JP4807088B2 - Cold-rolled steel sheet excellent in deep drawability and post-coating corrosion resistance and method for producing the same - Google Patents

Cold-rolled steel sheet excellent in deep drawability and post-coating corrosion resistance and method for producing the same Download PDF

Info

Publication number
JP4807088B2
JP4807088B2 JP2006025289A JP2006025289A JP4807088B2 JP 4807088 B2 JP4807088 B2 JP 4807088B2 JP 2006025289 A JP2006025289 A JP 2006025289A JP 2006025289 A JP2006025289 A JP 2006025289A JP 4807088 B2 JP4807088 B2 JP 4807088B2
Authority
JP
Japan
Prior art keywords
steel sheet
cold
corrosion resistance
less
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006025289A
Other languages
Japanese (ja)
Other versions
JP2007204816A (en
Inventor
功一 中川
玲子 杉原
直樹 西山
哲雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006025289A priority Critical patent/JP4807088B2/en
Publication of JP2007204816A publication Critical patent/JP2007204816A/en
Application granted granted Critical
Publication of JP4807088B2 publication Critical patent/JP4807088B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、深絞り性に優れ、かつ塩水噴霧試験により評価される塗装後耐食性に優れた冷延鋼板およびその製造方法に関する。   The present invention relates to a cold-rolled steel sheet having excellent deep drawability and excellent post-coating corrosion resistance evaluated by a salt spray test and a method for producing the same.

従来、自動車の外装板としては、引張強さが350MPa未満で深絞り性に富む冷延鋼板が使用されてきた。鋼板が優れた深絞り性を示すためには、機械的特性として、1.2以上の高いr値(ランクフォード値)を備えていることが必要とされる。こうした高いr値を有する冷延鋼板として、一般的には、炭窒化物形成元素を含有する極低炭素鋼を熱間圧延し、熱延段階で炭窒化物を生成させ、鋼中の固溶CおよびNを低減させて冷間圧延-再結晶焼鈍を行って製造される冷延鋼板、いわゆるIF(Interstitial Free)鋼が知られている。このIF鋼における深絞り性の改善策として、これまでにも種々の方法が提案されており、例えば、特許文献1には、熱延段階で析出物を粗大に析出させることで、冷間圧延後の焼鈍段階でフェライト粒成長性を促進して深絞り性を向上させた冷延鋼板の製造方法が開示されている。   Conventionally, cold rolled steel sheets having a tensile strength of less than 350 MPa and high deep drawability have been used as exterior panels for automobiles. In order for a steel sheet to exhibit excellent deep drawability, it is required that it has a high r-value (Rankford value) of 1.2 or more as mechanical characteristics. As a cold-rolled steel sheet having such a high r value, generally, an ultra-low carbon steel containing a carbonitride-forming element is hot-rolled to produce carbonitride at the hot-rolling stage, so that the solid solution in the steel is dissolved. A cold-rolled steel sheet manufactured by performing cold rolling-recrystallization annealing with C and N reduced, so-called IF (Interstitial Free) steel is known. As a measure for improving the deep drawability in this IF steel, various methods have been proposed so far, for example, Patent Document 1 discloses cold rolling by precipitating precipitates coarsely in the hot rolling stage. A method of manufacturing a cold-rolled steel sheet is disclosed in which the ferrite grain growth is promoted in the subsequent annealing stage to improve the deep drawability.

しかし、特許文献1に開示されているような極低炭素のIF鋼は、従来用いられてきたC量が0.02~0.08%の低炭素鋼板と比較して、リン酸処理性(化成処理性)が著しく劣り、電着塗装後に塩水噴霧試験のような過酷な環境に曝されると、優れた塗装後耐食性が得られないことが知られている。これは、C量が少ないためセメンタイトが析出せず、リン酸塩化成結晶核の生成サイトとなるカソード部が減少するためと考えられている。   However, the ultra-low carbon IF steel as disclosed in Patent Document 1 is phosphoric acid treatability (chemical conversion treatability) as compared with the conventionally used low carbon steel sheet with a C content of 0.02 to 0.08%. It is known that when it is exposed to a severe environment such as a salt spray test after electrodeposition coating, excellent corrosion resistance after coating cannot be obtained. This is thought to be because cementite does not precipitate because the amount of C is small, and the cathode portion that is the site of formation of phosphate conversion crystal nuclei decreases.

一方、近年、自動車の車体軽量化や安全性向上を目的として、引張強さが350〜600MPaの高強度鋼板を用いようとする気運が急速に高まっている。このため、現在、高強度で、しかも従来の冷延鋼板と同等以上の高いr値を備えたIF鋼の研究が精力的に進められている。このような深絞り性に優れた高強度IF鋼には、Si、MnおよびPなどの固溶強化元素が含有されるが、なかでも、Siは、鋼板の加工性の低下を抑えながら強度を上昇させることができるので、多用されている。しかしながら、Siを多量に添加すると、焼鈍時にSiの酸化物が鋼板表面に形成されやすくなる。そのため、Si含有量の多い鋼板では、電着塗装後に塩水噴霧試験のような過酷な環境に曝されると、通常の鋼板に比べて、塗装後耐食性が低下しやすいことが問題となっている。   On the other hand, in recent years, there has been a rapid increase in the tendency to use high-strength steel sheets having a tensile strength of 350 to 600 MPa for the purpose of reducing the weight of automobile bodies and improving safety. For this reason, research on IF steel with high strength and a high r value equal to or higher than that of conventional cold-rolled steel sheets is being actively pursued. Such high-strength IF steels with excellent deep drawability contain solid solution strengthening elements such as Si, Mn, and P. Among them, Si increases strength while suppressing deterioration of workability of the steel sheet. Because it can be raised, it is often used. However, when a large amount of Si is added, an oxide of Si is easily formed on the steel sheet surface during annealing. For this reason, steel sheets with a high Si content have a problem that the corrosion resistance after coating tends to be lower than that of ordinary steel sheets when exposed to harsh environments such as a salt spray test after electrodeposition coating. .

これまで、低炭素鋼板に含まれる量より多いCを含む鋼板や高濃度のSiを含有する鋼板について、鋼板表面のSi量を低減させて化成処理性や塗装後耐食性を向上させる技術が提案されている。例えば、特許文献2には、熱間圧延時にスラブを1200℃以上の温度に加熱し、高圧でデスケーリングし、酸洗前に熱延鋼板の表面を砥粒入りナイロンブラシで研削し、9%塩酸槽に2回浸漬して酸洗を行なって、鋼板表面のSi濃度を下げた高強度冷延鋼板が提案されている。特許文献3には、鋼板表面から1〜10μm深さの領域に観察されるSiを含む線状酸化物の線幅を300nm以下とし、鋼板表面のSi量を低減することで、JIS Z 2371の塩水噴霧試験による耐食性を向上させた高強度冷延鋼板が提案されている。   To date, technologies have been proposed to improve chemical conversion properties and post-coating corrosion resistance by reducing the amount of Si on the steel sheet surface for steel sheets containing more C than those contained in low-carbon steel sheets and steel sheets containing high concentrations of Si. ing. For example, in Patent Document 2, the slab is heated to a temperature of 1200 ° C. or higher during hot rolling, descaled at a high pressure, and the surface of the hot rolled steel sheet is ground with a nylon brush containing abrasive grains before pickling, 9% A high-strength cold-rolled steel sheet that has been dipped twice in a hydrochloric acid bath and pickled to reduce the Si concentration on the steel sheet surface has been proposed. In Patent Document 3, the line width of a linear oxide containing Si observed in a region 1 to 10 μm deep from the steel sheet surface is set to 300 nm or less, and by reducing the Si amount on the steel sheet surface, JIS Z 2371 A high-strength cold-rolled steel sheet with improved corrosion resistance by a salt spray test has been proposed.

また、鋼板表面にS化合物を付着させて化成処理性や塗装後耐食性を向上させる技術も提案されている。例えば、特許文献4には、連続焼鈍前に、鋼板表面にS化合物を付着させることで、リン酸塩処理性に優れた極低炭素冷延鋼板の製造方法が提案されている。特許文献5には、グラファイトやSiなどのリン酸塩皮膜形成を阻害する表面汚染物質を電解除去後、鋼板表面にS化合物を吸着させることで、リン酸塩処理性および塗装後耐食性に優れた冷延鋼板およびその製造方法が提案されている。
特許第3428318号公報 特開2004-204350号公報 特開2004-244698号公報 特公平3-68951号公報 特公昭61-4199号公報
In addition, a technique has been proposed in which an S compound is attached to the surface of a steel plate to improve chemical conversion property and post-coating corrosion resistance. For example, Patent Document 4 proposes a method for producing an ultra-low carbon cold-rolled steel sheet having excellent phosphate treatment properties by attaching an S compound to the steel sheet surface before continuous annealing. In Patent Document 5, the surface contaminants that inhibit the formation of phosphate films such as graphite and Si are electrolytically removed, and the S compound is adsorbed on the surface of the steel sheet. Cold-rolled steel sheets and methods for producing the same have been proposed.
Japanese Patent No. 3428318 JP 2004-204350 A JP 2004-244698 A Japanese Patent Publication No. 3-68951 Japanese Patent Publication No. 61-4199

しかしながら、特許文献2に記載の高強度冷延鋼板では、冷間圧延前に鋼板表面のSi酸化物を低減しても、その後の焼鈍により鋼板表面にSi酸化物が形成され、塗装後耐食性を改善できない。特許文献3に記載の高強度冷延鋼板の技術を、深絞り性の改善のためにC量の少ないIF鋼に適用すると、十分な塗装後耐食性が得られなくなる。特許文献4に記載の極低炭素冷延鋼板の製造方法や特許文献5に記載の冷延鋼板では、必ずしもr値が1.2以上の深絞り性に優れた冷延鋼板が得られない。   However, in the high-strength cold-rolled steel sheet described in Patent Document 2, even if Si oxide on the steel sheet surface is reduced before cold rolling, Si oxide is formed on the steel sheet surface by subsequent annealing, and the corrosion resistance after coating is reduced. Cannot improve. If the technique of the high-strength cold-rolled steel sheet described in Patent Document 3 is applied to IF steel with a small amount of C in order to improve deep drawability, sufficient post-coating corrosion resistance cannot be obtained. In the method for producing an ultra-low carbon cold-rolled steel sheet described in Patent Document 4 and the cold-rolled steel sheet described in Patent Document 5, a cold-rolled steel sheet having an r value of 1.2 or more and excellent in deep drawability is not necessarily obtained.

本発明は、r値が1.2以上で深絞り性に優れ、かつ塩水噴霧試験のような過酷な環境でも塗装後耐食性に優れた冷延鋼板、およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a cold-rolled steel sheet having an r value of 1.2 or more, excellent deep drawability, and excellent corrosion resistance after coating even in a severe environment such as a salt spray test, and a method for producing the same.

上記目的は、質量%で、C:0.008%以下、Mn:0.05〜1.0%、Si:0.2%以上0.8%未満、S:0.005%以下、N:0.01%以下、Al:0.01〜0.1%を含有し、さらにTi:0.010〜0.1%、Nb:0.015〜0.15%のうちから選ばれた少なくとも1種の元素を含有し、残部がFeおよび不可避的不純物からなり、TiとNbの含有量が上記の式(1)を満足し、かつ以下の式(2)で定義される鋼板表面のSi量Cs(Si)が1.6%以下で、鋼板表面にS換算で0.1〜100mg/m2のS化合物が存在していることを特徴とする深絞り性および塗装後耐食性に優れた冷延鋼板によって達成できる。
Cs(Si)=Cb(Si)×[Rs(Si/Fe)/Rb(Si/Fe)] ・・・(2)
ここで、Cb(Si)は鋼中のSi量を、Rs(Si/Fe)は鋼板表面から50nmの深さまでのSiとFeのGDS(Glow Discharge Spectroscopy)カウント積算値比を、Rb(Si/Fe)は鋼中のSiとFeのGDSカウント比を表す。なお、Rs(Si/Fe)を鋼板表面から50nmの深さまでのSiとFeのGDSカウント積算値から求めた理由は、化成処理時のエッチングによる鋼板の溶解は50nmの深さ程度であるので、鋼板表面から50nmの深さまでに存在するSi量が塗装後耐食性に大きく影響するためである。
The above purpose is by mass%, C: 0.008% or less, Mn: 0.05 to 1.0%, Si: 0.2% or more and less than 0.8%, S: 0.005% or less, N: 0.01% or less, Al: 0.01 to 0.1% Further, it contains at least one element selected from Ti: 0.010 to 0.1%, Nb: 0.015 to 0.15%, the balance is made of Fe and unavoidable impurities, and the contents of Ti and Nb are as described above. The amount of Si Cs (Si) on the steel plate surface defined by the following formula (2) satisfying the formula (1) is 1.6% or less, and 0.1 to 100 mg / m 2 of S compound in terms of S is present on the steel plate surface. It can be achieved by a cold-rolled steel sheet excellent in deep drawability and post-coating corrosion resistance characterized by being present.
Cs (Si) = Cb (Si) × [Rs (Si / Fe) / Rb (Si / Fe)] (2)
Here, Cb (Si) is the amount of Si in the steel, Rs (Si / Fe) is the GDS (Glow Discharge Spectroscopy) count integrated value ratio of Si and Fe from the steel sheet surface to a depth of 50 nm, and Rb (Si / Fe Fe) represents the GDS count ratio of Si and Fe in the steel. The reason why Rs (Si / Fe) was obtained from the GDS count integrated value of Si and Fe from the surface of the steel sheet to a depth of 50 nm is because the dissolution of the steel sheet by etching during the chemical conversion treatment is about 50 nm deep. This is because the amount of Si existing from the steel sheet surface to a depth of 50 nm greatly affects the corrosion resistance after coating.

また、本発明の冷延鋼板には、さらに、質量%で、Ca:0.001〜0.1%、REM:0.001〜0.1%のうちから選ばれた少なくとも1種の元素を含有させることができる。   In addition, the cold-rolled steel sheet of the present invention can further contain at least one element selected from Ca: 0.001 to 0.1% and REM: 0.001 to 0.1% by mass.

本発明の冷延鋼板は、例えば、上記の組成を有する熱延鋼板を、圧下率50〜95%で冷間圧延し、750〜950℃の焼鈍温度で再結晶焼鈍した後、酸洗し、S化合物を含有する水溶液を鋼板表面に触れさせて前記鋼板表面にS量換算で0.1〜100mg/m2のS化合物を存在せしめることを特徴とする深絞り性および塗装後耐食性に優れた冷延鋼板の製造方法により製造できる。 Cold-rolled steel sheet of the present invention, for example, a hot-rolled steel sheet having the above composition is cold rolled at a reduction rate of 50% to 95%, after recrystallization annealing at annealing temperatures of 750 to 950 ° C., and pickling, Cold rolling excellent in deep drawability and post-coating corrosion resistance, characterized in that an aqueous solution containing an S compound is brought into contact with the steel sheet surface and 0.1 to 100 mg / m 2 of S compound is present on the steel sheet surface in terms of S amount It can manufacture with the manufacturing method of a steel plate.

本発明により、r値が1.2以上で深絞り性に優れ、かつ塩水噴霧試験のような過酷な環境でも塗装後耐食性に優れた冷延鋼板を製造できるようになった。   According to the present invention, a cold-rolled steel sheet having an r value of 1.2 or more and excellent deep drawability and excellent corrosion resistance after coating can be produced even in a severe environment such as a salt spray test.

以下に、本発明の詳細を説明する。   Details of the present invention will be described below.

1)成分(以下の「%」は、「質量%」を表す。)
C:0.008%以下
C量が少なければ少ないほど深絞り性は向上し、0.008%以下であれば1.2以上のr値が得られる。そのため、C量は0.008%以下、好ましくは0.005%以下とする。
1) Component (“%” below represents “% by mass”)
C: 0.008% or less
The smaller the amount of C, the better the deep drawability. If it is 0.008% or less, an r value of 1.2 or more can be obtained. Therefore, the C content is 0.008% or less, preferably 0.005% or less.

Mn:0.05〜1.0%
Mnは、熱間圧延中のSによる赤熱脆性を防止するために有効な元素である。この効果を得るためには、Mn量は0.05%以上必要である。しかし、Mn量が1.0%を超えると、連続鋳造中にMnSが析出して熱間脆性の要因となり、鋳片割れを招くため、Mn量は0.05〜1.0%、好ましくは0.2〜0.7%とする。
Mn: 0.05-1.0%
Mn is an effective element for preventing red heat embrittlement due to S during hot rolling. In order to obtain this effect, the Mn content needs to be 0.05% or more. However, if the Mn content exceeds 1.0%, MnS precipitates during continuous casting, causing hot brittleness and causing slab cracking. Therefore, the Mn content is 0.05 to 1.0%, preferably 0.2 to 0.7%.

N:0.01%以下
N量が少なければ少ないほど深絞り性は向上し、0.01%以下であれば1.2以上のr値が得られる。そのため、C量は0.01%以下、好ましくは0.005%以下とする。
N: 0.01% or less
The smaller the amount of N, the better the deep drawability, and if it is 0.01% or less, an r value of 1.2 or more can be obtained. Therefore, the C content is 0.01% or less, preferably 0.005% or less.

S:0.005%以下
S量が少なければ少ないほど深絞り性は向上し、0.005%以下であれば1.2以上のr値が得られる。そのため、S量は0.005%以下、好ましくは0.003%以下とする。
S: 0.005% or less
The smaller the amount of S, the better the deep drawability. If it is 0.005% or less, an r value of 1.2 or more can be obtained. Therefore, the S content is 0.005% or less, preferably 0.003% or less.

Al:0.01〜0.1%
Alは、鋼の脱酸剤として添加され、鋼の清浄度を向上させるのに有効な元素である。また、窒化物を形成して固溶Nを低減するので、深絞り性の向上や時効性の改善にも効果的な元素である。こうした効果を得るには、Al量は0.01%以上含有させる必要があるが、0.1%を超えるとその効果は飽和し、コストの上昇を招く。そのため、Al量は0.01〜0.1%、好ましくは0.02〜0.07%とする。
Al: 0.01-0.1%
Al is added as a steel deoxidizer, and is an effective element for improving the cleanliness of steel. Further, since nitride is formed to reduce the solid solution N, it is an element effective for improving deep drawability and aging. In order to obtain such an effect, the Al content needs to be 0.01% or more. However, if it exceeds 0.1%, the effect is saturated and the cost is increased. Therefore, the Al content is 0.01 to 0.1%, preferably 0.02 to 0.07%.

Ti:0.010〜0.1%、Nb:0.015〜0.15%のうちから選ばれた少なくとも1種の元素
TiおよびNbは、鋼中の固溶CまたはNを炭窒化物として析出させることにより、深絞り性に有利な{111}方位の結晶粒を優先的に形成させる効果がある。Ti量が0.010%未満やNb量が0.015%未満の場合は、その効果に乏しく、Ti量が0.1%超えたり、Nb量が0.15%を超える場合は、固溶TiやNbが増加し、加工性を悪くする。そのため、Ti量は0.010〜0.1%、好ましくは0.05〜0.08%と、また、Nb量は0.015〜0.15%、好ましくは0.045〜0.12%とする。
At least one element selected from Ti: 0.010 to 0.1%, Nb: 0.015 to 0.15%
Ti and Nb have the effect of preferentially forming {111} -oriented grains that are advantageous for deep drawability by precipitating solute C or N in steel as carbonitrides. If the Ti content is less than 0.010% or the Nb content is less than 0.015%, the effect is poor.If the Ti content exceeds 0.1% or the Nb content exceeds 0.15%, solid solution Ti or Nb increases, and processing Worsen sex. Therefore, the Ti amount is 0.010 to 0.1%, preferably 0.05 to 0.08%, and the Nb amount is 0.015 to 0.15%, preferably 0.045 to 0.12%.

なお、1.2以上のr値を確実に得るには、TiやNb量を上記の範囲内に制御した上で、かつ上記の式(1)を満足させる必要がある。すなわち、固溶Cを析出させるのに有効なTi量であるTi*とNb量の和が化学量論的にC量よりも多くないと、再結晶時に固溶Cが存在して深絞り性に有利な{111}方位の結晶粒を優先的に形成させることができず、1.2以上のr値が得られなくなる。   In order to reliably obtain an r value of 1.2 or more, it is necessary to satisfy the above formula (1) while controlling the Ti and Nb amounts within the above ranges. In other words, if the sum of Ti * and Nb, which is effective for precipitating solid solution C, is not stoichiometrically greater than the amount of C, solid solution C will exist during recrystallization and deep drawability It is not possible to preferentially form {111} -oriented crystal grains advantageous to the above, and an r value of 1.2 or more cannot be obtained.

本発明においては、次の理由により、Siを0.2%以上0.8%未満含有させ。また、Ca:0.001〜0.1%、REM:0.001〜0.1%のうちから選ばれた少なくとも1種の元素を含有させてもよい。 In the present invention, the following reasons, the Si Ru is contained less than 0.8% to 0.2%. Further, at least one element selected from Ca: 0.001 to 0.1% and REM: 0.001 to 0.1% may be contained.

Si: 0.2%以上0.8%未満
本発明の冷延鋼板の引張強さを350MPa以上にするには、Si量を0.2%以上含有させることが効果的である、しかし、Si量が0.8%以上では、表面性状や加工性が劣化する。そのため、高強度化を図るには、Si量を0.2%以上0.8%未満とすることが好ましく、0.2%以上0.6%未満とすることがより好ましい。Siを0.2%以上0.8%未満含有させた場合、塩水噴霧試験のような過酷な環境でも優れた塗装後耐食性を確保するには、上記の式(2)で定義されるCs(Si)を1.6%以下、好ましくは1.2%とする必要がある。Cs(Si)が1.6%を超えると、電着塗装の下地処理として行われるリン酸亜鉛処理において、鋼板表面のSiが鋼板のエッチングを阻害して健全な化成処理皮膜の形成を妨げるため、優れた塗装後耐食性が得られないと考えられる。
Si: 0.2% or more and less than 0.8% In order to increase the tensile strength of the cold-rolled steel sheet of the present invention to 350 MPa or more, it is effective to contain Si content by 0.2% or more. However, if the Si content is 0.8% or more, , Surface properties and workability deteriorate. Therefore, in order to increase the strength, the Si content is preferably 0.2% or more and less than 0.8%, and more preferably 0.2% or more and less than 0.6%. When Si is contained in an amount of 0.2% or more and less than 0.8%, Cs (Si) defined by the above formula (2) is 1.6 to ensure excellent post-coating corrosion resistance even in a severe environment such as a salt spray test. % Or less, preferably 1.2%. When Cs (Si) exceeds 1.6%, in the zinc phosphate treatment that is performed as a base treatment for electrodeposition coating, Si on the surface of the steel sheet inhibits the etching of the steel sheet and prevents the formation of a healthy chemical conversion coating film. It is considered that the corrosion resistance after painting is not obtained.

なお、上記式(2)のRs(Si/Fe)を鋼板表面から50nmの深さまでのSiとFeのGDS(Glow Discharge Spectroscopy)カウント積算値から求めた理由は、化成処理時のエッチングによる鋼板の溶解は50nmの深さ程度であるので、鋼板表面から50nmの深さまでに存在するSi量が塗装後耐食性に大きく影響するためである。   The reason why Rs (Si / Fe) in the above formula (2) was obtained from the GDS (Glow Discharge Spectroscopy) count integrated value of Si and Fe from the surface of the steel sheet to a depth of 50 nm is the reason for the steel sheet by etching during chemical conversion treatment. This is because the dissolution is about 50 nm deep, and the amount of Si existing from the steel sheet surface to a depth of 50 nm greatly affects the corrosion resistance after coating.

ここで、鋼板表面からの50nm深さまでのSiとFeのGDSカウント積算値を求めるには、別途GDSによるスパッタリング深さとスパッタリング時間との関係を求め、50nmに相当するスパッタリング時間までのGDSカウント積算値を求めればよい。また、Rb(Si/Fe)は、鋼中のSiとFeのGDSカウント比であり、スパッタリング時間に対してSiとFeのGDSカウントがほぼ一定となり、表面濃化の影響が認められなくなった所でのSiとFeのGDSカウント値を用いればよい。なお、Cb(Si)は、鋼中のSiの含有量(質量%)である。   Here, in order to obtain the GDS count integrated value of Si and Fe from the steel sheet surface to a depth of 50 nm, separately obtain the relationship between the sputtering depth by GDS and the sputtering time, and the GDS count integrated value up to the sputtering time corresponding to 50 nm. You can ask for. Rb (Si / Fe) is the GDS count ratio of Si and Fe in the steel. The GDS count of Si and Fe is almost constant with respect to the sputtering time, and the effect of surface enrichment is no longer observed. The GDS count values of Si and Fe at Cb (Si) is the Si content (% by mass) in the steel.

Ca:0.001〜0.1%、REM:0.001〜0.1%のうちから選ばれた少なくとも1種
Ca、REMは、硫化物系介在物の形態を制御し、鋼板の伸びフランジ性を向上させる効果を有する。このような効果は、こうした元素を少なくとも1種含有させることで得られる。このとき各々の元素は0.001%以上含有させることが好ましい。しかしながら、0.1%を超えるとその効果は飽和する。したがって、これらの元素の量は、それぞれ0.001〜0.1%、好ましくは0.001〜0.05%とする。
Ca: 0.001 to 0.1%, REM: at least one selected from 0.001 to 0.1%
Ca and REM have the effect of controlling the form of sulfide inclusions and improving the stretch flangeability of the steel sheet. Such an effect can be obtained by including at least one of these elements. At this time, each element is preferably contained in an amount of 0.001% or more. However, the effect is saturated when it exceeds 0.1%. Therefore, the amount of these elements is 0.001 to 0.1%, preferably 0.001 to 0.05%, respectively.

残部はFeおよび不可避的不純物である。なお、本発明の効果に影響を及ぼさない範囲であれば、上記以外の成分を含有させても問題ない。   The balance is Fe and inevitable impurities. In addition, if it is a range which does not affect the effect of this invention, it is satisfactory even if it contains a component other than the above.

2)鋼板表面のS化合物の量
鋼板表面には、化成処理によってリン酸塩皮膜が形成されるが、このとき、リン酸亜鉛結晶が緻密に生成するためには、リン酸亜鉛結晶核が化成処理初期段階で微細に数多く生成することが重要である。このリン酸亜鉛結晶核の生成は鋼板表面に存在するセメンタイトや硫化物などのカソードサイトを起点に起こっていると考えられている。しかし、本発明鋼のような極低炭素鋼板においては、従来用いられてきたC量が0.02~0.08%の低炭素鋼板に比べC量が少なく、セメンタイトが生成しないので、リン酸亜鉛結晶核の生成サイトとなるカソード部が少ない。また、Siが添加された鋼板においては、焼鈍時に鋼板表面に形成されたSi酸化物は鋼板のエッチングを阻害し、化成処理性を劣化させるため、事前に酸洗処理で取り除く必要があるが、酸洗によって鋼板表面に存在しているセメンタイトや硫化物などのカソード部も同時に溶解除去される。そのため、いずれの場合においても、皮膜結晶の粗大化、スケ発生などが起こり、酸洗処理や電解除去では良好な化成処理性が得られず、塗装後耐食性が劣ってしまう。
2) Amount of S compound on steel plate surface A phosphate film is formed on the steel plate surface by chemical conversion treatment. At this time, in order to form zinc phosphate crystals densely, the zinc phosphate crystal nuclei are formed by chemical conversion. It is important to produce a large number in the initial stage of processing. The formation of zinc phosphate crystal nuclei is thought to have started from cathode sites such as cementite and sulfide existing on the steel sheet surface. However, in the ultra-low carbon steel plate such as the steel of the present invention, the amount of C is small compared to the conventionally used low carbon steel plate of 0.02 to 0.08%, and cementite is not generated. There are few cathode parts which become a production site. In addition, in steel sheets to which Si is added, the Si oxide formed on the surface of the steel sheet during annealing inhibits the etching of the steel sheet and deteriorates the chemical conversion treatment property. By the pickling, the cathode part such as cementite and sulfide existing on the surface of the steel sheet is also dissolved and removed. Therefore, in any case, coarsening of the film crystal, generation of scale, etc. occur, and good chemical conversion property cannot be obtained by pickling or electrolytic removal, resulting in poor corrosion resistance after coating.

本発明者らは、鋼板表面にS換算で0.1〜100mg/m2のS化合物を存在させることにより、リン酸亜鉛結晶核の数を増加させてリン酸亜鉛結晶の微細化、緻密化を図り、リン酸塩処理性を向上させて塗装後耐食性を改善できることを見出した。このとき、鋼板表面に存在するS化合物の量がS換算で0.1mg/m2未満ではリン酸塩処理性向上効果がほとんどなく、また100mg/m2を超えると向上効果は飽和し、むしろ外観を悪くする。鋼板表面に存在するS化合物の量はS換算で0.1〜50mg/m2であることが好ましい。なお、鋼板表面に存在させるS化合物としては、例えば、FeS、MnSなどが挙げられる。 The inventors have made the zinc phosphate crystal finer and more dense by increasing the number of zinc phosphate crystal nuclei by allowing 0.1 to 100 mg / m 2 of S compound in terms of S on the steel sheet surface. The present inventors have found that the corrosion resistance after coating can be improved by improving the phosphatability. At this time, when the amount of S compound present on the steel sheet surface is less than 0.1 mg / m 2 in terms of S, there is almost no phosphate treatment improvement effect, and when it exceeds 100 mg / m 2 , the improvement effect is saturated, rather the appearance Make it worse. The amount of S compound present on the steel sheet surface is preferably 0.1 to 50 mg / m 2 in terms of S. Examples of the S compound to be present on the steel sheet surface include FeS and MnS.

4)製造方法
上述したように、本発明の冷延鋼板は、例えば、上記の組成を有する熱延鋼板を、圧下率50〜95%で冷間圧延し、750〜950℃の焼鈍温度で再結晶焼鈍した後、酸洗し、S化合物を含有する水溶液を鋼板表面に触れさせて鋼板表面にS量換算で0.1〜100mg/m2のS化合物を存在させる方法により製造できる。以下に各製造条件の限定理由を説明する。
4) Manufacturing method As described above, the cold-rolled steel sheet of the present invention is, for example, cold-rolled hot-rolled steel sheet having the above composition at a reduction rate of 50 to 95% and re-applied at an annealing temperature of 750 to 950 ° C. after recrystallization annealing and pickling can be produced by a method in which the presence of S compounds of 0.1-100 mg / m 2 in the amount of S in terms touched let in the surface of the steel sheet in an aqueous solution to the steel sheet surface containing S compound. The reasons for limiting each manufacturing condition will be described below.

冷間圧延の圧下率:50〜95%
1.2以上の高いr値を得るには、少なくとも50%の圧下率で冷間圧延を行う必要がある。r値は、圧下率の増加とともに向上するが、圧下率が95%を超えると劣化する。そのため、冷間圧延の圧下率は50〜95%とする。
Cold rolling reduction: 50-95%
In order to obtain a high r value of 1.2 or more, it is necessary to perform cold rolling at a reduction rate of at least 50%. The r value improves as the rolling reduction increases, but deteriorates when the rolling reduction exceeds 95%. Therefore, the rolling reduction of cold rolling is 50 to 95%.

焼鈍温度:750〜950℃
冷間圧延後の冷延板は、{111}再結晶集合組織を発達させて高いr値を得るために再結晶焼鈍される。このとき、焼鈍温度が750℃に満たないと再結晶が完了せずr値は低く、一方950℃を超えるとオーステナイト単相域の焼鈍となり、冷却過程においてオーステナイトからフェライトへの変態により再結晶集合組織がランダム化し、低いr値しか得られない。そのため、焼鈍温度は750~950℃とする。
Annealing temperature: 750-950 ° C
The cold-rolled sheet after cold rolling is recrystallized and annealed to develop a {111} recrystallized texture and obtain a high r value. At this time, if the annealing temperature is less than 750 ° C., the recrystallization is not completed and the r value is low. On the other hand, if it exceeds 950 ° C., the austenite single phase region is annealed. The tissue is randomized and only low r values are obtained. Therefore, the annealing temperature is 750 to 950 ° C.

S化合物処理:焼鈍後の鋼板は、鋼板表面にS換算で0.1〜100mg/m2のS化合物を存在させるために、チオ尿素、チオグリコール酸、硫化ジメチルの水溶液などに浸漬、スプレー、ロールコーターなどで接触させた後、水洗する必要がある。 S compound treatment: The steel sheet after annealing is immersed in an aqueous solution of thiourea, thioglycolic acid, dimethyl sulfide, etc. in order to make 0.1 to 100 mg / m 2 of S compound in S conversion on the steel sheet surface, spray, roll coater It is necessary to wash with water after making contact.

なお、焼鈍後S化合物処理前に、焼鈍時に鋼板表面に形成されるSi酸化物を除去してCs(Si)を確実に1.6%以下にするため、塩酸、硫酸、硝酸+塩酸などで酸洗する必要がある。このとき、酸の種類、酸洗温度、酸洗時間などは特に限定しないが、例えば、10%塩酸や1%塩酸+25%硝酸を用い、30〜70℃で5〜20s浸漬することが好ましい。 Note that, before shrink blunt after S compound treatment, for reliably below 1.6% of Cs to remove Si oxide formed on the surface of the steel sheet (Si) during annealing, hydrochloric, sulfuric, acid such as nitric acid + hydrochloric acid Need to wash. At this time, the type of acid, pickling temperature, pickling time and the like are not particularly limited, but for example, 10% hydrochloric acid or 1% hydrochloric acid + 25% nitric acid is used, and it is preferable to immerse at 30-70 ° C. for 5-20 s. .

上記以外の製造条件は、特に限定するものではないが、以下の条件とすることが好ましい。   Manufacturing conditions other than those described above are not particularly limited, but are preferably the following conditions.

熱間圧延:製鋼工程で成分調整され、連続鋳造により製造されたスラブは、直接または再加熱後、熱間圧延され、熱延鋼板とされる。このとき、熱間圧延の仕上温度は、Ar3変態点未満では、オーステナイトとフェライトの混合組織となり、加工性を劣化させやすいため、Ar3変態点以上とすることが好ましい。また、仕上温度は(Ar3変態点+100)℃を超えると鋼の組織が粗大化し、加工性や表面性状を劣化させやすいため、(Ar3変態点+100)℃以下とすることが好ましい。熱間圧延後の鋼板は冷却され、オーステナイトをフェライト変態させて巻取られる。このとき、冷却速度が遅いと変態により生成したフェライトが粗大化し、加工性に悪影響を与えることがあるため、平均冷却速度は20℃/s以上とすることが好ましい。また、巻取温度は400〜650℃が好ましい。巻取り後の熱延鋼板は、表面に生成しているスケールを除くため、冷間圧延前に常法に従い酸洗される。焼鈍は、高い生産性の得られる連続焼鈍で行うことが好ましい。 Hot rolling: A slab whose components are adjusted in the steelmaking process and manufactured by continuous casting is hot-rolled directly or after reheating to obtain a hot-rolled steel sheet. At this time, finishing temperature of hot rolling, the Ar less than 3 transformation point becomes a mixed structure of austenite and ferrite, and is easy to degrade the workability, it is preferable that the Ar 3 transformation point or more. In addition, when the finishing temperature exceeds (Ar 3 transformation point +100) ° C., the steel structure is coarsened and the workability and surface properties are liable to deteriorate, so it is preferable to set it to (Ar 3 transformation point +100) ° C. or less. . The steel sheet after hot rolling is cooled, and austenite is ferrite-transformed and wound. At this time, if the cooling rate is slow, the ferrite produced by the transformation becomes coarse and may adversely affect workability. Therefore, the average cooling rate is preferably 20 ° C./s or more. The winding temperature is preferably 400 to 650 ° C. The hot-rolled steel sheet after winding is pickled according to a conventional method before cold rolling in order to remove the scale generated on the surface. The annealing is preferably performed by continuous annealing that can provide high productivity.

表1に示す組成を有し、仕上温度をAr3変態点以上(Ar3変態点+100)℃以下である910℃、巻取温度を620℃として製造した熱延鋼板A〜Dを、表2に示す圧下率で冷間圧延し、板厚0.7mmの冷延鋼板とした後、表2に示す焼鈍温度で連続焼鈍した。その後、表2に示すように、一部の鋼板には35℃の(1%塩酸+25%硝酸)酸洗液に10s浸漬の酸洗や、チオグリコール酸0.5g/lに5s浸漬のS化合物処理を行い、水洗・乾燥後、伸長率0.7%の調質圧延を行って試料No.1〜12を作製した。そして、得られた試料の表面S量、Cs(Si)、r値、塗装後耐食性を、以下の方法で調査した。 Table 1 shows hot-rolled steel sheets A to D manufactured with a finishing temperature of 910 ° C. that is not less than Ar 3 transformation point (Ar 3 transformation point +100) ° C. and a coiling temperature of 620 ° C. After cold rolling at a reduction ratio shown in 2 to obtain a cold-rolled steel sheet having a thickness of 0.7 mm, continuous annealing was performed at the annealing temperatures shown in Table 2. After that, as shown in Table 2, some steel plates were pickled in a pickling solution at 35 ° C. (1% hydrochloric acid + 25% nitric acid) for 10 s, or S was soaked in 0.5 g / l thioglycolic acid for 5 s. After compound treatment, washing and drying, temper rolling with an elongation of 0.7% was performed to prepare Sample Nos. 1 to 12. Then, the surface S amount, Cs (Si), r value, and post-coating corrosion resistance of the obtained samples were investigated by the following methods.

(1)表面S量
あらかじめ蛍光X線のSカウントとS量の検量線を作成しておき、鋼板試料の蛍光X線のSカウント値から算出した。
(1) Surface S amount A fluorescent X-ray S count and an S amount calibration curve were prepared in advance and calculated from the fluorescent X-ray S count value of the steel sheet sample.

(2) Cs(Si)
上述したように、Rs(Si/Fe)とRb(Si/Fe)をGDS分析により測定し、上記の式(2)を用いて算出した。
(2) Cs (Si)
As described above, Rs (Si / Fe) and Rb (Si / Fe) were measured by GDS analysis and calculated using the above equation (2).

(3)r値
圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向から採取したJIS Z 2204に規定の5号試験片を用いて、JIS Z 2241に規定の方法に準拠して、圧延方向、圧延方向に対して45°方向、および圧延方向のr値、すなわちrL、rD、rCを測定し、平均のr値=(rL+2rD+rC)/4を算出し、r値とした。
(3) r value Method specified in JIS Z 2241 using No. 5 test specimen specified in JIS Z 2204 taken from the rolling direction, 45 ° to rolling direction, and 90 ° to rolling direction Measure the rolling direction, the 45 ° direction with respect to the rolling direction, and the r value in the rolling direction, that is, rL, rD, rC, and calculate the average r value = (rL + 2rD + rC) / 4 R value.

(4)塗装後耐食性
化成処理は、日本ペイント社製の脱脂剤:サーフクリーナーEC90、表面調整剤:サーフファイン5N-10、化成処理剤:サーフダインSD2800を用い、脱脂工程:濃度16g/l、処理温度42〜44℃、処理時間120s、スプレー、表面調整工程:全アルカリ度1.5〜2.5ポイント、温度20〜25℃、処理時間30s、浸漬、化成処理工程:全酸度21〜24ポイント、遊離酸度0.7〜0.9ポイント、促進剤濃度2.8〜3.5ポイント、処理温度44℃、処理時間120sの条件で、行った。その後、日本ペイント社製の電着塗料:V-50を使用して電着塗装を行った。化成処理皮膜の付着量は2〜2.5g/m2、電着塗装は膜厚25μmを狙いとした。
(4) Corrosion resistance after painting Chemical conversion treatment uses degreasing agent: Surf Cleaner EC90, surface conditioner: Surffine 5N-10, chemical conversion treatment agent: Surfdyne SD2800 manufactured by Nippon Paint Co., Ltd. Degreasing process: Concentration 16g / l, Treatment temperature 42-44 ° C, treatment time 120s, spray, surface adjustment process: total alkalinity 1.5-2.5 points, temperature 20-25 ° C, treatment time 30s, immersion, chemical conversion treatment process: total acidity 21-24 points, free acidity The test was carried out under the conditions of 0.7 to 0.9 point, accelerator concentration of 2.8 to 3.5 point, processing temperature of 44 ° C. and processing time of 120 s. Thereafter, electrodeposition coating was performed using Nippon Paint's electrodeposition paint: V-50. The amount of chemical conversion coating was 2 to 2.5 g / m 2 , and electrodeposition coating was aimed at a film thickness of 25 μm.

塗装後耐食性の評価は、塩水噴霧試験、すなわち化成処理、電着塗装を施した試料にカッターでクロスカット疵を付与し、60℃の5%NaCl溶液に240h浸漬する試験を行った後、水洗、乾燥し、カット疵部についてテープ剥離を行い、カット疵部左右の最大剥離全幅を測定した。最大剥離全幅が5.0mm以下であれば、塗装後耐食性は良好(OK)といえる。   After coating, the corrosion resistance was evaluated by a salt spray test, i.e., a sample that had been subjected to chemical conversion treatment and electrodeposition coating was subjected to a test where a crosscut wrinkle was applied with a cutter and immersed in a 5% NaCl solution at 60 ° C for 240 hours, followed by washing Then, the tape was peeled from the cut collar and the maximum width of the maximum peel on the left and right sides of the cut collar was measured. If the maximum peel width is 5.0 mm or less, it can be said that the corrosion resistance after coating is good (OK).

結果を表2に示す。本発明の要件を満足する発明例の試料No.1、3、7、9は、いずれもr値が1.2以上と優れた深絞り性を示し、極めて良好な塗装後耐食性を示す。   The results are shown in Table 2. Inventive Sample Nos. 1, 3, 7, and 9 satisfying the requirements of the present invention all exhibit excellent deep drawability with an r value of 1.2 or more, and extremely excellent corrosion resistance after coating.

Figure 0004807088
Figure 0004807088

Figure 0004807088
Figure 0004807088

Claims (4)

質量%で、C:0.008%以下、Mn:0.05〜1.0%、Si:0.2%以上0.8%未満、S:0.005%以下、N:0.01%以下、Al:0.01〜0.1%を含有し、さらにTi:0.010〜0.1%、Nb:0.015〜0.15%のうちから選ばれた少なくとも1種の元素を含有し、残部がFeおよび不可避的不純物からなり、TiとNbの含有量が以下の式(1)を満足し、かつ以下の式(2)で定義される鋼板表面のSi量Cs(Si)が1.6%以下で、鋼板表面にS換算で0.1〜100mg/m2のS化合物が存在していることを特徴とする深絞り性および塗装後耐食性に優れた冷延鋼板;
Ti*/48+[Nb]/93>[C]/12 ・・・(1)
Cs(Si)=Cb(Si)×[Rs(Si/Fe)/Rb(Si/Fe)] ・・・(2)
ここで、Ti*=[Ti]-48[S]/32-48[N]/14で、[M]は元素Mの含有量(質量%)を、Cb(Si)は鋼中のSi量を、Rs(Si/Fe)は鋼板表面から50nmの深さまでのSiとFeのGDSカウント積算値比を、Rb(Si/Fe)は鋼中のSiとFeのGDSカウント比を表す。
In mass%, C: 0.008% or less, Mn: 0.05 to 1.0%, Si: 0.2% or more and less than 0.8%, S: 0.005% or less, N: 0.01% or less, Al: 0.01 to 0.1%, further Ti : 0.010 to 0.1%, Nb: contains at least one element selected from 0.015 to 0.15%, the balance consists of Fe and unavoidable impurities, the content of Ti and Nb is the following formula (1) And the Si amount Cs (Si) on the steel sheet surface defined by the following formula (2) is 1.6% or less, and 0.1 to 100 mg / m 2 of S compound in terms of S is present on the steel sheet surface. Cold-rolled steel sheet with excellent deep drawability and post-coating corrosion resistance characterized by:
Ti * / 48 + [Nb] / 93> [C] / 12 ・ ・ ・ (1)
Cs (Si) = Cb (Si) × [Rs (Si / Fe) / Rb (Si / Fe)] (2)
Here, Ti * = [Ti] -48 [S] / 32-48 [N] / 14, [M] is the content of element M (% by mass), and Cb (Si) is the amount of Si in the steel. Rs (Si / Fe) represents the GDS count integrated value ratio of Si and Fe from the steel sheet surface to a depth of 50 nm, and Rb (Si / Fe) represents the GDS count ratio of Si and Fe in the steel.
上記組成に加え、さらに、質量%で、Ca:0.001〜0.1%、REM:0.001〜0.1%のうちから選ばれた少なくとも1種の元素を含むことを特徴とする請求項1に記載の深絞り性および塗装後耐食性に優れた冷延鋼板。 The deep drawing according to claim 1, further comprising at least one element selected from Ca: 0.001 to 0.1% and REM: 0.001 to 0.1% by mass% in addition to the composition. Cold-rolled steel sheet with excellent corrosion resistance and post-coating corrosion resistance. 請求項1に記載の成分組成を有する熱延鋼板を、圧下率50〜95%で冷間圧延し、750〜950℃の焼鈍温度で再結晶焼鈍した後、酸洗し、S化合物を含有する水溶液を鋼板表面に触れさせて前記鋼板表面にS量換算で0.1〜100mg/m2のS化合物を存在せしめることを特徴とする深絞り性および塗装後耐食性に優れた冷延鋼板の製造方法。 The hot-rolled steel sheet having the component composition according to claim 1 is cold-rolled at a reduction ratio of 50 to 95%, recrystallized and annealed at an annealing temperature of 750 to 950 ° C, and then pickled and contains an S compound. A method for producing a cold-rolled steel sheet excellent in deep drawability and post-coating corrosion resistance, wherein an aqueous solution is brought into contact with the steel sheet surface, and 0.1 to 100 mg / m 2 of an S compound is present on the steel sheet surface in terms of S amount. 請求項2に記載の成分組成を有する熱延鋼板を、圧下率50〜95%で冷間圧延し、750〜950℃の焼鈍温度で再結晶焼鈍した後、酸洗し、S化合物を含有する水溶液を鋼板表面に触れさせて前記鋼板表面にS量換算で0.1〜100mg/m2のS化合物を存在せしめることを特徴とする深絞り性および塗装後耐食性に優れた冷延鋼板の製造方法。 The hot-rolled steel sheet having the component composition according to claim 2 is cold-rolled at a reduction rate of 50 to 95%, recrystallized and annealed at an annealing temperature of 750 to 950 ° C, and then pickled and contains an S compound. A method for producing a cold-rolled steel sheet excellent in deep drawability and post-coating corrosion resistance, wherein an aqueous solution is brought into contact with the steel sheet surface, and 0.1 to 100 mg / m 2 of an S compound is present on the steel sheet surface in terms of S amount.
JP2006025289A 2006-02-02 2006-02-02 Cold-rolled steel sheet excellent in deep drawability and post-coating corrosion resistance and method for producing the same Expired - Fee Related JP4807088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025289A JP4807088B2 (en) 2006-02-02 2006-02-02 Cold-rolled steel sheet excellent in deep drawability and post-coating corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025289A JP4807088B2 (en) 2006-02-02 2006-02-02 Cold-rolled steel sheet excellent in deep drawability and post-coating corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007204816A JP2007204816A (en) 2007-08-16
JP4807088B2 true JP4807088B2 (en) 2011-11-02

Family

ID=38484533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025289A Expired - Fee Related JP4807088B2 (en) 2006-02-02 2006-02-02 Cold-rolled steel sheet excellent in deep drawability and post-coating corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4807088B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232275A (en) * 1983-06-14 1984-12-27 Nippon Steel Corp Cold rolled steel sheet having excellent phosphate treatability and its production
JPH1192865A (en) * 1997-09-18 1999-04-06 Kobe Steel Ltd Cold rolled steel sheet and surface treated steel sheet, excellent in coating suitability of end face and corrosion resistance of end face

Also Published As

Publication number Publication date
JP2007204816A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
KR101624057B1 (en) High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each
EP3106528B1 (en) High-strength hot-dip galvanized steel sheet, and method for manufacturing high-strength alloyed hot-dip galvanized steel sheet
JP4367300B2 (en) High-strength cold-rolled steel sheet excellent in ductility and chemical conversion property and method for producing the same
KR20180120722A (en) The present invention relates to a method for manufacturing a hot-rolled steel sheet, a method for manufacturing a hot-rolled steel sheet, a method for manufacturing a hot-rolled steel sheet, a method for manufacturing a thin steel sheet,
JP5446430B2 (en) Cold-rolled steel sheet, alloyed hot-dip galvanized steel sheet, and production method thereof
KR100705243B1 (en) Hot dip galvanized steel sheets of TRIP steels which have good adhesion property and excellent formability and the method of developing those steels
KR20210024709A (en) High-strength steel sheet and method of manufacturing the same
EP3604616A1 (en) Method for manufacturing steel sheet
JP2013237877A (en) High yield ratio type high strength steel sheet, high yield ratio type high strength cold rolled steel sheet, high yield ratio type high strength galvanized steel sheet, high yield ratio type high strength hot dip galvanized steel sheet, high yield ratio type high strength hot dip galvannealed steel sheet, method for producing high yield ratio type high strength cold rolled steel sheet, method for producing high yield ratio type high strength hot dip galvanized steel sheet and method for producing high yield ratio type high strength hot dip galvannealed steel sheet
JP5168793B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent corrosion resistance after painting
JP6210179B2 (en) High strength steel plate and manufacturing method thereof
JP4725374B2 (en) High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same
JP4821365B2 (en) Manufacturing method of high-tensile cold-rolled steel sheet with excellent corrosion resistance after painting
JP4060997B2 (en) High-strength cold-rolled steel sheet and high-strength galvanized cold-rolled steel sheet excellent in bendability and deep drawability and manufacturing method thereof
JP4725376B2 (en) High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP4807088B2 (en) Cold-rolled steel sheet excellent in deep drawability and post-coating corrosion resistance and method for producing the same
JP2001234281A (en) High strength thin steel sheet excellent in adhesion for galvanizing and formability and producing method therefor
EP3626849B1 (en) Method for manufacturing high-strength galvanized steel sheet
JP5076434B2 (en) High-strength cold-rolled steel sheet with excellent formability and post-coating corrosion resistance and method for producing the same
JP4415579B2 (en) Method for producing hot-dip galvanized steel sheet
JP4940691B2 (en) High-strength cold-rolled steel sheet with excellent post-painting corrosion resistance and its manufacturing
JP3898925B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and method for producing the same
JP6123754B2 (en) Si-containing hot-rolled steel sheet having excellent chemical conversion property and method for producing the same
JP2012012672A (en) Cold-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees