mix for 1 minute or more in order to ensure the formation of the polyvalent metal salt.
Examples of the solvent used for preparing the solution of the polyvalent metal salt of the unsaturated carboxylic acid compound include water, lower alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, organic solvents such as acetone and methyl ethyl ketone, or a mixed solvent thereof. Water is most preferred.
As a method of applying a solution of an unsaturated carboxylic acid compound polyvalent metal salt to the base material layer, a method of applying the solution to the surface of the base material layer, a method of immersing the base material layer in the solution, Various known coating methods such as a method of spraying on the surface of the base material layer can be adopted.
Examples of a method for applying a polyvalent metal salt solution of an unsaturated carboxylic acid compound to the base material layer include gravure coaters such as an air knife coater, direct gravure coater, gravure offset, arc gravure coater, gravure reverse and jet nozzle method. , Reverse roll coaters such as top feed reverse coater, bottom feed reverse coater and nozzle feed reverse coater, 5-roll coater, lip coater, bar coater, bar reverse coater, die coater, etc. What is necessary is just to apply | coat so that it may become 0.05-10 g / m < 2 > in the quantity (solid content) in the solution (solid content) of a saturated carboxylic acid compound polyvalent metal salt, Preferably it is 0.1-5 g / m < 2 >.

不飽和カルボン酸化合物の多価金属塩を溶解する際若しくは不飽和カルボン酸化合物と多価金属化合物とを溶解する際には、本発明の目的を損なわない範囲で、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、エチレングリコール・ジ(メタ)アクリレート、ジエチレングリコール・ジ(メタ)アクリレート、トリエチレングリコール・ジ(メタ)アクリレート、PEG#200・ジ(メタ)アクリレート、PEG#400・ジ(メタ)アクリレート、PEG#600・ジ(メタ)アクリレート、ネオペンチルグリコール・ジ(メタ)アクリレート、1,4−ブタンジオール・ジ(メタ)アクリレートなどのグリコール類のアクリル酸二価エステル、その他の不飽和カルボン酸(ジ)エステル化合物、酢酸ビニルなどのビニルエステル化合物等の単量体あるいは低分子量の化合物、ポリビニルアルコール、エチレン・ビニルアルコール共重合体、ポリビニルピロリドン、ポリビニルエチルエーテル、ポリアクリルアミド、ポリエチレンイミン、澱粉、アラビアガム、メチルセルロース等の水溶性重合体、アクリル酸エステル重合体、エチレン・アクリル酸共重合体、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、ポリエステル、ポリウレタン等の高分子量の化合物等を添加してもよい。
また、不飽和カルボン酸化合物多価金属塩を溶解する際若しくは不飽和カルボン酸化合物と多価金属化合物とを溶解する際には、本発明の目的を損なわない範囲で、滑剤、スリップ剤、アンチ・ブロッキング剤、帯電防止剤、防曇剤、顔料、染料、無機また有機の充填剤等の各種添加剤を添加しておいてもよいし、基材層との濡れ性を改良するために、各種界面活性剤等を添加しておいてもよい。
When dissolving the polyvalent metal salt of the unsaturated carboxylic acid compound or when dissolving the unsaturated carboxylic acid compound and the polyvalent metal compound, methyl (meth) acrylate, as long as the object of the present invention is not impaired, Ethyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, PEG # 200 • di (meth) acrylate, PEG # 400 • di ( Acrylic acid divalent esters of glycols such as (meth) acrylate, PEG # 600 • di (meth) acrylate, neopentyl glycol • di (meth) acrylate, 1,4-butanediol • di (meth) acrylate, and other Vinyl esthetics such as saturated carboxylic acid (di) ester compounds and vinyl acetate Monomers such as compounds or low molecular weight compounds, polyvinyl alcohol, ethylene / vinyl alcohol copolymers, polyvinyl pyrrolidone, polyvinyl ethyl ether, polyacrylamide, polyethyleneimine, starch, gum arabic, methylcellulose and other water-soluble polymers, acrylic High molecular weight compounds such as acid ester polymers, ethylene / acrylic acid copolymers, polyvinyl acetate, ethylene / vinyl acetate copolymers, polyesters and polyurethanes may be added.
Further, when the unsaturated carboxylic acid compound polyvalent metal salt is dissolved, or when the unsaturated carboxylic acid compound and the polyvalent metal compound are dissolved, the lubricant, slip agent, -Various additives such as blocking agents, antistatic agents, antifogging agents, pigments, dyes, inorganic or organic fillers may be added, and in order to improve the wettability with the base material layer, Various surfactants and the like may be added.

不飽和カルボン酸化合物多価金属塩の溶液に電子線を照射して不飽和カルボン酸化合物多価金属塩を重合する際には、塗工液を一部乾燥後に行うことが好ましい。また、塗工液の乾燥は溶媒を完全に除去するのではなく、塗工液中に適度の溶媒(水溶液を用いる場合は水分)、好ましくは20〜60重量%の範囲で溶媒を含む状態で電子線を照射することが好ましい。塗工液に含まれる溶媒が20重量%未満の場合は得られるガスバリア性膜の酸素バリア性が低下する虞があり、塗工液に含まれる溶媒が60重量%以上の場合は得られるガスバリア性膜の酸素バリア性や外観、特に透明性が低下する虞がある。
また、不飽和カルボン酸化合物多価金属塩を溶媒の存在下で電子線を照射する際の温度は、溶媒が沸騰する温度でない限りとくに限定はされないが、通常、60℃以下、とくに常温〜50℃の範囲で行うことが好ましい。電子線を照射する際の温度を高くし過ぎると、溶媒の蒸発が速くなり、不飽和カルボン酸化合物多価金属塩の結晶が析出し易くなり、一方、温度が低すぎる場合は、不飽和カルボン酸化合物多価金属塩を重合させた後に溶媒を乾燥する時間が長くなり、ガスバリア性膜の製造ライン等を長くする必要がある。
When the unsaturated carboxylic acid compound polyvalent metal salt is irradiated with an electron beam to polymerize the unsaturated carboxylic acid compound polyvalent metal salt, it is preferable that the coating liquid is partially dried. In addition, the drying of the coating liquid does not completely remove the solvent, but an appropriate solvent (water if an aqueous solution is used) in the coating liquid, preferably in a state containing the solvent in the range of 20 to 60% by weight. It is preferable to irradiate an electron beam. When the solvent contained in the coating liquid is less than 20% by weight, the oxygen barrier property of the resulting gas barrier film may be lowered, and when the solvent contained in the coating liquid is 60% by weight or more, the obtained gas barrier property. There is a possibility that the oxygen barrier property and appearance of the film, particularly transparency, may be lowered.
Further, the temperature at which the unsaturated carboxylic acid compound polyvalent metal salt is irradiated with an electron beam in the presence of a solvent is not particularly limited as long as the solvent is not at a boiling temperature, but is usually 60 ° C. or less, particularly from room temperature to 50 ° C. It is preferable to carry out in the range of ° C. If the temperature when irradiating the electron beam is too high, the evaporation of the solvent is accelerated and crystals of the unsaturated carboxylic acid compound polyvalent metal salt are likely to precipitate, whereas if the temperature is too low, the unsaturated carboxylic acid is It is necessary to lengthen the time for drying the solvent after polymerizing the acid compound polyvalent metal salt and lengthen the production line of the gas barrier film.

