JP4807522B2 - Semiconductor optical element component soldering method and semiconductor optical element component - Google Patents

Semiconductor optical element component soldering method and semiconductor optical element component Download PDF

Info

Publication number
JP4807522B2
JP4807522B2 JP2007240455A JP2007240455A JP4807522B2 JP 4807522 B2 JP4807522 B2 JP 4807522B2 JP 2007240455 A JP2007240455 A JP 2007240455A JP 2007240455 A JP2007240455 A JP 2007240455A JP 4807522 B2 JP4807522 B2 JP 4807522B2
Authority
JP
Japan
Prior art keywords
semiconductor optical
optical element
optical lens
element component
silicone resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007240455A
Other languages
Japanese (ja)
Other versions
JP2008060586A (en
Inventor
益次 田崎
健一 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Rubber Inc
Original Assignee
Asahi Rubber Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Rubber Inc filed Critical Asahi Rubber Inc
Priority to JP2007240455A priority Critical patent/JP4807522B2/en
Publication of JP2008060586A publication Critical patent/JP2008060586A/en
Application granted granted Critical
Publication of JP4807522B2 publication Critical patent/JP4807522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、半導体光学素子部品をプリント回路基板等の被取付物にはんだ付けする方法、特に、樹脂製光学レンズを備える半導体光学素子部品を、鉛フリーはんだを用いたリフローはんだ法によりはんだ付けする方法及びこれに用いる半導体光学素子部品に関する。   The present invention relates to a method for soldering a semiconductor optical element component to an attachment such as a printed circuit board, and in particular, a semiconductor optical element component including a resin optical lens is soldered by a reflow soldering method using lead-free solder. The present invention relates to a method and a semiconductor optical element component used therefor.

発光ダイオード(LED)には、砲弾タイプ、チップタイプ等の種類があり、砲弾タイプの発光ダイオードは、一般に、カソードリード、アノードリード、発光半導体チップ、リード細線などの発光体及び導電部材を透光性の樹脂で封止した構造となっている。また、チップ型発光ダイオードの場合も、上面が開口した箱形の発光体収容部材の内底から一対のリードフレームを発光体収容部材の外部へ延出し、この発光体収容部材の内部に発光半導体チップやリード細線等を収容し、これらを接続して、収容部材内部を透光性の樹脂で封止した構造になっているが、これらの発光ダイオードには、その使用目的に応じ、その封止材上に発光した光の進行方向を規制するための光学レンズが設けられる場合がある。   There are various types of light emitting diodes (LEDs) such as a shell type and a chip type. Generally, a light emitting diode of a shell type transmits a light emitting body and a conductive member such as a cathode lead, an anode lead, a light emitting semiconductor chip, and a lead thin wire. The structure is sealed with a conductive resin. Also in the case of a chip-type light emitting diode, a pair of lead frames are extended from the inner bottom of a box-shaped light emitter housing member having an open top surface to the outside of the light emitter housing member, and a light emitting semiconductor is provided inside the light emitter housing member. The chip and lead wires are accommodated and connected, and the interior of the accommodating member is sealed with a translucent resin. However, these light-emitting diodes are sealed according to their intended use. An optical lens for regulating the traveling direction of the emitted light may be provided on the stopper.

また、携帯電話等に装備される小型カメラとして用いられる画像形成用受光素子ユニットには、受光素子である半導体チップへ入射する光の光路上に、集光用の光学レンズが設けられている。   In addition, an image forming light receiving element unit used as a small camera equipped in a mobile phone or the like is provided with a condensing optical lens on an optical path of light incident on a semiconductor chip as a light receiving element.

このような樹脂製光学レンズを備える発光ダイオードや画像形成用受光素子ユニット等の半導体光学素子部品は、通常、はんだ付けにより基板等に接続して用いられるため、上記光学レンズの材料として用いられる樹脂には、基板等へはんだ付けする際に受ける熱に対する耐熱性が必要である。そのため、このような光学レンズの材料としては、従来、エポキシ樹脂が用いられている。   Semiconductor optical element parts such as light-emitting diodes and image-forming light-receiving element units equipped with such resin optical lenses are usually used by being connected to a substrate or the like by soldering, so that the resin used as the material of the optical lens Requires heat resistance to heat received when soldering to a substrate or the like. Therefore, an epoxy resin has been conventionally used as a material for such an optical lens.

一方、近年、環境への配慮から、従来の鉛−錫合金はんだから鉛を含まない鉛フリーはんだへの転換が進められているが、これら鉛フリーはんだは、従来の鉛−錫合金はんだよりも溶融温度が高いものとなっており、従来用いられている封止樹脂は、この温度での耐熱性がないという問題がある。   On the other hand, in recent years, due to environmental considerations, conversion from conventional lead-tin alloy solder to lead-free solder containing no lead has been promoted. Since the melting temperature is high, the conventionally used sealing resin has a problem that it does not have heat resistance at this temperature.

特に、基板へ半導体光学素子部品をはんだ付けする方法として一般的に用いられているリフローはんだ法において、光学レンズの材料に要求される耐熱温度は、従来の鉛−錫系合金はんだでは約230℃であったのに対し、鉛フリーはんだでは、250℃程度以上とより高い耐熱温度が要求される。しかしながら、従来のエポキシ樹脂では、このような高温には耐熱性がないため、鉛フリーはんだを用いてリフローはんだ法によりはんだ付けをしようとすると、レンズが歪んだり、劣化したりしてレンズとしての機能を果たさなくなってしまう。このため、このような半導体光学素子部品のはんだ付けに鉛フリーはんだを用いたリフローはんだ法を適用することができず、半導体光学素子部品を個別にはんだ付けしなくてはならないため、この点が生産性の低下を引き起こしていた。   In particular, in a reflow soldering method generally used as a method of soldering a semiconductor optical element component to a substrate, the heat resistance temperature required for the material of the optical lens is about 230 ° C. with a conventional lead-tin alloy solder. In contrast, lead-free solder requires a higher heat resistance temperature of about 250 ° C. or higher. However, since conventional epoxy resins are not heat resistant at such high temperatures, when soldering using lead-free solder by the reflow soldering method, the lens may be distorted or deteriorated. It will no longer function. For this reason, the reflow soldering method using lead-free solder cannot be applied to the soldering of such semiconductor optical element parts, and the semiconductor optical element parts must be individually soldered. It was causing a decline in productivity.

光学レンズとしてはガラスレンズもあるが、半導体光学素子部品用の微小なレンズをガラスで成形するためには極めて煩雑な工程が必要であり、実用的ではない。また、はんだ付け後に光学レンズを半導体光学素子部品に取り付ける方法もとり得るが、半導体光学素子部品を基板に取り付ける位置が様々であるため、自動化は極めて困難であり、結果的には工程が煩雑になってしまう。   Although there is a glass lens as an optical lens, an extremely complicated process is required to mold a minute lens for a semiconductor optical element component with glass, which is not practical. In addition, it is possible to attach the optical lens to the semiconductor optical element component after soldering. However, since the positions where the semiconductor optical element component is attached to the substrate are various, automation is extremely difficult, resulting in complicated processes. End up.

従って、予め樹脂製の光学レンズを備える半導体光学素子部品を、鉛フリーはんだを用いてリフローはんだ法によりはんだ付けできる方法の開発が望まれていた。   Therefore, it has been desired to develop a method capable of soldering a semiconductor optical element component having a resin optical lens in advance by a reflow soldering method using lead-free solder.

なお、この発明に関連する先行技術文献情報としては以下のものがある。   The prior art document information related to the present invention includes the following.

特開平11−160503号公報JP-A-11-160503 特開2000−231001号公報JP 2000-23001 A 特開2000−231002号公報JP 2000-23002 A 特開2000−231003号公報JP 2000-23003 A

本発明は、上記事情に鑑みなされたもので、樹脂製光学レンズを備える半導体光学素子部品であっても、光学レンズを変形や劣化させることなく鉛フリーはんだを用いたリフローはんだ法により、生産性よくはんだ付けすることができる方法及びこれに用いる半導体光学素子部品を提供することを目的とする。   The present invention has been made in view of the above circumstances, and even with a semiconductor optical element component including a resin optical lens, productivity can be improved by a reflow soldering method using lead-free solder without deforming or degrading the optical lens. It is an object of the present invention to provide a method capable of well soldering and a semiconductor optical element component used therefor.

本発明者は、上記問題を解決するため鋭意検討を重ねた結果、樹脂製光学レンズを備える半導体光学素子部品を、鉛フリーはんだを用いたリフローはんだ法により被取付物にはんだ付けする際に、該樹脂製光学レンズとして、オルガノポリシロキサンをベースポリマーとし、オルガノハイドロジェンポリシロキサン及び白金系触媒を含む液状の付加反応硬化型のシリコーン樹脂組成物を硬化させて得たJIS K 7215の方法により測定されるショアD硬度で20〜90のリコーン樹脂製の光学レンズを備える半導体光学素子部品を用いることにより、鉛フリーはんだを用いたリフローはんだ法のようなはんだ温度条件が高温となる場合においても、光学レンズを変形や、変色等の劣化をさせることなく、樹脂製光学レンズを備える半導体光学素子部品を、生産性よくはんだ付けすることが可能であることを見出し、本発明をなすに至った。 As a result of intensive studies to solve the above problems, the present inventor, when soldering a semiconductor optical element component including a resin optical lens to an attachment by a reflow soldering method using lead-free solder, Measured by the method of JIS K 7215 obtained by curing a liquid addition reaction curable silicone resin composition containing an organohydrogenpolysiloxane and a platinum-based catalyst as the resin optical lens, using an organopolysiloxane as a base polymer. Even when a solder temperature condition such as a reflow soldering method using lead-free solder becomes high by using a semiconductor optical element component having an optical lens made of ricone resin having a Shore D hardness of 20 to 90 , A semiconductor with a plastic optical lens without causing deformation or discoloration of the optical lens It found that the academic element part, it is possible to solder with good productivity, leading to completion of the present invention.

即ち、本発明は、樹脂製光学レンズを備える半導体光学素子部品を、鉛フリーはんだを用いたリフローはんだ法により被取付物にはんだ付けする方法であって、上記樹脂製光学レンズを備える半導体光学素子部品が、発光体又は受光素子を封止する透光性封止材とシリコーン樹脂製光学レンズとを、縮合型又は付加型のシリコーンゴム系接着剤により接着した半導体光学素子部品であり、上記シリコーン樹脂製光学レンズとして、オルガノポリシロキサンをベースポリマーとし、オルガノハイドロジェンポリシロキサン及び白金系触媒を含む液状の付加反応硬化型のシリコーン樹脂組成物を硬化させて得たJIS K 7215の方法により測定されるショアD硬度で20〜90のシリコーン樹脂製の光学レンズを用いることを特徴とする半導体光学素子部品のはんだ付け方法、及び鉛フリーはんだを用いたリフローはんだ法により被取付物にはんだ付けされる樹脂製光学レンズを備える半導体光学素子部品であって、該樹脂製光学レンズが、上記特定のシリコーン樹脂組成物を硬化させて得たシリコーン樹脂製光学レンズであることを特徴とする半導体光学素子部品を提供する。 That is, the present invention is a method of soldering a semiconductor optical element component having a resin optical lens to an attachment by a reflow soldering method using lead-free solder, and the semiconductor optical element having the resin optical lens The component is a semiconductor optical element component in which a translucent sealing material for sealing a light emitter or a light receiving element and an optical lens made of silicone resin are bonded with a condensation type or addition type silicone rubber adhesive, and the silicone Measured by the method of JIS K 7215 obtained by curing a liquid addition reaction curable silicone resin composition containing an organohydrogenpolysiloxane and a platinum-based catalyst as an optical lens made of resin , using an organopolysiloxane as a base polymer. An optical lens made of silicone resin having a Shore D hardness of 20 to 90 is used. A method of soldering an optical element component, and a semiconductor optical element component comprising a resin optical lens that is soldered to an attachment by a reflow soldering method using lead-free solder, wherein the resin optical lens is There is provided a semiconductor optical element component, which is an optical lens made of a silicone resin obtained by curing the silicone resin composition.

以上のように、本発明によれば、樹脂製光学レンズとしてシリコーン樹脂製の光学レンズを備える半導体光学素子部品を用いることにより、温度条件が高温となる鉛フリーはんだを用いたリフローはんだ法によりはんだ付けしても、光学レンズの変形や変色等の劣化を引き起こさずに、生産性よくはんだ付けすることが可能である。   As described above, according to the present invention, by using a semiconductor optical element component having an optical lens made of silicone resin as a resin optical lens, soldering is performed by a reflow soldering method using lead-free solder whose temperature conditions are high. Even if attached, it is possible to solder with good productivity without causing deterioration such as deformation and discoloration of the optical lens.

以下、本発明につき更に詳述する。
本発明のはんだ付け方法は、樹脂製光学レンズを備える発光ダイオードや画像形成用受光素子ユニット等の半導体光学素子部品を、鉛フリーはんだを用いたリフローはんだ法によりプリント回路基板等の被取付物にはんだ付けする方法であり、この半導体光学素子部品としてシリコーン樹脂製の光学レンズを備える半導体光学素子部品を用いるものである。
The present invention will be described in further detail below.
In the soldering method of the present invention, a semiconductor optical element component such as a light emitting diode having a resin optical lens or a light receiving element unit for image formation is attached to an object such as a printed circuit board by a reflow soldering method using lead-free solder. This is a soldering method, and a semiconductor optical element component having an optical lens made of silicone resin is used as the semiconductor optical element component.

本発明の樹脂製光学レンズを備える半導体光学素子部品は、シリコーン樹脂製の光学レンズを備える半導体光学素子部品であり、例えば、発光体を封止する透光性封止材上にシリコーン樹脂製光学レンズが一体に接合された発光ダイオードが挙げられる、より具体的には、例えば、図1に示されるような、リード1,2、発光体である発光半導体チップ3、発光半導体チップ3とリード2とを電気的に接続するリード細線4を、透光性樹脂5で砲弾型に封止した構造の、いわゆる砲弾タイプの発光ダイオードの頭頂部に、断面三日月形状のシリコーン樹脂製の光学レンズ6が一体に接合されたもの、図2に示されるような、上面が開口した箱形の発光体収容部材7の内底から一対のリード1,2を発光体収容部材7の外部へ延出し、この発光体収容部材7の内部に発光体である発光半導体チップ3やリード細線4,4を収容し、これらを接続して、収容部材7内部を透光性樹脂5で封止した構造の、いわゆるチップ型の発光ダイオードの上部に、断面弓形状のシリコーン樹脂製の光学レンズ6が一体に接合されたものなどが挙げられる。   The semiconductor optical element component including the resin optical lens of the present invention is a semiconductor optical element component including an optical lens made of silicone resin. For example, the optical component made of silicone resin on a translucent sealing material that seals the light emitter. More specifically, for example, leads 1 and 2, a light emitting semiconductor chip 3 as a light emitter, a light emitting semiconductor chip 3 and a lead 2 as shown in FIG. An optical lens 6 made of silicone resin having a crescent-shaped cross section is formed on the top of a so-called bullet-type light-emitting diode having a structure in which lead fine wires 4 that are electrically connected to each other are sealed in a bullet shape with translucent resin 5. A pair of leads 1 and 2 are extended from the inner bottom of a box-shaped light emitter housing member 7 whose upper surface is open as shown in FIG. Light emission A so-called chip type having a structure in which the light emitting semiconductor chip 3 which is a light emitter and the thin lead wires 4 and 4 are housed in the housing member 7, these are connected, and the inside of the housing member 7 is sealed with the translucent resin 5. And an optical lens 6 made of silicone resin having a bow-shaped cross section integrally joined to the light emitting diode.

この場合、シリコーン樹脂製光学レンズと透光性封止材とは、縮合型又は付加型のシリコーンゴム系接着剤により接着されている。また、発光体を封止する透光性封止材は、鉛フリーはんだを用いたリフローはんだ法で適用される温度、即ち、250℃程度以上の温度において十分な耐熱性がある材料であれば、特に制限されないが、シリコーン樹脂からなる封止材を用いたものが耐熱性や熱膨張率の点から好ましい。 In this case, the silicone resin optical lens and the translucent sealing material are bonded by a condensation type or addition type silicone rubber adhesive . Moreover, the translucent sealing material which seals a light-emitting body should just be a material which has sufficient heat resistance in the temperature applied by the reflow soldering method using lead-free solder, ie, about 250 degreeC or more. Although not particularly limited, those using a sealing material made of silicone resin are preferable from the viewpoint of heat resistance and coefficient of thermal expansion.

また、本発明のシリコーン樹脂製の光学レンズを備える半導体光学素子部品の他の例としては、受光素子とシリコーン樹脂製の光学レンズとが組み込まれた画像形成用受光素子ユニットが挙げられる。より具体的には、例えば、図3に示されるような、受光半導体チップ(受光素子)8、リード9,9、及び受光半導体チップ8に光を集光するためのシリコーン樹脂製光学レンズ6が組み込まれて一体化された画像形成用受光素子ユニットが挙げられる。なお、図3中、10は基板、11は保護カバー、12はレンズフレームを示す。   Another example of the semiconductor optical element component including the silicone resin optical lens of the present invention is an image forming light receiving element unit in which a light receiving element and a silicone resin optical lens are incorporated. More specifically, for example, as shown in FIG. 3, a light-receiving semiconductor chip (light-receiving element) 8, leads 9 and 9, and an optical lens 6 made of silicone resin for condensing light on the light-receiving semiconductor chip 8 are provided. A light receiving element unit for image formation that is integrated and integrated may be mentioned. In FIG. 3, 10 is a substrate, 11 is a protective cover, and 12 is a lens frame.

本発明において光学レンズは、シリコーン樹脂により形成された樹脂製光学レンズである。このようなシリコーン樹脂製光学レンズは、シリコーン樹脂組成物を硬化させることにより得ることができる。シリコーン樹脂組成物としては、特に、液状の付加反応硬化型のシリコーン樹脂組成物が好ましい。液状の付加反応硬化型のシリコーン樹脂組成物は、無溶媒であるため発泡することなく表面も内部も均一に硬化させることができるので好適である。   In the present invention, the optical lens is a resin optical lens formed of a silicone resin. Such an optical lens made of silicone resin can be obtained by curing the silicone resin composition. As the silicone resin composition, a liquid addition reaction curable silicone resin composition is particularly preferable. The liquid addition reaction curable silicone resin composition is suitable because it is solvent-free and can be uniformly cured on the surface and inside without foaming.

上記付加反応硬化型のシリコーン樹脂組成物としては、熱硬化により透明なシリコーン樹脂を形成するものであれば特に制限されないが、例えば、オルガノポリシロキサンをベースポリマーとし、オルガノハイドロジェンポリシロキサン及び白金系触媒等の重金属系触媒を含むものが挙げられる。   The addition reaction curable silicone resin composition is not particularly limited as long as it forms a transparent silicone resin by heat curing. For example, an organopolysiloxane is used as a base polymer, and an organohydrogenpolysiloxane and a platinum series are used. The thing containing heavy metal type catalysts, such as a catalyst, is mentioned.

上記オルガノポリシロキサンとしては、下記平均単位式
aSiO(4-a)/2
(式中、Rは非置換又は置換一価炭化水素基で、好ましくは炭素数1〜10、特に1〜8のものである。aは0.8〜2、特に1〜1.8の正数である。)
で示されるものが挙げられる。ここで、Rとしてはメチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基、ブテニル基等のアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基等のアラルキル基や、これらの炭素原子に結合した水素原子の一部又は全部がハロゲン原子で置換されたクロロメチル基、クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン置換炭化水素基、或いはシアノ基で置換された2−シアノエチル基等のシアノ基置換炭化水素基などが挙げられ、Rは同一であっても異なっていてもよいが、Rとしてフェニル基を含むもの、特に、全Rのうち5〜80モル%がフェニル基であるものが、光学レンズの耐熱性及び透明性の点から好ましい。
The organopolysiloxane includes the following average unit formula R a SiO (4-a) / 2
Wherein R is an unsubstituted or substituted monovalent hydrocarbon group, preferably having 1 to 10 carbon atoms, particularly 1 to 8. a is a positive number of 0.8 to 2, particularly 1 to 1.8. Number.)
The thing shown by is mentioned. Here, R is an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, an alkenyl group such as a vinyl group, an allyl group or a butenyl group, an aryl group such as a phenyl group or a tolyl group, or an aralkyl such as a benzyl group. A halogen-substituted hydrocarbon group such as a chloromethyl group, a chloropropyl group, or a 3,3,3-trifluoropropyl group in which some or all of the hydrogen atoms bonded to these carbon atoms are substituted with a halogen atom, Or a cyano group-substituted hydrocarbon group such as a 2-cyanoethyl group substituted with a cyano group, and R may be the same or different, but those containing a phenyl group as R, particularly all R Of these, those in which 5 to 80 mol% is a phenyl group are preferred from the viewpoint of heat resistance and transparency of the optical lens.

また、Rとしてビニル基等のアルケニル基を含むもの、特に全Rのうちの1〜20モル%がアルケニル基であるものが好ましく、中でもアルケニル基を1分子中に2個以上有するものが好ましく用いられる。このようなオルガノポリシロキサンとしては、例えば、末端にビニル基等のアルケニル基を有するジメチルポリシロキサンやジメチルシロキサン・メチルフェニルシロキサン共重合体等の末端アルケニル基含有ジオルガノポリシロキサンが挙げられ、特に、常温で液状のものが好ましく用いられる。   Further, those containing an alkenyl group such as a vinyl group as R, particularly those in which 1 to 20 mol% of all R are alkenyl groups are preferred, and those having two or more alkenyl groups in one molecule are preferably used. It is done. Examples of such organopolysiloxane include terminal alkenyl group-containing diorganopolysiloxanes such as dimethylpolysiloxane having a terminal alkenyl group such as vinyl group and dimethylsiloxane / methylphenylsiloxane copolymer, A liquid at room temperature is preferably used.

一方、オルガノハイドロジェンポリシロキサンとしては、3官能以上(即ち、1分子中にケイ素原子に結合する水素原子(Si−H基)を3個以上有するもの)が好ましく、例えば、メチルハイドロジェンポリシロキサン、メチルフェニルハイドロジェンポリシロキサン等が挙げられ、特に、常温で液状のものが好ましい。また、触媒としては、白金、白金化合物、ジブチル錫ジアセテートやジブチル錫ジラウリレート等の有機金属化合物、又はオクテン酸錫のような金属脂肪酸塩などが挙げられる。これらオルガノハイドロジェンポリシロキサンや触媒の種類や量は、架橋度や硬化速度を考慮して適宜決定すればよい。また、上記成分以外に、得られるシリコーン樹脂の強度や透明度を損なわない程度に充填剤、耐熱材、可塑剤等を添加してもよい。   On the other hand, the organohydrogenpolysiloxane is preferably trifunctional or higher (that is, one having three or more hydrogen atoms (Si-H groups) bonded to a silicon atom in one molecule), for example, methylhydrogenpolysiloxane. , Methylphenyl hydrogen polysiloxane, and the like, and liquids at room temperature are particularly preferable. Examples of the catalyst include platinum, platinum compounds, organometallic compounds such as dibutyltin diacetate and dibutyltin dilaurate, and metal fatty acid salts such as tin octenoate. The types and amounts of these organohydrogenpolysiloxanes and catalysts may be appropriately determined in consideration of the degree of crosslinking and the curing rate. In addition to the above components, fillers, heat-resistant materials, plasticizers and the like may be added to the extent that the strength and transparency of the resulting silicone resin are not impaired.

上記シリコーン樹脂組成物としては、信越化学工業株式会社製のKJR632等の市販品を用いることができる。   As the silicone resin composition, commercially available products such as KJR632 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.

光学レンズは、上記シリコーン樹脂組成物を成形してシリコーン樹脂成形体とする従来公知の方法により得ることができ、例えば、射出成形、押出成形、注型成形等により成形することができる。なお、レンズの硬度は、JIS K 7215(プラスチックのデュロメーター硬さ試験方法)の方法により測定されるショアD硬度で、20〜90、特に50〜80であることが好ましい。   The optical lens can be obtained by a conventionally known method of forming the silicone resin composition into a silicone resin molded body. For example, the optical lens can be molded by injection molding, extrusion molding, cast molding, or the like. The hardness of the lens is Shore D hardness measured by the method of JIS K 7215 (Plastic Durometer Hardness Test Method), and is preferably 20 to 90, particularly 50 to 80.

次に、本発明のはんだ付け方法について説明する。
本発明において、半導体光学素子部品のはんだ付けは、上述のシリコーン樹脂製の光学レンズを備える半導体光学素子部品を、鉛フリーはんだを用いたリフローはんだ法によりはんだ付けする。従って、はんだ付けする際に光学レンズは、はんだ付け温度に加熱されることになる。
Next, the soldering method of the present invention will be described.
In the present invention, the semiconductor optical element component is soldered by soldering the semiconductor optical element component including the above-described silicone resin optical lens by a reflow soldering method using lead-free solder. Therefore, the optical lens is heated to a soldering temperature when soldering.

本発明で用いられる鉛フリーはんだとしては、Sn−Ag系、Sn−Sb系、Sn−Ag−Sb系、Sn−Ag−Cu系、Sn−Bi系等が挙げられるが、本発明は、溶融温度が240℃以上、特に260℃以上の鉛フリーはんだを用いる場合に好適である。   Examples of the lead-free solder used in the present invention include Sn-Ag, Sn-Sb, Sn-Ag-Sb, Sn-Ag-Cu, and Sn-Bi. This is suitable when a lead-free solder having a temperature of 240 ° C. or higher, particularly 260 ° C. or higher is used.

一方、リフローはんだ法としては、特に限定されず、従来公知のリフローはんだ法を適用することができ、例えば、鉛フリーはんだをプリント回路基板等の被取付物にめっきするか、又ははんだペースト、はんだ線、はんだ箔、成形はんだ等を被取付物に積層し、上記シリコーン樹脂製の光学レンズを備える半導体光学素子部品のリードをはんだ部分に載せ、赤外線法、気相法、熱風法、レーザ法等の公知の加熱方法にて基板全体又ははんだ部分を加熱することによりはんだ付けすることができるが、本発明は、加熱温度が250℃以上、特に260℃以上の場合に好適である。   On the other hand, the reflow soldering method is not particularly limited, and a conventionally known reflow soldering method can be applied. For example, lead-free solder is plated on an object to be attached such as a printed circuit board, or solder paste, solder Laminate wires, solder foil, molded solder, etc. on the object to be attached, and place the lead of the semiconductor optical element component equipped with the above-mentioned silicone resin optical lens on the solder part, infrared method, vapor phase method, hot air method, laser method, etc. Soldering can be performed by heating the entire substrate or the solder portion by the known heating method, but the present invention is suitable when the heating temperature is 250 ° C. or higher, particularly 260 ° C. or higher.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to the following Example.

[実施例1]
樹脂組成物としてケイ素原子に結合するフェニル基を有するオルガノポリシロキサンをベースポリマーとするシリコーン樹脂組成物であるKJR632(信越化学工業株式会社製)を用い、これを光学的に加工したレンズ金型に注入し、170℃10分間で成形、硬化させて、図1に示すような断面三日月形状のシリコーン樹脂からなる光学レンズを得た。
[Example 1]
As a resin composition, KJR632 (manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silicone resin composition based on an organopolysiloxane having a phenyl group bonded to a silicon atom, is used as a lens mold that is optically processed. It was injected, molded at 170 ° C. for 10 minutes, and cured to obtain an optical lens made of a silicone resin having a crescent-shaped cross section as shown in FIG.

次に、封止材として透光性のシリコーン樹脂を用いた図1に示されるような砲弾タイプの発光ダイオードの頂部に、上記で得られた光学レンズを透明性を有する縮合型シリコーンゴム系接着剤を用いて接着して、透光性封止材上にシリコーン樹脂製の光学レンズが一体に接合された発光ダイオードを得た。   Next, the optical lens obtained above is bonded to the top of a shell-type light emitting diode as shown in FIG. 1 using a translucent silicone resin as a sealing material. A light emitting diode in which an optical lens made of silicone resin was integrally bonded onto a light-transmitting sealing material was obtained by bonding using an agent.

次に、Sn−Ag−Cu系の鉛フリーはんだ(溶融温度250℃)を含むはんだペーストを基板上に塗布し、上記発光ダイオードのリードを載せ、基板全体を260℃にて10秒間加熱するリフローはんだ法にてはんだ付けし、冷却後の発光ダイオードを観察したところ、光学レンズに変形や変色等の劣化は見られなかった。また、この発光ダイオードに通電して、発光光の光路及び輝度を測定したが、はんだ付けする前のものと比較して同様の光路、同等の色調及び輝度を示した。   Next, a solder paste containing Sn—Ag—Cu-based lead-free solder (melting temperature 250 ° C.) is applied onto the substrate, the light emitting diode leads are placed thereon, and the entire substrate is heated at 260 ° C. for 10 seconds. When the light emitting diode was observed after being soldered by a soldering method, the optical lens was not deformed or discolored. In addition, the light emitting diode was energized and the optical path and luminance of the emitted light were measured, and the same optical path, equivalent color tone and luminance were shown compared to those before soldering.

本発明の一実施例に係る半導体光学素子部品(発光ダイオード)の断面図である。It is sectional drawing of the semiconductor optical element component (light emitting diode) which concerns on one Example of this invention. 本発明の他の実施例に係る半導体光学素子部品(発光ダイオード)の断面図である。It is sectional drawing of the semiconductor optical element component (light emitting diode) which concerns on the other Example of this invention. 本発明の別の実施例に係る半導体光学素子部品(画像形成用受光素子ユニット)の断面図である。It is sectional drawing of the semiconductor optical element component (light receiving element unit for image formation) concerning another Example of this invention.

符号の説明Explanation of symbols

1,2,9 リード
3 発光半導体チップ
4 リード細線
5 封止材
6 光学レンズ
7 発光体収容部材
8 受光半導体チップ(受光素子)
10 基板
11 保護カバー
12 レンズフレーム
1, 2, 9 Lead 3 Light emitting semiconductor chip 4 Lead thin wire 5 Sealing material 6 Optical lens 7 Light emitter housing member 8 Light receiving semiconductor chip (light receiving element)
10 Substrate 11 Protective cover 12 Lens frame

Claims (6)

樹脂製光学レンズを備える半導体光学素子部品を、鉛フリーはんだを用いたリフローはんだ法により被取付物にはんだ付けする方法であって、上記樹脂製光学レンズを備える半導体光学素子部品が、発光体又は受光素子を封止する透光性封止材とシリコーン樹脂製光学レンズとを、縮合型又は付加型のシリコーンゴム系接着剤により接着した半導体光学素子部品であり、上記シリコーン樹脂製光学レンズとして、オルガノポリシロキサンをベースポリマーとし、オルガノハイドロジェンポリシロキサン及び白金系触媒を含む液状の付加反応硬化型のシリコーン樹脂組成物を硬化させて得たJIS K 7215の方法により測定されるショアD硬度で20〜90のシリコーン樹脂製の光学レンズを用いることを特徴とする半導体光学素子部品のはんだ付け方法。 A method of soldering a semiconductor optical element component including a resin optical lens to an attachment by a reflow soldering method using lead-free solder, wherein the semiconductor optical element component including the resin optical lens is a light emitter or A semiconductor optical element component in which a light-transmitting sealing material for sealing a light receiving element and a silicone resin optical lens are bonded with a condensation type or addition type silicone rubber-based adhesive, and as the silicone resin optical lens , Shore D hardness measured by the method of JIS K 7215 obtained by curing a liquid addition reaction curable silicone resin composition containing an organohydrogenpolysiloxane and a platinum-based catalyst using an organopolysiloxane as a base polymer. the semiconductor optical element component, which comprises using a 90 silicone resin optical lens Do you put way. 上記オルガノポリシロキサンは、下記平均単位式
aSiO(4-a)/2
(式中、Rは非置換又は置換一価炭化水素基で、炭素数1〜10のものであり、aは0.8〜2の正数である。)
で示されることを特徴とする請求項1記載の半導体光学素子部品のはんだ付け方法。
The organopolysiloxane has the following average unit formula R a SiO (4-a) / 2
(In the formula, R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and a is a positive number of 0.8 to 2.)
The method of soldering a semiconductor optical element component according to claim 1, wherein:
上記オルガノハイドロジェンポリシロキサンが1分子中にケイ素原子に結合する水素原子(Si−H基)を3個以上有するオルガノハイドロジェンポリシロキサンであることを特徴とする請求項1又は2記載の半導体光学素子部品のはんだ付け方法。   3. The semiconductor optical according to claim 1, wherein the organohydrogenpolysiloxane is an organohydrogenpolysiloxane having three or more hydrogen atoms (Si-H groups) bonded to silicon atoms in one molecule. Method of soldering element parts. 鉛フリーはんだを用いたリフローはんだ法により被取付物にはんだ付けされる樹脂製光学レンズを備える半導体光学素子部品であって、上記樹脂製光学レンズを備える半導体光学素子部品が、発光体又は受光素子を封止する透光性封止材とシリコーン樹脂製光学レンズとを、縮合型又は付加型のシリコーンゴム系接着剤により接着した半導体光学素子部品であり、上記シリコーン樹脂製光学レンズが、オルガノポリシロキサンをベースポリマーとし、オルガノハイドロジェンポリシロキサン及び白金系触媒を含む液状の付加反応硬化型のシリコーン樹脂組成物を硬化させて得たJIS K 7215の方法により測定されるショアD硬度で20〜90のシリコーン樹脂製光学レンズであることを特徴とする半導体光学素子部品。 A semiconductor optical element component including a resin optical lens soldered to an attachment by a reflow soldering method using lead-free solder, wherein the semiconductor optical element component including the resin optical lens is a light emitter or a light receiving element Is a semiconductor optical element component in which a translucent sealing material for sealing an optical lens made of silicone resin and an optical lens made of silicone resin are bonded with a condensation type or addition type silicone rubber adhesive. 20 to 90 in Shore D hardness measured by the method of JIS K 7215 obtained by curing a liquid addition reaction curable silicone resin composition containing siloxane as a base polymer and containing an organohydrogenpolysiloxane and a platinum catalyst. A semiconductor optical element component characterized by being an optical lens made of silicone resin. 上記オルガノポリシロキサンは、下記平均単位式
aSiO(4-a)/2
(式中、Rは非置換又は置換一価炭化水素基で、炭素数1〜10のものであり、aは0.8〜2の正数である。)
で示されることを特徴とする請求項4記載の半導体光学素子部品。
The organopolysiloxane has the following average unit formula R a SiO (4-a) / 2
(In the formula, R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and a is a positive number of 0.8 to 2.)
The semiconductor optical element component according to claim 4, wherein
上記オルガノハイドロジェンポリシロキサンが1分子中にケイ素原子に結合する水素原子(Si−H基)を3個以上有するオルガノハイドロジェンポリシロキサンであることを特徴とする請求項4又は5記載の半導体光学素子部品。 6. The semiconductor optical according to claim 4, wherein the organohydrogenpolysiloxane is an organohydrogenpolysiloxane having three or more hydrogen atoms (Si-H groups) bonded to silicon atoms in one molecule. Element parts.
JP2007240455A 2007-09-18 2007-09-18 Semiconductor optical element component soldering method and semiconductor optical element component Expired - Lifetime JP4807522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240455A JP4807522B2 (en) 2007-09-18 2007-09-18 Semiconductor optical element component soldering method and semiconductor optical element component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240455A JP4807522B2 (en) 2007-09-18 2007-09-18 Semiconductor optical element component soldering method and semiconductor optical element component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002309223A Division JP2004146554A (en) 2002-10-24 2002-10-24 Semiconductor optical element component and soldering method thereof

