JP4806874B2 - Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor Download PDF

Info

Publication number
JP4806874B2
JP4806874B2 JP2001268468A JP2001268468A JP4806874B2 JP 4806874 B2 JP4806874 B2 JP 4806874B2 JP 2001268468 A JP2001268468 A JP 2001268468A JP 2001268468 A JP2001268468 A JP 2001268468A JP 4806874 B2 JP4806874 B2 JP 4806874B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
anode
electrolytic capacitor
cathode
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001268468A
Other languages
Japanese (ja)
Other versions
JP2003077768A (en
Inventor
剛 ▲吉▼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001268468A priority Critical patent/JP4806874B2/en
Publication of JP2003077768A publication Critical patent/JP2003077768A/en
Application granted granted Critical
Publication of JP4806874B2 publication Critical patent/JP4806874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は各種電子機器に使用される固体電解コンデンサの製造方法及び固体電解コンデンサに関するものである。
【0002】
【従来の技術】
図6はこの種の従来の固体電解コンデンサの構成を示した一部切欠斜視図であり、同図6において21はコンデンサ素子を示し、このコンデンサ素子21は、弁作用金属の一つであるアルミニウム箔の表面をエッチングにより粗面化した陽極体22の所定の位置にポリイミド粘着テープ25を貼り付けることによって陽極引き出し部23と陰極引き出し部24に分離し、この陰極引き出し部24の陽極体22の表面に導電性高分子からなる固体電解質層26を形成し、さらにこの固体電解質層26上にカーボンペイント層27と銀ペイント層28からなる陰極層29を順次積層形成することによって構成されているものである。
【0003】
そして、このように構成されたコンデンサ素子21の陽極引き出し部23に陽極リード端子30を接続すると共に、陽極引き出し部24に陰極リード端子31を接続した後、上記陽極リード端子30と陰極リード端子31の一部が夫々外部に露呈する状態で上記コンデンサ素子21を絶縁性の外装樹脂32で被覆することによって構成されているものである。
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の固体電解コンデンサでは、表面を粗面化して粗面化層を備えたアルミニウム箔からなる陽極体22をポリイミド粘着テープ25により陽極引き出し部23と陰極引き出し部24に分離した構成としているが、上記陰極引き出し部24に固体電解質層26を形成する際に、ポリイミド粘着テープ25と粗面化層の隙間を通して固体電解質が陰極引き出し部24から陽極引き出し部23に到達してしまい、これにより絶縁不良を引き起こしたり、あるいは絶縁破壊に至る場合が稀に発生したりするという問題を有していた。
【0005】
このためにポリイミド粘着テープ25の幅を広くしたり、アルミニウム箔からなる陽極体22との密着性が高い材料を用いたり、あるいはポリイミド粘着テープ25が貼り付けられる陽極体22の所定の位置をプレス加工等の手段によって溝加工することによって表面に形成された粗面化層を押し潰し、これにより固体電解質の陽極引き出し部23への浸入を阻止するという試みがなされているものであった。
【0006】
しかしながら上記ポリイミド粘着テープ25の幅を広くしたり、陽極体22との密着性が高い材料を用いたりしても、数多くの生産ロットに対して常に安定した効果を得ることは難しく、さらには、ポリイミド粘着テープ25が貼り付けられる陽極体22の所定の位置に溝加工をする場合には、この溝加工によって陽極体22を構成するアルミニウム箔は溝の周囲に押し潰されて逃げるように伸び、この伸び量は方向によって不均一なものであり、結果的にアルミニウム箔の内部に残留応力が発生し、溝加工を施した部分のアルミニウム箔は捩れや反り等が発生するようになって生産性や生産効率を低下させ、さらには品質面にも悪影響を与えてしまうという課題を有していた。
【0007】
本発明はこのような従来の課題を解決し、陽極引き出し部と陰極引き出し部との絶縁性を確実に確保して品質の安定化を図ると共に、捩れや反り等が発生しない、生産性に優れた固体電解コンデンサの製造方法及び固体電解コンデンサを提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明の請求項1に記載の発明は、特に、表面を粗面化して誘電体酸化皮膜層を形成した弁作用金属箔の所定の位置に複数の貫通孔を定間隔で直線状に設け、続いて上記貫通孔を含む所定の位置を表裏面からプレス加工して直線状の溝部を表裏対称に形成することによりこの溝部を境界として陽極引き出し部と陰極引き出し部に分離された陽極体を作製し、続いてこの陽極体の溝部に絶縁処理を施した後、上記陰極引き出し部の表面に固体電解質層、陰極層を順次積層形成してコンデンサ素子を形成し、このコンデンサ素子の陰極層に陰極リード端子を接続すると共に陽極引き出し部に陽極リード端子を接続し、この陽極リード端子ならびに陰極リード端子の一部が夫々外表面に露呈する状態で上記コンデンサ素子を絶縁性の外装樹脂で被覆するようにした固体電解コンデンサの製造方法というものであり、この方法により、弁作用金属箔の捩れや反りが無く、さらには内部に残留応力が発生し難い溝加工を行って、陽極引き出し部と陰極引き出し部との絶縁性を確実に確保して品質の安定化を図ると共に、生産性に優れた固体電解コンデンサの製造方法を提供することができるという作用効果を有する。
【0009】
本発明の請求項2に記載の発明は、請求項1に記載の発明において、溝部を境界として陽極引き出し部と陰極引き出し部に分離された陽極体の溝部に施す絶縁処理が、耐熱性のシリコン系粘着剤を塗膜した耐熱テープを溝部に貼り付けることにより行われるようにしたものであり、この方法により、信頼性の必要な作業を簡単に、しかも確実に行うことができるという作用効果を有する。
【0010】
本発明の請求項3に記載の発明は、請求項1に記載の発明において、弁作用金属箔としてリールに巻回された連続した帯状のものを用いたものであり、この方法により、精度の高い作業を連続して効率良く行うことができるという作用効果を有する。
【0011】
本発明の請求項4に記載の発明は、請求項1に記載の製造方法を用いて製造された固体電解コンデンサであって、陽極体を陽極引き出し部と陰極引き出し部に分離する溝部に設けた貫通孔の一部がコンデンサ素子の溝部の両端に夫々残るようにしたという構成のものであり、これにより、陽極引き出し部と陰極引き出し部との絶縁性を確実に確保して品質、信頼性に優れた固体電解コンデンサを安定して提供することができるという作用効果を有する。
【0012】
本発明の請求項5に記載の発明は、請求項4に記載の発明において、弁作用金属箔がアルミニウム、タンタル、ニオブ、ジルコン、チタンのいずれか一つ以上またはこれらの合金からなる構成としたものであり、これにより、請求項4に記載の発明が有する作用効果をより一層効率良く得ることができるという作用効果を有する。
【0013】
本発明の請求項6に記載の発明は、請求項4に記載の発明において、固体電解質層がモノマーが複素五員環化合物およびその誘電体であり、ドーパントがアリールスルホン酸またはアルキルリン酸エステルの少なくとも一つを用いて電解酸化重合により形成された構成としたものであり、これにより、請求項4に記載の発明が有する作用効果をより一層効率良く得ることができるという作用効果を有する。
【0014】
【発明の実施の形態】
以下、本発明の一実施の形態を用いて、本発明の特に請求項1〜6に記載の発明について説明する。
【0015】
図1は本発明の一実施の形態による固体電解コンデンサの構成を示した一部切欠斜視図であり、同図において1はコンデンサ素子を示し、このコンデンサ素子1は、弁作用金属の一つであるアルミニウム箔の表面をエッチングにより粗面化した陽極体2の所定の位置に複数の貫通孔2aを所定の間隔で直線状に設け、さらにこの貫通孔2aを含む所定の位置にプレス加工により直線状に形成された溝部(図示せず)上にポリイミド粘着テープ5を貼り付けることによって陽極引き出し部3と陰極引き出し部4に分離し、この陰極引き出し部4の陽極体2の表面に導電性高分子からなる固体電解質層6を形成し、さらにこの固体電解質層6上にカーボンペイント層7と銀ペイント層8からなる陰極層9を順次積層形成することによって構成されているものである。
【0016】
10と11はこのように構成されたコンデンサ素子1の陽極引き出し部3に接続された陽極リード端子と同陰極引き出し部4に接続された陰極リード端子、12は上記陽極リード端子10と陰極リード端子11の一部が夫々外部に露呈する状態で上記コンデンサ素子1を被覆した絶縁性の外装樹脂である。
【0017】
次に、このように構成された本実施の形態の固体電解コンデンサの製造方法について説明すると、まず図2(a),(b)に示すように、連続した帯状のアルミニウム箔をエッチングして表面を粗面化して粗面化層(図示せず)を設け、これを陽極酸化することにより上記粗面化層の表面に誘電体酸化皮膜層(図示せず)を形成した陽極体2の所定の位置に複数の貫通孔2aを所定の間隔で直線状に設ける。
【0018】
なお、本実施の形態では、複数のコンデンサ素子1を連続して作製するために、陽極体2の幅方向に2列取りにするように上記貫通孔2aを直線状に2列に設けたものである。
【0019】
続いて図3(a),(b)に示すように、上記陽極体2に設けた貫通孔2aを含む所定の位置に陽極体2の表裏面からプレス加工して直線状の溝部2bを表裏対称に形成することにより上記溝部2bを境界として陽極引き出し部3と陰極引き出し部4に分離された陽極体2を作製する。
【0020】
続いて図4に示すように、上記陽極体2に設けた直線状の溝部2b上にポリイミド粘着テープ5を貼り付けることにより絶縁処理を行い、その後個片のコンデンサ素子1を得るためのステップの一つである打ち抜き加工(打ち抜き加工部13)を行う。
【0021】
続いて、上記陰極引き出し部4の表面に電解酸化重合により導電性高分子であるポリピロールからなる固体電解質層6を形成し、さらにこの固体電解質層6上にカーボンペイント層7と銀ペイント層8からなる陰極層9を順次積層形成した後、個片のコンデンサ素子1を得るためのステップの一つである打ち抜き加工(打ち抜き加工部14)を行うことにより、図5に示すようなコンデンサ素子1を得る。
【0022】
その後、このように構成されたコンデンサ素子1の陰極層9に陰極リード端子11を接続すると共に上記陽極引き出し部3に陽極リード端子10を接続し、この陽極リード端子10ならびに陰極リード端子11の一部が夫々外表面に露呈する状態で上記コンデンサ素子1を絶縁性の外装樹脂12で被覆して本実施の形態の固体電解コンデンサを作製したものである。
【0023】
このように構成された本実施の形態による固体電解コンデンサは、陽極体2の所定の位置を表裏面からプレス加工して直線状の溝部2bを表裏対称に形成する前に、この溝部2bに含まれる位置に複数の貫通孔2aを定間隔で直線状に設けるようにしたことにより、従来の課題であった陽極体の所定の位置に施した溝加工によって溝加工を施した部分の陽極体に捩れや反り等が発生するという課題を一挙に解決して生産の安定化と生産効率の向上を図ることができるようになるばかりでなく、上記図5からわかるように、陽極体2に所定の間隔で直線状に設けた貫通孔2aがコンデンサ素子1の陽極引き出し部3と陰極層9を分離する部分の両端に夫々位置するように構成されているため、陽極体2の内部に残留応力が発生し難くなって品質の安定化をも同時に実現することができるものである。
【0024】
なお、本実施の形態では、固体電解質層6を構成する導電性高分子材料としてピロールを用いて説明したが、これ以外にチオフェン等の複素五員環化合物を用いてもピロールと同等の効果を得ることができる。
【0025】
また、陽極体2を構成する弁作用金属箔の一例としてアルミニウム箔を用いて説明したが、これ以外にタンタル、ニオブ、ジルコン、チタンのいずれか一つ、あるいはそれらの複合体もしくは合金を使用してもアルミニウム箔と同等の効果を得ることができる。
【0026】
【発明の効果】
以上のように本発明による固体電解コンデンサの製造方法は、誘電体酸化皮膜層を形成した弁作用金属箔の所定の位置に複数の貫通孔を定間隔で直線状に設け、この貫通孔を含む所定の位置を弁作用金属箔の表裏面からプレス加工して直線状の溝部を表裏対称に形成することにより上記溝部を境界として陽極引き出し部と陰極引き出し部に分離された陽極体を作製する製造方法としたことにより、溝加工を施した部分の陽極体に捩れや反り等が発生するという課題を一挙に解決して生産の安定化と生産効率の向上を図ることができるようになるばかりでなく、陽極体に設けた貫通孔がコンデンサ素子の陽極引き出し部と陰極層を分離する部分の両端に夫々位置するように構成されているため、陽極体の内部に残留応力が発生し難くなって品質の安定化をも同時に実現することができるようになるものであり、その貢献度は大なるものである。
【図面の簡単な説明】
【図1】本発明の一実施の形態による固体電解コンデンサの構成を示した一部切欠斜視図
【図2】(a)同製造方法を説明するための貫通孔を設けた陽極体の平面図
(b)同側面図
【図3】(a)同製造方法を説明するための溝部を設けた陽極体の平面図
(b)同側面図
【図4】同製造方法を説明するための絶縁処理を行った陽極体の平面図
【図5】同コンデンサ素子の構成を示した一部切欠斜視図
【図6】従来の固体電解コンデンサの構成を示した一部切欠斜視図
【符号の説明】
1 コンデンサ素子
2 陽極体
2a 貫通孔
2b 溝部
3 陽極引き出し部
4 陰極引き出し部
5 ポリイミド粘着テープ
6 固体電解質層
7 カーボンペイント層
8 銀ペイント層
9 陰極層
10 陽極リード端子
11 陰極リード端子
12 外装樹脂
13,14 打ち抜き加工部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a solid electrolytic capacitor used in various electronic devices and a solid electrolytic capacitor.
[0002]
[Prior art]
FIG. 6 is a partially cutaway perspective view showing the configuration of this type of conventional solid electrolytic capacitor. In FIG. 6, reference numeral 21 denotes a capacitor element, and this capacitor element 21 is aluminum which is one of valve action metals. A polyimide adhesive tape 25 is attached to a predetermined position of the anode body 22 whose surface is roughened by etching to separate it into an anode lead portion 23 and a cathode lead portion 24. A structure in which a solid electrolyte layer 26 made of a conductive polymer is formed on the surface, and a cathode layer 29 made up of a carbon paint layer 27 and a silver paint layer 28 is sequentially laminated on the solid electrolyte layer 26. It is.
[0003]
Then, the anode lead terminal 30 is connected to the anode lead portion 23 of the capacitor element 21 configured as described above, and the cathode lead terminal 31 is connected to the anode lead portion 24, and then the anode lead terminal 30 and the cathode lead terminal 31 are connected. The capacitor element 21 is covered with an insulating exterior resin 32 in a state where a part of each is exposed to the outside.
[0004]
[Problems to be solved by the invention]
However, in the conventional solid electrolytic capacitor, the anode body 22 made of an aluminum foil having a roughened surface and a roughened layer is separated into an anode lead portion 23 and a cathode lead portion 24 by a polyimide adhesive tape 25. However, when the solid electrolyte layer 26 is formed on the cathode lead portion 24, the solid electrolyte reaches the anode lead portion 23 from the cathode lead portion 24 through the gap between the polyimide adhesive tape 25 and the roughened layer. There has been a problem that an insulation failure is caused, or a case where dielectric breakdown occurs rarely occurs.
[0005]
For this purpose, the width of the polyimide adhesive tape 25 is widened, a material having high adhesion to the anode body 22 made of aluminum foil is used, or a predetermined position of the anode body 22 to which the polyimide adhesive tape 25 is attached is pressed. Attempts have been made to crush the roughened layer formed on the surface by grooving by means such as processing, thereby preventing the solid electrolyte from entering the anode lead-out portion 23.
[0006]
However, even if the width of the polyimide adhesive tape 25 is widened or a material having high adhesion with the anode body 22 is used, it is difficult to always obtain a stable effect for many production lots. When the groove processing is performed at a predetermined position of the anode body 22 to which the polyimide adhesive tape 25 is attached, the aluminum foil constituting the anode body 22 is crushed around the groove by the groove processing and extends to escape. This elongation is uneven depending on the direction. As a result, residual stress is generated inside the aluminum foil, and the aluminum foil in the grooved portion is twisted and warped. In addition, the production efficiency is lowered, and the quality is adversely affected.
[0007]
The present invention solves such a conventional problem, ensures the insulation between the anode lead portion and the cathode lead portion, stabilizes the quality, does not cause twisting or warping, and has excellent productivity. Another object of the present invention is to provide a method for producing a solid electrolytic capacitor and a solid electrolytic capacitor.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention particularly defines a plurality of through-holes at predetermined positions of a valve-acting metal foil having a surface roughened to form a dielectric oxide film layer. A straight line is provided at intervals, and then a predetermined position including the through-hole is pressed from the front and back surfaces to form a linear groove symmetrically on the front and back surfaces. After producing the separated anode body, and subsequently subjecting the groove portion of the anode body to insulation treatment, a solid electrolyte layer and a cathode layer are sequentially laminated on the surface of the cathode lead portion to form a capacitor element. A cathode lead terminal is connected to the cathode layer of the capacitor element and an anode lead terminal is connected to the anode lead-out portion, and the anode element and a part of the cathode lead terminal are exposed on the outer surface, respectively. This is a method of manufacturing a solid electrolytic capacitor that is covered with an insulating exterior resin. By this method, there is no twisting or warping of the valve action metal foil, and further, groove processing that hardly generates residual stress inside is performed. And having the effect of being able to provide a method of manufacturing a solid electrolytic capacitor with excellent productivity while ensuring the insulation between the anode lead portion and the cathode lead portion to stabilize the quality. .
[0009]
According to a second aspect of the present invention, in the invention according to the first aspect, the insulating treatment applied to the groove portion of the anode body separated into the anode lead portion and the cathode lead portion with the groove portion as a boundary is a heat resistant silicon. This is done by sticking a heat-resistant tape coated with an adhesive to the groove, and this method has the effect of being able to easily and reliably perform work that requires reliability. Have.
[0010]
The invention according to claim 3 of the present invention is the invention according to claim 1, wherein a continuous strip wound around a reel is used as the valve action metal foil. There is an effect that high work can be performed continuously and efficiently.
[0011]
According to a fourth aspect of the present invention, there is provided a solid electrolytic capacitor manufactured using the manufacturing method according to the first aspect, wherein the anode body is provided in a groove portion that separates the anode lead portion and the cathode lead portion. The structure is such that part of the through hole remains at both ends of the groove portion of the capacitor element, which ensures the insulation between the anode lead portion and the cathode lead portion, thereby improving quality and reliability. It has the effect of being able to provide an excellent solid electrolytic capacitor stably.
[0012]
The invention according to claim 5 of the present invention is the invention according to claim 4, wherein the valve action metal foil is made of one or more of aluminum, tantalum, niobium, zircon, titanium, or an alloy thereof. Accordingly, the operational effect of the invention according to claim 4 can be obtained more efficiently.
[0013]
The invention according to claim 6 of the present invention is the invention according to claim 4, wherein the solid electrolyte layer is a hetero five-membered ring compound and a dielectric thereof, and the dopant is an aryl sulfonic acid or an alkyl phosphate ester. The structure formed by electrolytic oxidation polymerization using at least one of them has the operational effect that the operational effect of the invention of claim 4 can be obtained more efficiently.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the invention according to the first to sixth aspects of the present invention will be described using an embodiment of the present invention.
[0015]
FIG. 1 is a partially cutaway perspective view showing a configuration of a solid electrolytic capacitor according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a capacitor element. The capacitor element 1 is one of valve action metals. A plurality of through-holes 2a are linearly provided at predetermined intervals in a predetermined position of an anode body 2 whose surface is roughened by etching, and a straight line is formed by pressing at a predetermined position including the through-holes 2a. A polyimide adhesive tape 5 is pasted on a groove (not shown) formed in a shape to separate the anode lead portion 3 and the cathode lead portion 4, and the surface of the anode body 2 of the cathode lead portion 4 has a high conductivity. A solid electrolyte layer 6 composed of molecules is formed, and a cathode layer 9 composed of a carbon paint layer 7 and a silver paint layer 8 is sequentially laminated on the solid electrolyte layer 6. It is those who are.
[0016]
Reference numerals 10 and 11 denote an anode lead terminal connected to the anode lead portion 3 and the cathode lead terminal 4 connected to the cathode lead portion 4 of the capacitor element 1 thus configured. Reference numeral 12 denotes the anode lead terminal 10 and the cathode lead terminal. 11 is an insulating exterior resin that covers the capacitor element 1 in a state in which a part of 11 is exposed to the outside.
[0017]
Next, a method for manufacturing the solid electrolytic capacitor of the present embodiment configured as described above will be described. First, as shown in FIGS. 2 (a) and 2 (b), a continuous strip-shaped aluminum foil is etched to form a surface. Is provided with a roughened layer (not shown) and anodized to form a dielectric oxide film layer (not shown) on the surface of the roughened layer. A plurality of through holes 2a are provided in a straight line at predetermined intervals.
[0018]
In the present embodiment, in order to continuously produce a plurality of capacitor elements 1, the through holes 2 a are provided in two straight lines so as to form two rows in the width direction of the anode body 2. It is.
[0019]
Subsequently, as shown in FIGS. 3 (a) and 3 (b), a straight groove 2b is formed on the front and back surfaces by pressing from the front and back surfaces of the anode body 2 into a predetermined position including the through hole 2a provided in the anode body 2. By forming symmetrically, the anode body 2 separated into the anode lead portion 3 and the cathode lead portion 4 with the groove 2b as a boundary is produced.
[0020]
Subsequently, as shown in FIG. 4, an insulating process is performed by sticking a polyimide adhesive tape 5 on the linear groove 2 b provided on the anode body 2, and then a step for obtaining the individual capacitor element 1 is performed. One punching process (punching part 13) is performed.
[0021]
Subsequently, a solid electrolyte layer 6 made of polypyrrole, which is a conductive polymer, is formed on the surface of the cathode lead portion 4 by electrolytic oxidation polymerization. Further, a carbon paint layer 7 and a silver paint layer 8 are formed on the solid electrolyte layer 6. After sequentially forming the cathode layers 9 to be stacked, a punching process (punching part 14) which is one of the steps for obtaining the individual capacitor elements 1 is performed, whereby the capacitor element 1 as shown in FIG. obtain.
[0022]
Thereafter, the cathode lead terminal 11 is connected to the cathode layer 9 of the capacitor element 1 configured as described above, and the anode lead terminal 10 is connected to the anode lead-out portion 3, and one of the anode lead terminal 10 and one of the cathode lead terminals 11 is connected. The capacitor element 1 is covered with an insulating exterior resin 12 in a state where the portions are exposed on the outer surface, respectively, to produce the solid electrolytic capacitor of the present embodiment.
[0023]
The solid electrolytic capacitor according to the present embodiment configured as described above is included in the groove 2b before the predetermined position of the anode body 2 is pressed from the front and back surfaces to form the linear groove 2b symmetrically. By providing a plurality of through-holes 2a in a straight line at regular intervals at a predetermined position, it is possible to provide a portion of the anode body that has been subjected to grooving by grooving that is performed at a predetermined position of the anode body, which has been a conventional problem. Not only can the problem of twisting and warping occur all at once to stabilize production and increase production efficiency, but also as shown in FIG. Since the through-holes 2a provided in a straight line at intervals are located at both ends of the portion separating the anode lead-out portion 3 and the cathode layer 9 of the capacitor element 1, residual stress is generated inside the anode body 2. Less likely to occur and quality Those that can be realized at the same time stabilization.
[0024]
In the present embodiment, pyrrole has been described as the conductive polymer material constituting the solid electrolyte layer 6, but in addition to this, the use of a complex five-membered ring compound such as thiophene has the same effect as pyrrole. Obtainable.
[0025]
Moreover, although aluminum foil was used as an example of the valve action metal foil constituting the anode body 2, any one of tantalum, niobium, zircon, titanium, or a composite or alloy thereof was used. However, an effect equivalent to that of the aluminum foil can be obtained.
[0026]
【The invention's effect】
As described above, the method for manufacturing a solid electrolytic capacitor according to the present invention includes a plurality of through holes that are linearly provided at predetermined intervals in a predetermined position of the valve action metal foil on which the dielectric oxide film layer is formed. Manufacturing of an anode body separated into an anode lead portion and a cathode lead portion with the groove portion as a boundary by pressing a predetermined position from the front and back surfaces of the valve-acting metal foil to form a linear groove portion symmetrically By adopting this method, it is possible to solve the problem of twisting and warping in the anode body of the grooved part at once and to stabilize production and improve production efficiency. In addition, since the through holes provided in the anode body are arranged at both ends of the portion separating the anode lead portion and the cathode layer of the capacitor element, residual stress is hardly generated in the anode body. quality Are those so can be realized at the same time stabilizing, its contribution are those large becomes.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a configuration of a solid electrolytic capacitor according to an embodiment of the present invention. FIG. 2A is a plan view of an anode body provided with a through hole for explaining the manufacturing method. (B) Side view (FIG. 3) (a) Plan view of anode body provided with a groove for explaining the manufacturing method (b) Side view (FIG. 4) Insulation treatment for explaining the manufacturing method FIG. 5 is a partially cutaway perspective view showing the structure of the capacitor element. FIG. 6 is a partially cutaway perspective view showing the structure of a conventional solid electrolytic capacitor.
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Anode body 2a Through hole 2b Groove part 3 Anode lead part 4 Cathode lead part 5 Polyimide adhesive tape 6 Solid electrolyte layer 7 Carbon paint layer 8 Silver paint layer 9 Cathode layer 10 Anode lead terminal 11 Cathode lead terminal 12 Exterior resin 13 , 14 Punching part

Claims (6)

弁作用金属箔の表面を粗面化し、この表面に誘電体酸化皮膜層を形成した後、この弁作用金属箔の所定の位置に複数の貫通孔を定間隔で直線状に設け、続いて上記貫通孔を含む所定の位置を弁作用金属箔の表裏面からプレス加工して直線状の溝部を表裏対称に形成することにより上記溝部を境界として陽極引き出し部と陰極引き出し部に分離された陽極体を作製し、続いてこの陽極体の溝部に絶縁処理を施した後、上記陰極引き出し部の表面に固体電解質層、陰極層を順次積層形成してコンデンサ素子を形成し、このコンデンサ素子の陰極層に陰極リード端子を接続すると共に陽極引き出し部に陽極リード端子を接続し、この陽極リード端子ならびに陰極リード端子の一部が夫々外表面に露呈する状態で上記コンデンサ素子を絶縁性の外装樹脂で被覆する固体電解コンデンサの製造方法。After roughening the surface of the valve-acting metal foil and forming a dielectric oxide film layer on this surface, a plurality of through holes are provided in a straight line at regular intervals at predetermined positions of the valve-acting metal foil. An anode body separated into an anode lead portion and a cathode lead portion with the groove portion as a boundary by pressing a predetermined position including a through hole from the front and back surfaces of the valve-acting metal foil to form a straight groove portion symmetrically Subsequently, the groove portion of the anode body is subjected to insulation treatment, and then a solid electrolyte layer and a cathode layer are sequentially stacked on the surface of the cathode lead portion to form a capacitor element. The cathode layer of the capacitor element A cathode lead terminal is connected to the anode lead terminal, and an anode lead terminal is connected to the anode lead-out portion, and the capacitor element is insulatively coated with the anode lead terminal and a part of the cathode lead terminal exposed to the outer surface. In the manufacturing method of solid electrolytic capacitor of coating. 溝部を境界として陽極引き出し部と陰極引き出し部に分離された陽極体の上記溝部に施す絶縁処理が、耐熱性のシリコン系粘着剤を塗膜した耐熱テープを溝部に貼り付けることにより行う請求項1に記載の固体電解コンデンサの製造方法。2. The insulating treatment applied to the groove portion of the anode body separated into the anode lead portion and the cathode lead portion with the groove portion as a boundary is performed by attaching a heat-resistant tape coated with a heat-resistant silicon adhesive to the groove portion. The manufacturing method of the solid electrolytic capacitor of description. 弁作用金属箔としてリールに巻回された連続した帯状のものを用いた請求項1に記載の固体電解コンデンサの製造方法。The manufacturing method of the solid electrolytic capacitor of Claim 1 using the continuous strip | belt-shaped thing wound by the reel as valve action metal foil. 請求項1に記載の製造方法を用いて製造された固体電解コンデンサであって、陽極体を陽極引き出し部と陰極引き出し部に分離する溝部に設けた貫通孔の一部がコンデンサ素子の溝部の両端に夫々残るようにした固体電解コンデンサ。A solid electrolytic capacitor manufactured using the manufacturing method according to claim 1, wherein a part of the through hole provided in the groove part separating the anode body into the anode lead part and the cathode lead part is at both ends of the groove part of the capacitor element. Solid electrolytic capacitors that are left in each. 弁作用金属箔がアルミニウム、タンタル、ニオブ、ジルコン、チタンのいずれか一つ以上またはこれらの合金からなる請求項4に記載の固体電解コンデンサ。The solid electrolytic capacitor according to claim 4, wherein the valve-acting metal foil is made of one or more of aluminum, tantalum, niobium, zircon, and titanium, or an alloy thereof. 固体電解質層が、モノマーが複素五員環化合物およびその誘電体であり、ドーパントがアリールスルホン酸またはアルキルリン酸エステルの少なくとも一つを用いて電解酸化重合により形成されたものである請求項4に記載の固体電解コンデンサ。5. The solid electrolyte layer according to claim 4, wherein the monomer is a hetero five-membered ring compound and a dielectric thereof, and the dopant is formed by electrolytic oxidation polymerization using at least one of aryl sulfonic acid or alkyl phosphate ester. The solid electrolytic capacitor as described.
JP2001268468A 2001-09-05 2001-09-05 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor Expired - Fee Related JP4806874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268468A JP4806874B2 (en) 2001-09-05 2001-09-05 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001268468A JP4806874B2 (en) 2001-09-05 2001-09-05 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2003077768A JP2003077768A (en) 2003-03-14
JP4806874B2 true JP4806874B2 (en) 2011-11-02

Family

ID=19094444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268468A Expired - Fee Related JP4806874B2 (en) 2001-09-05 2001-09-05 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4806874B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365963B2 (en) 2003-03-17 2008-04-29 Tdk Corporation Capacitor element, solid electrolytic capacitor, processes for their production and capacitor element combination
US7961454B2 (en) 2005-05-18 2011-06-14 Sanyo Electric Co., Ltd. Multi-layered solid electrolytic capacitor and method of manufacturing same
CN101203926B (en) * 2005-06-23 2011-09-07 株式会社村田制作所 Solid electrolytic capacitor and method for manufacturing same
JP5176697B2 (en) * 2008-06-02 2013-04-03 パナソニック株式会社 Solid electrolytic capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232413A (en) * 1987-03-20 1988-09-28 日通工株式会社 Solid electrolytic capacitor and manufacture of the same
JP3809027B2 (en) * 1998-11-06 2006-08-16 松下電器産業株式会社 Manufacturing method of solid electrolytic capacitor
JP2000243665A (en) * 1999-02-17 2000-09-08 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacture
JP3663952B2 (en) * 1999-02-17 2005-06-22 松下電器産業株式会社 Manufacturing method of solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2003077768A (en) 2003-03-14

Similar Documents

Publication Publication Date Title
JP4547835B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US11443903B2 (en) Solid electrolytic capacitor having an insulating layer between exposed anode portions
JP2006005233A (en) Capacitor and manufacturing method thereof, and substrate with built-in capacitor
JP4806874B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP4899758B2 (en) Lead frame member for solid electrolytic capacitors
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP2009129936A (en) Surface mounting thin-type capacitor and method of manufacturing the same
US10655241B2 (en) Electrode foil production method and capacitor production method
JP4671339B2 (en) Multilayer solid electrolytic capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
US10607787B2 (en) Electrode foil production method and capacitor production method
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012134389A (en) Solid electrolytic capacitor
JP2832651B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP3958725B2 (en) Surface mount thin capacitor and manufacturing method thereof
JP5887163B2 (en) Solid electrolytic capacitor
JP2005268681A (en) Manufacturing method of solid electrolytic capacitor
JPH07106204A (en) Solid electrolytic capacitor
JP4124360B2 (en) Manufacturing method of solid electrolytic capacitor
JP3185405B2 (en) Solid electrolytic capacitors
JP5682277B2 (en) Manufacturing method of solid electrolytic capacitor
JP5642508B2 (en) Surface mount thin capacitors
JPH10125558A (en) Solid-state capacitor using conductive functional high polymer film as solid electrolyte
JPH06349689A (en) Solid electrolytic capacitor
JP2010147274A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4806874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees