JP4807519B2 - Method for producing sintered forged member - Google Patents

Method for producing sintered forged member Download PDF

Info

Publication number
JP4807519B2
JP4807519B2 JP2007042938A JP2007042938A JP4807519B2 JP 4807519 B2 JP4807519 B2 JP 4807519B2 JP 2007042938 A JP2007042938 A JP 2007042938A JP 2007042938 A JP2007042938 A JP 2007042938A JP 4807519 B2 JP4807519 B2 JP 4807519B2
Authority
JP
Japan
Prior art keywords
sintered
sintered body
forged member
shot
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007042938A
Other languages
Japanese (ja)
Other versions
JP2008202138A (en
Inventor
幹士 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007042938A priority Critical patent/JP4807519B2/en
Publication of JP2008202138A publication Critical patent/JP2008202138A/en
Application granted granted Critical
Publication of JP4807519B2 publication Critical patent/JP4807519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、焼結鍛造部材の製造方法に関し、特に予備焼結後に低硬度の鋼製ショット材を用いたショットブラスト処理(封孔処理)を行うようにした焼結鍛造部材の製造方法に関する。   The present invention relates to a method for producing a sintered forged member, and more particularly to a method for producing a sintered forged member in which shot blasting (sealing treatment) using a steel shot material having low hardness is performed after preliminary sintering.

エンジンのコンロッド等の鍛造部材を製造する技術として、潤滑剤を添加した鉄系金属粉末を圧粉成形して圧粉成形体を製作し、その圧粉成形体を予備焼結処理して潤滑剤を除去し、その後本焼結処理を施してから熱間鍛造し、その後成形品の表面にショットピーニング処理を施す方法が採用されている(これを、「通常製造方法」とする)。   As a technology for manufacturing forged parts such as connecting rods of engines, a compacted body is produced by compacting iron-based metal powder with a lubricant added, and the compacted body is pre-sintered to produce a lubricant. , Followed by a main sintering treatment, followed by hot forging, and then a shot peening treatment is applied to the surface of the molded product (this is referred to as a “normal production method”).

この通常製造方法で製造される焼結鍛造部材においては、仮焼結体の表面に多数の微小孔を残したまま本焼結処理と熱間鍛造成形が施されるため、焼結鍛造部材の表層部の金属組織から炭素成分が抜ける脱炭現象が生じて軟質で強度の低いフェライト組織が生成されやすいという問題があるうえ、本焼結処理と熱間鍛造中に内部に酸素が侵入して酸化物が生成されて鍛造品の強度が低下する原因になる。図14は上記の通常製造方法で製造した焼結鍛造部材(完成品)の表層部の金属組織の顕微鏡写真であり、表面から約190μmの表層部が脱炭により白色化した脱炭フェライト組織となっている。   In the sintered forged member manufactured by this normal manufacturing method, the main sintered process and hot forging are performed while leaving a large number of micropores on the surface of the temporary sintered body. There is a problem that a decarburization phenomenon in which the carbon component is removed from the metal structure of the surface layer portion, and a soft and low-strength ferrite structure is likely to be generated, and oxygen enters the interior during the main sintering process and hot forging. Oxide is generated and the strength of the forged product is reduced. FIG. 14 is a micrograph of the metal structure of the surface layer portion of the sintered forged member (finished product) manufactured by the above-described normal manufacturing method, and the decarburized ferrite structure in which the surface layer portion of about 190 μm from the surface is whitened by decarburization. It has become.

その脱炭と酸化物生成の問題を解決するための製造技術も提案されている。
例えば特許文献1には、圧粉成形体を約650〜980℃の温度で予備焼結処理後、その予備焼結体に硬さHRC47〜51(HV471〜528)のショット材を100m/s未満の投射速度にて投射するショットピーニング処理を施し、その後約1340℃未満の温度で60分以内の本焼結処理を施してから熱間鍛造処理し、その後成形品の表面にショットピーニング処理を施す方法が開示されている。
Manufacturing techniques for solving the problems of decarburization and oxide formation have also been proposed.
For example, in Patent Document 1, after a green compact is pre-sintered at a temperature of about 650 to 980 ° C., a shot material having a hardness of HRC 47 to 51 (HV 471 to 528) is less than 100 m / s. Is subjected to a shot peening process for projecting at a projection speed of 60 ° C., followed by a main sintering process for 60 minutes or less at a temperature of less than about 1340 ° C., and then a hot forging process, followed by a shot peening process on the surface of the molded product. A method is disclosed.

上記の特許文献1の焼結鍛造部材の製造方法では、予備焼結体に焼結するためハンドリング等に対処し得るだけの強度が得られる上、鉄粉に対して炭素や銅成分の拡散が進んでいないため延性が確保され、予備焼結体の表面部を良好に封孔(コーキング)することができる。
米国出願公開2004/0005237号公報
In the method for producing a sintered forged member described in Patent Document 1, strength sufficient to cope with handling and the like is obtained because sintering is performed to a pre-sintered body, and carbon and copper components are diffused with respect to iron powder. Since it is not advanced, ductility is ensured and the surface portion of the pre-sintered body can be well sealed (caulked).
US Application Publication No. 2004/0005237

しかし、予備焼結体は硬さHV100未満でさほど硬くないにもかかわらず、この予備焼結体に硬さHRC47〜51(HV471〜528)の高硬度のショット材を100m/sgもの高速で投射するショットピーニング処理を施す。それ故、予備焼結体の角部や稜線部等が破損して欠肉状態になり、形状ダメージが著しくなり、鍛造品に重量不足や欠肉欠陥が生じ、歩留りが著しく低下し、ひいては焼結鍛造部材の製造コストが高くなる。   However, although the pre-sintered body has a hardness of less than HV100 and is not so hard, a shot material having a hardness of HRC 47 to 51 (HV471 to 528) is projected onto the presintered body at a high speed of 100 m / sg. A shot peening process is performed. Therefore, the corners and ridges of the pre-sintered body are damaged and become in a thin state, the shape damage becomes significant, the forged product has a weight shortage and a lack of thickness, the yield is remarkably lowered, and as a result The manufacturing cost of a forging member becomes high.

