JP4806793B2 - Refrigerant leak detection method for refrigeration equipment - Google Patents

Refrigerant leak detection method for refrigeration equipment Download PDF

Info

Publication number
JP4806793B2
JP4806793B2 JP2007261279A JP2007261279A JP4806793B2 JP 4806793 B2 JP4806793 B2 JP 4806793B2 JP 2007261279 A JP2007261279 A JP 2007261279A JP 2007261279 A JP2007261279 A JP 2007261279A JP 4806793 B2 JP4806793 B2 JP 4806793B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
evaporator
outlet
showcase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007261279A
Other languages
Japanese (ja)
Other versions
JP2009092268A (en
Inventor
肇 細谷
利夫 原田
正之 神宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma Prefecture
Original Assignee
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma Prefecture filed Critical Gunma Prefecture
Priority to JP2007261279A priority Critical patent/JP4806793B2/en
Publication of JP2009092268A publication Critical patent/JP2009092268A/en
Application granted granted Critical
Publication of JP4806793B2 publication Critical patent/JP4806793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷媒回路内の冷媒量の不足を検出する冷凍装置の監視装置に関する。   The present invention relates to a monitoring apparatus for a refrigeration apparatus that detects a shortage of refrigerant amount in a refrigerant circuit.

は一般的な冷凍装置の冷媒回路図である。圧縮機25、油分離器28(オイルセパレータとも言う。)、凝縮器29(コンデンサとも言う。)、レシーバタンク39(受液器とも言う。)第1の管継手24a、電磁弁27、膨張弁38、蒸発器(冷却器又はエバポレータとも言う。)20、第2の管継手24b、液分離器37(アキュムレータとも言う。)等の間を冷媒配管で接続し、前記第1の管継手24aと前記第2の管継手24bの間の電磁弁27、膨張弁38、蒸発器20に直列に接続された冷媒経路を単独又は並列に複数(図2では4系統の並列)に設けて、ショーケース23の冷媒回路24を形成している。 FIG. 2 is a refrigerant circuit diagram of a general refrigeration apparatus. Compressor 25, oil separator 28 (also referred to as oil separator), condenser 29 (also referred to as condenser), receiver tank 39 (also referred to as receiver), first pipe joint 24a, solenoid valve 27, expansion valve 38, an evaporator (also referred to as a cooler or an evaporator) 20, a second pipe joint 24b, a liquid separator 37 (also referred to as an accumulator), etc. are connected by a refrigerant pipe, and the first pipe joint 24a A refrigerant path connected in series to the solenoid valve 27, the expansion valve 38, and the evaporator 20 between the second pipe joints 24b is provided alone or in parallel (in FIG. 2, four systems in parallel), and a showcase is provided. 23 refrigerant circuits 24 are formed.

例えば冷凍装置の冷媒回路24から冷媒が漏れた場合、冷凍を行いたい対象物は目標の温度まで下げることが出来なくなる。従来、店舗などで使用されている冷凍ショーケース23の場合、冷凍を行いたい対象物、すなわちショーケース23の庫内温度が目標とする温度に到達しないことで、例えばアイスクリームが溶けてしまうような庫内温度の異常を、検出している。ショーケース23の庫内温度が目標に到達しなくなる故障の原因としては、冷媒が漏れる以外にも圧縮機25の焼き付き、電磁弁27のコイル断線、その他複数存在するため、庫内温度の異常のみから冷媒の漏れを特定することは不可能である。また、冷媒の漏れが原因によりショーケース23の庫内温度が目標温度に到達しない状況となる時点では、冷媒回路内24の冷媒は殆ど漏れてしまっている状態である。それと同時に、庫内温度が目標に到達していないので、ショーケース23内の商品の品質も低下してしまう。更に、その修理には専門技術者と道具を必要とし、手間と時間が掛かり、ショーケース23が使用できるまでには、相当の日数を費やすこととなる。 For example, when the refrigerant leaks from the refrigerant circuit 24 of the refrigeration apparatus, the object to be frozen cannot be lowered to the target temperature. Conventionally, in the case of the freezer showcase 23 used in stores or the like, the object to be frozen, that is, the internal temperature of the showcase 23 does not reach the target temperature, for example, ice cream is melted. abnormality of such internal temperature, it is detected. The cause of the failure in which the internal temperature of the showcase 23 does not reach the target is due to the seizure of the compressor 25, the disconnection of the coil of the solenoid valve 27, and a plurality of other than the leakage of the refrigerant. It is impossible to identify refrigerant leakage from Further, at the time when the inside temperature of the showcase 23 does not reach the target temperature due to the leakage of the refrigerant, the refrigerant in the refrigerant circuit 24 is almost leaked. At the same time, since the internal temperature does not reach the target, the quality of the product in the showcase 23 is also deteriorated. In addition, the repair requires specialist engineers and tools, which takes time and effort, and it takes a considerable number of days before the showcase 23 can be used.

この対策として、冷媒漏れだけを特定して検出する方式を採用することが考えられる。そして、冷媒回路24からの冷媒漏れを検出する従来の方式として、冷房装置(自動車の冷房装置)の冷媒量不足による圧縮機25の破損を防止するために、蒸発器20(冷却器又はエバポレータとも言う。)の入口21の冷媒温度を検出する第1の検出部材と、蒸発器出口22の冷媒温度を検出する第2の検出部材で検出した冷媒温度が所定以上の差が生じた時動作する接点を有することを特徴とする冷房装置の冷媒量不足検出スイッチを設けるものがある。その他のものとして、冷媒量不足検出機能を兼ね備え、冷却制御温度を検出してオン・オフ制御信号を発生する温度応答制御装置を有するものとして、蒸発器の入口21と出口22における冷媒温度をサーミスタで検出し、両サーミスタの出力の差が所定値以上になると検知信号を出力するものがある。なお、上記したような本願発明に関連する公知技術として次の特許文献1〜2を挙げることが出来る。 As a countermeasure, it is conceivable to adopt a method of specifying and detecting only the refrigerant leakage. Then, as a conventional method for detecting refrigerant leakage from the refrigerant circuit 24, an evaporator 20 (both a cooler or an evaporator) is used to prevent the compressor 25 from being damaged due to an insufficient amount of refrigerant in the cooling device (automobile cooling device). The first detection member that detects the refrigerant temperature at the inlet 21 and the second detection member that detects the refrigerant temperature at the evaporator outlet 22 operate when a difference of a predetermined value or more occurs. Some of them are provided with a refrigerant shortage detection switch for a cooling device characterized by having a contact. As another example, a thermistor is provided with a temperature response control device that has a refrigerant amount shortage detection function and detects a cooling control temperature and generates an on / off control signal. In some cases, a detection signal is output when the difference between the outputs of the thermistors exceeds a predetermined value. In addition, the following patent documents 1-2 can be mentioned as a well-known technique relevant to this invention as mentioned above.

実公昭55―023169号公報Japanese Utility Model Publication No. 55-023169 実開昭56−118365号公報Japanese Utility Model Publication No. 56-118365

上述の如く、従来技術に係る特許文献1の一方の技術では、冷媒温度の検出部材が冷媒に接するようにセンサを取付ける必要がある。そして、この技術は、自動車の冷房装置を前提にしている為、蒸発器が接続されている冷媒経路が基本的に1つの場合を想定している。図2は冷凍装置の冷媒回路図であるが、この場合は、4系統の冷媒経路となっている。本冷媒量不足検出装置を図2の様な4系統の冷媒経路に適用する場合、蒸発器20(冷却器又はエバポレータとも言う。)の入口21と蒸発器出口22に、冷媒量不足検出装置取付け用の配管加工(温度センサを蒸発器の入口と出口の部分に、冷媒に温度センサが直接接するように)を4経路分施す必要があり、困難な作業である。このように、蒸発器20が冷凍機26に複数台接続されている場合は、費用、作業的にも大変困難となる。 As described above, in one technique of Patent Document 1 ” according to the related art, it is necessary to attach a sensor so that the refrigerant temperature detection member is in contact with the refrigerant. And since this technique presupposes the cooling device of a motor vehicle, the case where the refrigerant path to which an evaporator is connected is fundamentally one is assumed. FIG. 2 is a refrigerant circuit diagram of the refrigeration apparatus. In this case, four refrigerant paths are provided. When this refrigerant quantity shortage detection device is applied to the four refrigerant paths as shown in FIG. 2, the refrigerant quantity shortage detection device is attached to the inlet 21 and the evaporator outlet 22 of the evaporator 20 (also referred to as a cooler or an evaporator). This is a difficult operation because it is necessary to perform the piping processing for the four routes (the temperature sensor is in direct contact with the refrigerant at the inlet and outlet portions of the evaporator). Thus, when a plurality of evaporators 20 are connected to the refrigerator 26, it becomes very difficult in terms of cost and work.

図3は蒸発器の上流にある電磁弁(図2の27)を蒸発器の霜取りの為に閉状態で停止した状態30を含む、蒸発器入口(図2の21)と蒸発器出口(図2の22)の冷媒温度差の変化を示す図である。また、この電磁弁が閉状態で停止した状態30以外の部分で、冷媒を時間の経過と共に徐々に冷媒回路から抜いて、擬似的な冷媒漏れを再現したものである。霜取りの期間30では、電磁弁の開閉信号33は、閉の状態を示しており、ショーケースの庫内の温度32は上昇している。図3から蒸発器入口(図2の21)と出口(図2の22)の間の温度差31は冷媒の流れが再開した条件(霜取りが終了し電磁弁が開いて冷媒が再び流れ始めた状態)34と冷媒が抜けてきた条件35でほとんど同じような状態を示すことが分る。従来技術に係る「特許文献2の他方の技術では、冷媒が流れているかいないかに係らず、蒸発器の入口(図2の21)と出口(図2の22)における冷媒温度をサーミスタで検出し、両サーミスタの出力の差が所定値以上になると冷媒量不足の検知信号を出力している。しかし、冷凍サイクル内の冷媒量が一定であっても、上述のように冷却対象の温度が上昇し本来であれば蒸発器へ冷媒を流すべき条件時に強制的に冷媒の流れを停止した後では、蒸発器の入口と出口の温度差が大きくなるため、特許文献2の技術のみでは冷媒量の誤判定を引き起こしてしまう。 FIG. 3 includes an evaporator inlet (21 in FIG. 2) and an evaporator outlet (FIG. 2), including a state 30 in which the solenoid valve (27 in FIG. 2) upstream of the evaporator is closed in a closed state for defrosting the evaporator. It is a figure which shows the change of the refrigerant | coolant temperature difference of 2 of 22). In addition, the refrigerant is gradually removed from the refrigerant circuit with the passage of time in a portion other than the state 30 in which the electromagnetic valve is stopped in the closed state, and the pseudo refrigerant leakage is reproduced. In the defrosting period 30, the open / close signal 33 of the solenoid valve indicates a closed state, and the temperature 32 in the showcase cabinet is rising. From FIG. 3, the temperature difference 31 between the evaporator inlet (21 in FIG. 2) and the outlet (22 in FIG. 2) is the condition that the refrigerant flow resumed (defrosting was completed, the solenoid valve was opened, and the refrigerant began to flow again. It can be seen that almost the same state is shown under the condition (state) 34 and the condition 35 where the refrigerant has escaped. In the other technique of Patent Document 2 related to the prior art, the temperature of the refrigerant at the inlet (21 in FIG. 2) and the outlet (22 in FIG. 2) is detected by a thermistor regardless of whether the refrigerant is flowing or not. When the difference between the outputs of the thermistors exceeds a predetermined value, a detection signal indicating that the refrigerant amount is insufficient is output. However, even if the amount of refrigerant in the refrigeration cycle is constant, after the temperature of the cooling target rises as described above and the refrigerant flow is forcibly stopped when the refrigerant should flow into the evaporator, Since the temperature difference between the inlet and the outlet of the evaporator becomes large, the technique of Patent Document 2 alone causes an erroneous determination of the refrigerant amount.

前述の従来技術の一方を、蒸発器が冷凍機に複数台接続されている冷凍設備に適用するためには、作業量が大きくなり費用が掛かること、また、他方の方式のみでは誤判定を生ずる可能性がある条件があり、経済的損失に対するリスクが大きい。   In order to apply one of the above-described prior arts to a refrigeration facility in which a plurality of evaporators are connected to a refrigerator, the amount of work increases and costs increase, and a misjudgment occurs only with the other method. There are potential conditions and the risk to economic loss is great.

本発明は、このような点に鑑みてなされたものであり、その目的は、蒸発器が冷凍機に複数台接続されている場合であっても、費用、作業的にも負担が軽く、かつ、検出性能の向上を図ることが可能な冷凍装置の冷媒漏れ検出方法を提供すること、また、冷凍装置の運転条件や環境条件の変化による誤判定をこさない頑強な冷媒漏れ検出方法を提供することにある。 The present invention has been made in view of such a point, and the object thereof is light and cost-effective even when a plurality of evaporators are connected to a refrigerator. , to provide a refrigerant leak detection method of the refrigeration system capable of improving the detection performance, also provides a robust refrigerant leakage detection method that does not strained erroneous determination due to changes in operating conditions and environmental conditions of the refrigeration system There is to do.

上述の目的を達成する本発明は、(1)〜()により提供される。 The present invention that achieves the above object is provided by (1) to ( 2 ).

(1)図1に示す冷凍装置A(図1では冷凍機18とショーケース19を含み、図4の冷凍装置では、冷凍機45と右側のショーケースの組41と左側のショーケースの組42を含む)のように、圧縮機1(コンプレッサとも言う。)、油分離器2(オイルセパレータとも言う。)、凝縮器3(コンデンサとも言う。)、レシーバタンク4(受液器とも言う。)、第1の管継手5(パイプジョイント、パイプフィッティングとも言う。)、電磁弁6、膨張弁7、蒸発器8(冷却器又はエバポレータとも言う。)、第2の管継手9(パイプジョイント、パイプフィッティングとも言う。)、液分離器10(アキュムレータとも言う。)等の間を冷媒用配管11で接続すると共に、前記レシーバタンク4(受液器)の出口側と、前記液分離器10(アキュムレータ)の入口側との間において、電磁弁6、膨張弁7、蒸発器8、とを冷媒配管11を用いて直列に接続された冷媒経路を、冷媒用配管11を介して前記レシーバタンク4の出口側に接続された第1の管継手5と、前記液分離器10の入口側に冷媒用配管11を介して接続された第2の管継手9との間に、並列に複数(図4では8系統の並列)設けられた前記冷媒経路を有する冷凍装置Aの冷媒回路にて、膨張弁7と蒸発器8の入口側17との間に設けられた第1の温度センサ12(図4では第1の温度センサ47)と蒸発器8(図4では蒸発器49)の出口側16と第2の管継手9との間に設けられた、第2の温度センサ13(図4では第2の温度センサ48)の各々の電気的信号を電気的信号線14を通して演算器15に入力し、蒸発器出口16および、または蒸発器入口17の冷媒の温度または冷媒の温度に相当する温度により、冷凍装置Aの冷媒回路内の冷媒量を判定することを特徴とする冷凍装置Aの冷媒漏れ検出方法において、第1の温度センサ12と第2の温度センサ13はその冷媒回路内の冷媒漏れに対する温度の感度が高い蒸発器8(他の蒸発器に比べて冷媒が到達しづらい蒸発器)のみ(全体の台数以下の数の蒸発器8)に取付け、前記第2の温度センサから取得される前記蒸発器出口および、または前記第1の温度センサから取得される前記蒸発器入口の冷媒の温度または冷媒の温度に相当する温度の検出結果を用い、該冷凍装置の冷媒量を判定する。 (1) Refrigeration apparatus A shown in FIG. 1 (in FIG. 1, the refrigerator 18 and the showcase 19 are included. In the refrigeration apparatus in FIG. 4, the refrigerator 45, the right showcase set 41, and the left showcase set 42 are included. ) , A compressor 1 (also referred to as a compressor), an oil separator 2 (also referred to as an oil separator), a condenser 3 (also referred to as a condenser), and a receiver tank 4 (also referred to as a receiver). , First pipe joint 5 (also referred to as pipe joint or pipe fitting), solenoid valve 6, expansion valve 7, evaporator 8 (also referred to as cooler or evaporator), second pipe joint 9 (pipe joint, pipe fitting). And the liquid separator 10 (also referred to as an accumulator) are connected by a refrigerant pipe 11, the outlet side of the receiver tank 4 (liquid receiver), and the liquid separator 10. A refrigerant path in which the solenoid valve 6, the expansion valve 7, and the evaporator 8 are connected in series with the refrigerant pipe 11 between the inlet side of the accumulator) and the receiver tank 4 via the refrigerant pipe 11. the first tube joint 5 connected to the outlet side, between the second tube joint 9 which is connected via a refrigerant pipe 11 to the inlet side of said liquid separator 10, a plurality in parallel ( at a refrigerant circuit of a refrigeration apparatus a having the refrigerant path parallel) provided in FIG. 4, 8 lines, the first temperature sensor 12 provided between the inlet side 17 of the expansion valve 7 and the evaporator 8 ( In FIG. 4, the second temperature sensor 13 (FIG. 4) is provided between the outlet side 16 of the first temperature sensor 47) and the evaporator 8 (evaporator 49 in FIG. 4) and the second fitting 9 . in the arithmetic unit 15 each electrical signal of the second temperature sensor 48) through an electrical signal line 14 And force, the evaporator outlet 16 and, or by a temperature corresponding to the temperature of the temperature or a refrigerant of the refrigerant in the evaporator inlet 17, the refrigeration apparatus A and judging the refrigerant quantity in the refrigerant circuit of the refrigeration apparatus A In the refrigerant leak detection method, the first temperature sensor 12 and the second temperature sensor 13 are an evaporator 8 having a high temperature sensitivity to refrigerant leak in the refrigerant circuit (evaporation in which refrigerant is difficult to reach compared to other evaporators). vessel) only attached only to the (evaporator 8 having the following overall volume), the evaporator outlet and, or the evaporator inlet is obtained from the first temperature sensor is obtained from the second temperature sensor The refrigerant amount of the refrigeration apparatus is determined using the temperature detection result of the refrigerant or the temperature detection result corresponding to the refrigerant temperature.

尚、冷媒回路内の冷媒漏れに対する温度の感度が高い蒸発器(他の蒸発器に比べて冷媒が到達しづらい蒸発器)の例を示す。図4のように冷凍機45一台に対して、複数台のショーケースが(本図では8台)接続されている場合、冷凍機45から離れていて冷媒配管44が長いショーケースの組41の、さらに末端にあるショーケース43の蒸発器49では冷媒の温度上昇による一部ガス化が発生するため、冷媒供給量が他のショーケースの蒸発器に比べて少なくなる。また、図4の左側のショーケースの組42では冷媒配管44は冷凍機45から離れていないが、中間に位置するショーケース46への冷媒配管の接続が冷媒配管44の上方部位(高さ方向)に位置しており、冷媒配管44内の上方に存在している冷媒ガスを吸入し易いため、冷媒供給量が他のショーケースの蒸発器と比較して少ない。冷媒の量が減少した場合、十分な量の冷媒が到達しづらい条件のこれらの蒸発器の出口側冷媒温度の変化や、入口側冷媒温度と出口側冷媒温度との差の変化は、他の蒸発器に比べて大きい。従って、これらの蒸発器は冷媒漏れによる冷媒回路内の冷媒量の減少に対し、一層敏感に蒸発器の出口温度や、入口温度と出口温度との温度差に変化が現れる蒸発器、すなわち冷媒漏れに対する温度の感度が高い蒸発器であるといえる。 An example of an evaporator having high temperature sensitivity to refrigerant leakage in the refrigerant circuit (an evaporator in which refrigerant is difficult to reach as compared with other evaporators) is shown. When a plurality of showcases (eight in this figure) are connected to one refrigerator 45 as shown in FIG. 4, a set 41 of showcases separated from the refrigerator 45 and having a long refrigerant pipe 44. Further, in the evaporator 49 of the showcase 43 at the end, partial gasification occurs due to a rise in the temperature of the refrigerant, so that the refrigerant supply amount is smaller than that of other showcase evaporators. Further, in the left showcase set 42 in FIG. 4, the refrigerant pipe 44 is not separated from the refrigerator 45, but the connection of the refrigerant pipe to the showcase 46 located in the middle is located above the refrigerant pipe 44 (in the height direction). ) And the refrigerant gas existing above the refrigerant pipe 44 is easily sucked, so that the amount of refrigerant supplied is small compared to other showcase evaporators. When the amount of refrigerant decreases, changes in the outlet side refrigerant temperature of these evaporators and changes in the difference between the inlet side refrigerant temperature and the outlet side refrigerant temperature under conditions where a sufficient amount of refrigerant is difficult to reach Larger than the evaporator. Therefore, these evaporators are more sensitive to the decrease in the amount of refrigerant in the refrigerant circuit due to refrigerant leakage, evaporators in which changes in the outlet temperature of the evaporator and the temperature difference between the inlet temperature and the outlet temperature occur, that is, refrigerant leakage. It can be said that the evaporator is highly sensitive to temperature.

(2)そして前記冷凍装置の冷媒量を判定すると共に、冷却対象の温度を目標値まで到達させるためには蒸発器8に冷媒を流入・流出させるべき条件であっても冷媒の流れを停止した場合、蒸発器8への冷媒の流入・流出再開後に所定時間経過するまでは冷媒量の判定を行わない、又は、冷媒量の判定結果を基に異常判定を行わないようにすることで、上記課題を解決する。 (2) Then, the refrigerant amount of the refrigeration apparatus is determined, and the flow of the refrigerant is stopped even under the condition that the refrigerant should flow into and out of the evaporator 8 in order to reach the cooling target temperature to the target value. In this case, the refrigerant amount is not determined until a predetermined time has elapsed after the refrigerant flow into and out of the evaporator 8 is resumed, or the abnormality determination is not performed based on the refrigerant amount determination result. Solve the problem.

以上説明したように本発明によれば、蒸発器が冷凍機に複数台接続されている冷凍設備に冷媒漏れ検出方法を適用する場合にも容易にしかも安価に実施可能である。更に、冷媒抜け(漏れ)に関する感度が高い蒸発器の特性変化を基に冷媒漏れの検出を実施するため、検出の感度が高くなり、早期の冷媒漏れ検出が可能となる。また、冷媒の流れを冷却条件に係らず遮断するような通常以外の条件であっても、誤判定を生じない信頼性の高い冷媒漏れ検出機能を提供できるようになる。   As described above, according to the present invention, even when the refrigerant leak detection method is applied to a refrigeration facility in which a plurality of evaporators are connected to a refrigerator, the present invention can be easily and inexpensively implemented. Furthermore, since the refrigerant leakage is detected based on the change in the characteristics of the evaporator having high sensitivity regarding refrigerant leakage (leakage), the detection sensitivity becomes high, and early refrigerant leakage detection becomes possible. In addition, it is possible to provide a highly reliable refrigerant leak detection function that does not cause erroneous determination even under non-normal conditions that block the refrigerant flow regardless of the cooling conditions.

[第1実施例の効果]
図1は冷凍機一台に対して、接続されている冷却対象のショーケースが一台であったが、図4は冷却対象のショーケースが複数台(本図では8台)接続されている場合の簡略図である。図4の右側のショーケースの組41では冷媒配管44が長く、冷凍機45から離れている。その中でも末端にあるショーケース43では冷媒の温度上昇による一部ガス化が発生するため、冷媒供給量が他のショーケースに比べ少なくなる。また、図4の左側のショーケースの組42では冷媒配管44は冷凍機45から離れていないが、中間に位置するショーケース46の蒸発器49への冷媒配管44の接続で、冷媒配管44からの冷媒の取り出しが管の上方から(高さ方向)の取り出しとなっている場合である。この場合も、冷媒配管内44の上方に存在しているガスを吸入し易いため、冷媒の供給量が他のショーケースに比較して少なくなる。その他、ショーケースへの冷媒の供給量が少なくなってしまう条件としては、冷媒配管44の傾斜が冷媒配管44の末端に行くほど高くなる場合などが考えられる。図7は、冷凍装置から冷媒漏れが発生した場合の冷凍機45の近くに位置するショーケース内の蒸発器出口と入口の冷媒の温度差71すなわち第1の温度センサ(図4の47)と第2の温度センサ(図4の48)の出力差である。図8は、冷凍装置から冷媒漏れが発生した場合の冷凍機45から離れた所に位置する冷媒配管44末端のショーケース内の蒸発器出口と入口の冷媒の温度差81の実測データである。図7と図8は、何れも冷媒配管44からの冷媒の取り出しは管の側面からであり、同一条件である。冷凍機45も同一であり、また、データも同一のタイミングで取得したものである。なお、冷媒漏れは冷媒を時間の経過と共に徐々に冷媒回路から抜いて擬似的な冷媒漏れを再現したものである。その結果、冷凍機45からの冷媒配管44の距離が短い図7のショーケースの場合71に比べ、冷媒配管44の距離が長く、しかも、冷媒配管44の末端にある図8のショーケースでは、冷媒量の減少に対する蒸発器出口と入口の温度差81が非常に大きくなっていることが分る。つまり、冷媒量の減少は、冷媒が十分に到達しづらい条件の冷凍ショーケースの蒸発器に関する冷媒温度の情報のみから高感度に検出可能であることになる。
[Effect of the first embodiment]
In FIG. 1, there is one showcase to be cooled connected to one refrigerator, but in FIG. 4, a plurality of showcases to be cooled (8 in this figure) are connected. FIG. In the right showcase set 41 in FIG. 4, the refrigerant pipe 44 is long and away from the refrigerator 45. Among them, in the showcase 43 at the end, partial gasification occurs due to the temperature rise of the refrigerant, so that the refrigerant supply amount becomes smaller than other showcases. Further, in the left showcase set 42 in FIG. 4, the refrigerant pipe 44 is not separated from the refrigerator 45, but the refrigerant pipe 44 is connected to the evaporator 49 of the showcase 46 located in the middle. This is a case where the refrigerant is taken out from above the pipe (in the height direction) . Also in this case, since the gas existing above the refrigerant pipe 44 is easily sucked, the supply amount of the refrigerant is reduced as compared with other showcases. In addition, as a condition for reducing the amount of refrigerant supplied to the showcase, a case where the inclination of the refrigerant pipe 44 increases toward the end of the refrigerant pipe 44 can be considered. FIG. 7 shows a temperature difference 71 between the refrigerant at the outlet and the inlet in the showcase located near the refrigerator 45 when refrigerant leaks from the refrigeration apparatus, that is, the first temperature sensor (47 in FIG. 4). This is the output difference of the second temperature sensor (48 in FIG. 4). FIG. 8 is actual measurement data of the temperature difference 81 between the refrigerant outlet and inlet refrigerant in the showcase at the end of the refrigerant pipe 44 located away from the refrigerator 45 when refrigerant leakage occurs from the refrigeration apparatus. 7 and 8 both take out the refrigerant from the refrigerant pipe 44 from the side surface of the pipe, and are under the same conditions. The refrigerator 45 is also the same, and the data is acquired at the same timing. The refrigerant leakage is a reproduction of pseudo refrigerant leakage by gradually removing the refrigerant from the refrigerant circuit with time. As a result, compared to the case 71 of FIG. 7 where the distance of the refrigerant pipe 44 from the refrigerator 45 is short, the distance of the refrigerant pipe 44 is longer and the showcase of FIG. It can be seen that the temperature difference 81 between the evaporator outlet and the inlet with respect to the decrease in the refrigerant amount is very large. That is, the decrease in the refrigerant amount can be detected with high sensitivity only from the refrigerant temperature information related to the evaporator of the refrigeration showcase under conditions where the refrigerant is difficult to reach sufficiently.

この効果を使えば、冷凍機一台に複数の冷凍ショーケースが接続されている場合であっても、その全ての冷凍ショーケースに温度センサを取付ける必要はなく、ショーケース全体の中から、冷媒が到達しづらい条件と思われるもの、または、冷媒の量を故意に変化させた場合の冷媒温度の実測データを取得・解析し冷媒温度に変化が出やすい冷凍ショーケースの蒸発器のみに温度センサを取付け、そのデータから冷媒漏れを判定することが出来る。 With this effect, even if multiple refrigeration showcases are connected to a single refrigerator, there is no need to attach temperature sensors to all of the refrigeration showcases. Is a temperature sensor only for evaporators in refrigeration showcases where the refrigerant temperature is likely to change by acquiring and analyzing the measured data of the refrigerant temperature when the refrigerant amount is deliberately changed. The refrigerant leakage can be determined from the data.

その結果、冷凍機に接続されている冷凍ショーケースなどの冷却対象の数によらず、少ない数の温度センサ、少ない数の演算器で冷媒量不足検出装置を組むことが出来、取付け工数や機器の費用を最小限に抑えることが可能となる。そして、その際の冷媒検出性能も感度が最高の状態が維持されている。 As a result, regardless of the number of objects to be cooled, such as refrigeration showcases connected to the refrigerator, it is possible to build a refrigerant shortage detection device with a small number of temperature sensors and a small number of computing units. It is possible to minimize the cost of And the state with the highest sensitivity is also maintained for the refrigerant detection performance at that time.