不飽和カルボン酸化合物多価金属塩の溶液に照射する電子線(エレクトロン・ビーム;EB)は、不飽和カルボン酸化合物多価金属塩が重合する強さであればとくに限定はされないが、通常、加速電圧が30kV〜300kV、線量が10〜300キログレイ(kGy)の範囲の電子線を用いることが好ましい。加速電圧を大きくしすぎると、電子線の浸透深さが深くなり、基材層が劣化する可能性があり、一方、加速電圧を小さくしすぎると、電子線の浸透深さが浅くなり、不飽和カルボン酸化合物多価金属塩の重合が不十分になる可能性がある。また、線量を多くくしすぎると、ライン速度が遅くなり、生産性が低下する虞があり、線量を少なくしすぎると、不飽和カルボン酸化合物多価金属塩の重合が不十分になる可能性がある。   The electron beam (electron beam; EB) applied to the solution of the unsaturated carboxylic acid compound polyvalent metal salt is not particularly limited as long as the unsaturated carboxylic acid compound polyvalent metal salt is polymerized. It is preferable to use an electron beam having an acceleration voltage of 30 kV to 300 kV and a dose of 10 to 300 kilogray (kGy). If the acceleration voltage is increased too much, the penetration depth of the electron beam becomes deep, and the base material layer may be deteriorated. On the other hand, if the acceleration voltage is reduced too much, the penetration depth of the electron beam becomes shallow, which is not good. The polymerization of the saturated carboxylic acid compound polyvalent metal salt may be insufficient. In addition, if the dose is increased too much, the line speed may be slowed and productivity may be reduced. If the dose is decreased too much, polymerization of the unsaturated carboxylic acid compound polyvalent metal salt may be insufficient. is there.

本発明における不飽和カルボン酸化合物多価金属塩の重合率は、以下の測定方法により求めた。
重合率:(B/B)EB後/(B/B)モノマー×100
*(B/B)EB後:電子線照射(重合後)後の(B/B)
*(B/B)モノマー:モノマー(重合前)の(B/B)
(B/B)については下記に記載のとおり規定した。
830cm−1付近のビニル基に結合する水素のδC−Hに基づく吸光度Bと赤外線吸収スペクトルにおける1520cm−1付近のカルボキシレートイオンのνC=Oに基づく吸光度Bとの比(B/B)は、(予備)重合させた膜から1cm×3cmの測定用サンプルを切り出し、その表面(重合体(A)層)の赤外線吸収スペクトルを赤外線全反射測定(ATR法)により得、以下の手順で、先ず、吸光度B及び吸光度Bを求める。
830cm−1付近のビニル基に結合する水素のδC−Hに基づく吸光度B:赤外線吸収スペクトルの800cm−1と850cm−1の吸光度とを直線(P)で結び、800〜850cm−1間の最大吸光度(830cm−1付近)から垂直に直線(Q)を下ろし、当該直線(Q)と直線(P)との交点と最大吸光度との吸光度の距離(長さ)を吸光度Bとする。
1520cm−1付近のカルボキシレートイオンのνC=Oに基づく吸光度B:赤外線吸収スペクトルの1480cm−1と1630cm−1の吸光度とを直線(L)で結び、1480〜1630cm−1間の最大吸光度(1520cm−1付近)から垂直に直線(M)を下ろし、当該直線(M)と直線(L)との交点と最大吸光度との吸光度の距離(長さ)を吸光度Bとした。尚、最大吸光度(1520cm−1付近)は、対イオンの金属種によりピーク位置が変化することがあり、例えば、カルシウムでは1520cm−1付近、亜鉛では1520cm−1付近、マグネシウムでは1540cm−1付近である。 次いで、上記方法で求めた吸光度B及び吸光度Bから比(B/B)を求める。また重合率は上記計算式のように、モノマーの吸光度比(B/B)モノマーと電子線照射(重合後)後の(B/B)EB後を測定し求める。
なお、本発明のおける赤外線スペクトルの測定(赤外線全反射測定:ATR法)は、日本分光社製FT−IR350装置を用い、KRS−5(Thallium Bromide−Iodide)結晶を装着して、入射角45度、室温、分解能4cm−1、積算回数150回の条件で行う。
The polymerization rate of the unsaturated carboxylic acid compound polyvalent metal salt in the present invention was determined by the following measuring method.
Polymerization rate: (B 1 / B) After EB / (B 1 / B) monomer × 100
* (B 1 / B) EB after: after electron beam irradiation (after polymerization) (B 1 / B)
* (B 1 / B) Monomer: Monomer (before polymerization) of (B 1 / B)
(B 1 / B) was defined as described below.
Ratio of absorbance B 1 based on δC—H of hydrogen bonded to a vinyl group near 830 cm −1 to absorbance B based on νC═O of carboxylate ions near 1520 cm −1 in the infrared absorption spectrum (B 1 / B) Cut out a measurement sample of 1 cm × 3 cm from the (preliminary) polymerized film, and obtained the infrared absorption spectrum of the surface (polymer (A) layer) by infrared total reflection measurement (ATR method). First, absorbance B 1 and absorbance B are determined.
830 cm -1 vicinity absorbance based .delta.C-H of hydrogen binding to vinyl groups B 1: bear and the absorbance of the infrared absorption spectrum of 800 cm -1 and 850 cm -1 in a straight line (P), between 800~850Cm -1 A straight line (Q) is dropped vertically from the maximum absorbance (near 830 cm −1 ), and the distance (length) of the absorbance between the intersection of the straight line (Q) and the straight line (P) and the maximum absorbance is defined as absorbance B 1 .
1520 cm -1 absorbance based νC = O of carboxylate ions in the vicinity of B: the absorbance of the infrared absorption spectrum of 1480 cm -1 and 1630 cm -1 connected by a straight line (L), 1480~1630cm maximum absorbance between -1 (1520 cm The straight line (M) was dropped vertically from the vicinity of −1 ), and the absorbance distance (length) between the intersection of the straight line (M) and the straight line (L) and the maximum absorbance was defined as absorbance B. The peak position of maximum absorbance (near 1520 cm −1 ) may vary depending on the metal species of the counter ion. For example, calcium is near 1520 cm −1 , zinc is near 1520 cm −1 , and magnesium is near 1540 cm −1 . is there. Next, the ratio (B 1 / B) is determined from the absorbance B 1 and absorbance B determined by the above method. The polymerization rate is determined by measuring the monomer absorbance ratio (B 1 / B) after the monomer and electron beam irradiation (after polymerization) (B 1 / B) after EB .
In addition, the measurement of the infrared spectrum (infrared total reflection measurement: ATR method) in the present invention uses an FT-IR350 apparatus manufactured by JASCO Corporation, and a KRS-5 (Thallium Bromide-Iodide) crystal is attached, and the incident angle is 45. Degree, room temperature, resolution of 4 cm −1 , and 150 times of integration.

ガスバリア性膜
本発明の製造方法で得られるガスバリア性膜は、通常、赤外線吸収スペクトルにおける1700cm−1付近のカルボン酸基のνC=Oに基づく吸光度Aと1520cm−1付近のカルボキシレートイオンのνC=Oに基づく吸光度Aとの比(A/A)が0.25未満、好ましくは0.20未満の範囲にある不飽和カルボン酸化合物の多価金属塩の重合体からなる。
不飽和カルボン酸化合物の多価金属塩の重合体からなるガスバリア性膜は、カルボン酸基と多価金属がイオン架橋してなるカルボキシレートイオンと遊離のカルボン酸基が存在し、夫々、赤外線スペクトルで、遊離のカルボン酸基のνC=Oに基づく吸収が1700cm−1付近にあり、カルボキシレートイオンのνC=Oに基づく吸収が1520cm−1付近にある。
したがって、本発明の製造方法で得られるガスバリア性膜において、(A/A)が0.25未満であるということは、遊離のカルボン酸基が存在しないか、少ないことを示しており、0.25を越える膜は、遊離のカルボン酸基の含有量が多く、耐ガスバリア性が改良されない虞がある。
本発明における1700cm−1付近のカルボン酸基のνC=Oに基づく吸光度Aと赤外線吸収スペクトルにおける1520cm−1付近のカルボキシレートイオンのνC=Oに基づく吸光度Aとの比(A/A)は、ガスバリア性膜(ガスバリア性積層体)から1cm×3cmの測定用サンプルを切り出し、その表面(不飽和カルボン酸化合物多価金属塩重合体層)の赤外線吸収スペクトルを赤外線全反射測定(ATR法)に得、以下の手順で、先ず、吸光度A及び吸光度Aを求めた。
1700cm−1付近のカルボン酸基のνC=Oに基づく吸光度A:赤外線吸収スペクトルの1660cm−1と1760cm−1の吸光度とを直線(N)で結び、1660〜1760cm−1間の最大吸光度(1700cm−1付近)から垂直に直線(O)を下ろし、当該直線(O)と直線(N)との交点と最大吸光度との吸光度の距離(長さ)を吸光度Aとした。
1520cm−1付近のカルボキシレートイオンのνC=Oに基づく吸光度A:赤外線吸収スペクトルの1480cm−1と1630cm−1の吸光度とを直線(L)で結び、1480〜1630cm−1間の最大吸光度(1520cm−1付近)から垂直に直線(M)を下ろし、当該直線(M)と直線(L)との交点と最大吸光度との吸光度の距離(長さ)を吸光度Aとした。尚、最大吸光度(1520cm−1付近)は、対イオンの金属種によりピーク位置が変化することがあり、例えば、カルシウムでは1520cm−1付近、亜鉛では1520cm−1付近、マグネシウムでは1540cm−1付近及びナトリウム(Na)では1540cm−1付近である。
次いで、上記方法で求めた吸光度A及び吸光度Aから比(A/A)を求めた。
なお、本発明のおける赤外線スペクトルの測定(赤外線全反射測定:ATR法)は、日本分光社製FT−IR350装置を用い、KRS−5(Thallium Bromide−Iodide)結晶を装着して、入射角45度、室温、分解能4cm-1、積算回数
150回の条件で行った。
Gas barrier film The gas barrier film obtained by the production method of the present invention usually has an absorbance A 0 based on νC = O of a carboxylic acid group near 1700 cm −1 in an infrared absorption spectrum and νC of a carboxylate ion near 1520 cm −1. It consists of a polymer of a polyvalent metal salt of an unsaturated carboxylic acid compound in which the ratio (A 0 / A) to the absorbance A based on ═O is less than 0.25, preferably less than 0.20.
A gas barrier film made of a polymer of a polyvalent metal salt of an unsaturated carboxylic acid compound has a carboxylate ion formed by ionic crosslinking of a carboxylic acid group and a polyvalent metal, and a free carboxylic acid group. Thus, the absorption based on νC═O of the free carboxylic acid group is around 1700 cm −1 , and the absorption based on νC═O of the carboxylate ion is around 1520 cm −1 .
Therefore, in the gas barrier film obtained by the production method of the present invention, (A 0 / A) being less than 0.25 indicates that there are no or few free carboxylic acid groups. A film exceeding .25 has a large content of free carboxylic acid groups, and there is a possibility that the gas barrier resistance is not improved.
Ratio of absorbance A 0 based on νC═O of a carboxylic acid group near 1700 cm −1 in the present invention to absorbance A based on νC═O of a carboxylate ion near 1520 cm −1 in an infrared absorption spectrum (A 0 / A) Cuts out a measurement sample of 1 cm × 3 cm from a gas barrier film (gas barrier laminate), and measures the infrared absorption spectrum of the surface (unsaturated carboxylic acid compound polyvalent metal salt polymer layer) by infrared total reflection measurement (ATR method). First, the absorbance A 0 and absorbance A were determined by the following procedure.
1700cm absorbance based νC = O -1 vicinity of the carboxylic acid groups A 0: a absorbance of the infrared absorption spectrum of 1660 cm -1 and 1760 cm -1 connected by a straight line (N), 1660~1760cm maximum absorbance between -1 ( The straight line (O) was dropped vertically from around 1700 cm −1, and the absorbance distance (length) between the intersection of the straight line (O) and the straight line (N) and the maximum absorbance was defined as absorbance A 0 .
1520 cm -1 vicinity of carboxylate ion of νC = O based upon the absorbance A: connected by a straight line (L) and the absorbance of the infrared absorption spectrum of 1480 cm -1 and 1630 cm -1, the maximum absorbance between 1480~1630cm -1 (1520cm The straight line (M) was dropped vertically from the vicinity of −1 ), and the absorbance distance (length) between the intersection of the straight line (M) and the straight line (L) and the maximum absorbance was defined as absorbance A. The peak position of maximum absorbance (near 1520 cm −1 ) may vary depending on the metal species of the counter ion. For example, calcium is near 1520 cm −1 , zinc is near 1520 cm −1 , magnesium is near 1540 cm −1 , and In sodium (Na), it is around 1540 cm −1 .
Next, the ratio (A 0 / A) was determined from the absorbance A 0 and the absorbance A determined by the above method.
In addition, the measurement of the infrared spectrum (infrared total reflection measurement: ATR method) in the present invention uses an FT-IR350 apparatus manufactured by JASCO Corporation, and a KRS-5 (Thallium Bromide-Iodide) crystal is attached, and the incident angle is 45. Temperature, room temperature, resolution of 4 cm −1 , and accumulation of 150 times.

本発明の製造方法により得られるガスバリア性膜は、基材層から剥離してガスバリア性膜単層としても用い得るが、通常は、基材層にガスバリア性膜を積層した積層体として用いる。かかるガスバリア性積層体は、基材層の形状により、また用途に応じ、積層フィルム、積層シート、トレー、カップ、中空体(ボトル)等の種々の形状を取り得る。   The gas barrier film obtained by the production method of the present invention can be peeled from the base material layer and used as a gas barrier film single layer, but is usually used as a laminate in which the gas barrier film is laminated on the base material layer. Such a gas barrier laminate can take various shapes such as a laminate film, a laminate sheet, a tray, a cup, and a hollow body (bottle) depending on the shape of the base material layer and the use.

本発明の製造方法により得られるガスバリア性積層体は、積層体が積層フィルムであれば、その少なくとも片面に、熱融着層を積層することにより、ヒートシール可能な包装用フィルムとして好適な積層フィルムが得られる。かかる熱融着層としては、通常熱融着層として公知のエチレン、プロピレン、ブテン−1、ヘキセン−1、4−メチル・ペンテン−1、オクテン−1等のα−オレフィンの単独若しくは共重合体、高圧法低密度ポリエチレン、線状低密度ポリエチレン(所謂LLDPE)、高密度ポリエチレン、ポリプロピレン、ポリプロピレンランダム共重合体、ポリブテン、ポリ4−メチル・ペンテン−1、低結晶性あるいは非晶性のエチレン・プロピレンランダム共重合体、エチレン・ブテン−1ランダム共重合体、プロピレン・ブテン−1ランダム共重合体等のポリオレフィンを単独若しくは2種以上の組成物、エチレン・酢酸ビニル共重合体(EVA)、エチレン・(メタ)アクリル酸共重合体あるいはその金属塩、EVAとポリオレフィンとの組成物等から得られる層である。
中でも、高圧法低密度ポリエチレン、線状低密度ポリエチレン(所謂LLDPE)、高密度ポリエチレン等のエチレン系重合体から得られる熱融着層が低温ヒートシール性、ヒートシール強度に優れるので好ましい。
If the laminated body is a laminated film, the gas barrier laminate obtained by the production method of the present invention is a laminated film suitable as a packaging film that can be heat-sealed by laminating a heat fusion layer on at least one side thereof. Is obtained. As such a heat-fusible layer, a homo- or copolymer of α-olefin such as ethylene, propylene, butene-1, hexene-1, 4-methylpentene-1, octene-1, etc., which are generally known as heat-fusible layers , High pressure method low density polyethylene, linear low density polyethylene (so-called LLDPE), high density polyethylene, polypropylene, polypropylene random copolymer, polybutene, poly-4-methyl pentene-1, low crystalline or amorphous ethylene Polypropylene random copolymer, ethylene / butene-1 random copolymer, polyolefin such as propylene / butene-1 random copolymer, or a composition of two or more, ethylene / vinyl acetate copolymer (EVA), ethylene・ (Meth) acrylic acid copolymer or metal salt thereof, EVA and polyolefin A layer obtained from the object or the like.
Among these, a heat-sealing layer obtained from an ethylene-based polymer such as high-pressure method low-density polyethylene, linear low-density polyethylene (so-called LLDPE), or high-density polyethylene is preferable because it has excellent low-temperature heat sealability and heat seal strength.

次に実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を越えない限りこれらの実施例に制約されるものではない。   EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist.

実施例及び比較例における物性値等は、以下の評価方法により求めた。
<評価方法>
(1)重合率[%]:上記記載の方法で測定した。
(2)酸素透過度[ml/(m・day・MPa)]:積層フィルムを、モコン社製OX−TRAN2/21 MLを用いて、JIS K 7126に準じ、温度;20℃、湿度;90%RHおよび0%RHの条件で測定した。
(3)吸光度比(A/A):上記記載の方法で測定した。
(4)ヘイズ[%]:JIS K 7136に準拠し、フィルム1枚のヘイズ(%)を測定した。測定装置にはHaze Meter(日本電色工業社製 NDH−2000)を使用した。
(5)塗工液(塗工膜)の水分量[重量%]:不飽和カルボン酸化合物多価金属塩溶液を塗工した積層フィルムあるいは重合後の積層フィルムから120×297mmの測定用サンプルを切り出しその重量(Wg)を測定した後、温度;130℃の熱風乾燥器で10分間乾燥してその重量(Wg)を測定する。それとは別に基材フィルム(不飽和カルボン酸化合物多価金属塩溶液を塗工するフィルム)から120×297mmの測定用サンプルを切り出しその重量(W基材g)を測定する。そして、前記各フィルムの重量を用い、以下の式で塗工膜中の水分量を求めた。
水分量(重量%)=〔(W−W基材)−(W−W基材)〕/(W−W基材
The physical property values and the like in Examples and Comparative Examples were obtained by the following evaluation methods.
<Evaluation method>
(1) Polymerization rate [%]: Measured by the method described above.
(2) Oxygen permeability [ml / (m 2 · day · MPa)]: Using OX-TRAN 2/21 ML manufactured by Mocon Co., Ltd., according to JIS K 7126, temperature: 20 ° C., humidity: 90 It was measured under the conditions of% RH and 0% RH.
(3) Absorbance ratio (A 0 / A): measured by the method described above.
(4) Haze [%]: Based on JIS K7136, the haze (%) of one film was measured. A Haze Meter (NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd.) was used as a measuring device.
(5) Water content [% by weight] of coating solution (coating film): 120 × 297 mm measurement sample from laminated film coated with unsaturated carboxylic acid compound polyvalent metal salt solution or laminated film after polymerization After cutting and measuring its weight (Wg), it is dried for 10 minutes in a hot air drier at a temperature of 130 ° C. and its weight (W dry g) is measured. Separately, a sample for measurement of 120 × 297 mm is cut out from a substrate film (film to which an unsaturated carboxylic acid compound polyvalent metal salt solution is applied), and the weight (W substrate g) is measured. And the moisture content in a coating film was calculated | required with the following formula | equation using the weight of each said film.
Water content (% by weight) = [(W-W substrate )-(W dry- W substrate )] / (WW substrate )

<溶液(X)の作製>
アクリル酸亜鉛(アクリル酸のZn塩)水溶液〔浅田化学社製、濃度30重量%(アクリル酸成分:20重量%、Zn成分10重量%)〕と、メチルアルコールで25重量%に希釈した光重合開始剤〔1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(チバ・スペシャリティ・ケミカルズ社製 商品名;イルガキュアー 2959)〕及び界面活性剤(花王社製 商品名;エマルゲン120)をモル分率でそれぞれ98.5%、1.2%、0.3%となるように混合し、アクリル酸Zn塩溶液(X)からなる不飽和カルボン酸化合物多価金属塩溶液を作製した。
<Preparation of solution (X)>
Zinc acrylate (Zn salt of acrylic acid) aqueous solution (manufactured by Asada Chemical Co., Ltd., concentration 30 wt% (acrylic acid component: 20 wt%, Zn component 10 wt%)) and photopolymerization diluted to 25 wt% with methyl alcohol Initiator [1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (trade name; Irgacure 2959, manufactured by Ciba Specialty Chemicals)] and A surfactant (trade name; Emulgen 120, manufactured by Kao Corporation) was mixed so that the molar fractions were 98.5%, 1.2%, and 0.3%, respectively, and consisted of a Zn acrylate solution (X). An unsaturated carboxylic acid compound polyvalent metal salt solution was prepared.

実施例1
上記アクリル酸Zn塩溶液(X)を厚さ12μmの二軸延伸ポリエステルフィルム(ユニチカ社製 商品名;エンブレットPET12)からなる基材フィルムのコロナ処理面に、メイヤーバーで塗布量が固形分で3.5g/mになるように塗布した後、塗工液中の水分量が28重量%の状態で、直ちにEB照射装置(岩崎電気株式会社製 型式:CB250/30/20)を用いて、加速電圧110kV、線量30kGyの条件で電子線を照射してアクリル酸Zn塩を重合してなるガスバリア性膜を積層したガスバリア性積層フィルムを得た。
得られたガスバリア性積層フィルムの重合率[%]、酸素透過度(90%RHおよび0%RH)[ml/(m・day・MPa)]、吸光度比(A/A)及びヘイズ[%]を表1に示す。
Example 1
The coating amount of the acrylic acid Zn salt solution (X) is a solid content on a corona-treated surface of a base film made of a biaxially stretched polyester film having a thickness of 12 μm (trade name; Emblet PET12, manufactured by Unitika). After coating to 3.5 g / m 2 , immediately using an EB irradiation apparatus (Iwasaki Electric Co., Ltd. model: CB250 / 30/20) with the water content in the coating solution being 28% by weight. Then, a gas barrier laminated film was obtained in which a gas barrier film formed by polymerizing Zn acrylate was irradiated by irradiating an electron beam under the conditions of an acceleration voltage of 110 kV and a dose of 30 kGy.
Polymerization rate [%], oxygen permeability (90% RH and 0% RH) [ml / (m 2 · day · MPa)], absorbance ratio (A 0 / A) and haze [ %] Is shown in Table 1.

実施例2
実施例1と同様にして上記アクリル酸Zn塩溶液(X)を二軸延伸ポリエステルフィルムからなる基材フィルムに塗布した後、塗工液中の水分量が44重量%の状態で、実施例1と同一の条件で電子線を照射してガスバリア性積層フィルムを得た。
得られたガスバリア性積層フィルムの重合率[%]、酸素透過度(90%RHおよび0%RH)[ml/(m・day・MPa)]、吸光度比(A/A)及びヘイズ[%]を表1に示す。
Example 2
In the same manner as in Example 1, after applying the Zn acrylate solution (X) to a base film made of a biaxially stretched polyester film, the water content in the coating solution was 44% by weight. A gas barrier laminate film was obtained by irradiating with an electron beam under the same conditions as in FIG.
Polymerization rate [%], oxygen permeability (90% RH and 0% RH) [ml / (m 2 · day · MPa)], absorbance ratio (A 0 / A) and haze [ %] Is shown in Table 1.

実施例3
実施例1と同様にして上記アクリル酸Zn塩溶液(X)を二軸延伸ポリエステルフィルムからなる基材フィルムに塗布した後、塗工液中の水分量が54重量%の状態で、実施例1と同一の条件で電子線を照射してガスバリア性積層フィルムを得た。
得られたガスバリア性積層フィルムの重合率[%]、酸素透過度(90%RHおよび0%RH)[ml/(m・day・MPa)]、吸光度比(A/A)及びヘイズ[%]を表1に示す。
Example 3
In the same manner as in Example 1, after applying the Zn acrylate solution (X) to a base film made of a biaxially stretched polyester film, the water content in the coating solution was 54% by weight. A gas barrier laminate film was obtained by irradiating with an electron beam under the same conditions as in FIG.
Polymerization rate [%], oxygen permeability (90% RH and 0% RH) [ml / (m 2 · day · MPa)], absorbance ratio (A 0 / A) and haze [ %] Is shown in Table 1.

実施例4
上記アクリル酸Zn塩溶液(X)を厚さ20μmの二軸延伸ポリプロピレンフィルム(東セロ社製 商品名;OP HE−1)からなる基材フィルムのコロナ処理面に、メイヤーバーで塗布量が固形分で3.5g/mになるように塗布した後、塗工液中の水分量が44重量%の状態で、実施例1と同一の条件で電子線を照射してガスバリア性積層フィルムを得た。
得られたガスバリア性積層フィルムの重合率[%]、酸素透過度(90%RHおよび0%RH)[ml/(m・day・MPa)]、吸光度比(A/A)及びヘイズ[%]を表1に示す。
Example 4
The coating amount of the above-described Zn acrylate solution (X) is a solid content on a corona-treated surface of a base film made of a biaxially stretched polypropylene film (trade name; OP HE-1 manufactured by Tosero Co., Ltd.) having a thickness of 20 μm. After coating to 3.5 g / m 2 , an electron beam was irradiated under the same conditions as in Example 1 with a moisture content in the coating solution of 44% by weight to obtain a gas barrier laminated film. It was.
Polymerization rate [%], oxygen permeability (90% RH and 0% RH) [ml / (m 2 · day · MPa)], absorbance ratio (A 0 / A) and haze [ %] Is shown in Table 1.

実施例5
上記アクリル酸Zn塩溶液(X)を厚さ15μmの二軸延伸ポリアミドフィルム(ユニチカ社製 商品名;エンブレムON15)からなる基材フィルムのコロナ処理面に、メイヤーバーで塗布量が固形分で3.5g/mになるように塗布した後、塗工液中の水分量が44重量%の状態で、実施例1と同一の条件で電子線を照射してガスバリア性積層フィルムを得た。
得られたガスバリア性積層フィルムの重合率[%]、酸素透過度(90%RHおよび0%RH)[ml/(m・day・MPa)]、吸光度比(A/A)及びヘイズ[%]
を表1に示す。
Example 5
On the corona-treated surface of a base film made of a 15 μm thick biaxially stretched polyamide film (trade name; Emblem ON15, manufactured by Unitika Ltd.), the coating amount of the acrylic acid Zn salt solution (X) is 3 with a Mayer bar. After coating to 0.5 g / m 2 , an electron beam was irradiated under the same conditions as in Example 1 with a moisture content in the coating solution of 44% by weight to obtain a gas barrier laminated film.
Polymerization rate [%], oxygen permeability (90% RH and 0% RH) [ml / (m 2 · day · MPa)], absorbance ratio (A 0 / A) and haze [ %]
Is shown in Table 1.

Figure 0004808752
Figure 0004808752

参考例1
上記アクリル酸Zn塩溶液(X)を厚さ12μmの二軸延伸ポリエステルフィルム(商品名;エンブレットPET12、ユニチカ社製)からなる基材フィルムのコロナ処理面に、メイヤーバーで塗布量が固形分で3.5g/mになるように塗布した後、塗工液中の水分量が28重量%の状態で、直ちにUV照射装置(アイグラフィック社製 EYE GRANDAGE 型式ECS 301G1)を用いて、UV強度189mW/cm2、積算光量190mJ/cmの条件で紫外線を照射して重合しガスバリア性膜を積層したガスバリア性積層フィルムを得た。
得られたガスバリア性積層フィルムの重合率[%]、酸素透過度(90%RH)[ml/(m・day・MPa)]、吸光度比(A/A)及びヘイズ[%]を表2に示す。
Reference example 1
The coating amount of the above-described Zn acrylate solution (X) is a solid content on the corona-treated surface of a base film made of a biaxially stretched polyester film (trade name; Emblet PET12, manufactured by Unitika) with a thickness of 12 μm. in after coating to be 3.5 g / m 2, with moisture content of 28% by weight state in the coating liquid, using a UV irradiation apparatus (eye graphic Co. eYE GRANDAGE model ECS 301G1) immediately, UV A gas barrier laminate film was obtained by polymerizing by irradiation with ultraviolet rays under the conditions of an intensity of 189 mW / cm 2 and an integrated light amount of 190 mJ / cm 2 .
The polymerization rate [%], oxygen permeability (90% RH) [ml / (m 2 · day · MPa)], absorbance ratio (A 0 / A) and haze [%] of the obtained gas barrier laminate film are shown. It is shown in 2.

参考例2
参考例1と同様にして上記アクリル酸Zn塩溶液(X)を二軸延伸ポリエステルフィルムからなる基材フィルムに塗布した後、熱風乾燥器を使用して温度;60℃、時間;8秒の条件で乾燥し、重合前の塗工液の水分量を44重量%にした後、UV照射装置(アイグラフィック社製 EYE GRANDAGE 型式ECS 301G1)を用いて、UV強度189mW/cm2、積算光量190mJ/cmの条件で紫外線を照射して重合しガスバリア性膜を積層したガスバリア性積層フィルムを得た。
得られたガスバリア性積層フィルムの重合率[%]、酸素透過度(90%RH)[ml/(m・day・MPa)]、吸光度比(A/A)及びヘイズ[%]を表2に示す。
Reference example 2
In the same manner as in Reference Example 1, the above-described Zn acrylate solution (X) was applied to a base film made of a biaxially stretched polyester film, and then the temperature; 60 ° C., time; 8 seconds using a hot air dryer Then, the water content of the coating liquid before polymerization is set to 44% by weight, and using a UV irradiation device (EYE GRANDAGE model ECS 301G1 manufactured by Eye Graphic Co., Ltd.), the UV intensity is 189 mW / cm 2 , the integrated light quantity is 190 mJ / A gas barrier laminated film was obtained by polymerizing by irradiating ultraviolet rays under the condition of cm 2 and laminating the gas barrier film.
The polymerization rate [%], oxygen permeability (90% RH) [ml / (m 2 · day · MPa)], absorbance ratio (A 0 / A) and haze [%] of the obtained gas barrier laminate film are shown. It is shown in 2.

参考例3
参考例1と同様にして上記アクリル酸Zn塩溶液(X)を二軸延伸ポリエステルフィルムからなる基材フィルムに塗布した後、熱風乾燥器を使用して温度;60℃、時間;16秒の条件で乾燥し、重合前の塗工液の水分量を54重量%にした後、UV照射装置(アイグラフィック社製 EYE GRANDAGE 型式ECS 301G1)を用いて、UV強度189mW/cm2、積算光量190mJ/cmの条件で紫外線を照射して、重合しガスバリア性膜を積層したガスバリア性積層フィルムを得た。
得られたガスバリア性積層フィルムの重合率[%]、酸素透過度(90%RH)[ml/(m・day・MPa)]、吸光度比(A/A)及びヘイズ[%]を表2に示す。
Reference example 3
In the same manner as in Reference Example 1, the above-described Zn acrylate solution (X) was applied to a base film composed of a biaxially stretched polyester film, and then the temperature; 60 ° C., time; 16 seconds using a hot air dryer Then, the water content of the coating liquid before polymerization is set to 54% by weight. Then, using a UV irradiation device (EYE GRANDAGE model ECS 301G1 manufactured by Eye Graphic Co., Ltd.), the UV intensity is 189 mW / cm 2 , the integrated light quantity is 190 mJ / Ultraviolet rays were irradiated under the condition of cm 2 to obtain a gas barrier laminated film in which a gas barrier film was laminated by polymerization.
The polymerization rate [%], oxygen permeability (90% RH) [ml / (m 2 · day · MPa)], absorbance ratio (A 0 / A) and haze [%] of the obtained gas barrier laminate film are shown. It is shown in 2.

Figure 0004808752
Figure 0004808752

表1及び表2から分かるように、基材層に塗工した不飽和カルボン酸化合物の多価金属塩溶液に電子線を照射して不飽和カルボン酸化合物の多価金属塩を重合させて得られたガスバリア性積層フィルム(実施例1〜5)は、基材層に塗工した不飽和カルボン酸化合物の多価金属塩溶液に紫外線を照射して不飽和カルボン酸化合物の多価金属塩を重合して得られたガスバリア性積層フィルム(参考例1〜3)に比べ、特に低湿度下(0%RH)における酸素バリア性に優れていることが分かる。   As can be seen from Table 1 and Table 2, the polyvalent metal salt solution of the unsaturated carboxylic acid compound coated on the base layer is irradiated with an electron beam to polymerize the polyvalent metal salt of the unsaturated carboxylic acid compound. The obtained gas barrier laminate films (Examples 1 to 5) were obtained by irradiating the polyvalent metal salt solution of the unsaturated carboxylic acid compound coated on the base layer with ultraviolet rays to obtain the polyvalent metal salt of the unsaturated carboxylic acid compound. It turns out that it is excellent in oxygen barrier property especially in low humidity (0% RH) compared with the gas barrier property laminated | multilayer film (Reference Examples 1-3) obtained by superposing | polymerizing.

本発明の不飽和カルボン酸化合物多価金属塩の重合体からなるガスバリア性膜及びかかるガスバリア性を形成してなるガスバリア性積層体は、耐酸素透過性(ガスバリア性)に優れているので、かかる特徴を活かして、包装材料、特に高いガスバリア性が要求される内容物の食品包装材料を始め、医療用途、工業用途等さまざまな包装材料としても好適に使用し得る。   Since the gas barrier film made of the polymer of the unsaturated carboxylic acid compound polyvalent metal salt of the present invention and the gas barrier laminate formed with such a gas barrier property are excellent in oxygen permeation resistance (gas barrier property), this is required. Taking advantage of the characteristics, it can be suitably used as a packaging material, particularly a food packaging material having a high gas barrier property, as well as various packaging materials such as medical use and industrial use.

Claims (5)

基材層の片面に、重合度が20未満の不飽和カルボン酸化合物の多価金属塩の重合体からなる、赤外線吸収スペクトルにおける1700cm1700 cm in an infrared absorption spectrum comprising a polymer of a polyvalent metal salt of an unsaturated carboxylic acid compound having a degree of polymerization of less than 20 on one surface of a base material layer. −1-1 付近のカルボン酸基のνC=Oに基づく吸光度AAbsorbance A based on νC = O of nearby carboxylic acid group 0 と1520cmAnd 1520cm −1-1 付近のカルボキシレートイオンのνC=Oに基づく吸光度Aとの比(AThe ratio of the nearby carboxylate ion to the absorbance A based on νC = O (A 0 /A)が0.10以下のガスバリア性膜が積層されてなる透明性に優れるガスバリア性積層フィルム。/ A) is a gas barrier laminated film excellent in transparency formed by laminating a gas barrier film having 0.10 or less. ヘイズが5.3%以下である請求項1記載の透明性に優れるガスバリア性積層フィルム。The gas barrier laminate film having excellent transparency according to claim 1, wherein the haze is 5.3% or less. 不飽和カルボン酸化合物が、不飽和カルボン酸の単量体若しくは重合度が10以下の重合体である請求項1または2記載の透明性に優れるガスバリア性積層フィルム。The gas barrier laminate film according to claim 1 or 2, wherein the unsaturated carboxylic acid compound is an unsaturated carboxylic acid monomer or a polymer having a polymerization degree of 10 or less. 不飽和カルボン酸化合物が、(メタ)アクリル酸である請求項1〜3のいずれかに記載の透明性に優れるガスバリア性積層フィルム。An unsaturated carboxylic acid compound is (meth) acrylic acid, The gas-barrier laminated film excellent in transparency in any one of Claims 1-3. 重合度が20未満の不飽和カルボン酸化合物の多価金属塩の重合体が、(メタ)アクリル酸亜鉛の重合体である請求項1に記載の透明性に優れるガスバリア性積層フィルム。The gas barrier laminate film according to claim 1, wherein the polymer of the polyvalent metal salt of the unsaturated carboxylic acid compound having a degree of polymerization of less than 20 is a polymer of zinc (meth) acrylate.
JP2008208217A 2008-08-12 2008-08-12 Gas barrier film and laminate thereof Active JP4808752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208217A JP4808752B2 (en) 2008-08-12 2008-08-12 Gas barrier film and laminate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208217A JP4808752B2 (en) 2008-08-12 2008-08-12 Gas barrier film and laminate thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005211951A Division JP4732049B2 (en) 2005-07-21 2005-07-21 Method for producing gas barrier film

Publications (2)

Publication Number Publication Date
JP2009018589A JP2009018589A (en) 2009-01-29
JP4808752B2 true JP4808752B2 (en) 2011-11-02

Family

ID=40358616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208217A Active JP4808752B2 (en) 2008-08-12 2008-08-12 Gas barrier film and laminate thereof

Country Status (1)

Country Link
JP (1) JP4808752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119754A (en) * 2017-12-28 2019-07-22 大日本印刷株式会社 Photopolymerizable composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078167A1 (en) * 2009-12-24 2011-06-30 三井化学東セロ株式会社 Gas barrier film, and laminate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141808A (en) * 1975-05-29 1976-12-07 Asada Kagaku Kogyo Kk Process for preparation of reactive carboxylic acid divalent metal com plexes
JP2003286349A (en) * 2001-01-29 2003-10-10 Nippon Kayaku Co Ltd Molded articles
CN1293128C (en) * 2002-04-23 2007-01-03 株式会社吴羽 Film and process for producing the same
ATE458012T1 (en) * 2004-12-01 2010-03-15 Kureha Corp AQUEOUS COMPOSITION CONTAINING POLYMERIZABLE MONOMER, GAS BARRIER FILM AND PRODUCTION METHOD THEREOF

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119754A (en) * 2017-12-28 2019-07-22 大日本印刷株式会社 Photopolymerizable composition
JP7091659B2 (en) 2017-12-28 2022-06-28 大日本印刷株式会社 Photopolymerizable composition

Also Published As

Publication number Publication date
JP2009018589A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
TWI406763B (en) Air barrier film, gas barrier layered body and manufacturing method thereof
TWI411618B (en) Air barrier film, gas barrier layered body and manufacturing method thereof
JP4721988B2 (en) Gas barrier film, gas barrier laminate and method for producing the same
JP6131570B2 (en) Gas barrier coating liquid, method for producing the same, method for producing gas barrier laminate, method for producing packaging material, and method for producing packaging material for heat sterilization
JP2007321099A (en) Method for producing unsaturated carboxylic acid-modified vinyl alcohol-based polymer and gas barrier membrane or gas barrier laminate using the same
JP4732022B2 (en) Method for producing gas barrier film
TWI465338B (en) Gas barrier laminates
JP2008056861A (en) Gas barrier film, gas barrier laminate and method for producing the same
JP2007210262A (en) Transparent barrier film and its manufacturing method
JP2005125693A (en) Gas-barrier laminated film
JP5088921B2 (en) Method for producing gas barrier film
JP4808752B2 (en) Gas barrier film and laminate thereof
JP4808472B2 (en) Gas barrier film, gas barrier laminate and method for producing the same
JP4732049B2 (en) Method for producing gas barrier film
TW201139548A (en) Gas barrier film, and laminate
JP2008290780A (en) Gas barrier diaphragm and its laminated body
JP5140241B2 (en) Method for producing gas barrier film
JP2009012479A (en) Gas barrier film and its laminate
JP2009155563A (en) Method of manufacturing gas barrier film, and film obtained from the same
TWI542467B (en) Gas barrier film
JP2015217983A (en) Packing
JP2004299173A (en) Gas barrier laminated film
JP5155102B2 (en) Vertical bag filling and sealing bag
JP4917299B2 (en) Stretched molded body and method for producing the same
JP5244248B2 (en) Method for producing gas barrier laminated film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4808752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250