Publications (2)

Publication Number Publication Date
JP2008060586A JP2008060586A (en) 2008-03-13
JP4807522B2 true JP4807522B2 (en) 2011-11-02

Family

ID=39242893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240455A Expired - Lifetime JP4807522B2 (en) 2007-09-18 2007-09-18 Semiconductor optical element component soldering method and semiconductor optical element component

Country Status (1)

Country Link
JP (1) JP4807522B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116857A (en) * 1989-09-29 1991-05-17 Mitsui Petrochem Ind Ltd Light emitting or photodetective device
JP4271747B2 (en) * 1997-07-07 2009-06-03 株式会社朝日ラバー Translucent coating material for light emitting diode and fluorescent color light source
JP3922785B2 (en) * 1998-02-09 2007-05-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Optical semiconductor insulation coating protective agent
JP2000124475A (en) * 1998-10-14 2000-04-28 Kanegafuchi Chem Ind Co Ltd Curable composition for sealing optical semiconductor and manufacture of optical semiconductor product
JP4680334B2 (en) * 1999-01-13 2011-05-11 株式会社朝日ラバー Light emitting device
JP4221545B2 (en) * 2001-01-05 2009-02-12 信越化学工業株式会社 Silicone rubber adhesive composition, integral molded body of silicone rubber and thermoplastic resin, and method for producing the same
JP4275891B2 (en) * 2001-02-09 2009-06-10 株式会社カネカ Light emitting diode and manufacturing method thereof
JP2002280604A (en) * 2001-03-22 2002-09-27 Toshiba Chem Corp Optical semiconductor device

Also Published As

Publication number Publication date
JP2008060586A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
US7638812B2 (en) Soldering method for semiconductor optical device, and semiconductor optical device
JP5469874B2 (en) Curable organopolysiloxane composition, optical semiconductor element sealant, and optical semiconductor device
KR101722089B1 (en) Curable organopolysiloxane composition and optical semiconductor device
US20140367723A1 (en) Curable Silicone Composition, Cured Product Thereof, And Optical Semiconductor Device
US8946353B2 (en) Curable organopolysiloxane composition, optical semiconductor element sealant, and optical semiconductor device
US9045641B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
CN105924974B (en) Addition-curable silicone resin composition and die attach material for optical semiconductor device
JP5000566B2 (en) Curable silicone rubber composition and optical semiconductor device using the same as sealing material
JP4913858B2 (en) Composition for thermosetting silicone resin
JP5220533B2 (en) Lens and optical product using the same
CN105121556B (en) Curable silicone composition, cured product thereof, and optical semiconductor device
US9045667B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
JP5922463B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
KR20160078897A (en) Curable silicone resin composition
JP2009173789A (en) Silicone composition for photosemiconductor encapsulation, and photosemiconductor device using it
US11248091B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
JP2010013503A (en) Curable resin composition and opto device
KR101686448B1 (en) Silicone material, curable silicone composition, and optical device
KR102226981B1 (en) Curable organopolysiloxane composition and semiconductor device
JP2004146554A (en) Semiconductor optical element component and soldering method thereof
JP2004276383A (en) Method for manufacturing resin lens for semiconductor optical element
JP4807522B2 (en) Semiconductor optical element component soldering method and semiconductor optical element component
EP3662006B1 (en) Curable organopolysiloxane composition and optical semiconductor device
CN102863801A (en) High-hardness high-adhesion silicone resin composition
KR20230133239A (en) Curable silicone composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4807522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term