[第2実施例の効果]
図12はショーケースの蒸発器出口と入口の冷媒の温度差91と電磁弁の信号93、ショーケースの庫内の温度92を示したものである。本図の先頭の部分90は、蒸発器に付着した霜を取るために、ショーケースの庫内の温度92が上昇しているにも係わらず、電磁弁93を強制的に閉じ、冷媒を蒸発器内に流さないようにしている。この強制的に冷媒を止める操作を解除97した後、10〜20分経過した時点94で蒸発器の入口と出口の温度差が約2〜3度ほど広がっている98ことが分る。本冷媒漏れ検出では、この温度差を基に、温度差が大きければ冷媒漏れが生じているというように、冷媒漏れを判定する為、この温度差98は誤判定を起こす要因となる。また、この温度差分98冷媒漏れの判定値を高くした場合、冷媒漏れの判定が可能な冷媒漏れ量の最低値が大きくなってしまう。しかし、強制的に冷媒を止める操作の解除97から約30分経過96した時点で、蒸発器内の暖まった冷媒が排出され、蒸発器出口と入口の冷媒の温度差91は元の状態に戻っている95。よって、第2実施例の様に強制的に冷媒を止めた後90、所定時間経過96するまでは、図9のフローチャートに於けるS14の条件判定部分により、蒸発器出口と入口の冷媒温度データを読み込まない方式であれば、電磁弁93が開弁していても冷媒漏れの判定は実施しない。これにより、冷媒漏れの誤判定を防ぐことが可能となり、また、強制的に冷媒を止める操作を解除97した後の蒸発器の出口と入口の温度差の広がり98を考慮して冷媒漏れの判定値を高くすることも不要となる。
[Effect of the second embodiment]
FIG. 12 shows the temperature difference 91 between the refrigerant at the outlet and the inlet of the showcase, the signal 93 of the solenoid valve, and the temperature 92 inside the showcase. The top portion 90 in this figure is forcibly closing the electromagnetic valve 93 to evaporate the refrigerant in order to remove the frost adhering to the evaporator, even though the temperature 92 in the showcase chamber rises. We do not let it flow into the vessel. It can be seen that the temperature difference between the inlet and outlet of the evaporator widens by about 2 to 3 degrees at the time 94 when 10 to 20 minutes have passed after the operation for forcibly stopping the refrigerant is released 97. In this refrigerant leak detection, based on this temperature difference, the refrigerant leak is determined such that if the temperature difference is large, the refrigerant leak has occurred. Therefore, this temperature difference 98 causes an erroneous determination. Also, the temperature difference 98 when raising the determination threshold value of the refrigerant leakage, a minimum value of the refrigerant leakage amount can be determined refrigerant leakage increases. However, when about 30 minutes have elapsed 96 after the operation 97 forcibly stopping the refrigerant, the warm refrigerant in the evaporator is discharged, and the temperature difference 91 between the evaporator outlet and the inlet refrigerant returns to the original state. 95. Therefore, after the refrigerant is forcibly stopped 90 as in the second embodiment, until the predetermined time 96 has elapsed, the refrigerant temperature data at the outlet and inlet of the evaporator is determined by the condition determination portion of S14 in the flowchart of FIG. Is not read, the refrigerant leakage determination is not performed even if the electromagnetic valve 93 is open. As a result, it is possible to prevent erroneous determination of refrigerant leakage, and determination of refrigerant leakage in consideration of the spread 98 of the temperature difference between the outlet and inlet of the evaporator after the operation 97 forcibly stopping the refrigerant is canceled. it becomes unnecessary to increase the threshold value.

以上説明した強制的に冷媒を止める操作後に誤判定を起こしやすくなる状態は、蒸発器後の冷媒最低温度や蒸発器後の冷媒平均温度でも同様に生ずる為、これらの温度で冷媒漏れを判定する方式に対しても、冷媒漏れの誤判定を防ぐことが可能となる。これにより、信頼性の高い冷媒量不足検出装置を構築することが可能となる。 The above-described state in which an erroneous determination is likely to occur after the operation of forcibly stopping the refrigerant similarly occurs at the minimum refrigerant temperature after the evaporator and the average refrigerant temperature after the evaporator. Therefore, the refrigerant leakage is determined at these temperatures. Even for the system, it is possible to prevent erroneous determination of refrigerant leakage. This makes it possible to construct a highly reliable refrigerant quantity shortage detection device.

上述のような、蒸発器に付着した霜を取るために、ショーケース内の温度92が上昇しているにも係わらず、電磁弁93を強制的に閉じ、冷媒を蒸発器内に流さない場合90と同様な現象は、冷凍装置の点検の為に強制的に冷媒の流れを停止させた場合、および、停電により冷媒の流れが停止させられた場合にも現れる。しかし、上述の所定時間経過96するまでは、蒸発器出口と入口の冷媒温度データを読み込まない方法を取ることにより、同様に、冷媒漏れの誤判定を防ぐことが可能である。   In order to remove the frost adhering to the evaporator as described above, the solenoid valve 93 is forcibly closed and the refrigerant does not flow into the evaporator even though the temperature 92 in the showcase is rising. The same phenomenon as 90 appears when the refrigerant flow is forcibly stopped for inspection of the refrigeration apparatus and when the refrigerant flow is stopped due to a power failure. However, it is possible to prevent erroneous determination of refrigerant leakage by adopting a method in which the refrigerant temperature data at the outlet and inlet of the evaporator is not read until the predetermined time 96 described above.

[第3実施例の効果]
本実施例は、第2実施例と同様な条件の場合、すなわち、図12の先頭部分90の様に強制的に冷媒を止めた後、所定時間経過96するまでの間は、図10のフローチャートに於けるS14の条件判定部分により、蒸発器出口と入口の冷媒温度データを元にS6で算出した判定用温度データを用いたS11での冷媒漏れ判定値との比較を実施しないものである。本実施例は、蒸発器入口と出口の冷媒温度データを一定周期で常に読み込ませたい場合に適用される方式である。この実施例の場合も、冷媒漏れの誤判定を防ぐことが可能となり、また、強制的に冷媒を止める操作を解除97した後の蒸発器の出口と入口の冷媒温度差の広がり98を考慮して冷媒漏れの判定値を高くすることも不要となる。
[Effect of the third embodiment]
In this embodiment, the flow chart of FIG. 10 is used under the same conditions as in the second embodiment, that is, until the predetermined time elapses 96 after the refrigerant is forcibly stopped as in the head portion 90 of FIG. In S14, the condition determination portion does not perform comparison with the refrigerant leakage determination value in S11 using the determination temperature data calculated in S6 based on the refrigerant temperature data at the outlet and inlet of the evaporator. This embodiment is a method applied when it is desired to always read the refrigerant temperature data at the evaporator inlet and outlet at a constant period. Also in this embodiment, it is possible to prevent erroneous determination of refrigerant leakage, and also consider the spread 98 of the refrigerant temperature difference between the outlet and inlet of the evaporator after releasing 97 the operation of forcibly stopping the refrigerant. it becomes unnecessary to increase the determination threshold value of the refrigerant leak Te.

本実施例の場合も、蒸発器後の冷媒最低温度や蒸発器後の冷媒平均温度で冷媒漏れを判定する方式に対しても、冷媒漏れの誤判定を防ぐことが可能となる。これにより、信頼性の高い冷媒量不足検出装置を構築することが可能となる。 Also in the case of the present embodiment, it is possible to prevent erroneous determination of refrigerant leakage even for a method of determining refrigerant leakage based on the minimum refrigerant temperature after the evaporator and the average refrigerant temperature after the evaporator. This makes it possible to construct a highly reliable refrigerant quantity shortage detection device.

また、冷凍装置の点検の為に強制的に冷媒の流れを停止させた場合、および、停電により冷媒の流れが停止させられた場合等に対しても、第2実施例と同様に、冷媒漏れの誤判定を防ぐことが可能である。   Also, in the case where the refrigerant flow is forcibly stopped for inspection of the refrigeration system, and when the refrigerant flow is stopped due to a power failure, the refrigerant leakage is the same as in the second embodiment. It is possible to prevent erroneous determination.

[第4実施例の効果]
図12はショーケースの蒸発器出口と入口の冷媒の温度差91と電磁弁の信号93、ショーケースの庫内の温度92を示したものである。本図の先頭の部分90は、蒸発器に付着した霜を取るために、ショーケースの庫内の温度92が上昇しているにも係わらず、電磁弁93を強制的に閉じ、冷媒を蒸発器内に流さないようにしている。この強制的に冷媒を止める操作を解除97した後、10〜20分経過した時点94で蒸発器の出口と入口の温度差が約2〜3度ほど広がっている98ことが分る。本冷媒漏れ検出では、この温度差を基に、温度差が大きければ冷媒漏れが生じているというように、冷媒漏れを判定する為、この温度差98は誤判定を起こす要因となる。また、この温度差分98冷媒漏れの判定敷居値を高くした場合、冷媒漏れの判定が可能な冷媒漏れ量の最低値が大きくなってしまう。しかし、強制的に冷媒を止める操作の解除97後、蒸発器出口と入口の冷媒の温度差91が一旦広がった94後、元の状態に戻る95までの間96に、電磁弁の開閉93が2回ほど行われていることが分る。この、電磁弁の開閉93により、蒸発器内の暖まった冷媒が排出され、蒸発器出口と入口の冷媒の温度差94は元の状態に戻っている95。よって、第2実施例の様に強制的に冷媒を止めた90後、電磁弁93が所定回数開閉するまで96は、蒸発器出口と入口の冷媒温度データを読み込まない方法をとること、または、第3実施例の様に冷媒漏れの判定を実施しない方法を取ることにより、冷媒漏れの誤判定を防ぐことが可能となり、また、強制的に冷媒を止める操作を解除97した後の蒸発器の出口と入口の冷媒温度差の広がり98を考慮して冷媒漏れの判定値を高くすることも不要となる。
[Effect of the fourth embodiment]
FIG. 12 shows the temperature difference 91 between the refrigerant at the outlet and the inlet of the showcase, the signal 93 of the solenoid valve, and the temperature 92 inside the showcase. The top portion 90 in this figure is forcibly closing the electromagnetic valve 93 to evaporate the refrigerant in order to remove the frost adhering to the evaporator, even though the temperature 92 in the showcase chamber rises. We do not let it flow into the vessel. It is found that the temperature difference between the outlet and the inlet of the evaporator is widened by about 2 to 3 degrees at the time 94 when 10 to 20 minutes have passed after the operation for forcibly stopping the refrigerant is released 97. In this refrigerant leak detection, based on this temperature difference, the refrigerant leak is determined such that if the temperature difference is large, the refrigerant leak has occurred. Therefore, this temperature difference 98 causes an erroneous determination. In addition, when the threshold value for determining the temperature difference 98 refrigerant leakage is increased, the minimum value of the refrigerant leakage amount at which the refrigerant leakage can be determined is increased. However, after the operation 97 of forcibly stopping the refrigerant is canceled, the temperature difference 91 between the refrigerant at the outlet and the inlet of the evaporator 94 once widens 94, and then the solenoid valve opening / closing 93 is performed 96 until the time 95 returns to the original state. You can see that it has been done twice. Due to the opening / closing 93 of the electromagnetic valve, the warm refrigerant in the evaporator is discharged, and the temperature difference 94 between the refrigerant at the outlet and the inlet of the evaporator is restored to the original state 95. Therefore, after the refrigerant has been forcibly stopped 90 as in the second embodiment, a method in which the refrigerant temperature data at the evaporator outlet and the inlet is not read until the electromagnetic valve 93 is opened and closed a predetermined number of times, or By adopting a method in which the determination of refrigerant leakage is not performed as in the third embodiment, it is possible to prevent erroneous determination of refrigerant leakage, and the operation of the evaporator after releasing 97 the operation for forcibly stopping the refrigerant is canceled. it becomes unnecessary to increase the determination threshold value of the refrigerant leakage in consideration of the spread 98 of the refrigerant temperature difference between the outlet and the inlet.

以上説明した強制的に冷媒を止める操作後に誤判定を起こしやすくなる状態は、蒸発器後の冷媒最低温度や蒸発器後の冷媒平均温度でも同様に生ずる為、これらの温度で冷媒漏れを判定する方式に対しても、冷媒もれの誤判定を防ぐことが可能となる。これにより、信頼性の高い冷媒量不足検出装置を構築することが可能となる。 The above-described state in which an erroneous determination is likely to occur after the operation of forcibly stopping the refrigerant similarly occurs at the minimum refrigerant temperature after the evaporator and the average refrigerant temperature after the evaporator. Therefore, the refrigerant leakage is determined at these temperatures. Even for the system, it is possible to prevent erroneous determination of refrigerant leakage. This makes it possible to construct a highly reliable refrigerant quantity shortage detection device.

上述のような、蒸発器に付着した霜を取るために、図12の様にショーケースの庫内温度92が上昇しているにも係わらず、電磁弁93を強制的に閉じ、冷媒を蒸発器内に流さない場合90と同様な現象は、冷凍空装置の点検の為に強制的に冷媒の流れを停止させた場合、および、停電により冷媒の流れが停止させられた場合にも現れる。しかし、上述の電磁弁が所定回数開閉するまで96は、冷媒漏れの判定を実施しない方法を取ることにより、同様に、冷媒漏れの誤判定を防ぐことが可能である。   In order to remove the frost adhering to the evaporator as described above, the solenoid valve 93 is forcibly closed to evaporate the refrigerant in spite of the rise of the showcase internal temperature 92 as shown in FIG. The same phenomenon as in the case of not flowing into the chamber 90 also appears when the refrigerant flow is forcibly stopped for inspection of the refrigeration apparatus and when the refrigerant flow is stopped due to a power failure. However, it is possible to similarly prevent erroneous determination of refrigerant leakage by adopting a method that does not perform determination of refrigerant leakage until the above-described electromagnetic valve is opened and closed a predetermined number of times.

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施例]
図1に示すような、圧縮機1、油分離器2、凝縮器3、レシーバタンク4、第1の管継手5、電磁弁6、膨張弁7、蒸発器8、第2の管継手9、液分離器10等の間を冷媒用配管11で接続すると共に、前記レシーバタンク4と、前記液分離器10との間において、電磁弁6、膨張弁7、蒸発器8、を経由する冷媒経路を単独、または、並列に複数(図1の実施例では1系統、図4では8系統の並列)設けた冷凍装置Aの冷媒回路において、蒸発器8の上流、かつ、膨張弁7の下流の部分に第1の温度センサ12を取付ける。また、蒸発器8の下流、かつ、他の冷却経路との合流(第2の管継手9)前の部分に第2の温度センサ13を取付ける。温度センサは、どの様な種類のものでも良いが、温度信号をマイコンなどの演算器で処理するため、熱電対やサーミスタなどの様になんらかの電気的出力信号が得られるものである必要がある。温度センサの取付けは、内部の冷媒に直接接するような取付け方であっても、冷媒配管11に取付けることで冷媒の温度を間接的に検出するような方式であっても良い。ただし、冷媒配管11に取付ける場合は、配管周囲の空気温度の影響を受けないようにするため、配管に取付けた温度センサ12,13の周囲は保温材などで覆い、極力冷媒温度と同一な温度となるような処置をする必要がある。第1の温度センサ12と第2の温度センサ13の出力は、電気的信号線14により演算器15に入力する。
[First embodiment]
As shown in FIG. 1, the compressor 1, the oil separator 2, the condenser 3, the receiver tank 4, the first pipe joint 5, the electromagnetic valve 6, the expansion valve 7, the evaporator 8, the second pipe joint 9, A refrigerant path is connected between the liquid separator 10 and the like by a refrigerant pipe 11 and between the receiver tank 4 and the liquid separator 10 via the electromagnetic valve 6, the expansion valve 7, and the evaporator 8. 1 in the refrigerant circuit of the refrigeration apparatus A provided in parallel (one system in the embodiment of FIG. 1 and eight systems in FIG. 4) upstream of the evaporator 8 and downstream of the expansion valve 7 The first temperature sensor 12 is attached to the part. Further, the second temperature sensor 13 is attached to a portion downstream of the evaporator 8 and before the junction with the other cooling path (second pipe joint 9). The temperature sensor may be of any type, but since the temperature signal is processed by an arithmetic unit such as a microcomputer, it is necessary to obtain some electrical output signal such as a thermocouple or thermistor. The temperature sensor may be attached in such a way as to be in direct contact with the internal refrigerant, or may be a method in which the temperature of the refrigerant is indirectly detected by being attached to the refrigerant pipe 11. However, when it is attached to the refrigerant pipe 11, the temperature sensors 12 and 13 attached to the pipe are covered with a heat insulating material or the like so as not to be affected by the air temperature around the pipe, and the same temperature as the refrigerant temperature as much as possible. It is necessary to take such measures. The outputs of the first temperature sensor 12 and the second temperature sensor 13 are input to the calculator 15 via the electrical signal line 14.

また、冷媒の蒸発器8への流れ込みを制御している電磁弁6の開閉の状態と相関がある電磁弁6の駆動信号を取り出せるようにする。これは、電磁弁6に対して開閉命令を直接指示しているコントローラ(演算器)15内のソフト上の開閉命令信号であっても、電磁弁6に掛かる電圧信号を電気的に取り出した信号であってもよい。電磁弁6に掛かる電圧信号を用いる場合は、図1のように演算器15に電磁弁6の電気的信号線を入力する。 Further, a drive signal for the electromagnetic valve 6 correlated with the open / closed state of the electromagnetic valve 6 that controls the flow of the refrigerant into the evaporator 8 can be taken out. This is a signal obtained by electrically extracting a voltage signal applied to the electromagnetic valve 6 even if it is a software opening / closing instruction signal in the controller (calculator) 15 that directly instructs the electromagnetic valve 6 to open / close. It may be. When the voltage signal applied to the electromagnetic valve 6 is used, the electric signal line of the electromagnetic valve 6 is input to the calculator 15 as shown in FIG.

図4は、温度センサの取付け方に関する第1の実施例である。図1は冷凍機一台18に対して、接続されている冷却対象のショーケースが一台であったが、図4は冷却対象のショーケースが複数台(本図では8台)接続されている場合の簡略図である。図4の右側のショーケースの組41では冷媒の配管44が長く冷凍機45から離れている。その中でも末端にあるショーケース43では冷媒の温度上昇による一部ガス化が発生するため、冷媒供給量が他のショーケースに比べ少なくなる。また、図4の左側のショーケースの組42では冷媒配管44は冷凍機45から離れていないが、中間に位置するショーケース46の蒸発器49への冷媒配管44の接続で、冷媒配管44からの冷媒の取り出しが管の上方からの取り出しとなっている場合である。この場合も、冷媒配管44内の上方に存在しているガスを吸入し易いため、冷媒の供給量が他のショーケースに比較して少なくなる。冷媒配管44からの冷媒の取り出しが上方からとなってしまう理由は、冷凍ショーケースを設置する店舗の構造上の影響で配管レイアウトが上方からしか取り出せない場合などがある。その他、ショーケースへの冷媒の供給量が少なくなってしまう条件としては、冷媒配管の傾斜が冷媒配管44の末端に行くほど高くなる場合などが考えられる。 FIG. 4 shows a first embodiment relating to how to attach the temperature sensor. In FIG. 1, there is one showcase to be cooled connected to one refrigerator 18, but in FIG. 4, multiple showcases to be cooled (8 in this figure) are connected. FIG. In the right showcase set 41 in FIG. 4, the refrigerant pipe 44 is long and away from the refrigerator 45. Among them, in the showcase 43 at the end, partial gasification occurs due to the temperature rise of the refrigerant, so that the refrigerant supply amount becomes smaller than other showcases. Further, in the left showcase set 42 in FIG. 4, the refrigerant pipe 44 is not separated from the refrigerator 45, but the refrigerant pipe 44 is connected to the evaporator 49 of the showcase 46 located in the middle. In this case, the refrigerant is taken out from above the pipe. Also in this case, since the gas existing above the refrigerant pipe 44 is easily sucked, the supply amount of the refrigerant is reduced as compared with other showcases. The reason why the refrigerant is taken out from the refrigerant pipe 44 from above is that the pipe layout can be taken out only from above due to the influence of the structure of the store where the refrigeration showcase is installed. In addition, as a condition for reducing the amount of refrigerant supplied to the showcase, a case where the inclination of the refrigerant pipe increases toward the end of the refrigerant pipe 44 can be considered.

前述の蒸発器の入口と出口の温度センサは、冷凍機に複数台のショーケースが繋がっている場合であっても、その全ての冷凍ショーケースの中から、前述の理由で冷媒が液体の状態で到達しづらい条件と思われるもの、または、冷媒の量を故意に変化させた場合の冷媒温度の実測データを取得・解析し、冷媒温度に変化が出やすい冷凍ショーケースの蒸発器のみに温度センサを取付ける。例えば、図4の場合は、冷媒の供給量が他のショーケースに比較して少ないショーケース43,46のみに温度センサ47,48を取付ける。   The temperature sensor at the inlet and outlet of the evaporator described above is in the state that the refrigerant is in a liquid state for all of the above-mentioned freezing showcases even when multiple refrigerators are connected to the refrigerator. It is difficult to reach the conditions, or the measured data of the refrigerant temperature when the amount of refrigerant is intentionally changed is obtained and analyzed, and only the refrigeration showcase evaporator, where the refrigerant temperature easily changes, is the temperature. Install the sensor. For example, in the case of FIG. 4, the temperature sensors 47 and 48 are attached only to the showcases 43 and 46 in which the amount of refrigerant supplied is small compared to other showcases.

図5は、第1実施例における、上述の温度センサ信号と電磁弁の信号を使用した冷媒漏れ判定プログラムの例である。本プログラムは、図1の演算器15の中に記述され、所定の演算周期にてステップ的に実行される。まず、S1で電磁弁(図4の40)の駆動信号を読込み、電磁弁40の駆動信号を監視する。S2で電磁弁40が開弁しているか判定し、電磁弁40が開弁していない場合は、開弁するまでその他の演算処理は無しに電磁弁40の開弁の監視を継続するため、再びS1に戻る。電磁弁40が開弁した場合、S3以降の処理が実施され、第1および第2の温度センサ47,48の信号処理が開始される。このことにより、蒸発器49に冷媒が流れ、冷凍サイクルが成立している時点のデータのみで冷媒漏れの判定がなされこととなる。 FIG. 5 is an example of a refrigerant leakage determination program using the above-described temperature sensor signal and electromagnetic valve signal in the first embodiment. This program is described in the calculator 15 of FIG. 1, and is executed step by step at a predetermined calculation cycle. First, in S1, the drive signal for the solenoid valve (40 in FIG. 4) is read and the drive signal for the solenoid valve 40 is monitored. In S2, it is determined whether the solenoid valve 40 is opened. If the solenoid valve 40 is not opened, monitoring of the opening of the solenoid valve 40 is continued without any other arithmetic processing until the valve is opened. Return to S1 again. When the solenoid valve 40 is opened, the processing after S3 is performed, and the signal processing of the first and second temperature sensors 47 and 48 is started. As a result, the refrigerant flows into the evaporator 49, and the refrigerant leakage is determined only by the data at the time when the refrigeration cycle is established.

開弁が判定された場合、初回の開弁判定の時点で冷媒漏れ判定用温度データ演算結果データを入れるメモリーを図5のS3にて初期化する。これは、開弁期間毎に判定用温度データの算術平均値を算出する為である。また、この算術平均値算出用として、S4にて温度センサのデータ取得数のカウントを一つ進める。次にS5にて蒸発器部分の第1(入口)および第2(出口)の温度センサ47,48の信号を読み込む。そして、このセンサ信号を基に、冷媒漏れ判定用温度データ演算処理部分(S6)で、第2の温度センサ48による蒸発器出口の冷媒温度の最低値の検出処理および、または第2の温度センサ48による蒸発器出口の冷媒温度の積算処理および、または第2の温度センサ48による蒸発器出口の冷媒温度と第1の温度センサによる蒸発器入口47の冷媒温度との差を積算する処理を行う。 When it is determined that the valve is opened, a memory for storing the refrigerant leak determination temperature data calculation result data at the time of the first valve opening determination is initialized in S3 of FIG. This is because the arithmetic average value of the temperature data for determination is calculated for each valve opening period. Further, in order to calculate the arithmetic average value, the data acquisition count of the temperature sensor is incremented by one in S4. Next, in S5, the signals of the first (inlet) and second (outlet) temperature sensors 47 and 48 of the evaporator portion are read. Then, based on this sensor signal, in the refrigerant leak determination temperature data calculation processing part (S6), the second temperature sensor 48 detects the minimum value of the refrigerant temperature at the evaporator outlet and / or the second temperature sensor. The process of integrating the refrigerant temperature at the evaporator outlet by 48 or the process of integrating the difference between the refrigerant temperature at the evaporator outlet by the second temperature sensor 48 and the refrigerant temperature at the evaporator inlet 47 by the first temperature sensor is performed. .

冷媒漏れ判定用温度データ演算処理の後、図5のS7にて電磁弁40の駆動信号を再び読み込む。そして、S8にて電磁弁40が閉弁したかどうかの判定を行う。 After the refrigerant leak determination temperature data calculation process, the drive signal of the solenoid valve 40 is read again in S7 of FIG. Then, in S8, it is determined whether or not the electromagnetic valve 40 is closed.

電磁弁40が閉弁していない場合、すなわち開弁した状態のままである場合、S4に戻り、再び温度センサ47,48のデータ取得数のカウントを一つ進めた後、第1および第2の温度センサ47,48の信号を読み込み(S5)、冷媒漏れ判定用温度データ演算処理(S6)を行う。 When the solenoid valve 40 is not closed, that is, when the valve is still open, the process returns to S4, the count of the data acquisition number of the temperature sensors 47 and 48 is again advanced by one, and then the first and second The temperature sensors 47 and 48 are read (S5), and refrigerant leak determination temperature data calculation processing (S6) is performed.

電磁弁40が閉弁した場合(S8にてYesの判定がなされた場合)、第1および第2の温度センサ47,48の信号は読み込まず、S9にて第2の温度センサ48による蒸発器出口の冷媒温度の積算値および、または第2の温度センサ48による蒸発器出口の冷媒温度と第1の温度センサ47による蒸発器入口の冷媒温度との差の積算値から開弁期間におけるそれぞれの平均値を算出する。このとき、平均値の算出は、それぞれの積算値を温度センサのデータ取得数のカウント値(S4でのカウント値)によって除することにより求める。 When the electromagnetic valve 40 is closed (Yes in S8), the signals of the first and second temperature sensors 47 and 48 are not read, and the evaporator by the second temperature sensor 48 is S9. The integrated value of the refrigerant temperature at the outlet and / or the integrated value of the difference between the refrigerant temperature at the evaporator outlet by the second temperature sensor 48 and the refrigerant temperature at the evaporator inlet by the first temperature sensor 47 are used for each valve opening period. The average value is calculated. At this time, the average value is calculated by dividing each integrated value by the count value of the temperature sensor data acquisition count (count value in S4).

こうして、一回の開弁期間における、蒸発器出口の冷媒温度の最低値および、または蒸発器出口の冷媒温度平均値および、または図8に示すような蒸発器出口と入口の冷媒温度差の平均値、すなわち、冷媒漏れ判定用温度データが算出される。 Thus, the minimum value of the refrigerant temperature at the evaporator outlet and / or the average refrigerant temperature at the evaporator outlet and the average refrigerant temperature difference between the evaporator outlet and the inlet as shown in FIG. 8 during one valve opening period. A value, that is, temperature data for refrigerant leakage determination is calculated.

開弁期間毎に算出された冷媒漏れ判定用温度データは、周囲の温度変化や装置の動作ばらつきやノイズ(電気的)などの外乱により、各タイミング毎にある程度のばらつきを持つ。このばらつきの影響を低減させるため、開弁期間毎に算出された冷媒漏れ判定用温度データに一次遅れ処理などの逐次平均化処理を図5のS10にて施す。 The refrigerant leak determination temperature data calculated for each valve opening period has a certain amount of variation at each timing due to disturbances such as ambient temperature changes, device operation variations, noise (electrical), and the like. In order to reduce the influence of this variation, a sequential averaging process such as a first-order lag process is applied to the refrigerant leak determination temperature data calculated for each valve opening period in S10 of FIG.

下の式(数1)はS10で逐次平均化処理として用いる一次遅れ処理の例である。yは一次遅れ処理を行った平均値、uは一次遅れ処理前の冷媒漏れ判定用温度データ、Tsは温度センサの信号のサンプリング周期(演算器内のプログラムの演算タイミング)、Tは一次遅れ処理の重みすなわち時定数、添え字のkはサンプリング又は演算のタイミングを表す。すなわち、k-1は一回前の演算タイミングでの演算値または、一回前のサンプリングタイミングでの温度センサ信号のサンプリング値をあらわす。 The following equation (Equation 1) is an example of a first-order lag process used as a sequential averaging process in S10. y is the average value of the first-order lag processing, u is the temperature data for refrigerant leakage judgment before the first-order lag processing, Ts is the sampling period of the temperature sensor signal (the calculation timing of the program in the calculator), and T is the first-order lag processing The weight, i.e., the time constant, and the subscript k represent the timing of sampling or calculation. That is, k−1 represents a calculation value at the previous calculation timing or a sampling value of the temperature sensor signal at the previous sampling timing.

その平均化処理が施された冷媒漏れ判定用温度データを冷媒もれ判定値と比較することにより、図5のS11にて異常判定を行う。異常判定がなされた場合はS12にて、冷媒漏れランプ点灯などの異常判定時処理を実施し、正常判定がなされた場合はS13にて、正常ランプ点灯などの正常判定処理を実施する。正常又は異常判定処理の終了後再びS1に戻り、電磁弁駆動信号40を読み込み、上述の処理を繰り返す。 By comparing the refrigerant leak determination temperature data subjected to the averaging process with the refrigerant leakage determination value, an abnormality determination is performed in S11 of FIG. If an abnormality determination is made, an abnormality determination process such as lighting of a refrigerant leak lamp is performed at S12, and if a normal determination is made, a normal determination process such as lighting of a normal lamp is performed at S13. After the normality / abnormality determination process is completed, the process returns to S1 again, reads the solenoid valve drive signal 40, and repeats the above process.

また、冷媒漏れ判定プログラムは、必要に応じて図6の様に各開弁期間毎の平均値の算出を行わない形に簡略化したプログラムに変更することも可能である。   Further, the refrigerant leakage determination program can be changed to a simplified program so as not to calculate the average value for each valve opening period as shown in FIG.

[第2の実施例]
図9は第2の実施例である。第1の実施例にて示した図6のプログラムのフローチャート対してS2とS5の間にS14の条件判定処理を追加したものである。このS14は、ショーケースの庫内温度等、冷却対象の温度が上昇し、本来であれば蒸発器に冷媒を流すべき条件であるにもかかわらず、電磁弁を閉じることによって、冷媒の流れを強制的に停止していた条件となっていた場合、その状態から開放されてから所定の時間が経過しているかを判定するものである。その結果、所定時間経過していない場合は、蒸発器の入口と出口の温度データの読込みを実施せずに次のループに移行する。
[Second embodiment]
9 Ru second embodiment der. The condition determination process of S14 is added between S2 and S5 with respect to the program flowchart of FIG. 6 shown in the first embodiment. In S14, the temperature of the object to be cooled, such as the inside temperature of the showcase, is increased, and the flow of the refrigerant is reduced by closing the solenoid valve in spite of the condition that the refrigerant should flow into the evaporator. In the case where the condition has been forcibly stopped, it is determined whether a predetermined time has elapsed since the state was released. As a result, if the predetermined time has not elapsed, the process proceeds to the next loop without reading the temperature data of the inlet and outlet of the evaporator.

図5に示すプログラムの場合は、上述のS14の判定は、S2とS3の間に組み込むこととなる。 In the case of the program shown in FIG. 5, the determination in S14 described above is incorporated between S2 and S3.

また、本方式は、冷凍装置に接続されている冷媒経路の数に係わらず、適用可能である。   In addition, this method is applicable regardless of the number of refrigerant paths connected to the refrigeration apparatus.

[第3の実施例]
図10は第3の実施例である。第1の実施例にて示した図6のプログラムのフローチャート対してS10とS11の間にS14の条件判定処理を追加したものである。このS14は、ショーケースの庫内温度等、冷却対象の温度が上昇し、本来であれば蒸発器に冷媒を流すべき条件であるにもかかわらず、電磁弁を閉じることによって、冷媒の流れを強制的に停止していた条件となっていた場合、その状態から開放されてから所定の時間が経過しているかを判定するものである。その結果、所定時間経過していない場合は、判定用温度データの演算結果を用いた冷媒漏れ判定処理を実施せずに次のループに移行する。
[Third embodiment]
Figure 10 is Ru third embodiment der. The condition determination process of S14 is added between S10 and S11 to the flowchart of the program of FIG. 6 shown in the first embodiment. In S14, the temperature of the object to be cooled, such as the inside temperature of the showcase, is increased, and the flow of the refrigerant is reduced by closing the solenoid valve in spite of the condition that the refrigerant should flow into the evaporator. In the case where the condition has been forcibly stopped, it is determined whether a predetermined time has elapsed since the state was released. As a result, when the predetermined time has not elapsed, the process proceeds to the next loop without performing the refrigerant leakage determination process using the calculation result of the determination temperature data.

図5に示すプログラムの場合は、上述のS14の判定は、S10とS11の間に組み込むこととなる。 In the case of the program shown in FIG. 5, the determination in S14 described above is incorporated between S10 and S11.

また、本方式は、冷凍装置に接続されている冷媒経路の数に係わらず、適用可能である。   In addition, this method is applicable regardless of the number of refrigerant paths connected to the refrigeration apparatus.

[第4の実施例]
図11は第4の実施例である。第1の実施例にて示した図6のプログラムのフローチャート対してS1とS2の間にS15の条件判定処理を追加したものである。このS15は、ショーケースの庫内温度等、冷却対象の温度が上昇し、本来であれば蒸発器に冷媒を流すべき条件であるにもかかわらず、電磁弁を閉じることによって、冷媒の流れを強制的に停止していた条件となっていた場合、その状態を解除してから所定の回数電磁弁を開閉したか判定するものである。その結果、所定回数電磁弁を開閉していない場合は、判定用温度データの演算結果を用いた冷媒漏れ判定処理を実施せずに次のループに移行する。
[Fourth embodiment]
11 Ru fourth embodiment der. The condition determination process of S15 is added between S1 and S2 with respect to the flowchart of the program of FIG. 6 shown in the first embodiment. In S15, the temperature of the object to be cooled, such as the inside temperature of the showcase, is increased, and the flow of the refrigerant is reduced by closing the solenoid valve even though the refrigerant should flow through the evaporator. If the condition has been forcibly stopped, it is determined whether the solenoid valve has been opened and closed a predetermined number of times after the state is canceled. As a result, when the solenoid valve has not been opened and closed a predetermined number of times, the process proceeds to the next loop without performing the refrigerant leakage determination process using the calculation result of the determination temperature data.

図5に示すプログラムの場合は、上述のS15の判定は、S2とS3の間に組み込むこととなる。また、本方式の場合も第3実施例のように、S15をS10とS11の間に組み込んでも成立する。 In the case of the program shown in FIG. 5, the determination in S15 described above is incorporated between S2 and S3. Further, in the case of this method, as in the third embodiment, S15 can be established even if it is incorporated between S10 and S11.

また、本方式は、冷凍装置に接続されている冷媒経路の数に係わらず、適用可能である。   In addition, this method is applicable regardless of the number of refrigerant paths connected to the refrigeration apparatus.

以上、本発明の実施の形態を説明したが、本発明の範囲は、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Although the embodiment of the present invention has been described above, the scope of the present invention is not limited to this, and it goes without saying that various modifications can be made without departing from the scope of the present invention.

本発明は、食料品等展示販売用の冷凍ショーケース用の冷凍・冷蔵設備、店舗・ビル・住宅等の空調設備、冷蔵庫・自動販売機などの冷媒を使用している冷凍・冷蔵設備にて利用することができる。 The present invention relates to a refrigeration / refrigeration facility for a refrigeration showcase for display and sale of foodstuffs, an air conditioning facility for a store / building / house, etc., and a refrigeration / refrigeration facility using a refrigerant such as a refrigerator / vending machine. Can be used.

本発明を適用した冷凍・冷凍・空調設備の一般的な構成図面である。1 is a general configuration drawing of a refrigeration / refrigeration / air conditioning facility to which the present invention is applied. 冷凍・冷蔵・空調設備の一般的な構成図面にて、従来技術を説明した図である。It is the figure which demonstrated the prior art with the general block diagram of freezing, refrigeration, and air-conditioning equipment. 冷凍・冷蔵・空調設備の従来技術の問題点を説明した図である。It is a figure explaining the problem of the prior art of freezing, refrigeration, and air-conditioning equipment. 第1の実施例の構成を表した図である。It is a figure showing the structure of the 1st Example. 第1の実施例におけるプログラム部分の例をフローチャートで表した図である。It is the figure which represented the example of the program part in a 1st Example with the flowchart. 第1の実施例におけるプログラム部分の例をフローチャートで表した図である。It is the figure which represented the example of the program part in a 1st Example with the flowchart. 第1の実施例の効果を表した図である。It is a figure showing the effect of a 1st Example. 第1の実施例の効果を表した図である。It is a figure showing the effect of a 1st Example. 第2の実施例をフローチャートで表した図である。It is the figure which represented the 2nd Example with the flowchart. 第3の実施例をフローチャートで表した図である。It is the figure which represented the 3rd Example with the flowchart. 第4の実施例をフローチャートで表した図である。It is the figure which represented the 4th Example with the flowchart. 第2、第3、第4実施例の効果を説明した図である。It is a figure explaining the effect of 2nd, 3rd, 4th Example.

A:冷凍装置、1:圧縮機、2:油分離器、3:凝縮器、4:レシーバタンク、5:管継手、6:電磁弁、7:膨張弁、8:蒸発器、9:第2の管継手、10:液分離器、11:冷媒用配管、12:第1の温度センサ、13:第2の温度センサ、14:電気的信号線、15:演算器、16:蒸発器出口、17:蒸発器入口、18:冷凍機、19:ショーケース、20:蒸発器、21:蒸発器入口、22:蒸発器出口、23:ショーケース、24:冷媒回路、24a:第1の管継手、24b:第2の管継手、25:圧縮機、26:冷凍機、27:電磁弁、28:油分離器、29:凝縮器、30:蒸発器の霜取りの為に強制的に電磁弁を閉状態にしている期間、31:蒸発器の入口と出口の冷媒温度差、32:ショーケースの庫内温度、33:電磁弁の開閉信号、34:冷媒の流れが再開した条件、35:暖まった蒸発器内の冷媒が抜けてきた条件、37:液分離器、38:膨張弁、39:レシーバタンク、40:電磁弁、41:右側のショーケースの組、42:左側のショーケースの組、43:冷媒配管末端のショーケース、44:冷媒配管、45:冷凍機、46:冷媒配管の取り出しが管の上方からの取り出しとなっているショーケース、47:第1の温度センサ、48:第2の温度センサ、49:蒸発器、50:圧縮機、51:凝縮器、71:蒸発器出口と入口の冷媒の温度差、72:電磁弁開閉信号、81:蒸発器出口と入口の冷媒の温度差、82:電磁弁開閉信号、90:蒸発器の霜取りの為に強制的に電磁弁を閉状態にしている期間、91:蒸発器出口と入口の冷媒の温度差、92:ショーケースの庫内温度、93:電磁弁の開閉信号、94:冷媒の流れが再開した条件、95:暖まった蒸発器内の冷媒が抜けてきた条件、96:電磁弁が所定回数開閉する期間、97:強制的に冷媒を止める操作を解除した瞬間、98:蒸発器の出口と入口の冷媒温度差の広がり。
A: Refrigeration apparatus, 1: Compressor, 2: Oil separator, 3: Condenser, 4: Receiver tank, 5: Pipe joint, 6: Solenoid valve, 7: Expansion valve, 8: Evaporator, 9: Second Pipe joint, 10: liquid separator, 11: piping for refrigerant, 12: first temperature sensor, 13: second temperature sensor, 14: electrical signal line, 15: calculator, 16: outlet of evaporator, 17: Evaporator inlet, 18: Refrigerator, 19: Showcase, 20: Evaporator, 21: Evaporator inlet, 22: Evaporator outlet, 23: Showcase, 24: Refrigerant circuit, 24a: First pipe joint 24b: second pipe joint, 25: compressor, 26: refrigerator, 27: solenoid valve, 28: oil separator, 29: condenser, 30: solenoid valve for forced defrosting Closed period, 31: refrigerant temperature difference between the inlet and outlet of the evaporator, 32: temperature inside the showcase, 33: electricity Open / close signal of valve, 34: condition that refrigerant flow resumed, 35: condition that refrigerant in warmed evaporator has escaped, 37: liquid separator, 38: expansion valve, 39: receiver tank, 40: solenoid valve 41: Set of right showcase, 42: Set of left showcase, 43: Showcase at end of refrigerant pipe, 44: Refrigerant pipe, 45: Refrigerator, 46: Refrigerant pipe taken out from above pipe Showcase taken out, 47: first temperature sensor, 48: second temperature sensor, 49: evaporator, 50: compressor, 51: condenser, 71: refrigerant outlet and inlet refrigerant temperature Difference: 72: Solenoid valve open / close signal, 81: Temperature difference between refrigerant at outlet and inlet of evaporator, 82: Solenoid valve open / close signal, 90: Period for forcibly closing solenoid valve for defrosting of evaporator 91: Refrigerant outlet and inlet refrigerant temperatures , 92: Showcase interior temperature, 93: Solenoid valve open / close signal, 94: Refrigerant flow resumed condition, 95: Refrigerant warmed-up refrigerant condition, 96: Solenoid valve pre-determined number of times Period of opening and closing, 97: instant of releasing the operation for forcibly stopping the refrigerant, 98: spread of the refrigerant temperature difference between the outlet and the inlet of the evaporator.

Claims (1)

蒸発器出口および、または入口の冷媒の温度または冷媒の温度に相当する温度により冷凍装置の冷媒量を判定することを特徴とする冷凍装置の冷媒漏れ検出方法において、
一台の冷凍機に接続されている複数台の蒸発器の内、
他の蒸発器に比べて冷媒が到達しづらい蒸発器のみ、入口側に第1の温度センサを、出口側に第2の温度センサを各々取り付け、
前記第2の温度センサから取得される前記蒸発器出口および、または前記第1の温度センサから取得される前記蒸発器入口の冷媒の温度または冷媒の温度に相当する温度検出結果を用い、
該冷凍装置の冷媒量を判定すると共に、
冷却対象の温度を目標値まで到達させるためには蒸発器に冷媒を流入・流出させるべき条件であっても冷媒の流れを停止した場合、
蒸発器への冷媒の流入・流出再開後に所定時間経過するまでは冷媒量の判定を行わない、または、冷媒量の判定結果を基に異常判定を行わないこと
を特徴とする冷凍装置の冷媒漏れ検出方法。
In the refrigerant leak detection method for a refrigeration apparatus, the refrigerant amount of the refrigeration apparatus is determined based on the temperature at the outlet of the evaporator and / or the refrigerant at the inlet or a temperature corresponding to the temperature of the refrigerant.
Among multiple evaporators connected to one refrigerator ,
Only the evaporator where the refrigerant is difficult to reach compared to other evaporators, the first temperature sensor is attached to the inlet side, and the second temperature sensor is attached to the outlet side,
The second the evaporator outlet and is obtained from the temperature sensor, or have use the detection result of the temperature corresponding to the temperature of the evaporator inlet temperature or a refrigerant of the refrigerant is obtained from the first temperature sensor,
Determining the amount of refrigerant in the refrigeration system ;
In order to reach the target temperature of the cooling target, even if the refrigerant flow is stopped under the condition that the refrigerant should flow into and out of the evaporator,
Refrigerant leakage of a refrigeration apparatus , wherein the refrigerant amount is not determined until a predetermined time has elapsed after the refrigerant flow into and out of the evaporator is resumed, or abnormality determination is not performed based on the refrigerant amount determination result Detection method.
JP2007261279A 2007-10-04 2007-10-04 Refrigerant leak detection method for refrigeration equipment Active JP4806793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261279A JP4806793B2 (en) 2007-10-04 2007-10-04 Refrigerant leak detection method for refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261279A JP4806793B2 (en) 2007-10-04 2007-10-04 Refrigerant leak detection method for refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2009092268A JP2009092268A (en) 2009-04-30
JP4806793B2 true JP4806793B2 (en) 2011-11-02

Family

ID=40664428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261279A Active JP4806793B2 (en) 2007-10-04 2007-10-04 Refrigerant leak detection method for refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4806793B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101155345B1 (en) * 2010-02-08 2012-06-11 엘지전자 주식회사 Air conditioner and method for controlling of air conditioner
US10151663B2 (en) 2015-09-15 2018-12-11 Emerson Climate Technologies, Inc. Leak detector sensor systems using tag-sensitized refrigerants
US11709004B2 (en) 2020-12-16 2023-07-25 Lennox Industries Inc. Method and a system for preventing a freeze event using refrigerant temperature

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017672A (en) * 1983-07-08 1985-01-29 株式会社日立製作所 Alarm device for shortage of refrigerant
JPH07151432A (en) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd Insufficient refrigerant detector for refrigerator
JP2003214734A (en) * 2002-01-18 2003-07-30 Toshiba Corp Control device of refrigerator and refrigerant leakage determination method for refrigerator
KR20050028391A (en) * 2003-09-17 2005-03-23 엘지전자 주식회사 A refrigerants leakage sensing system and method
JP4453466B2 (en) * 2004-07-09 2010-04-21 富士電機リテイルシステムズ株式会社 Chiller system
JP4839861B2 (en) * 2006-01-30 2011-12-21 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2009092268A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
CN110793159B (en) Air conditioner refrigeration anti-freezing protection control method and device and air conditioner
US9322585B2 (en) Self-diagnosing transport refrigerating apparatus
JP5525965B2 (en) Refrigeration cycle equipment
CN105241018A (en) Heat exchange fault detection method and device for dehumidification device
US9273898B2 (en) Device for detecting abnormality in refrigeration cycle of refrigerator and method therefor
JP3418009B2 (en) Method and apparatus for monitoring and managing refrigeration equipment
JP5693328B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
JP2010210098A (en) Refrigerating device and method of detecting leakage of refrigerant in the refrigerating device
US20120031985A1 (en) Fault tolerant appliance
CN112739967B (en) Abnormality determination device for transport refrigeration device, transport refrigeration device provided with abnormality determination device, and abnormality determination method for transport refrigeration device
JP2013228130A (en) Freezer
US20160238332A1 (en) Heat Exchanger Fault Diagnostic
JP2009236332A (en) Refrigerant leakage detecting method of refrigerating device
CN110375466B (en) Device and method for detecting refrigerant leakage of air source heat pump system
CN101566418B (en) Refrigerator
JP4806793B2 (en) Refrigerant leak detection method for refrigeration equipment
CN113272603B (en) Abnormality determination device, refrigeration device provided with abnormality determination device, and abnormality determination method for compressor
JP4579173B2 (en) Environmental test apparatus and operation method thereof
JP5541945B2 (en) Gas leak detection method
JP2008249226A (en) Refrigerant leakage detecting method of refrigerating device
JP2014126337A (en) Refrigeration device and method of detecting refrigerant leakage of refrigeration device
JP3600588B2 (en) Refrigeration apparatus and abnormality detection method thereof
JP4009288B2 (en) Method and apparatus for detecting flash gas
JP4030237B2 (en) Case cooling system failure cause estimation device
JP2007085609A (en) Cooling system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4806793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250