図16は、上記特許文献1の製造方法によりエンジンのコンロッドの予備焼結体100を製作し、この予備焼結体100にショットピーニング処理を施したものの外観を示す図である。図16−1、図16−2に示すように、予備焼結体100の角部や稜線部に破損した欠肉欠陥101〜103が生じていることが判る。しかも、予備焼結体100にショットピーニング処理を施す際に、硬く脆いショット材が割れて発生した鋭利なショット玉破片が予備焼結体100の表面に多数突き刺さり、コーキング作用を低下させたり、鍛造後に介在物として残留し、疲労破壊の起点となりやすい。   FIG. 16 is a view showing an external appearance of a pre-sintered body 100 of an engine connecting rod manufactured by the manufacturing method of Patent Document 1 and subjected to shot peening treatment on the pre-sintered body 100. As shown in FIGS. 16A and 16B, it can be seen that the missing wall defects 101 to 103 are generated in the corners and ridges of the pre-sintered body 100. Moreover, when the pre-sintered body 100 is subjected to the shot peening treatment, a number of sharp shot ball fragments generated by cracking of the hard and brittle shot material are pierced on the surface of the pre-sintered body 100 to reduce the caulking action or forging. Later, it remains as inclusions and tends to be the starting point of fatigue failure.

図17は、上記特許文献1の製造方法によりエンジンのコンロッドの予備焼結体を製作し、この予備焼結体にショットピーニング処理を施したものの角部の断面のエッチング処理していない顕微鏡写真(倍率:100倍)であり、下部の黒色の島状部は 1.5 mm幅の目視可能な空孔であり、右上の角部には欠肉欠陥も発生している。
本発明の目的は、簡単で優れた封孔処理(コーキング)を可能とし、焼結鍛造部材の品質を格段に向上できる焼結鍛造部材の製造方法を提供することである。
FIG. 17 is a photomicrograph of a pre-sintered body of a connecting rod of an engine manufactured by the manufacturing method of Patent Document 1 and subjected to shot peening treatment on the pre-sintered body but not etched at the corners. (Magnification: 100 times) The lower black island-shaped portion is a visible hole having a width of 1.5 mm, and a thin-wall defect is also generated in the upper right corner.
An object of the present invention is to provide a method for producing a sintered forged member that enables simple and excellent sealing treatment (caulking) and can significantly improve the quality of the sintered forged member.

請求項1の焼結鍛造部材の製造方法は、焼結鍛造部材を製造する製造方法において、炭素を含む鉄系金属粉末を圧粉成形した圧粉成形体を予備焼結処理する第1工程と、次に予備焼結体をHV100〜350の硬度の鋼製ショット材でショットブラスト処理して予備焼結体の表面部を封孔処理する第2工程と、次に予備焼結体を本焼結処理する第3工程と、次に本焼結処理された焼結体を熱間鍛造する第4工程とを備えたことを特徴としている。   The method for producing a sintered forged member according to claim 1 is a method for producing a sintered forged member, the first step of pre-sintering a compacted body obtained by compacting iron-based metal powder containing carbon. Next, the pre-sintered body is shot blasted with a steel shot material having a hardness of HV 100 to 350, and the surface portion of the pre-sintered body is sealed, and then the pre-sintered body is sintered. It is characterized in that it comprises a third step of performing a sintering process and a fourth step of hot forging the sintered body that has been subjected to the main sintering process.

請求項2の焼結鍛造部材の製造方法は、請求項1の発明において、第2工程のショットブラスト処理は、粒径0.3〜0.7mmの鋼製ショット材を用い、30〜80m/sの投射速度で行うことを特徴としている。   The method for producing a sintered forged member according to claim 2 is the invention according to claim 1, wherein the shot blasting treatment in the second step uses a steel shot material having a particle size of 0.3 to 0.7 mm, and 30 to 80 m / It is characterized by performing at a projection speed of s.

請求項3の焼結鍛造部材の製造方法は、請求項1又は2の発明において、第1工程の予備焼結処理は、非酸化性雰囲気で800〜1000℃の温度で行うことを特徴としている。   The method for producing a sintered forged member of claim 3 is characterized in that, in the invention of claim 1 or 2, the preliminary sintering treatment in the first step is performed at a temperature of 800 to 1000 ° C. in a non-oxidizing atmosphere. .

請求項4の焼結鍛造部材の製造方法は、請求項1〜3の何れかの発明において、前記焼結鍛造部材は、エンジンのコンロッドであることを特徴としている。   According to a fourth aspect of the present invention, there is provided a method for producing a sintered forged member according to any one of the first to third aspects, wherein the sintered forged member is a connecting rod of an engine.

請求項1の発明によれば、第2工程において、HV100〜350の低硬度の鋼製ショット材でショットブラスト処理して予備焼結体の表面部の微細孔を塞ぐ封孔処理を行うため、予備焼結体の表面部を破損することなく安定的に封孔処理することができるから、本焼結処理や熱間鍛造時に、脱炭現象が生じるのを確実に防止できるうえ、内部に金属酸化物が生成されにくくなり、疲労強度、品質に優れた焼結鍛造部材を製造できる。   According to the invention of claim 1, in the second step, in order to perform a sealing process to close the micropores in the surface portion of the pre-sintered body by shot blasting with a steel shot material having a low hardness of HV100 to 350, Since the surface can be stably sealed without damaging the surface of the pre-sintered body, it is possible to reliably prevent decarburization during the main sintering process and hot forging, and to keep the metal inside. Oxide is hardly generated, and a sintered forged member having excellent fatigue strength and quality can be manufactured.

請求項2の発明によれば、第2工程のショットブラスト処理は、粒径0.3〜0.7mmの鋼製ショット材を用い、30〜80m/sの投射速度で行う。このように、軽度なショットブラスト処理となるようにショットブラスト処理条件を適正にすることで、予備焼結体の表面にダメージを与えることなく、封孔処理を確実に効率よく行うことができる。   According to invention of Claim 2, the shot blast process of a 2nd process is performed at the projection speed of 30-80 m / s using the steel shot material with a particle size of 0.3-0.7 mm. Thus, by making the shot blast treatment conditions appropriate so as to achieve a mild shot blast treatment, the sealing treatment can be reliably and efficiently performed without damaging the surface of the pre-sintered body.

請求項3の発明によれば、第1工程の予備焼結処理は、非酸化性雰囲気で800〜1000℃の温度で行うため、脱炭現象が生じさせることがなく予備焼結体の強度を確保し、封孔処理を安定的に行うことができる。
請求項4の発明によれば、前記焼結鍛造部材からなる高品質のエンジンのコンロッドを製作することができる。
According to the invention of claim 3, since the pre-sintering process in the first step is performed at a temperature of 800 to 1000 ° C. in a non-oxidizing atmosphere, the strength of the pre-sintered body is increased without causing a decarburization phenomenon. It can be ensured and the sealing process can be performed stably.
According to the invention of claim 4, a high quality engine connecting rod made of the sintered forged member can be manufactured.

以下、本発明に係る焼結鍛造部材を製造する製造方法を、エンジンのコンロッドの製造に適用した場合の実施の形態について図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment when a manufacturing method for manufacturing a sintered forged member according to the present invention is applied to manufacture of a connecting rod of an engine will be described based on the drawings.

本実施例は、本発明の焼結鍛造部材の製造方法を、エンジンのコンロッドを製造する製造方法に適用した場合の一例である。図1は、この焼結鍛造部材の製造方法の複数の工程を示すフローチャートであり、符号Pi(i=1,2,・・)は各工程を示す。   The present embodiment is an example when the method for manufacturing a sintered forged member of the present invention is applied to a manufacturing method for manufacturing a connecting rod of an engine. FIG. 1 is a flowchart showing a plurality of steps of the method for producing a sintered forged member, and reference symbol Pi (i = 1, 2,...) Denotes each step.

図1に示すように、まずP1の圧粉成形処理工程において、鉄を基材とする焼結粉末であって、1.5 〜4.0 wt%のCu(銅)と、0.35〜0.80wt%のC(炭素)を含む焼結粉末を原料として圧粉成形機と所定の金型を用いて圧粉成形することで、コンロッドの圧粉成形体を成形する。尚、上記の焼結粉末には圧粉成形用の潤滑剤としてステアリン酸亜鉛が添加されるうえ、切削性向上のために硫化マンガン及び酸化カルシウムを添加する場合もある。   As shown in FIG. 1, first, in the compacting process of P1, the sintered powder is based on iron and contains 1.5 to 4.0 wt% Cu (copper) and 0.35 to 0.80 wt% C ( The compacted body of the connecting rod is molded by compacting the sintered powder containing carbon) as a raw material using a compacting machine and a predetermined mold. In addition, zinc stearate is added to the above sintered powder as a compacting lubricant, and manganese sulfide and calcium oxide may be added to improve machinability.

次に、P2の予備焼結処理工程において、上記のように圧粉成形して得た圧粉成形体を予備焼結処理する。このとき、焼結炉内に複数の圧粉成形体を収容し、その内部を非酸化性雰囲気である窒素ガスベースの水素ガス還元雰囲気とし、800〜1000℃の雰囲気温度で、1〜1.5 時間の予備焼結処理を行なって、ステアリン酸亜鉛の潤滑剤を焼失させ、その後窒素ガスにて冷却してから大気に解放して徐冷する。この予備焼結により圧粉成形体の強度を高める。   Next, in the pre-sintering process of P2, the green compact obtained by compacting as described above is pre-sintered. At this time, a plurality of green compacts are accommodated in a sintering furnace, and the inside is made a nitrogen gas-based hydrogen gas reducing atmosphere that is a non-oxidizing atmosphere, and an atmospheric temperature of 800 to 1000 ° C. for 1 to 1.5 hours. Then, the zinc stearate lubricant is burned off, cooled with nitrogen gas, released to the atmosphere, and gradually cooled. This pre-sintering increases the strength of the green compact.

次に、P3のショットブラスト処理工程において、上記の予備焼結された圧粉成形体をショットブラスト処理して、その表面部を封孔処理する。このショットブラスト処理は、低硬度(例えば、HV100〜350)で且つ粒径0.3〜0.7mmの鋼製ショット材(例えば、スチールラウンドカットワイヤ)を用い、30〜80m/sの投射速度で且つ100Kg/分以下の投射量にてショットブラスト処理して予備焼結体の表面部を封孔処理する。   Next, in the shot blasting process of P3, the above pre-sintered compacted body is shot blasted and the surface portion is sealed. This shot blasting process uses a steel shot material (for example, steel round cut wire) having a low hardness (for example, HV 100 to 350) and a particle size of 0.3 to 0.7 mm, and a projection speed of 30 to 80 m / s. In addition, the surface portion of the pre-sintered body is sealed by shot blasting at a projection amount of 100 kg / min or less.

ここで、鋼製ショット材の硬度がHV100未満の場合には、十分な封孔作用が得られないので好ましくない。また、鋼製ショット材の硬度がHV350超の場合には、予備焼結体の表面にダメージを与えるので好ましくない。鋼製ショット材の粒径についても同様であり、粒径0.3mm未満では十分な封孔作用が得られないので好ましくない。また、粒径0.7mm超では予備焼結体の表面にダメージを与えるので好ましくない。投射速度についても同様であり、30m/s未満の投射速度では十分な封孔作用が得られないので好ましくない。また、80m/s超の投射速度では予備焼結体の表面にダメージを与えるので好ましくない。また、投射量が100Kg/分超の場合にも、予備焼結体の表面にダメージを与えるので好ましくない。   Here, when the hardness of the steel shot material is less than HV100, a sufficient sealing action cannot be obtained, which is not preferable. Further, when the hardness of the steel shot material is higher than HV350, the surface of the pre-sintered body is damaged, which is not preferable. The same applies to the particle diameter of the steel shot material. If the particle diameter is less than 0.3 mm, a sufficient sealing action cannot be obtained, which is not preferable. On the other hand, when the particle size exceeds 0.7 mm, the surface of the pre-sintered body is damaged, which is not preferable. The same applies to the projection speed, and a projection speed of less than 30 m / s is not preferable because a sufficient sealing action cannot be obtained. Further, a projection speed of more than 80 m / s is not preferable because it damages the surface of the pre-sintered body. In addition, even when the projection amount exceeds 100 kg / min, the surface of the pre-sintered body is damaged, which is not preferable.

図2に示すように、ショットブラスト処理装置SA内へ延設されたゴム製のベルトコンベア10により、複数の予備焼結済みの圧粉成形体Wを搬送しながら転動させ、上方に設置された又は上方と下方に設置された2組のインペラ11から鋼製ショット材12を投射することで、圧粉成形体Wの全表面部をショットブラスト処理して封孔処理する。   As shown in FIG. 2, a plurality of pre-sintered green compacts W are rolled while being conveyed by a rubber belt conveyor 10 extending into the shot blast processing apparatus SA, and installed above. Alternatively, the steel shot material 12 is projected from two sets of impellers 11 installed on the upper side and the lower side, so that the entire surface portion of the green compact W is shot blasted and sealed.

尚、ベルトコンベア10以外に、チェーンコンベヤを採用してもよく、ベルトコンベヤの代わりに回転ドラムを採用してもよい。尚、図2に示すインライン方式のショットブラスト処理装置SAの代わりに、図3に示すバッチ方式のショットブラスト処理装置SBを採用してもよい。また、前記インペラ11により鋼製ショット材を投射する代わりに、エアブローにより鋼製ショット材を投射するように構成してもよい。   In addition to the belt conveyor 10, a chain conveyor may be adopted, and a rotating drum may be adopted instead of the belt conveyor. Instead of the inline shot blast processing apparatus SA shown in FIG. 2, a batch shot blast processing apparatus SB shown in FIG. 3 may be adopted. Further, instead of projecting the steel shot material by the impeller 11, the steel shot material may be projected by air blow.

次に、P4の本焼結処理工程において、上記ショットブラスト処理済みの圧粉成形体Wに本焼結処理を施す。この場合、複数の圧粉成形体Wを焼結炉内に収容し、窒素ガスベースの水素ガス還元雰囲気で、雰囲気温度1000〜1300℃で、処理時間15分〜2時間の間行う。この本焼結処理により、CuとCを基材の鉄に固溶させる。   Next, in the main sintering process of P4, the main compaction process is performed on the green compact W after the shot blasting process. In this case, the plurality of compacted compacts W are accommodated in a sintering furnace, and are performed in a nitrogen gas-based hydrogen gas reducing atmosphere at an ambient temperature of 1000 to 1300 ° C. for a treatment time of 15 minutes to 2 hours. By this main sintering process, Cu and C are dissolved in iron of the base material.

次に、P5の熱間鍛造処理工程において、上記のように本焼結処理された焼結体を、熱間鍛造成形装置の所定の金型にセットして熱間鍛造し、コンロッド形状に成形する。
次に、P6のバリ取り処理工程において、熱間鍛造後の複数の焼結鍛造体を回転ドラム式のバリ取り装置に投入してバリ取り処理を施す。
Next, in the hot forging process of P5, the sintered body subjected to the main sintering process as described above is set in a predetermined die of a hot forging molding apparatus and hot forged to form a connecting rod shape. To do.
Next, in the deburring process of P6, a plurality of sintered forged bodies after hot forging are put into a rotary drum type deburring apparatus to perform deburring processing.

次に、P7のショットピーニング処理工程において、バリ取り後の焼結鍛造体の全表面部にショットピーニング処理を施す。このショットピーニング処理は、高硬度(例えば、HRC40〜50)で且つ粒径0.5〜0.7mmの鋼製ショット材(例えば、スチールラウンドカットワイヤ)を用い、50〜85m/sの投射速度で且つ90〜215Kg/分の投射量にて行う。このショットピーニング処理により、焼結鍛造部材であるコンロッド成形体の全表面部に高い残留圧縮応力が付与されるため、コンロッドの疲労強度特性を高めることができる。   Next, in the shot peening treatment process of P7, shot peening treatment is performed on the entire surface portion of the sintered forged body after deburring. This shot peening treatment uses a steel shot material (for example, steel round cut wire) having a high hardness (for example, HRC 40 to 50) and a particle size of 0.5 to 0.7 mm, and a projection speed of 50 to 85 m / s. And a projection amount of 90 to 215 kg / min. By this shot peening treatment, since a high residual compressive stress is applied to the entire surface portion of the connecting rod molded body that is a sintered forged member, the fatigue strength characteristics of the connecting rod can be enhanced.

尚、前記P2の工程が第1工程に相当し、P3の工程が第2工程に相当し、P4の工程が第3工程に相当し、P5の工程が第4工程に相当する。
次に、以上説明した焼結鍛造部材の製造方法の作用、効果について説明する。
P3の工程において、HV100〜350の低硬度の鋼製ショット材でショットブラスト処理して予備焼結体の表面部を封孔処理するため、予備焼結体の表面部を破損することなく安定的に封孔処理することができるから、本焼結処理や熱間鍛造時に、脱炭現象が生じるのを確実に防止できるうえ、内部に金属酸化物が生成されにくくなり、さらに、残留空孔も生成されにくいため、疲労強度特性と、品質に優れた焼結鍛造部材を製造することができる。
The process P2 corresponds to the first process, the process P3 corresponds to the second process, the process P4 corresponds to the third process, and the process P5 corresponds to the fourth process.
Next, the operation and effect of the method for manufacturing a sintered forged member described above will be described.
In the process of P3, the surface portion of the pre-sintered body is sealed by shot blasting with a low hardness steel shot material of HV100 to 350, so that the surface portion of the pre-sintered body is not damaged. Therefore, it is possible to reliably prevent the decarburization phenomenon from occurring during the main sintering process or hot forging, and it is difficult for metal oxides to be generated inside. Since it is hard to produce | generate, the fatigue strength characteristic and the sintered forging member excellent in quality can be manufactured.

上記のショットブラスト処理は、粒径0.3〜0.7mmの鋼製ショット材を用い、30〜80m/sの投射速度で、100kg/分以下の投射量で行う。このように、軽度なショットブラスト処理となるようにショットブラスト処理条件を適正にすることで、予備焼結体の表面にダメージを与えることなく封孔処理を確実に効果的に行うことができる。 しかも、低硬度の鋼製ショット材を採用するため、ショット材が割れにくく、ショット材の破片が予備焼結体の表面に残留することもない。   The shot blast treatment is performed using a steel shot material having a particle size of 0.3 to 0.7 mm and a projection rate of 30 to 80 m / s and a projection amount of 100 kg / min or less. Thus, by making the shot blast treatment conditions appropriate so as to achieve a mild shot blast treatment, the sealing treatment can be reliably and effectively performed without damaging the surface of the pre-sintered body. In addition, since the steel shot material with low hardness is employed, the shot material is not easily broken, and fragments of the shot material do not remain on the surface of the pre-sintered body.

P2の工程の予備焼結処理は、非酸化性雰囲気である窒素ベースの水素還元性雰囲気で、800〜1000℃の温度で行うため、脱炭現象が生じることがなく予備焼結体の強度を確保し、P3の工程において封孔処理を安定的に行うことができる。こうして、焼結鍛造部材からなる高品質のエンジンのコンロッドを製作することができる。   The pre-sintering process in the process of P2 is performed at a temperature of 800 to 1000 ° C. in a nitrogen-based hydrogen reducing atmosphere that is a non-oxidizing atmosphere, so that the strength of the pre-sintered body is reduced without causing a decarburization phenomenon. The sealing process can be stably performed in the process of P3. Thus, a high quality engine connecting rod made of sintered forged members can be manufactured.

次に、以上説明した焼結鍛造部材の製造方法により製作途中の予備焼結体、完成後の焼結鍛造部材(コンロッド成形体)の組織の顕微鏡写真、品質や性能についての測定結果について説明する。
Next, a pre-sintered body in the middle of production by the method for producing a sintered forged member described above, a micrograph of the structure of the sintered forged member (conrod molded body) after completion, and measurement results on quality and performance will be described. .


表1は前記P3の工程に採用する適正なショットブラスト処理の処理条件を得るために行った5例の処理条件と評価を示すものである。○印の評価は良好を示す。鋼製ショット材の硬さはHV350でも予備焼結体の表面にダメージは殆ど発生しなかった。条件2のものは、投射速度が速く、投射量が多かったため、予備焼結体の角部に多少丸みが発生した程度で剥離には至っていないため、評価は三角印であるが採用可能である。

Table 1 shows the processing conditions and evaluations of five examples performed to obtain appropriate processing conditions for shot blasting employed in the process P3. The evaluation with ○ indicates good. Even when the hardness of the steel shot material was HV350, the surface of the pre-sintered body was hardly damaged. In the condition 2, the projection speed was high and the amount of projection was large, so that the corners of the pre-sintered body were slightly rounded and did not come off, so the evaluation is a triangular mark but can be adopted. .

図4は、予備焼結体に下記の条件のショットブラスト処理を施した予備焼結体20の外観を示すもので、角部や稜線部の形状に破損や崩れがなく、表面にダメージが発生していない。尚、ショットブラスト処理条件:鋼製ショット材(スチールラウンドカットワイヤ、粒径0.6mm、硬さHV100〜150、投射速度70m/s、投射量50Kg/分(インペラー式)、投射時間90秒/20本。   FIG. 4 shows the appearance of the pre-sintered body 20 obtained by subjecting the pre-sintered body to shot blasting under the following conditions. The shape of the corners and ridges are not damaged or collapsed, and the surface is damaged. Not done. Shot blasting conditions: Steel shot material (steel round cut wire, particle size 0.6 mm, hardness HV 100 to 150, projection speed 70 m / s, projection amount 50 kg / min (impeller type), projection time 90 seconds / 20 pieces.

図5は、比較例に係る前記通常製造方法で製造した予備焼結体のエッチング処理していない金属組織断面の顕微鏡写真(倍率:100倍)である。この予備焼結体の表層部に黒色の空隙(微細孔)が多数発生していることが判る。そのため、本焼結や熱間鍛造中に脱炭が進行し、酸化物が発生しやすくなり、内部に残留空孔が発生しやすくなる。図6は図4に示す実施例に係る予備焼結体20のエッチング処理していない金属組織の顕微鏡写真(倍率:100倍)である。予備焼結体20の表面がほぼ完全に封孔されていることが判る。しかも、内部に残留する残留空孔も図5のものと比較して格段に少なくなっている。   FIG. 5 is a photomicrograph (magnification: 100 times) of a cross-section of a metal structure that has not been subjected to etching treatment of a pre-sintered body manufactured by the normal manufacturing method according to the comparative example. It can be seen that many black voids (micropores) are generated in the surface layer portion of the pre-sintered body. Therefore, decarburization proceeds during the main sintering and hot forging, oxides are easily generated, and residual voids are easily generated inside. FIG. 6 is a photomicrograph (magnification: 100 times) of the metal structure of the pre-sintered body 20 according to the embodiment shown in FIG. It can be seen that the surface of the pre-sintered body 20 is almost completely sealed. Moreover, the residual vacancies remaining in the interior are significantly fewer than those in FIG.

図7は、従来技術の予備焼結体の角部のエッチング処理していない金属組織の顕微鏡写真(倍率:100倍)であり、図8は、図4に示す実施例に係る予備焼結体20の角部のエッチング処理していない金属組織の顕微鏡写真(倍率:100倍)である。封孔については、図6と同様である。予備焼結体20の角部の形状が維持され、予備焼結体20の表面にダメージが発生していないことが判る。   FIG. 7 is a micrograph (magnification: 100 times) of the metal structure of the prior art pre-sintered body that has not been etched, and FIG. 8 is a pre-sintered body according to the example shown in FIG. It is a microscope picture (magnification: 100 times) of the metal structure which has not performed the etching process of 20 corners. The sealing is the same as in FIG. It can be seen that the shape of the corners of the pre-sintered body 20 is maintained, and no damage has occurred on the surface of the pre-sintered body 20.

図9〜図15は、前記P1〜P7の工程により製造した焼結鍛造部材(コンロッド成形体)の完成品の品質等に関する図であり、図9は焼結鍛造部材30(コンロッド成形体)の平面図であり、図10は図9のX−X線断面図で、各部#1〜#4を指示する図である。図11は、前記通常製造方法で製造した比較例としてのコンロッド成形体(通常品)と、前記実施例の方法で製造したコンロッド成形体(発明品)について、図10に示す各部の圧縮残留応力の測定結果を示すグラフである。   9-15 is a figure regarding the quality etc. of the finished product of the sintered forged member (connecting rod molded object) manufactured by the process of said P1-P7, FIG. 9 is a figure of the sintered forged member 30 (connecting rod molded object). FIG. 10 is a cross-sectional view taken along the line XX of FIG. 9, and is a diagram indicating each part # 1 to # 4. FIG. 11 shows a compressive residual stress of each part shown in FIG. 10 for a connecting rod molded body (normal product) as a comparative example manufactured by the normal manufacturing method and a connecting rod molded body (invented product) manufactured by the method of the example. It is a graph which shows the measurement result.

この図11から判るように、発明品は通常品に比較して約110〜160%もの高い圧縮残留応力が付与されている。発明品では、ショットブラスト処理による封孔が良好になされた結果、脱炭が殆ど生じず、酸化物の生成も生じなかったため、焼結鍛造部材30の金属組織が硬く強度に優れるため、ショットピーニング処理が効果的に行われ、高い圧縮残留応力が付与され、疲労強度特性に優れる。   As can be seen from FIG. 11, the inventive product is given a compressive residual stress as high as about 110 to 160% compared to the normal product. In the invention product, as a result of good sealing by shot blasting, since decarburization hardly occurred and no oxide was generated, the metal structure of the sintered forged member 30 was hard and excellent in strength. The treatment is effectively performed, high compressive residual stress is imparted, and fatigue strength characteristics are excellent.

図12は、前記通常品における表面硬さの測定結果であり、図13は前記発明品における表面硬さの測定結果である。表面の最も浅い部位における硬さに関して、通常品では硬さHV260〜300であるのに対し、発明品では硬さHV310〜380であり、ショットピーニング処理が効果的になされたことが判る。   FIG. 12 shows the measurement results of the surface hardness of the normal product, and FIG. 13 shows the measurement results of the surface hardness of the invention product. Regarding the hardness at the shallowest part of the surface, the normal product has a hardness of HV 260 to 300, whereas the invention product has a hardness of HV 310 to 380, indicating that the shot peening treatment has been effectively performed.

図14は、前記通常品における図10の#1〜#4の何れかの部位のエッチング処理した金属組織の100倍の顕微鏡写真(比較例)であり、図15は発明品における前記同様のエッチング処理した金属組織の100倍の顕微鏡写真である。図14の表層部の約190μmの範囲は、脱炭して白色化した軟質のフェライト組織であり、約190μmの範囲よりも深部は硬いパーライト組織である。図15に示す発明品では、その表層部に白色化した脱炭組織は存在せず、表面から深部まで硬いパーライト組織となっている。   FIG. 14 is a micrograph (comparative example) of 100 times of the metal structure etched in any part of # 1 to # 4 in FIG. 10 in the normal product, and FIG. It is a 100-times microscope picture of the processed metal structure. The range of about 190 μm in the surface layer portion of FIG. 14 is a soft ferrite structure that has been decarburized and whitened, and the deeper part is a hard pearlite structure than the range of about 190 μm. In the product shown in FIG. 15, the whitened decarburized structure does not exist in the surface layer portion, and it is a hard pearlite structure from the surface to the deep part.

前記実施例を部分的に変更する例について説明する。
前記実施例は、焼結鍛造部材であるエンジンのコンロッドを製造する製造方法を例にして説明したが、本発明の焼結鍛造部材の製造方法は、エンジンのコンロッド以外の種々の焼結鍛造部材の製造方法にも適用可能である。
その他、本発明の趣旨を逸脱しない範囲で、前記実施例の焼結鍛造部材の製造方法を部材武器に変更して採用可能である。
An example in which the embodiment is partially changed will be described.
Although the said Example demonstrated the manufacturing method which manufactures the connecting rod of the engine which is a sintered forging member as an example, the manufacturing method of the sintered forging member of this invention is various sintered forging members other than the connecting rod of an engine. This method can also be applied.
In addition, the manufacturing method of the sintered forged member of the above embodiment can be changed to a member weapon without departing from the spirit of the present invention.

本発明の実施例に係る焼結鍛造部材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the sintered forge member which concerns on the Example of this invention. ショットブラスト処理装置の概略断面図である。It is a schematic sectional drawing of a shot blast processing apparatus. 別のショットブラスト処理装置の概略断面図である。It is a schematic sectional drawing of another shot blast processing apparatus. ショットブラスト処理後の予備焼結体の平面図である。It is a top view of the preliminary sintered compact after a shot blast process. 比較例の予備焼結体(通常品)の金属組織の顕微鏡写真である。It is a microscope picture of the metal structure of the preliminary sintered compact (normal article) of a comparative example. 図4の予備焼結体(発明品)の金属組織の顕微鏡写真である。It is a microscope picture of the metal structure of the pre-sintered body (invention product) of FIG. 比較例の予備焼結体(通常品)の金属組織の顕微鏡写真である。It is a microscope picture of the metal structure of the preliminary sintered compact (normal article) of a comparative example. 図4の予備焼結体(発明品)の金属組織の顕微鏡写真である。It is a microscope picture of the metal structure of the pre-sintered body (invention product) of FIG. コンロッド成形体の平面図である。It is a top view of a connecting rod molded object. 図9のX−X線断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9. 比較例に係る完成した焼結鍛造部材(通常品)と実施例に係る完成した焼結鍛造部材(発明品)における表面部の残留応力測定結果のグラフである。It is a graph of the residual stress measurement result of the surface part in the completed sintered forged member (normal product) which concerns on a comparative example, and the completed sintered forged member (invention product) which concerns on an Example. 図11の通常品における表面硬さの測定結果のグラフである。It is a graph of the measurement result of the surface hardness in the normal product of FIG. 図11の発明品における表面硬さの測定結果のグラフである。It is a graph of the measurement result of the surface hardness in the invention of FIG. 図11の通常品における金属組織の顕微鏡写真である。It is a microscope picture of the metal structure in the normal goods of FIG. 図11の発明における金属組織の顕微鏡写真である。It is a microscope picture of the metal structure in the invention of FIG. 特許文献1に記載の従来技術に係る焼結鍛造部材の製造方法におけるショットピーニング処理後の予備焼結体の概略平面図である。It is a schematic plan view of the pre-sintered body after the shot peening process in the manufacturing method of the sintered forge member which concerns on the prior art described in patent document 1. 図16のA部の拡大図である。It is an enlarged view of the A section of FIG. 図16のB部の拡大図である。It is an enlarged view of the B section of FIG. 図16の予備焼結体の金属組織の顕微鏡写真である。It is a microscope picture of the metal structure of the pre-sintered body of FIG.

符号の説明Explanation of symbols

SA,SB ショットブラスト処理装置
11 インペラー
12 鋼製ショット材
W 予備焼結体
SA, SB shot blast processing equipment 11 impeller 12 steel shot material W pre-sintered body

Claims (4)

焼結鍛造部材を製造する製造方法において、
炭素を含む鉄系金属粉末を圧粉成形した圧粉成形体を予備焼結処理する第1工程と、 次に予備焼結体をHV100〜350の硬度の鋼製ショット材でショットブラスト処理して予備焼結体の表面部を封孔処理する第2工程と、
次に予備焼結体を本焼結処理する第3工程と、
次に本焼結処理された焼結体を熱間鍛造する第4工程と、
を備えたことを特徴とする焼結鍛造部材の製造方法。
In a manufacturing method for manufacturing a sintered forged member,
A first step of pre-sintering a green compact obtained by compacting an iron-based metal powder containing carbon, and then subjecting the pre-sintered body to shot blasting with a steel shot material having a hardness of HV 100 to 350 A second step of sealing the surface portion of the preliminary sintered body;
Next, a third step of subjecting the pre-sintered body to a main sintering process,
Next, a fourth step of hot forging the sintered body subjected to the main sintering treatment,
A method for producing a sintered forged member, comprising:
第2工程のショットブラスト処理は、粒径0.3〜0.7mmの鋼製ショット材を用い、30〜80m/sの投射速度で行うことを特徴とする請求項1に記載の焼結鍛造部材の製造方法。   2. The sintered forging according to claim 1, wherein the shot blasting process in the second step is performed using a steel shot material having a particle diameter of 0.3 to 0.7 mm and a projection speed of 30 to 80 m / s. Manufacturing method of member. 第1工程の予備焼結処理は、非酸化性雰囲気で800〜1000℃の温度で行うことを特徴とする請求項1又は2に記載の焼結鍛造部材の製造方法。   The method for producing a sintered forged member according to claim 1 or 2, wherein the preliminary sintering treatment in the first step is performed at a temperature of 800 to 1000 ° C in a non-oxidizing atmosphere. 前記焼結鍛造部材は、エンジンのコンロッドであることを特徴とする請求項1〜3の何れかに記載の焼結鍛造部材の製造方法。   The method for producing a sintered forged member according to any one of claims 1 to 3, wherein the sintered forged member is a connecting rod of an engine.
JP2007042938A 2007-02-22 2007-02-22 Method for producing sintered forged member Expired - Fee Related JP4807519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042938A JP4807519B2 (en) 2007-02-22 2007-02-22 Method for producing sintered forged member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042938A JP4807519B2 (en) 2007-02-22 2007-02-22 Method for producing sintered forged member

Publications (2)

Publication Number Publication Date
JP2008202138A JP2008202138A (en) 2008-09-04
JP4807519B2 true JP4807519B2 (en) 2011-11-02

Family

ID=39779929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042938A Expired - Fee Related JP4807519B2 (en) 2007-02-22 2007-02-22 Method for producing sintered forged member

Country Status (1)

Country Link
JP (1) JP4807519B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2523857B (en) * 2012-02-24 2016-09-14 Malcolm Ward-Close Charles Processing of metal or alloy objects
JP5920202B2 (en) * 2012-12-21 2016-05-18 トヨタ自動車株式会社 Sintered forged parts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940452A (en) * 1974-07-06 1976-02-24 Hoechst Aktiengesellschaft Isomerization of C10 -C70 olefins of vinylidene structure to olefins of vinyl structure
JPH09194908A (en) * 1996-01-16 1997-07-29 Mitsubishi Materials Corp Sintered and forged product
JP4005189B2 (en) * 1997-11-10 2007-11-07 株式会社神戸製鋼所 High strength sintered steel and method for producing the same
JP2000063908A (en) * 1998-08-11 2000-02-29 Mazda Motor Corp Sintered forged part and production thereof

Also Published As

Publication number Publication date
JP2008202138A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4902280B2 (en) Powder forged member, mixed powder for powder forging, method for producing powder forged member, and fracture split type connecting rod using the same
JP4304245B2 (en) Powder metallurgy object with a molded surface
JP5959263B2 (en) Pinion gear and manufacturing method thereof
KR102382537B1 (en) A pre-alloyed iron- based powder, an iron-based powder mixture containing the pre-alloyed iron-based powder and a method for making pressed and sintered components from the iron-based powder mixture
EP2826577A1 (en) Mechanical structural component, sintered gear, and methods for producing same
TW201728769A (en) Iron based powders for powder injection molding
US20210094132A1 (en) Method for manufacturing kitchen knife by using multilayer material, and kitchen knife manufactured thereby
JP4807519B2 (en) Method for producing sintered forged member
JP6309215B2 (en) Sintered machine part manufacturing method and mixed powder used therefor
WO2019021935A1 (en) Sintered member
US11000894B2 (en) Metal powder material for metal powder lamination molding
JP5595980B2 (en) Carburized sintered body and manufacturing method thereof
JP2004346424A (en) Method for producing helical spring and helical spring
JP2015151586A (en) Method for producing sintered metal component
JP5073510B2 (en) Manufacturing method of sintered parts with excellent dimensional accuracy
JPS6345306A (en) Production of sintered member
KR20150103573A (en) Method of manufacturing connecting rod using the semi-closed sinter forging
JP2007508460A (en) Method for producing sintered metal parts having a densified surface
JP6299714B2 (en) Sintered forged product and manufacturing method thereof
JP5276491B2 (en) Surface densification method of sintered body
WO2020158789A1 (en) Sintered material, gear, and method for manufacturing sintered material
CN108273993A (en) Ferrous based powder metallurgical mileometer fifth wheel material component and the method for using the material preparation mileometer fifth wheel
KR101574862B1 (en) Method of manufacturing sintered product through powder metallurgy
JP2021091943A (en) Method of manufacturing sintered part
JP2682109B2 (en) Surface defect removal method for sintered forged parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4807519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees