JP5525965B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5525965B2
JP5525965B2 JP2010187785A JP2010187785A JP5525965B2 JP 5525965 B2 JP5525965 B2 JP 5525965B2 JP 2010187785 A JP2010187785 A JP 2010187785A JP 2010187785 A JP2010187785 A JP 2010187785A JP 5525965 B2 JP5525965 B2 JP 5525965B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
outdoor
amount
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010187785A
Other languages
Japanese (ja)
Other versions
JP2012047364A (en
Inventor
康孝 吉田
進 中山
宏明 坪江
和幹 浦田
宏治 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010187785A priority Critical patent/JP5525965B2/en
Publication of JP2012047364A publication Critical patent/JP2012047364A/en
Application granted granted Critical
Publication of JP5525965B2 publication Critical patent/JP5525965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷媒量判定機能を有する冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus having a refrigerant amount determination function.

冷媒量判定機能は、主にハードウェアを用いて判定するもの、特別なセンサを用いずに運転状態のデータのみを用いてソフトウェアにより判定するものに大別される。ハードウェアを用いて判定する方法は、精度は高いものの、タンクや測定装置などのコストが掛かるため、近年ではソフトウェアによる方法が多く使用されている。   The refrigerant amount determination function is broadly classified into one that is mainly determined using hardware and one that is determined by software using only operation state data without using a special sensor. Although the method of determining using hardware is highly accurate, it requires a cost for a tank, a measuring device, and the like, and in recent years, a method using software is often used.

ソフトウェアによる冷媒量判定装置としては、特許文献1に示すものがある。特許文献1では、熱源側熱交換器出口の過冷却度又は過冷却度の変動に応じて変動する運転状態量を検出し、目標過冷却度値と比較することで冷媒量の適否を判定している。   As a refrigerant quantity determination device using software, there is one disclosed in Patent Document 1. In Patent Document 1, the degree of supercooling at the outlet of the heat source side heat exchanger or the amount of operating state that fluctuates according to the fluctuation of the degree of subcooling is detected, and the suitability of the refrigerant amount is determined by comparing with the target supercooling degree value. ing.

特開2006−23072号公報JP 2006-23072 A

しかし、上記特許文献1のものは、ある時点で測定された過冷却度と、運転に必要な冷媒量に対応する過冷却度とを比較するものなので、通常運転モードから冷媒量判定モードなどの特別な運転状態に切替えて、過冷却度の測定時に冷凍サイクルが安定な状態でなければならない。そのため、冷凍サイクルが不安定になりやすい通常運転時には、冷媒量判定が困難だという課題がある。   However, since the thing of the said patent document 1 compares the supercooling degree measured at a certain time with the supercooling degree corresponding to the refrigerant | coolant amount required for a driving | operation, from normal operation mode to refrigerant | coolant amount determination mode etc. Switching to a special operating state, the refrigeration cycle must be stable when measuring the degree of supercooling. Therefore, there is a problem that it is difficult to determine the refrigerant amount during normal operation where the refrigeration cycle is likely to be unstable.

本発明の目的は、通常運転中に精度よく冷媒量を判定することにある。   An object of the present invention is to accurately determine the amount of refrigerant during normal operation.

上記目的を達成するために、本発明は、圧縮機,室外熱交換器,過冷却熱交換器を配管接続した冷凍サイクル装置において、前記室外熱交換器と過冷却熱交換器との間の配管から前記圧縮機の吸入側の配管に接続されたバイパス配管に設けられた室外バイパス膨張弁と、前記過冷却熱交換器の出口における過冷却熱交換器出口過冷却度を測定する過冷却熱交換器出口温度検知器と、前記室外バイパス膨張弁の操作量、前記室外バイパス膨張弁の操作量に基づいて得られる前記過冷却熱交換器出口過冷却度、前記室外バイパス膨張弁の操作量に基づいて得られる理論上の前記過冷却熱交換器出口過冷却度から通常運転中に前記過冷却熱交換器出口過冷却度の推定値を同定する制御演算装置とを備え、前記制御演算装置は、前記過冷却熱交換器出口過冷却度の推定値を用いて冷媒量判定することを特徴とする。
また、本発明は、圧縮機,室外熱交換器,室外膨張弁を配管接続した冷凍サイクル装置において、前記室外熱交換器の出口における室外熱交換器出口過冷却度を測定する室外熱交換器出口温度検知器と、前記室外膨張弁の操作量,前記室外膨張弁の操作量に基づいて得られる前記室外熱交換器出口過冷却度、前記室外膨張弁の操作量に基づいて得られる前記室外熱交換器出口過冷却度、前記室外膨張弁の操作量に基づいて得られる理論上の前記室外熱交換器出口過冷却度から通常運転中に前記室外熱交換器出口過冷却度の推定値を同定する制御演算装置とを備え、前記制御演算装置は、前記室外熱交換器出口過冷却度の推定値を用いて冷媒量判定することを特徴とする。
In order to achieve the above object, the present invention provides a refrigeration cycle apparatus in which a compressor, an outdoor heat exchanger, and a supercooling heat exchanger are connected by piping, and a pipe between the outdoor heat exchanger and the supercooling heat exchanger. And an outdoor bypass expansion valve provided in a bypass pipe connected to a suction side pipe of the compressor, and a supercooling heat exchange for measuring a supercooling heat exchanger outlet supercooling degree at an outlet of the supercooling heat exchanger Based on the amount of operation of the outdoor bypass expansion valve, the amount of operation of the outdoor bypass expansion valve, the degree of supercooling of the outlet of the supercooling heat exchanger obtained based on the amount of operation of the outdoor bypass expansion valve, and the amount of operation of the outdoor bypass expansion valve A control arithmetic unit that identifies an estimated value of the supercooling heat exchanger outlet subcooling degree during normal operation from the theoretical supercooling heat exchanger outlet subcooling degree obtained by Out of the supercooling heat exchanger And judging the refrigerant quantity by using the estimated value of the degree of subcooling.
The present invention also relates to an refrigeration cycle apparatus in which a compressor, an outdoor heat exchanger, and an outdoor expansion valve are connected to each other, and an outdoor heat exchanger outlet for measuring the degree of subcooling of the outdoor heat exchanger outlet at the outlet of the outdoor heat exchanger. A temperature detector, the amount of operation of the outdoor expansion valve, the degree of subcooling of the outdoor heat exchanger outlet obtained based on the amount of operation of the outdoor expansion valve, and the outdoor heat obtained based on the amount of operation of the outdoor expansion valve Identifying the estimated value of the subcooling degree of the outdoor heat exchanger outlet during normal operation from the theoretical degree of subcooling of the outdoor heat exchanger outlet obtained based on the degree of supercooling degree of the exchanger outlet and the operation amount of the outdoor expansion valve A control arithmetic unit that determines the amount of refrigerant using an estimated value of the degree of subcooling at the outlet of the outdoor heat exchanger.

本発明によれば、通常運転中に精度よく冷媒量を判定することができる。   According to the present invention, the amount of refrigerant can be accurately determined during normal operation.

本発明の実施例1における冷媒量判定のフローチャートである。It is a flowchart of refrigerant | coolant amount determination in Example 1 of this invention. 本発明の実施例1における冷凍サイクル系統図である。It is a refrigeration cycle system diagram in Example 1 of the present invention. 冷媒が漏洩した時に、室外バイパス膨張弁開度に対する過冷却熱交換器出口過冷却度の動特性係数が、時間ステップに対して変化する様子を表すグラフである。It is a graph showing a mode that the dynamic characteristic coefficient of the supercooling heat exchanger exit supercooling degree with respect to the outdoor bypass expansion valve opening degree changes with respect to the time step when the refrigerant leaks. 室外バイパス膨張弁を流れる冷媒流量の全冷媒流量に対する比率を一定にした際に、封入冷媒量に対する過冷却熱交換器出口過冷却度の変化を表すグラフである。It is a graph showing the change of the supercooling heat exchanger exit supercooling degree with respect to the amount of encapsulated refrigerant when the ratio of the refrigerant flow rate flowing through the outdoor bypass expansion valve is constant. 室外バイパス膨張弁を流れる冷媒流量の全冷媒流量に対する比率に対し、過冷却熱交換器出口過冷却度を封入冷媒量毎に表したグラフである。It is the graph which represented the supercooling heat exchanger exit | side supercooling degree for every enclosure refrigerant | coolant amount with respect to the ratio with respect to the total refrigerant | coolant flow rate which flows through an outdoor bypass expansion valve. 本発明の実施例1における冷媒量判定のフローチャートである。It is a flowchart of refrigerant | coolant amount determination in Example 1 of this invention. 横軸に検定信号、縦軸に確率密度関数をとり、正常判定領域と異常判定領域、また第一種過誤確率と第二種過誤確率の大きさを表すグラフである。The horizontal axis represents the test signal, the vertical axis represents the probability density function, and is a graph representing the normal determination region and the abnormality determination region, and the magnitude of the first type error probability and the second type error probability. 本発明の実施例1における検定を用いた冷媒量判定のフローチャートである。It is a flowchart of refrigerant | coolant amount determination using the test | inspection in Example 1 of this invention. 本発明の実施例2における冷媒量判定のフローチャートである。It is a flowchart of refrigerant | coolant amount determination in Example 2 of this invention. 本発明の実施例3及び4における冷凍サイクル系統図である。It is a refrigeration cycle system diagram in Examples 3 and 4 of the present invention.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

図1は、本実施例における冷媒量判定のフローチャートである。図2は、空気調和機と冷媒量判定装置の構成を示すブロック線図であり、1台或いは複数台の室外機と、1台或いは複数台の室内機を有し、室外機と室内機を配管接続して閉回路をなし、その閉回路の中に冷媒を封入している。   FIG. 1 is a flowchart of refrigerant amount determination in the present embodiment. FIG. 2 is a block diagram showing the configuration of the air conditioner and the refrigerant amount determination device, which has one or a plurality of outdoor units, one or a plurality of indoor units, and the outdoor unit and the indoor unit. A closed circuit is formed by pipe connection, and the refrigerant is enclosed in the closed circuit.

室外機211,21Nは、1台或いは複数台の、運転回転数(以下周波数という)可変或いは固定の圧縮機221,22Nと室外熱交換器231,23Nとその室外熱交換器231,23Nの冷媒流量を調整する室外膨張弁281,28Nを配管すると共に、室外熱交換器231,23Nに送風する室外ファン241,24Nを備えている。   The outdoor units 211 and 21N include one or a plurality of compressors 221 and 22N, outdoor heat exchangers 231 and 23N, and outdoor heat exchangers 231 and 23N, which are variable or fixed in operating speed (hereinafter referred to as frequency). The outdoor expansion valves 281 and 28N for adjusting the flow rate are piped, and the outdoor fans 241 and 24N for blowing air to the outdoor heat exchangers 231 and 23N are provided.

室内機411,41Mは、室内空気と熱交換を行う室内熱交換器421,42Mとその室内熱交換器の冷媒流量を調整する室内膨張弁441,44Mを順次配管すると共に、室内熱交換器421,42Mに送風する室内ファン431,43Mが設けられている。   The indoor units 411 and 41M sequentially pipe indoor heat exchangers 421 and 42M that exchange heat with indoor air and indoor expansion valves 441 and 44M that adjust the refrigerant flow rate of the indoor heat exchanger, and also the indoor heat exchanger 421. , 42M are provided with indoor fans 431, 43M.

室外機211,21Nは、アキュムレータ251,25N、四方弁261,26N、を有し、液受容器271,27Nは無くても使用可能である。また室外機211,21N及び室内機411,41Mの各ガス側及び液側を、各ガス側管路321,32N,36,401,40M、液側管路311,31N,35,391,39M及び分岐管33,34,37,38で接続して閉回路となし、その閉回路の中に冷媒が封入してある。また室内機411,41Mは空気調和の対象となる利用部611,61Mにそれぞれ配置してある。   The outdoor units 211 and 21N have accumulators 251 and 25N and four-way valves 261 and 26N, and can be used without the liquid receivers 271 and 27N. Further, the gas side and the liquid side of the outdoor units 211, 21N and the indoor units 411, 41M are connected to the gas side pipes 321, 32N, 36, 401, 40M, the liquid side pipes 311, 31N, 35, 391, 39M and The branch pipes 33, 34, 37, and 38 are connected to form a closed circuit, and the refrigerant is enclosed in the closed circuit. Moreover, the indoor units 411 and 41M are respectively arranged in the utilization units 611 and 61M that are air conditioning targets.

さらに、室外機には、室外温度を検知する室外温度検知器551,55N、圧縮機冷媒吐出温度検知器531,53N、圧縮機冷媒吸入圧力を検知する圧縮機吸入圧力検知器561,56N、圧縮機冷媒吐出圧力を検知する圧縮機吐出圧力検知器571,57N、圧縮機の周波数を操作するインバータ圧縮機周波数操作器451,45N、室外ファンの送風能力を操作する室外ファン送風能力操作器461,46N、室外膨張弁開度を操作する室外膨張弁開度操作器471,47N、室外バイパス膨張弁開度を操作する室外バイパス膨張弁開度操作器481,48Nがそれぞれ設けられている。   Further, the outdoor unit includes outdoor temperature detectors 551 and 55N that detect outdoor temperature, compressor refrigerant discharge temperature detectors 531 and 53N, compressor suction pressure detectors 561 and 56N that detect compressor refrigerant suction pressure, and compression. Compressor discharge pressure detectors 571 and 57N for detecting the refrigerant discharge pressure of the compressor, inverter compressor frequency controllers 451 and 45N for operating the frequency of the compressor, and an outdoor fan air blowing capacity operator 461 for operating the air blowing capacity of the outdoor fan. 46N, outdoor expansion valve opening operation devices 471 and 47N for operating the outdoor expansion valve opening, and outdoor bypass expansion valve opening operation devices 481 and 48N for operating the outdoor bypass expansion valve opening, respectively.

さらに、室内側となる利用部には、利用部室内温度を検知する室内機吸込温度検知器581,58M、その利用部への吹出空気温度を検知する室内機吹出温度検知器591,59M、室内ファンの送風能力を操作する室内ファン送風能力操作器501,50M、室内膨張弁開度を操作する室内膨張弁開度操作器511,51M、予め与えられた設定値を記憶或いは使用者が好みの熱環境を設定するための利用部温度設定器601,60Mを有している。   Furthermore, the utilization unit on the indoor side includes indoor unit suction temperature detectors 581 and 58M for detecting the utilization unit room temperature, indoor unit discharge temperature detectors 591 and 59M for detecting the temperature of air blown to the utilization unit, Indoor fan blowing capacity controllers 501 and 50M for operating the fan blowing capacity, indoor expansion valve opening level controllers 511 and 51M for controlling the indoor expansion valve opening, and storing preset values or the user's preference It has utilization part temperature setting devices 601 and 60M for setting the thermal environment.

さらに、通常の制御及びその他の演算、冷媒量判定を行う制御演算装置62,情報保管装置63,使用元表示装置64,情報入力装置65,サービスマン或いは運転監視者、設計者への製品供給元表示装置66,通信手段67が接続されている。   Further, a control calculation device 62 that performs normal control and other calculations, refrigerant amount determination, an information storage device 63, a use source display device 64, an information input device 65, a serviceman or an operation monitor, a product supplier to a designer A display device 66 and communication means 67 are connected.

以上の冷媒量判定装置は、空気調和機に付属させても良いし、取り外し可能としても良い。次に、本実施例による空気調和機の動作について説明する。   The above refrigerant quantity determination device may be attached to the air conditioner or may be removable. Next, operation | movement of the air conditioner by a present Example is demonstrated.

<試運転時の冷媒封入>
初めに、空気調和機には、設置,試運転時に適正冷媒量が封入されているとする。初期の試運転時は、施工者或いはサービスマンがそのために時間をとって実施しているため、従来の冷媒量判定方法を用いても良い。ここで適正冷媒量とは、空気調和機が運転して、冷凍サイクルを形成するに当たり、例えば冷房運転の場合は、室外熱交換器出口過冷却度、過冷却熱交換器出口過冷却度などの冷媒漏洩の判定に用いられる量が予め設定された範囲内に納まる量である。実際の作業では、施工配管長さを基準に予め封入しておく。実施工では、施工配管長が正確に掴めていない場合がある事、及び室内機の種類によって室内熱交換器の容積が異なるため、試運転時に冷媒を追加封入する。
<Filling refrigerant during trial operation>
First, it is assumed that the air conditioner is filled with an appropriate amount of refrigerant during installation and trial operation. At the time of the initial test run, the contractor or serviceman takes time for that purpose, and thus a conventional refrigerant amount determination method may be used. Here, the appropriate amount of refrigerant means that when the air conditioner is operated to form a refrigeration cycle, for example, in the case of cooling operation, the outdoor heat exchanger outlet subcooling degree, the subcooling heat exchanger outlet subcooling degree, etc. The amount used for the determination of refrigerant leakage is an amount that falls within a preset range. In actual work, it is sealed in advance based on the construction pipe length. In the construction work, the construction pipe length may not be accurately grasped, and the volume of the indoor heat exchanger varies depending on the type of indoor unit.

<通常制御>
次に、空気調和機の一般的な通常制御について説明する。冷房運転では、特に室外機が複数接続される場合、冷媒乾き度を各室外機で均等にするため、室外機側ガス側分岐部34において、乾き度が1.0、或いは過熱度が0以上ある事が望ましい。もし冷媒乾き度が1.0未満の場合、各室外機に分配される冷媒乾き度が異なってしまう場合があるので、一方の室外機は圧縮機吐出温度が非常に高く、他方の室外機は圧縮機吐出温度が非常に低くなる様な、冷凍サイクルとして望ましく無い状態が発生するためである。そのため、蒸発器である室内熱交換器421,42Nの出口にて過熱度が確保される様、室内膨張弁441,44Mの開度を制御する様に設計されている場合が多い。
<Normal control>
Next, general normal control of the air conditioner will be described. In the cooling operation, particularly when a plurality of outdoor units are connected, in order to make the refrigerant dryness uniform among the outdoor units, the dryness is 1.0 or the superheat degree is 0 or more in the outdoor unit gas side branch 34. Something is desirable. If the refrigerant dryness is less than 1.0, the refrigerant dryness distributed to each outdoor unit may differ, so one outdoor unit has a very high compressor discharge temperature, and the other outdoor unit This is because an undesirable state occurs as a refrigeration cycle in which the discharge temperature of the compressor becomes very low. Therefore, it is often designed to control the opening degree of the indoor expansion valves 441 and 44M so that the degree of superheat is secured at the outlets of the indoor heat exchangers 421 and 42N which are evaporators.

室内熱交換器出口過熱度が確保されていると、今度は圧縮機吸入部では、更に大きな冷媒過熱度となるため、圧縮機吐出温度が高めになる。圧縮機の種類によって異なるが、圧縮機吐出温度が高くなり過ぎると、圧縮機内のモータコイルが劣化し、絶縁不良に陥ったり、内部冷凍機油の劣化が発生したりするため、許容以内の温度にする必要がある。そのため、例えば図2に示すように、室外膨張弁と過冷却熱交換器との間の配管から圧縮機吸入側の配管にバイパス配管292,292Nを接続し、バイパス配管を流れる冷媒量を調節する室外バイパス膨張弁をバイパス配管に設け、圧縮機吸入部へ乾き度の低い冷媒を注入し、圧縮機吸入乾き度と圧縮機吐出温度を抑えている。本実施例ではアキュムレータと四方弁との間の配管にバイパス配管の一端を接続している。これら圧縮機吐出温度や過熱度などの状態量は、一般的にPID制御や、モデル予測制御などによって設定値に制御されている。   If the degree of superheat of the indoor heat exchanger outlet is secured, this time, the refrigerant suction temperature becomes higher at the compressor suction portion, and the compressor discharge temperature becomes higher. Depending on the type of compressor, if the discharge temperature of the compressor becomes too high, the motor coil in the compressor will deteriorate, leading to poor insulation and deterioration of the internal refrigerator oil. There is a need to. Therefore, for example, as shown in FIG. 2, bypass pipes 292 and 292N are connected from the pipe between the outdoor expansion valve and the supercooling heat exchanger to the pipe on the compressor suction side, and the amount of refrigerant flowing through the bypass pipe is adjusted. An outdoor bypass expansion valve is provided in the bypass pipe, and a refrigerant having a low dryness is injected into the compressor suction portion to suppress the compressor suction dryness and the compressor discharge temperature. In this embodiment, one end of the bypass pipe is connected to the pipe between the accumulator and the four-way valve. These state quantities such as compressor discharge temperature and superheat degree are generally controlled to set values by PID control, model predictive control, or the like.

また室内機側へ安定した液冷媒を供給するため、過冷却熱交換器301,30Nを搭載している機種もある。室内機へ流れる冷媒は室外バイパス膨張弁を通った低温冷媒と過冷却熱交換器で熱交換し、過冷却がついた状態で室内機へ供給される。過冷却度は、過冷却熱交換器出口温度検知器541,54Nにより検知される。   There are also models equipped with supercooling heat exchangers 301 and 30N in order to supply a stable liquid refrigerant to the indoor unit side. The refrigerant flowing to the indoor unit exchanges heat with the low-temperature refrigerant that has passed through the outdoor bypass expansion valve and the supercooling heat exchanger, and is supplied to the indoor unit with supercooling. The degree of supercooling is detected by subcooling heat exchanger outlet temperature detectors 541 and 54N.

暖房運転では、各室外機に戻って来る冷媒が液単相である場合が多いため、室外機側液側分岐部33での分配は比較的容易であり、冷房時程の配慮は不要な場合が多い。冷媒が二相で戻ってきた場合も、室外膨張弁281,28Nを個別に制御する事で各室外機の圧縮機吐出温度を制御できる。或いは冷房時と同じ様に、蒸発器である室外熱交換器231,23Nの出口過熱度を設定値にし、室外バイパス膨張弁にて圧縮機吐出温度を制御する場合もある。   In heating operation, the refrigerant returning to each outdoor unit is often in a liquid single phase, so that distribution at the outdoor unit side liquid side branching portion 33 is relatively easy, and consideration of the cooling time is unnecessary. There are many. Even when the refrigerant returns in two phases, the compressor discharge temperature of each outdoor unit can be controlled by individually controlling the outdoor expansion valves 281 and 28N. Alternatively, as in the case of cooling, the outlet superheat degree of the outdoor heat exchangers 231 and 23N as evaporators may be set to a set value, and the compressor discharge temperature may be controlled by the outdoor bypass expansion valve.

また冷凍サイクルとしての安定性、能力維持のために、冷房運転時、高圧圧力Pdは、室外ファン操作量により設定値に制御され、低圧圧力Ps或いは蒸発器温度Teは、圧縮機周波数により設定値に制御されている場合が多い。暖房運転時では高圧圧力Pdは圧縮機周波数により、低圧圧力Ps或いは蒸発器温度は室外ファン操作量により制御されている場合が多い。   In order to maintain stability and capacity as a refrigeration cycle, during cooling operation, the high pressure Pd is controlled to the set value by the outdoor fan operation amount, and the low pressure Ps or the evaporator temperature Te is set by the compressor frequency. It is often controlled by. During heating operation, the high pressure Pd is often controlled by the compressor frequency, and the low pressure Ps or the evaporator temperature is often controlled by the outdoor fan operation amount.

<冷媒量判定>
今回は、冷凍サイクルの安定な状態に限らず、ある時点での冷媒の状態量と、その状態量にある操作量を作用させた後の状態量とを通常運転中に測定する。この操作量に応じた変化が状態量に反映されるかどうかで冷媒量を判定する。これにより、従来技術と比較して冷凍サイクルがそれほど安定していない状態でも判定することができる。
<Refrigerant amount determination>
This time, not only the stable state of the refrigeration cycle, but also the state quantity of the refrigerant at a certain point in time and the state quantity after operating the manipulated variable in the state quantity are measured during normal operation. The refrigerant quantity is determined based on whether or not the change corresponding to the manipulated variable is reflected in the state quantity. Thereby, even if the refrigeration cycle is not so stable as compared with the prior art, it can be determined.

運転開始部1から運転開始の指示が出され、空気調和機起動部2から起動指示が出され、通常制御部3の指示に従って冷暖房等の通常運転がなされる。制御演算装置62にはオンラインシステム同定処理部5による演算の実行を含んでもよい。同定処理において、同定された値が判定に利用できる程度の正常範囲内にあるかどうかを係数パラメータ判定部6で判定し、範囲外であればデータ初期化部7によりデータは初期化され、正常範囲内であれば冷媒量を判定する。例えば、冷媒漏洩している条件を満たすと判定された場合は、その旨が冷媒量減少認識部22で認識され、表示指令部17により使用元表示装置64(表示手段1)に表示される。また通信処理部18により、サービスマン等のもとに冷媒漏洩の情報を送信し、表示指令部19により製品供給元表示装置66(表示手段2)に表示する。これら情報送信や表示が終わったら、アラーム等を発令していた場合はアラーム停止処理部20によりアラーム停止するようにしてもよい。   An operation start instruction is issued from the operation start unit 1, an activation instruction is issued from the air conditioner activation unit 2, and normal operation such as cooling and heating is performed according to the instruction of the normal control unit 3. The control computation device 62 may include execution of computation by the online system identification processing unit 5. In the identification process, the coefficient parameter determination unit 6 determines whether or not the identified value is within a normal range that can be used for the determination. If the value is out of the range, the data initialization unit 7 initializes the data to be normal. If it is within the range, the refrigerant amount is determined. For example, when it is determined that the refrigerant leakage condition is satisfied, the refrigerant amount decrease recognition unit 22 recognizes that fact and displays it on the use source display device 64 (display unit 1) by the display command unit 17. The communication processing unit 18 transmits refrigerant leakage information to a serviceman or the like, and the display command unit 19 displays the information on the product supplier display device 66 (display unit 2). When these information transmission and display are finished, the alarm stop processing unit 20 may stop the alarm if an alarm is issued.

圧縮機吐出温度を室外バイパス膨張弁291,29Nによって制御し、過冷却熱交換器301,30Nを搭載している場合を例として説明する。   A case where the compressor discharge temperature is controlled by the outdoor bypass expansion valves 291 and 29N and the supercooling heat exchangers 301 and 30N are mounted will be described as an example.

過冷却熱交換器出口過冷却度をSCとし、室外バイパス膨張弁開度操作器481により指令する操作量(室外バイパス膨張弁操作量)をeBと表す。これらは室内を空気調和させる冷房や暖房運転等の通常運転中に時々刻々変動しており、動特性の表現方法の一つとしてARXモデルで表すと、下記の通りとなる。 The supercooling heat exchanger outlet supercooling degree and S C, the operation amount of the command by the outdoor bypass expansion valve opening operating unit 481 (outdoor bypass expansion valve operation amount) expressed as e B. These change from time to time during normal operation such as cooling or heating operation that air-conditions the room, and are expressed by the ARX model as one of the dynamic characteristic expression methods as follows.

ここで、a1〜an,b1〜bm、n,mは定数である。これは、k時刻ステップでのSC(k)の値は、それよりnステップ前のSC(k−n)から直前のSC(k−1)までの値と、mステップ前の操作量eB(k−m)から直前のeB(k−1)までの影響を受ける、というモデルである。制御演算装置62は、この係数a1〜an,b1〜bmを運転中に同定し、常時その値を監視する。この同定の方法は、ある程度データを溜めて一度に実施する方法や、オンラインで時々刻々実施する方法があるが、記憶容量が少なくて済むため、オンラインシステム同定の方法を記述する。上記同定により求められた係数の推定値を
とし、以下、それぞれを推定値a,推定値bと呼ぶ事とする。また、推定ベクトル,観測ベクトルを下記の通り定義する。
Here, a 1 to a n , b 1 to b m , and n and m are constants. This is because the value of S C (k) at the time k step is the value from S C (k−n) n steps before it to the previous S C (k−1) and the operation m steps before. This model is affected by the quantity e B (k−m) to the immediately preceding e B (k−1). The processing device 62 to identify the coefficients a 1 ~a n, the b 1 ~b m during operation, monitors the value constantly. This identification method includes a method of collecting data to some extent and performing it at once, or a method of performing it online every moment. However, since the storage capacity is small, an online system identification method is described. Estimate the coefficient obtained by the above identification
Hereinafter, these will be referred to as an estimated value a and an estimated value b, respectively. In addition, the estimation vector and the observation vector are defined as follows.

ここで(・)′は転置を表し、推定ベクトルの初期値は既知、或いは0とする。この推定ベクトルは、下記数式に示す値   Here, (·) ′ represents transposition, and the initial value of the estimated vector is known or 0. This estimated vector is the value shown in the formula below.

を最小にする様に設計すれば、下記数式に示す逐次計算の形で求められる。 If it is designed to minimize the value, it can be obtained in the form of sequential calculation shown in the following formula.

ここで上記数式(4)を最小にする意味合いは、得られたデータが最も上記数式(1)に合致する様にパラメータを見出す事である。操作量eB(k−1)〜eB(k−m)と、変化前の状態量SC(k−1)〜SC(k−n)、これらに基づく変化後の状態量SC(k)を入手する事によって、空気調和機の冷暖房運転中に、未知パラメータa1〜an,b1〜bmの推定値a及びbを同定する事ができる。以上の説明においては、一入力一出力系、むだ時間無し、オンラインシステム同定は逐次最小二乗法という簡単な例としたが、多入力多出力系やむだ時間有り、他同定法、室外機が複数台接続される場合でも、同じ様に適用できる。例えば実際には圧縮機吐出過熱度が室外バイパス膨張弁だけではなく、圧縮機周波数の影響も大きく受ける場合は、ARXモデルを Here, the meaning of minimizing the above equation (4) is to find parameters so that the obtained data most closely matches the above equation (1). An operation amount e B (k-1) ~e B (k-m), changes in the state before quantity S C (k-1) ~S C (k-n), after the change based on these state quantities S C by obtaining a (k), during cooling and heating operation of the air conditioner, it is possible to identify an estimate a and b of the unknown parameters a 1 ~a n, b 1 ~b m. In the above explanation, one input and one output system, no dead time, online system identification is a simple example of sequential least squares, but there are multiple input multiple output systems, dead time, other identification methods, and multiple outdoor units. It can be applied in the same way even when connected to a stand. For example, if the compressor discharge superheat is actually affected not only by the outdoor bypass expansion valve but also by the compressor frequency, the ARX model is used.

とすればよい。但しFCは圧縮機周波数の値である。モデルに関係無く、検知器に混入する観測雑音が大きい場合など、オンラインシステム同定が成功せず、有り得ない値となる場合がある。その場合は一度データを消去して、再度同定をやり直す。 And it is sufficient. Where F C is the compressor frequency value. Regardless of the model, there are cases where online system identification is unsuccessful and results in an impossible value, such as when the observation noise mixed in the detector is large. In that case, erase the data once and repeat the identification.

上記数式(1)の意味合いは、時間をパラメータとした動特性を表し、現在の状態量(過冷却熱交換器出口過冷却度)が過去の状態量と過去の操作量に依存する、という事である。また、時間が十分経って冷凍サイクルが安定平衡になった際の、操作量に対する状態量の感度を表すものでもある。そのため、ある操作量に基づいて得られた実際の状態量と、得られるはずの状態量(理論状態量)とが異なる場合は、同じ操作を行っているにも拘らず、状態量がどれだけ変化するかが異なっていることになる。なお、この係数a1〜an,b1〜bmは、観測値として真値は検知できないので、推定値a及びbで判断する。 The meaning of the above formula (1) represents the dynamic characteristics with time as a parameter, and the current state quantity (supercooling heat exchanger outlet supercooling degree) depends on the past state quantity and the past manipulated variable. It is. It also represents the sensitivity of the state quantity with respect to the manipulated variable when the refrigeration cycle has reached a stable equilibrium after a sufficient amount of time. Therefore, if the actual state quantity obtained based on a certain operation amount is different from the state quantity that should be obtained (theoretical state quantity), how much the state quantity is in spite of performing the same operation Change will be different. Incidentally, the coefficient a 1 ~a n, b 1 ~b m is the true value as the observed value can not be detected, it is determined by the estimated values a and b.

ここで簡単な例を示す。このシステムにおいて(1)の式を最も簡略化して、係数a,bはa1,b1だけとする。また一定の操作量を加えた時を考え、状態量が無限大に発散したり、ハンチングしたりしない事とする。eB(k−1)=eB=一定値、時間が十分(理論的には無限時間)経ったとすると、無限時間ではSC(k)=SC(k−1)=SCであるため、
となり、操作量eBに対する状態量SCの感度SC/eBは、この様に係数a1,b1によって表されると言える。この考え方は、モデルが複雑で未知パラメータの数がa1〜an,b1〜bmと多い場合でも同じである。その場合は、数式(8)に準ずる様な、多数の数値を一つの数値に変換する関数(ベクトルをスカラーに変換する関数)を用いても良い。
Here is a simple example. In this system, the expression (1) is most simplified, and the coefficients a and b are only a 1 and b 1 . In addition, when a certain amount of operation is applied, the state quantity does not diverge infinitely or hunting is performed. If e B (k−1) = e B = constant value and time has passed sufficiently (theoretical infinite time), S C (k) = S C (k−1) = S C at infinite time. For,
Thus, it can be said that the sensitivity S C / e B of the state quantity S C with respect to the manipulated variable e B is expressed by the coefficients a 1 and b 1 in this way. This concept, model number of complex unknown parameters are the same even when a 1 ~a n, b 1 ~b m and more. In that case, a function for converting a large number of numerical values into one numerical value (a function for converting a vector into a scalar), which conforms to Equation (8), may be used.

具体的には、冷媒量が変化すると同定により求められた係数の推定値bの値が変化していく。実際の状態量と得られるはずの状態量との変化量(差分)がどのように変動するかは、操作量に基づく状態量と相関性を有する推定値bの変化を観測することで求められる。つまり、状態量の感度とも言う事ができるので、推定値bを観測する事で、冷媒量の変化を推定できる。   Specifically, when the amount of refrigerant changes, the estimated value b of the coefficient obtained by identification changes. How the amount of change (difference) between the actual state quantity and the state quantity that should be obtained fluctuates is determined by observing a change in the estimated value b that has a correlation with the state quantity based on the manipulated variable. . That is, it can be said that it is the sensitivity of the state quantity, so that the change in the refrigerant quantity can be estimated by observing the estimated value b.

例えば封入冷媒が漏洩して冷媒量が少なくなってくると、室外バイパス膨張弁を開いているにも拘らず、十分な冷媒量を過冷却熱交換器に流せず、SCが十分にとれなくなる(値が小さくなる)。その場合、推定値a及び推定値bの値自体が変化していき、冷媒が漏洩すると推定値bは小さくなっていく。極端な場合、推定値bが0の場合は、室外バイパス膨張弁を如何に操作しても、過冷却熱交換器出口過冷却度SCには、全く影響を与える事ができない状態となる。図3に、冷媒漏洩して相関値が徐々に低下し、所定の値以下になった推定値bの例を示す。この所定の値は真値69からある程度の尤度として正常範囲70を持たせて定めたものである。推定値bが所定の値以下となると冷媒漏洩と判定する。もちろん尤度は0であってもよい。図4に、室外バイパス膨張弁を通過する冷媒流量と全冷媒流量の流量比(室外バイパス膨張弁流量比)を0.20と一定に固定した場合の、封入冷媒量に対するSCの変化を示す。但し、図4は静特性を表しており、時間的に十分時間を掛けて安定した際の特性である。図4に示すように、封入冷媒量が少ないと過冷却熱交換器で熱交換する冷媒が減るのでSCの値が小さくなる。これより、冷媒が漏洩すると同じ開度でもSCの値が小さくなるため、同定された推定値bも小さくなり、この推定値bの変化を観測することで冷媒漏洩を判定できる。従って、配管長や室内外温度の様な条件毎に、適正冷媒量における推定値bに対して、どの程度まで低下しても正常運転ができるか所定の値を予め設定できれば、つまり正常な場合の感度の値が既知ならば、その値に応じた値を閾値として、閾値以下となった場合、冷媒漏洩と判定することができる。 For example, sealed refrigerant becomes small amount of refrigerant leaking, despite open the outdoor bypass expansion valve, not allowed to flow sufficient amount of refrigerant to the subcooling heat exchanger, S C is not taken sufficiently (The value decreases). In that case, the values of the estimated value a and the estimated value b themselves change, and when the refrigerant leaks, the estimated value b decreases. In the extreme, if the estimated value b is 0, even if how to operate the outdoor bypass expansion valve, the supercooling heat exchanger outlet supercooling degree S C, a state that can not be influence at all. FIG. 3 shows an example of the estimated value b in which the correlation value gradually decreases due to refrigerant leakage and becomes equal to or less than a predetermined value. This predetermined value is determined from the true value 69 with a normal range 70 as a certain degree of likelihood. When the estimated value b is equal to or less than a predetermined value, it is determined that the refrigerant is leaking. Of course, the likelihood may be zero. 4 shows a case of fixing refrigerant flow rate and the total refrigerant flow rate flow rate ratio of passing through the outdoor bypass expansion valve (outdoor bypass expansion valve flow rate) constant at 0.20, the change in the S C for enclosed refrigerant amount . However, FIG. 4 shows the static characteristics, which are characteristics when stabilized for a sufficient time. As shown in FIG. 4, the value of S C is reduced since refrigerant heat exchange decreases the amount of refrigerant is small in the subcooling heat exchanger. From this, the value of S C at the same degree of opening the refrigerant leaks is reduced, also reduced the estimated value b that is identified, it can be determined refrigerant leakage by observing the change in the estimated value b. Accordingly, if a predetermined value can be set in advance whether the normal operation can be performed with respect to the estimated value b in the appropriate refrigerant amount for each condition such as the pipe length and the indoor / outdoor temperature, that is, in a normal case If the value of the sensitivity is known, a value corresponding to the value is set as a threshold value, and when the value is equal to or less than the threshold value, it can be determined that the refrigerant leaks.

近年、特にHFC等の冷媒は、温暖化係数が高いなどの理由から、欧州のFガス規制など、冷媒漏洩に対して規制が設けられるなど、厳しい姿勢がとられつつある。またCO2やその他低GWP冷媒などの温暖化係数が高くない冷媒でも、冷媒が漏洩する事により、冷房・暖房不良になる場合があるので、冷媒が漏洩しているか否かを判定する冷媒量判定は重要な機能と言える。 In recent years, especially HFCs and other refrigerants are taking a strict stance such as regulations on refrigerant leakage, such as European F gas regulations, because of their high global warming potential. In addition, even if a refrigerant with a low global warming potential such as CO 2 or other low GWP refrigerants is used, it may cause cooling or heating failure due to the leakage of the refrigerant. Judgment is an important function.

近年の大型の空気調和機では、一つの冷凍サイクル内に100kg以上の冷媒を封入している施工例もあり、10%の冷媒漏洩で、10kgもの冷媒が大気放出される。しかし冷媒量に対する設計尤度は10%以上ある製品が多いので、10kg漏れた時点でも、空気調和機は、冷房,暖房能力が低下しつつも運転し続ける。また、室外機同士、室外機と室内機を結ぶ配管のロー付け部や、フレアナット締結部より冷媒が漏洩すると、徐々に冷凍サイクル内の冷媒量が少なくなっていく。微少な冷媒漏洩は試運転時には検出されにくく、長時間運転された場合の経年変化として冷媒が漏洩していないかを判定するので、定期点検時に初めて冷媒が漏洩していたことがわかる場合がある。   In recent large-scale air conditioners, there is a construction example in which 100 kg or more of refrigerant is sealed in one refrigeration cycle, and as much as 10 kg of refrigerant is released into the atmosphere with 10% refrigerant leakage. However, since there are many products with a design likelihood of 10% or more with respect to the amount of refrigerant, the air conditioner continues to operate even when 10 kg leaks, while the cooling and heating capabilities are reduced. Further, when the refrigerant leaks from the outdoor unit, the brazed portion of the pipe connecting the outdoor unit and the indoor unit, or the flare nut fastening unit, the amount of refrigerant in the refrigeration cycle gradually decreases. A slight refrigerant leak is difficult to detect during a trial operation, and it is determined whether the refrigerant has leaked as a secular change when operated for a long time.

本実施例によれば、室外バイパス膨張弁操作量eB(k−1)〜eB(k−m)と、変化前の状態量(過冷却熱交換器出口過冷却度)SC(k−1)〜SC(k−n)、これらに基づく変化後の状態量SC(k)を入手する事によって、空気調和機の冷暖房運転中に未知パラメータa1〜an,b1〜bmを同定し、推定値a及び推定値bを求めて、操作量に対する状態量(過冷却熱交換器出口過冷却度)の感度である推定値bの変化分を判定に利用することになる。このため従来技術と比べて判定時の冷凍サイクルの安定状態は不要であり、通常運転中にも精度よく判定できる。また、頻繁に判定することで、冷媒が漏洩している場合でも大量の漏洩を防止できる。更に、冷媒漏洩をいち早く検知できるので冷房,暖房能力が低下していくことがない。従って、使用者の不快感が増大することもなく、能力低下を補うために消費電力が多くなることもない。 According to the present embodiment, the outdoor bypass expansion valve operation amount e B (k-1) and ~e B (k-m), the state amount before the change (subcooling heat exchanger outlet supercooling degree) S C (k −1) to S C (k−n), and the state quantity S C (k) after the change based on these, the unknown parameters a 1 to a n , b 1 to b during air conditioning operation of the air conditioner b m is identified, the estimated value a and the estimated value b are obtained, and the change in the estimated value b, which is the sensitivity of the state quantity (supercooling heat exchanger outlet supercooling degree) with respect to the manipulated variable, is used for the determination. Become. For this reason, the stable state of the refrigeration cycle at the time of determination is unnecessary as compared with the prior art, and it can be determined with high accuracy during normal operation. Further, frequent determination can prevent a large amount of leakage even when the refrigerant is leaking. Furthermore, since the refrigerant leakage can be detected promptly, the cooling and heating capacity does not decrease. Therefore, the user's discomfort does not increase and the power consumption does not increase in order to compensate for the decrease in performance.

上述したのは冷媒漏洩の判定だけであったが、空調設置当初等は冷媒を過剰に追加してしまうことで冷媒過多となる場合があり、推定値bがどれだけ時間経過により変化したかを表すΔBを以下のように判定することで、そのような冷媒増加も判定することができる。ΔBが負であれば冷媒量は増加し、ΔBが0に近い値ならば冷媒量も変化せず、ΔBが正であれば冷媒量は減少したと判定する。更に、判断を明確にするため閾値δ1,δ2を設け、所定値以上に大きく変化した場合に、冷媒量増加又は減少としたと判定するのがよい。
[冷媒量増加] :推定値bの変化量ΔBが負(ΔB≦−δ1
[冷媒量変化無し]:推定値bの変化量ΔBが0(−δ1<ΔB≦δ2
[冷媒量減少] :推定値bの変化量ΔBが正(ΔB>δ2) (δ1,δ2は正)
本実施例では空気調和機で説明したが、利用側の環境は空気等の気体や水等の液体と熱交換するものであればよく、冷凍機等の冷凍サイクルを構成するものに利用できる。以下の実施例についても同様である。
Although only the determination of refrigerant leakage has been described above, there may be excessive refrigerant due to excessive addition of refrigerant at the beginning of air conditioning installation, etc., and how much the estimated value b has changed over time. By determining ΔB to be expressed as follows, such an increase in refrigerant can also be determined. If ΔB is negative, the refrigerant amount increases. If ΔB is close to 0, the refrigerant amount does not change. If ΔB is positive, it is determined that the refrigerant amount has decreased. Further, threshold values δ 1 and δ 2 are provided to clarify the judgment, and it is preferable to determine that the refrigerant amount has been increased or decreased when it has changed greatly beyond a predetermined value.
[Refrigerant amount increase]: The amount of change ΔB of the estimated value b is negative (ΔB ≦ −δ 1 ).
[No change in refrigerant amount]: The change amount ΔB of the estimated value b is 0 (−δ 1 <ΔB ≦ δ 2 ).
[Refrigerant amount decrease]: The amount of change ΔB of the estimated value b is positive (ΔB> δ 2 ) (δ 1 and δ 2 are positive).
In the present embodiment, the air conditioner has been described. However, the environment on the use side may be any one that exchanges heat with a gas such as air or a liquid such as water, and can be used for a refrigeration cycle such as a refrigerator. The same applies to the following embodiments.

図5は、室外バイパス膨張弁流量比に対して、ある施工の冷凍サイクルにて、SCがどのようになるかを示した図である。この図も冷凍サイクルが安定した状態の静特性を表し、例えば流量比0.15以上の範囲では、冷媒過多の場合は室外バイパス膨張弁流量比に対して負の勾配、適正量では穏やかな正の勾配、過少では0で、SCそのものの値も0となる。 5, the outdoor bypass expansion valve flow ratio at a certain construction of the refrigeration cycle is a diagram showing how S C will look like. This figure also shows the static characteristics when the refrigeration cycle is stable. For example, in the range where the flow rate ratio is 0.15 or more, if the refrigerant is excessive, the negative gradient with respect to the outdoor bypass expansion valve flow rate ratio, and the moderate amount is a moderate positive value. gradient, the under-0, a 0 the value of S C itself.

封入冷媒量が過多の時、流量比が小さいと冷凍サイクル内の冷媒は主に室外熱交換器内に貯留され、室外熱交換器出口過冷却度,過冷却熱交換器入口過冷却度が大きくなり、過冷却熱交換器出口過冷却度も大きくなる。そのため、ある程度の室外バイパス膨張弁流量比までは勾配が正になる。しかし流量比が大きくなると、冷媒はアキュムレータ側に移動、貯留され易くなるので室外熱交換器内には貯留されにくくなり、室外熱交換器出口過冷却度,過冷却熱交換器入口過冷却度は小さくなり、過冷却熱交換器出口過冷却度も小さくなる。そのため、室外バイパス膨張弁流量比に対して勾配が負になる。過冷却熱交換器301での熱の授受が少なくなるためではない。   When the amount of the enclosed refrigerant is excessive and the flow rate ratio is small, the refrigerant in the refrigeration cycle is mainly stored in the outdoor heat exchanger, and the degree of subcooling at the outlet of the outdoor heat exchanger and the degree of supercooling at the inlet of the subcooling heat exchanger are large. Therefore, the degree of supercooling at the outlet of the supercooling heat exchanger also increases. Therefore, the gradient becomes positive up to a certain outdoor bypass expansion valve flow ratio. However, as the flow rate ratio increases, the refrigerant is more likely to move and accumulate on the accumulator side, so it is less likely to be stored in the outdoor heat exchanger, and the degree of subcooling at the outdoor heat exchanger outlet and the degree of supercooling at the subcooling heat exchanger inlet are The supercooling degree at the outlet of the supercooling heat exchanger is also reduced. Therefore, the gradient becomes negative with respect to the outdoor bypass expansion valve flow rate ratio. This is not because heat transfer in the subcooling heat exchanger 301 is reduced.

図6に動特性を利用して冷媒量判定するフローチャートを示す。この「室外バイパス膨張弁をある領域(ここでは流量比0.15以上)で動作させた場合、冷媒過多時は室外バイパス膨張弁流量比に対して負の勾配、冷媒量適正時は正、冷媒過少時は係数が0」という特性を利用する。つまり推定値bの値そのもので判断する。この際、以下のように判定すれば、適切な冷媒量判定を行うこともできる。なお、閾値B1,B2は、実際の顧客先の配管長や高低差,室外機,室内機のバリエーション,空気温度条件等により求められる。この冷媒量判定は、以下の実施例にも用いることができる。
[冷媒量過多]:推定値b<−B1<0
[冷媒量適正]:推定値b>B2≧0
[冷媒量過少]:推定値bが0かつSC自体が0 (B1は正、B2は0又は正)
FIG. 6 shows a flowchart for determining the amount of refrigerant using dynamic characteristics. “When the outdoor bypass expansion valve is operated in a certain region (here, the flow ratio is 0.15 or more), when the refrigerant is excessive, a negative gradient with respect to the outdoor bypass expansion valve flow ratio, positive when the refrigerant amount is appropriate, The characteristic that the coefficient is 0 when it is too small is used. That is, the determination is made based on the estimated value b itself. At this time, if the determination is made as follows, an appropriate refrigerant amount determination can also be performed. Note that the thresholds B 1 and B 2 are determined based on the actual customer's pipe length, height difference, outdoor unit, indoor unit variation, air temperature conditions, and the like. This refrigerant amount determination can also be used in the following examples.
[Excessive amount of refrigerant]: Estimated value b <−B 1 <0
[Refrigerant amount appropriate]: Estimated value b> B 2 ≧ 0
[Refrigerant quantity too small: estimate b is 0 and S C itself 0 (B 1 is positive, B 2 is 0 or a positive)

<検定処理>
上記でも冷媒量判定が行えるが、統計的に処理する検定処理と組合わせる事で、より確実に判定することができる。検定とは、「(1)ある基準を定めて、(2)検査し、(3)合否,等級などを決定する時に統計的な処理をする」事である。例として(1)過冷却熱交換器出口過冷却度の動特性係数a1〜an,b1〜bmが、(2)システム同定結果に対して、(3)それが正常か異常かを判定する検定法を説明する。
<Certification process>
The refrigerant amount can also be determined in the above manner, but it can be more reliably determined by combining it with a test process for statistical processing. The test is “(1) Define a certain standard, (2) Inspect, and (3) Perform statistical processing when determining pass / fail, grade, etc.”. Dynamics factor (1) subcooling heat exchanger outlet supercooling degree as examples a 1 ~a n, b 1 ~b m is (2) the system identification result, (3) whether it is normal or abnormal A test method for judging the above will be described.

図7は、横軸に検定信号、縦軸に確率密度関数をとり、正常判定領域71と異常判定領域72、また第一種の過誤と第二種の過誤の大きさを表すグラフである。図8は、本実施例における検定を用いた冷媒量判定のフローチャートである。本実施例では、図8の検定処理部86で行われる検定処理について詳細説明する。この検定処理は制御演算装置62によって行われる。   FIG. 7 is a graph showing the normality determination area 71 and the abnormality determination area 72, and the magnitude of the first type error and the second type error, with the horizontal axis representing the test signal and the vertical axis representing the probability density function. FIG. 8 is a flowchart of refrigerant quantity determination using the test in the present embodiment. In this embodiment, the verification process performed by the verification processing unit 86 in FIG. 8 will be described in detail. This verification process is performed by the control arithmetic unit 62.

係数がそれぞれn個,m個あるので、一つ一つに対して検定を行うとなると結果が異なった時の処理が難しくなる。そこで下に示す重み付きノルムによって、一つの値にて評価する事とする。   Since there are n and m coefficients, respectively, if each test is performed, processing when the results are different becomes difficult. Therefore, we will evaluate with one value by the weighted norm shown below.

過冷却熱交換器出口過冷却度の動特性係数a1〜an,b1〜bmの推定値a及び推定値bを求めた時、元々これらは(4)式を最小にする時、白色観測雑音を最小にするという意味で既に統計的な処理を実施している。しかし複雑な冷凍サイクルの過冷却熱交換器出口過冷却度の動特性を(1)式に近似している低次元化による誤差、検知器誤差や電気ノイズなどの観測雑音があり、また無限サンプルを観測した訳ではないので、確率的な値と考えられる。よって、求められた係数をそのまま100%信頼できるものとして扱う事を避け次の仮説を定める。 Dynamic characteristic coefficients a 1 ~a n of the supercooling heat exchanger outlet supercooling degree, when asked to estimate a and the estimated value b of the b 1 ~b m, when originally they that minimizes the expression (4), Statistical processing has already been implemented in the sense of minimizing white observation noise. However, the dynamic characteristics of the subcooling heat exchanger outlet subcooling dynamic characteristics of complex refrigeration cycles are subject to observation noise such as errors due to reduction in dimensions, detector errors, and electrical noise that approximate eq. (1), and infinite samples It is considered that the value is probabilistic. Therefore, the following hypothesis is determined by avoiding handling the obtained coefficient as it is as 100% reliable.

仮説H0:過冷却熱交換器出口過冷却度の動特性係数が示す状態は
正常(適正冷媒量)である。
Hypothesis H 0 : The state indicated by the dynamic characteristic coefficient of the degree of supercooling at the outlet of the supercooling heat exchanger is
Normal (appropriate amount of refrigerant).

仮説H1:過冷却熱交換器出口過冷却度の動特性係数が示す状態は
異常(冷媒量過多・不足)である。
Hypothesis H 1 : The state indicated by the dynamic characteristic coefficient of the degree of supercooling at the outlet of the supercooling heat exchanger is
Abnormal (excessive or insufficient refrigerant amount).

図7において、係数Aが境界線ABを境に、領域R0に入った際には、仮説H0を受容し、領域R1に入った際に、仮説H1を受容する。 In FIG. 7, when the coefficient A enters the region R 0 with the boundary line AB as a boundary, the hypothesis H 0 is received, and when the coefficient A enters the region R 1 , the hypothesis H 1 is received.

73は「過冷却熱交換器出口過冷却度動特性係数の値がA0であると検知された場合、空気調和機は正常である。」という正常条件付き確率密度関数73であり、p(A|A0)で表す。また74は「過冷却熱交換器出口過冷却度動特性係数の値がA1であると検知された場合、空気調和機は異常である。」という異常条件付き確率密度関数74であり、p(A|A1)で表す事とする。 73 is a probability density function 73 with a normal condition that “the air conditioner is normal when the value of the supercooling heat exchanger outlet subcooling degree dynamic characteristic coefficient is detected as A 0 ”, and p ( A | A0 ). 74 is a probability density function 74 with an abnormal condition that “the air conditioner is abnormal when the value of the supercooling heat exchanger outlet supercooling degree dynamic characteristic coefficient is detected as A 1 ”, p This is expressed as (A | A 1 ).

ここでA0,A1は確定された、既知の値とする。実際には、空気調和機を開発する際、予めデータを取っておき、値を得ておく。 Here, A 0 and A 1 are fixed and known values. Actually, when developing an air conditioner, data is previously obtained and a value is obtained.

上記の定義に従えば、面積E0は、空気調和機は正常(適正冷媒量)であるにも拘らず、仮説H1を受容し、異常であるという結果を下す確率であり、第一種過誤確率76である。また面積E1は、空気調和機が異常(冷媒量過多・不足)であるにも拘らず、仮説H0を受容し、正常であると決定を下す確率であり、第二種過誤確率75である。さらに、これら二つの確率密度関数は既知とし、一般的には正規分布と考えて差し障り無い。よって検定する事は、図6における境界線ABを求める事に帰着される。 According to the above definition, the area E 0 is a probability that the hypothesis H 1 is accepted and the result is abnormal even though the air conditioner is normal (appropriate refrigerant amount), The error probability is 76. The area E 1 is the probability of accepting the hypothesis H 0 and making a decision that the air conditioner is normal even though the air conditioner is abnormal (excessive or insufficient refrigerant amount). is there. Furthermore, these two probability density functions are assumed to be known and are generally considered to be normal distributions. Therefore possible to assay, it is reduced to that of finding the boundaries A B in Fig.

上記の二種類の過誤判定をした時に、それぞれの損害高を決めておく。E0を犯したときの損害をC0,E1を犯した時の損害をC1とする。またもし冷媒漏洩が発生する確率Pが先験的に分かっていれば、それも利用し、損害高の総和である全平均危険高を下記数式の様に定義してもよい。Pは先験的な確率と言え、先の確率密度関数と共に、予め値を得ておく。 When making the above two types of error judgments, determine the amount of damage for each. The damage when E 0 is committed is C 0 , and the damage when E 1 is committed is C 1 . If the probability P of refrigerant leakage is known a priori, it may also be used to define the total average danger level, which is the sum of the damages, as shown in the following equation. P can be said to be an a priori probability, and a value is obtained in advance together with the previous probability density function.

上記数式を最小にする様に境界値ABを定める。それは、dC(AB)/dAB=0を求めれば良く、具体的にこれを満足する式は The boundary value A B is determined so as to minimize the above formula. It is only necessary to obtain dC (A B ) / dA B = 0.

で与えられる。上記数式(10)の左辺の比は尤度比であり、右辺の値は閾値である。尤度比が閾値を超えた時、仮説H1を受容して、空気調和機は異常、つまり冷媒量過多・不足と決定し、閾値以下ならば、正常と決定する。 Given in. The ratio of the left side of Equation (10) is a likelihood ratio, and the value of the right side is a threshold value. When the likelihood ratio exceeds a threshold value, and accepting the hypothesis H 1, the air conditioner is abnormal, i.e. it determines that the refrigerant amount excess-deficient, if less than the threshold value, it is determined that normal.

先に、確率密度関数は一般的に正規分布と考えて差し障り無いと仮定したので、確率密度関数を   First, since the probability density function is generally considered to be a normal distribution and assumed to be acceptable, the probability density function is

とする。この場合、(9)式を最小にするAB、つまり(10)式を満たすABAnd In this case, A B that minimizes Equation (9), that is, A B that satisfies Equation (10) is

となる。冷媒漏洩の確率や、損害の大きさC0,C1を求める場合が難しい場合は、特別な場合として、P=1/2,C0=C1とすると、AB=(A0+A1)/2となる。すると、ちょうど算術平均となる値にABをおけばよい事になる。 It becomes. If it is difficult to obtain the probability of refrigerant leakage or the magnitude of damage C 0 , C 1, as a special case, if P = ½ and C 0 = C 1 , then A B = (A 0 + A 1 ) / 2. Then, the fact that it put the A B to a value that exactly the arithmetic mean.

以上述べた様に、空気調和機の通常の運転状態の検知信号から、空気調和機の動特性係数を推定し、検定処理する事によって、より確度の高い冷媒量判定を実施する事ができる。この検定処理は、以下の実施例にも用いることができる。   As described above, the refrigerant quantity determination with higher accuracy can be performed by estimating the dynamic characteristic coefficient of the air conditioner from the detection signal of the normal operation state of the air conditioner and performing the verification process. This test process can also be used in the following examples.

<冷媒量判定の事後処理>
この冷媒量判定を実施した後、機器の使用者名,設置地域や場所,冷媒状態などの内容を、通信手段67を介して使用元表示装置64や製品供給元表示装置66に表示する。表示装置は空気調和機自体に設置したり、使用元ないしはサービスセンタ,製造工場に設置して各所に情報を送信する事が望ましい。冷媒漏洩により冷房能力低下や空調機のダメージが予想される場合は、サービスマンが早急に現場に駆け付け、冷媒漏洩場所の特定と冷媒再充填などの最善の処置をとる事ができる。この事後処理は、以下の実施例にも用いることができる。
<Post-processing of refrigerant quantity determination>
After performing the refrigerant amount determination, the contents such as the user name of the device, the installation area and location, and the refrigerant state are displayed on the use source display device 64 and the product supply source display device 66 via the communication means 67. It is desirable that the display device is installed in the air conditioner itself, or installed in the use source, service center, or manufacturing factory to transmit information to various places. If the cooling capacity is expected to be reduced or the air conditioner is damaged due to the refrigerant leakage, the service person can rush to the site as soon as possible to take the best measures such as identifying the location of the refrigerant leakage and refilling the refrigerant. This post processing can also be used in the following examples.

図9は、本実施例における冷媒量判定のフローチャートである。動特性の測定を冷媒量の判定に用いる場合、過去の状態量に操作を加えても、予想される状態量と現実の状態量とに差があり、見掛け上、例えば推定値bが小さく求められ、冷媒漏洩していると判定される場合がある。しかし、室外バイパス膨張弁291,29Nが固渋等で動かなくなった場合は、室外バイパス膨張弁の開度を大きくするよう制御しても流路を流れる冷媒量が増えないので、操作量に応じた状態量SCが得られず冷媒漏洩していると誤判定される場合がある。つまり、冷媒漏洩か、室外バイパス膨張弁の故障かが判定できない。 FIG. 9 is a flowchart of refrigerant amount determination in the present embodiment. When the measurement of the dynamic characteristic is used for the determination of the refrigerant amount, even if an operation is applied to the past state quantity, there is a difference between the expected state quantity and the actual state quantity, and for example, the estimated value b is found to be small. And it may be determined that the refrigerant is leaking. However, if the outdoor bypass expansion valve 291 or 29N stops moving due to a firm traffic or the like, the amount of refrigerant flowing through the flow path will not increase even if the opening degree of the outdoor bypass expansion valve is controlled to increase. In some cases, the state quantity S C is not obtained, and it is erroneously determined that the refrigerant is leaking. That is, it cannot be determined whether the refrigerant leaks or the outdoor bypass expansion valve fails.

そこで、圧縮機吐出温度検知器531,53Nと圧縮機吐出圧力検知器571,57Nにより演算される圧縮機吐出過熱度をTdSHとし、これを室外バイパス膨張弁が影響を与える状態量として、(1)と同様に表すと下記の通りとなる。 Therefore, the compressor discharge superheat degree calculated by the compressor discharge temperature detectors 531 and 53N and the compressor discharge pressure detectors 571 and 57N is defined as T dSH , which is a state quantity influenced by the outdoor bypass expansion valve ( When expressed similarly to 1), it is as follows.

ここで、d1〜dp,f1〜fq、p,qは定数である。制御演算装置62は、この係数d1〜dp,f1〜fqを運転中に同定し、常時その値を監視する。冷媒量判定の際、まず(13)式の圧縮機吐出過熱度TdSHに注目する。d1〜dp,f1〜fqに対して同定した係数の推定値を
とし、以下、それぞれを推定値d,推定値fと呼ぶ事とする。
Here, d 1 to d p , f 1 to f q , p, q are constants. The control arithmetic unit 62 identifies these coefficients d 1 to d p and f 1 to f q during operation, and constantly monitors the values. At the time of determining the refrigerant amount, attention is first paid to the compressor discharge superheat degree T dSH of the equation (13). The estimated values of the coefficients identified for d 1 to d p and f 1 to f q are
Hereinafter, these are referred to as an estimated value d and an estimated value f, respectively.

推定値fは室外バイパス膨張弁操作量に基づく状態量(圧縮機吐出過熱度)と相関性を有する相関値であり、状態量の感度とも言う事ができる。冷媒漏洩すると、この推定値fの低下がTdSHの値に反映されるが、完全に感度が無くなる事はない点がSCの場合と異なる。そこで室外バイパス膨張弁が固渋しているかどうかを確認するために、制御演算装置62は圧縮機の吸入部及び吐出部の温度が変動しないように室内膨張弁441,44Nの開度を固定した上で、新たにd1〜dp,f1〜fqに対するシステム同定を行って、推定値d及び推定値fを求め、推定値fが0であれば膨張弁故障、推定値fが0以外となる場合は膨張弁自体の故障は無いと判定する。 The estimated value f is a correlation value having a correlation with the state quantity (compressor discharge superheat degree) based on the outdoor bypass expansion valve operation amount, and can also be referred to as state quantity sensitivity. When refrigerant leakage, but this reduction in the estimated value f is reflected in the value of T DSH, completely no point sensitivity is eliminated it is different from the case of S C. Therefore, in order to confirm whether or not the outdoor bypass expansion valve is tight, the control arithmetic unit 62 fixes the opening degree of the indoor expansion valves 441 and 44N so that the temperature of the suction portion and the discharge portion of the compressor does not fluctuate. Then, system identification is newly performed for d 1 to d p and f 1 to f q to obtain the estimated value d and the estimated value f. If the estimated value f is 0, the expansion valve is faulty and the estimated value f is 0. If it is not, it is determined that there is no failure in the expansion valve itself.

室外バイパス膨張弁が故障していないと確認した上で、次は再度SCに注目する。以降の冷媒量判定は実施例1と同様なので割愛する。図9には冷媒漏洩の場合のみ図示してある。 On the outdoor bypass expansion valve is confirmed not to be a failure, the next step is to focus on again S C. Since the subsequent refrigerant amount determination is the same as that of the first embodiment, it is omitted. FIG. 9 shows only the case of refrigerant leakage.

本実施例によれば、まず圧縮機吐出過熱度TdSHについての係数d1〜dp,f1〜fqを同定し、操作量eB(k−1)〜eB(k−q)に対する状態量の感度である推定値fを用いて膨張弁が故障しているかどうかを判定してから、過冷却熱交換器出口過冷却度SCについての推定値bを用いて冷媒量を判定する。これにより、不具合の原因が故障なのか冷媒漏洩なのかをまず特定することができると共に、判定時の冷凍サイクルの安定状態は不要であり、通常運転中にも判定できる。 According to the present embodiment, the coefficients d 1 to d p and f 1 to f q for the compressor discharge superheat T dSH are first identified, and the manipulated variable e B (k−1) to e B (k−q). determining the amount of refrigerant used after determining whether the state of sensitivity and which estimates the expansion valve using the f is faulty, the estimated value b for the supercooling heat exchanger outlet supercooling degree S C for To do. As a result, it is possible to first determine whether the cause of the failure is a failure or a refrigerant leak, and the stable state of the refrigeration cycle at the time of determination is unnecessary, and it can be determined even during normal operation.

事後処理として、冷媒漏洩の情報だけでなく室外バイパス膨張弁が故障した情報についても、通信手段67を介して表示装置64,66に表示するようにしてもよい。また、サービスセンタ等に情報を送信するようにしてもよい。これにより、使用者やサービスマンが故障をいち早く知り、早急に処置することができる。故障についての事後処理は、以下の実施例にも用いることができる。   As post processing, not only information on refrigerant leakage but also information on failure of the outdoor bypass expansion valve may be displayed on the display devices 64 and 66 via the communication means 67. Information may be transmitted to a service center or the like. As a result, the user or service person can quickly know the failure and take immediate action. Post processing for failures can also be used in the following examples.

図10は、本実施例における冷凍サイクル系統図である。実施例1では、過冷却熱交換器出口過冷却度SCと室外バイパス膨張弁開度との関係を元に説明を行ったが、室外バイパス膨張弁291,29Nや過冷却熱交換器301,30Nが無い場合でもよい。実施例1におけるSCを室外熱交換器出口における過冷却度として、室外熱交換器出口過冷却度SCと室外膨張弁281,28Nの開度との関係に置き換えても同様に冷媒量の判定を行う事ができる。但しこの場合は、室内膨張弁441,44Nは固定開度とする。室外熱交換器出口過冷却度SCは、室外熱交換器出口温度検知器542,542Nにより検知される。 FIG. 10 is a refrigeration cycle diagram in the present embodiment. In the first embodiment, the relationship between the supercooling heat exchanger outlet supercooling degree S C and the outdoor bypass expansion valve has been described based on the outdoor bypass expansion valve 291,29N and the supercooling heat exchanger 301, There may be no case of 30N. As subcooling the S C of Example 1 in the outdoor heat exchanger outlet, the outdoor heat exchanger outlet supercooling degree S C and the outdoor expansion valve refrigerant quantity similarly be replaced with the relationship between the degree of opening of 281,28N Judgment can be made. However, in this case, the indoor expansion valves 441 and 44N have fixed opening degrees. An outdoor heat exchanger outlet supercooling degree S C is detected by the outdoor heat exchanger outlet temperature sensor 542,542N.

実施例1で用いる室外バイパス膨張弁は、開度を大きくして流量を多くすればそれだけ過冷却熱交換器で熱交換することになるのでSCが大きくなる。これに対して、本実施例で用いる室外膨張弁は開度を小さくすると、冷媒循環流量が低下して冷媒が十分外気と熱交換することになるのでSCが大きくなるという点が異なる。しかし、本実施例でも、室外膨張弁開度が一定であれば図4と同様の傾向を示すので、封入冷媒量が少ないと熱交換する冷媒量が不十分なので、SCの値が小さくなることは同じである。図5を本実施例に置き換えると、「流量比を小さくする」とは「室外膨張弁の開度を大きくする」ということに対応する。これにより、例えば冷媒が漏洩すると、同じ開度でもSCの値が小さくなるため、操作量に基づく状態量の推定値bも小さくなり、この推定値bの変化量ΔBを観測することで冷媒漏洩を判定できる。つまり、実施例1と同様に冷媒量の増加や減少も判定できるが、室外膨張弁を用いる本実施例ではΔBが増加すれば冷媒量増加と判定され、ΔBが減少すれば冷媒量減少と判定される。推定値bの値自体を求めることで冷媒量が過多かどうか等も判定できるのは実施例1と同様である。 Outdoor bypass expansion valve used in Example 1, S C increases it means that the heat exchange with the more subcooling heat exchanger when increasing the flow rate by increasing the opening degree. In contrast, the outdoor expansion valve used in this embodiment is the smaller the opening, that S C is increased is different because the refrigerant circulating refrigerant flow rate is decreased is that sufficient outside air heat exchange. However, also in this embodiment, exhibits the same tendency as FIG. 4, if the outdoor expansion valve opening is constant, because insufficient amount of the refrigerant heat exchange with the amount of refrigerant is small, the value of S C becomes smaller The same is true. When FIG. 5 is replaced with the present embodiment, “decreasing the flow rate ratio” corresponds to “increasing the opening degree of the outdoor expansion valve”. Thus, for example, when the refrigerant is leaked, the value of S C becomes smaller with the same opening, estimate b of the state quantity based on the operation amount is reduced and the refrigerant by observing the variation ΔB in this estimate b Leakage can be determined. That is, the increase or decrease in the refrigerant amount can be determined as in the first embodiment. However, in this embodiment using the outdoor expansion valve, it is determined that the refrigerant amount increases if ΔB increases, and the refrigerant amount decreases if ΔB decreases. Is done. Similar to the first embodiment, it is possible to determine whether or not the refrigerant amount is excessive by obtaining the estimated value b itself.

冷媒量の判定を室外バイパス膨張弁291,29Nでなく、室外膨張弁281,28Nの開度操作によって行う場合でも、冷媒漏洩の誤判定が生じ得る。つまり、冷媒漏洩しておらず、室外膨張弁自身が固渋して指令に対して動いていない場合でも、操作量から予想される状態量と現実の状態量とに差があり、見掛け上、例えば推定値bが小さく求められ、冷媒が漏洩していると誤判定される場合がある。   Even when the refrigerant amount is determined not by the outdoor bypass expansion valves 291 and 29N but by the opening operation of the outdoor expansion valves 281 and 28N, an erroneous determination of refrigerant leakage may occur. In other words, even if the refrigerant is not leaking and the outdoor expansion valve itself is stiff and does not move in response to the command, there is a difference between the state quantity expected from the operation amount and the actual state quantity, and apparently, For example, the estimated value b may be determined to be small, and it may be erroneously determined that the refrigerant is leaking.

そこで、室外膨張弁が影響を与える状態量として、(13)式の圧縮機吐出過熱度TdSHに注目する。制御演算装置62は、この係数d1〜dp,f1〜fqを運転中に同定し、常時その値を監視する。冷媒量判定の際、まず(13)式の圧縮機吐出過熱度TdSHに注目する。SCの場合と同様に係数の推定値fは室外膨張弁操作量に基づく状態量(圧縮機吐出過熱度)と相関性を有し、状態量の感度とも言う事ができる。封入冷媒量が少なくなると、この推定値の低下がTdSHの値に反映されるが、完全に感度が無くなる事はない点がSCの場合と異なる。そこで室外膨張弁が固渋しているかどうかを確認するために、制御演算装置62は圧縮機の吸入部及び吐出部の温度が変動しないように室内膨張弁441,44Nの開度を固定した上で、新たにd1〜dp,f1〜fqに対するシステム同定を行って、推定値d及び推定値fを求め、推定値fが0であれば膨張弁故障、推定値fが0以外となる場合は膨張弁自体の故障は無いと判定する。 Accordingly, attention is paid to the compressor discharge superheat degree T dSH of the expression (13) as a state quantity that the outdoor expansion valve affects. The control arithmetic unit 62 identifies these coefficients d 1 to d p and f 1 to f q during operation, and constantly monitors the values. At the time of determining the refrigerant amount, attention is first paid to the compressor discharge superheat degree T dSH of the equation (13). Estimates if like the coefficient S C f has a correlation with the amount state based on the outdoor expansion valve operation amount (compressor discharge superheat) can be also referred to as the sensitivity of the state quantity. When the amount of refrigerant is reduced, although this decrease in the estimated value is reflected in the value of T DSH, completely no point sensitivity is eliminated it is different from the case of S C. Therefore, in order to check whether the outdoor expansion valve is tight, the control arithmetic unit 62 fixes the opening degree of the indoor expansion valves 441 and 44N so that the temperature of the suction part and the discharge part of the compressor does not fluctuate. Then, system identification is newly performed for d 1 to d p and f 1 to f q to obtain the estimated value d and the estimated value f. If the estimated value f is 0, the expansion valve is faulty and the estimated value f is other than 0. If it is, it is determined that there is no failure in the expansion valve itself.

室外膨張弁が故障していないと確認した上で、次は再度SCに注目する。以降の冷媒量判定は実施例3と同様なので割愛する。 On the outdoor expansion valve is confirmed not to be a failure, the next step is to focus on again S C. Subsequent refrigerant quantity determinations are the same as in Example 3, and are therefore omitted.

本実施例によれば、まず圧縮機吐出過熱度TdSHについての係数d1〜dp,f1〜fqを同定し、操作量に対する状態量の感度である推定値fを用いて膨張弁が故障しているかどうかを判定してから、SCについての係数a1〜an,b1〜bmを同定する。これにより、不具合の原因が故障なのか冷媒漏洩なのかをまず特定することができると共に、判定時の冷凍サイクルの安定状態は不要であり、通常運転中にも判定できる。 According to this embodiment, first, coefficients d 1 to d p and f 1 to f q for the compressor discharge superheat degree T dSH are identified, and the expansion valve is used by using the estimated value f that is the sensitivity of the state quantity with respect to the manipulated variable. There after determining whether the failure to identify the coefficients a 1 ~a n, b 1 ~b m for S C. As a result, it is possible to first determine whether the cause of the failure is a failure or a refrigerant leak, and the stable state of the refrigeration cycle at the time of determination is unnecessary, and it can be determined even during normal operation.

1 運転開始部
2 空気調和機起動部
3 通常制御部
5 オンラインシステム同定処理部
6 係数パラメータ判定部
7 データ初期化部
8 膨張弁固渋判定部
9 膨張弁固渋認識部
10 冷媒量判定部
11 冷媒量過多認識部
13 冷媒量適正認識部
16 冷媒量過少認識部
17,19 表示指令部
18 通信処理部
20 アラーム停止処理部
21 冷媒量増加認識部
22 冷媒量減少認識部
23 冷媒量維持認識部
33 室外機側液側分岐部
34 室外機側ガス側分岐部
35 液側配管
36 ガス側配管
37 室内機側液側分岐部
38 室内機側ガス側分岐部
62 制御演算装置
63 情報保管装置
64 使用元表示装置
65 情報入力装置
66 製品供給元表示装置
67 通信手段
68 オンラインシステム同定による係数同定値
69 真値
70 正常範囲
71 正常判定領域
72 異常判定領域
73 正常条件付き確率密度関数
74 異常条件付き確率密度関数
75 第二種過誤確率
76 第一種過誤確率
86 検定処理部
87 検定冷媒量判定部
211,21N 室外機
221,22N 圧縮機
231,23N 室外熱交換器
241,24N 室外ファン
251,25N アキュムレータ
261,26N 四方弁
271,27N 受容器
281,28N 室外膨張弁
291,29N 室外バイパス膨張弁
292、292N バイパス配管
301,30N 過冷却熱交換器
311,31N 室外機側液側配管
321,32N 室外機側ガス側配管
391,39M 室内機側液側配管
401,40M 室内機側ガス側配管
411,41M 室内機
421,42M 室内熱交換器
431,43M 室内ファン
441,44M 室内膨張弁
451,45N インバータ圧縮機周波数操作器
461,46N 室外ファン送風能力操作器
471,47N 室外膨張弁開度操作器
481,48N 室外バイパス膨張弁開度操作器
491,49N 四方弁操作器
501,50M 室内ファン送風能力操作器
511,51M 室内膨張弁開度操作器
521,52N 圧縮機吸入温度検知器
531,53N 圧縮機冷媒吐出温度検知器
541,54N 過冷却熱交換器出口温度検知器
542,542N 室外熱交換器出口温度検知器
551,55N 室外温度検知器
561,56N 圧縮機吸入圧力検知器
571,57N 圧縮機吐出圧力検知器
581,58M 室内機吸込温度検知器
591,59M 室内機吹出温度検知器
601,60M 利用部温度設定器
611,61M 利用部
DESCRIPTION OF SYMBOLS 1 Operation start part 2 Air conditioner starting part 3 Normal control part 5 Online system identification process part 6 Coefficient parameter determination part 7 Data initialization part 8 Expansion valve solid astringency determination part 9 Expansion valve solid astringency recognition part 10 Refrigerant amount determination part 11 Refrigerant amount excess recognition unit 13 Refrigerant amount appropriateness recognition unit 16 Refrigerant amount underrecognition units 17, 19 Display command unit 18 Communication processing unit 20 Alarm stop processing unit 21 Refrigerant amount increase recognition unit 22 Refrigerant amount decrease recognition unit 23 Refrigerant amount maintenance recognition unit 33 Outdoor unit side liquid side branch part 34 Outdoor unit side gas side branch part 35 Liquid side pipe 36 Gas side pipe 37 Indoor unit side liquid side branch part 38 Indoor unit side gas side branch part 62 Control arithmetic device 63 Information storage device 64 Use Original display device 65 Information input device 66 Product supplier display device 67 Communication means 68 Coefficient identification value 69 by online system identification True value 70 Normal range 71 Normal determination region 72 Abnormal Constant region 73 Probability density function with normal condition 74 Probability density function with abnormal condition 75 Type 2 error probability 76 Type 1 error probability 86 Test processing unit 87 Test refrigerant amount determination unit 211, 21N Outdoor unit 221, 22N Compressor 231 23N Outdoor heat exchanger 241, 24N Outdoor fan 251, 25N Accumulator 261, 26N Four-way valve 271, 27N Receptor 281, 28N Outdoor expansion valve 291, 29N Outdoor bypass expansion valve 292, 292N Bypass piping 301, 30N Supercooling heat exchanger 311, 31N Outdoor unit side liquid side piping 321, 32N Outdoor unit side gas side piping 391, 39M Indoor unit side liquid side piping 401, 40M Indoor unit side gas side piping 411, 41M Indoor unit 421, 42M Indoor heat exchanger 431 43M Indoor fan 441, 44M Indoor expansion valve 451, 45N Inverter compression Frequency controller 461, 46N Outdoor fan blower capacity controller 471, 47N Outdoor expansion valve opening controller 481, 48N Outdoor bypass expansion valve opening controller 491, 49N Four-way valve controller 501, 50M Indoor fan blower capacity controller 511 , 51M Indoor expansion valve opening controller 521, 52N Compressor intake temperature detector 531, 53N Compressor refrigerant discharge temperature detector 541, 54N Subcooling heat exchanger outlet temperature detector 542, 542N Outdoor heat exchanger outlet temperature detection 551,55N Outdoor temperature detector 561,56N Compressor suction pressure detector 571,57N Compressor discharge pressure detector 581,58M Indoor unit suction temperature detector 591,59M Indoor unit outlet temperature detector 601,60M Setter 611, 61M User Department

Claims (10)

圧縮機、室外熱交換器、過冷却熱交換器を配管接続した冷凍サイクル装置において、
前記室外熱交換器と過冷却熱交換器との間の配管から前記圧縮機の吸入側の配管に接続されたバイパス配管に設けられた室外バイパス膨張弁と、
前記過冷却熱交換器の出口における過冷却熱交換器出口過冷却度を測定する過冷却熱交換器出口温度検知器と、
前記室外バイパス膨張弁の操作量 B (k−1)〜e B (k−m)と、変化前のk時刻ステップまでの過冷却熱交換器出口過冷却度 C (k−1)〜S C (k−n)、これらに基づく変化後の過冷却熱交換器出口過冷却度 C (k)から通常運転中にARXモデルを用いた以下の式からパラメータa 1 〜a n ,b 1 〜b m の推定値を同定する制御演算装置とを備え、
前記制御演算装置は、前記パラメータb 1 〜b m の推定値を用いて冷媒量判定することを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus in which a compressor, an outdoor heat exchanger, and a supercooling heat exchanger are connected by piping,
An outdoor bypass expansion valve provided in a bypass pipe connected to a pipe on the suction side of the compressor from a pipe between the outdoor heat exchanger and the supercooling heat exchanger;
A supercooling heat exchanger outlet temperature detector for measuring the degree of supercooling heat exchanger outlet supercooling at the outlet of the supercooling heat exchanger;
The operation amount of the outdoor bypass expansion valve e B (k-1) and ~e B (k-m), the supercooling heat exchanger outlet to k time step before the change supercooling degree S C (k-1) ~ S C (k-n), the supercooling heat exchanger outlet supercooling degree after the change based on these S C (k) parameter from the following equation using the ARX model during normal operation a 1 ~a n, b A control arithmetic unit that identifies estimated values of 1 to b m ,
The refrigeration cycle apparatus characterized in that the control arithmetic device determines a refrigerant amount using estimated values of the parameters b 1 to b m .
請求項1において、前記パラメータb 1 〜b m の推定値の変化量が正となる場合に冷媒漏洩していると判定することを特徴とする冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant is determined to be leaking when a change amount of the estimated values of the parameters b 1 to b m is positive. 請求項1又は2において、前記制御演算装置は、
前記圧縮機の吐出温度と吐出圧力とから圧縮機吐出過熱度 dSH を求め、
前記室外バイパス膨張弁の操作量 B (k−1)〜e B (k−m)と、変化前のk時刻ステップまでの前記圧縮機吐出過熱度 dSH (k−1)〜T dSH (k−n)、これらに基づく変化後の前記圧縮機吐出過熱度 dSH (k)からから通常運転中にARXモデルを用いた以下の式からパラメータd 1 〜d p ,f 1 〜f q の推定値を同定する制御演算装置とを備え、
前記パラメータb 1 〜b m の推定値が0以外となる場合であって、前記パラメータb 1 〜b m の推定値の変化量が正となる場合に冷媒漏洩していると判定することを特徴とする冷凍サイクル装置。
The control arithmetic device according to claim 1 or 2,
The compressor discharge superheat degree T dSH is obtained from the discharge temperature and discharge pressure of the compressor,
The operation amount of the outdoor bypass expansion valve e B (k-1) ~e B (k-m) and, the compressor discharge superheating degree T DSH to k time step before the change (k-1) ~T dSH ( k-n), the following equation using the ARX model parameters d 1 to d p, of f 1 ~f q from from the compressor discharge superheating degree T DSH after the change based on these (k) during normal operation A control arithmetic unit for identifying the estimated value,
When the estimated values of the parameters b 1 to b m are other than 0 and the amount of change in the estimated values of the parameters b 1 to b m is positive, it is determined that the refrigerant is leaking. A refrigeration cycle device.
請求項3において、前記パラメータf 1 〜f q の推定値が0となる場合に前記室外バイパス膨張弁が故障していると判定することを特徴とする冷凍サイクル装置。 According to claim 3, wherein the parameter f 1 ~f q estimate refrigeration cycle apparatus characterized said determining that the outdoor bypass expansion valve is faulty if becomes 0. 請求項1乃至4の何れかにおいて、前記パラメータb 1 〜b m の推定値の変化量が負となる場合に冷媒増加していると判定することを特徴とする冷凍サイクル装置。 5. The refrigeration cycle apparatus according to claim 1, wherein when the amount of change in the estimated values of the parameters b 1 to b m is negative, it is determined that the refrigerant is increasing. 請求項1乃至5の何れかにおいて、前記パラメータb 1 〜b m の推定値が所定値以上となる場合に冷媒漏洩していると判定することを特徴とする冷凍サイクル装置。 6. The refrigeration cycle apparatus according to claim 1, wherein when the estimated values of the parameters b 1 to b m are equal to or greater than a predetermined value, it is determined that the refrigerant is leaking. 圧縮機、室外熱交換器、室外膨張弁を配管接続した冷凍サイクル装置において、
前記室外熱交換器の出口における室外熱交換器出口過冷却度を測定する室外熱交換器出口温度検知器と、
前記室外膨張弁の操作量 B (k−1)〜e B (k−m)と、変化前のk時刻ステップまでの前記室外熱交換器出口過冷却度 C (k−1)〜S C (k−n)、これらに基づく変化後の室外熱交換器出口過冷却度 C (k)から通常運転中にARXモデルを用いた以下の式からパラメータa 1 〜a n ,b 1 〜b m の推定値を同定する制御演算装置とを備え、
前記制御演算装置は、前記パラメータb 1 〜b m の推定値を用いて冷媒量判定することを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus in which a compressor, an outdoor heat exchanger, and an outdoor expansion valve are connected by piping,
An outdoor heat exchanger outlet temperature detector for measuring the degree of subcooling of the outdoor heat exchanger outlet at the outlet of the outdoor heat exchanger;
The outdoor expansion valve operation amount e B (k-1) ~e B (k-m) and the outdoor heat exchanger outlet to k time step before the change supercooling degree S C (k-1) ~S C (k-n), the parameters a 1 from the following equation using the ARX model from the outdoor heat exchanger outlet supercooling degree after the change based on these S C (k) during normal operation ~a n, b 1 ~ a control arithmetic unit for identifying an estimated value of b m ,
The refrigeration cycle apparatus characterized in that the control arithmetic device determines a refrigerant amount using estimated values of the parameters b 1 to b m .
請求項7において、前記パラメータb 1 〜b m の推定値の変化量が負となる場合に冷媒漏洩していると判定することを特徴とする冷凍サイクル装置。 8. The refrigeration cycle apparatus according to claim 7, wherein it is determined that the refrigerant is leaking when a change amount of the estimated values of the parameters b 1 to b m is negative. 請求項1乃至8の何れかにおいて、
前記制御演算装置による判定結果を表示する表示装置を備えることを特徴とする冷凍サイクル装置。
In any of claims 1 to 8,
A refrigeration cycle apparatus comprising a display device for displaying a determination result by the control arithmetic device.
請求項1乃至9の何れかにおいて、
前記制御演算装置により冷媒漏洩又は故障と判定された場合に判定結果をサービスセンタへ通信する通信手段を備えることを特徴とする冷凍サイクル装置。
In any one of Claims 1 thru | or 9,
A refrigeration cycle apparatus comprising: a communication unit configured to communicate a determination result to a service center when the control arithmetic device determines that the refrigerant leaks or malfunctions.
JP2010187785A 2010-08-25 2010-08-25 Refrigeration cycle equipment Active JP5525965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187785A JP5525965B2 (en) 2010-08-25 2010-08-25 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187785A JP5525965B2 (en) 2010-08-25 2010-08-25 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2012047364A JP2012047364A (en) 2012-03-08
JP5525965B2 true JP5525965B2 (en) 2014-06-18

Family

ID=45902454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187785A Active JP5525965B2 (en) 2010-08-25 2010-08-25 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5525965B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095155B2 (en) * 2012-12-27 2017-03-15 中野冷機株式会社 Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
JP6200816B2 (en) * 2014-01-15 2017-09-20 株式会社日立ビルシステム Device diagnosis apparatus, device diagnosis method, and device diagnosis program
JP2015135192A (en) * 2014-01-16 2015-07-27 株式会社富士通ゼネラル Air conditioning device
WO2015125509A1 (en) * 2014-02-18 2015-08-27 東芝キヤリア株式会社 Refrigeration cycle device
JP6390205B2 (en) * 2014-06-25 2018-09-19 株式会社Ihi Threshold setting device and threshold setting method
JP2017053566A (en) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
JP2017150730A (en) * 2016-02-24 2017-08-31 株式会社デンソー Refrigeration cycle device
JP7215058B2 (en) * 2018-10-05 2023-01-31 富士通株式会社 Estimation Program, Estimation Method, and Estimation Apparatus
WO2020110289A1 (en) * 2018-11-30 2020-06-04 日立ジョンソンコントロールズ空調株式会社 Control device and air conditioning device
JP6777180B2 (en) 2019-03-19 2020-10-28 ダイキン工業株式会社 Refrigerant quantity estimates, methods, and programs
CN115111705B (en) * 2022-08-25 2022-11-11 蘑菇物联技术(深圳)有限公司 Method, equipment and medium for detecting water flow bypass fault of water chilling unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254376A (en) * 1995-03-17 1996-10-01 Mitsubishi Electric Corp Air conditioner
JP4215022B2 (en) * 2005-04-07 2009-01-28 ダイキン工業株式会社 Air conditioner
JP4749369B2 (en) * 2007-03-30 2011-08-17 三菱電機株式会社 Refrigeration cycle apparatus failure diagnosis apparatus and refrigeration cycle apparatus equipped with the same

Also Published As

Publication number Publication date
JP2012047364A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5525965B2 (en) Refrigeration cycle equipment
US9239180B2 (en) Refrigeration and air-conditioning apparatus
US8215121B2 (en) Refrigerant quantity determining system of air conditioner
EP2416096B1 (en) Refrigeration cycle device
JP6359423B2 (en) Control device for air conditioning system, air conditioning system, and abnormality determination method for control device for air conditioning system
JP4503646B2 (en) Air conditioner
US9222711B2 (en) Refrigerating and air-conditioning apparatus
CN114341562A (en) Refrigerant amount determination device, method, and program
JP4462096B2 (en) Air conditioner
AU2007264431A1 (en) Air conditioner
JP5213990B2 (en) Refrigeration air conditioner
CN113654182A (en) Method for detecting refrigerant leakage, computer readable storage medium and air conditioner
WO2016063550A1 (en) Control device for air conditioning system, air conditioning system, and method for determining anomaly of air conditioning system
JP2012232656A (en) Failure diagnosis system and apparatus for vehicle air conditioner
JP2012159251A (en) Refrigeration cycle apparatus, flow rate calculation method, and program
JP5473957B2 (en) Refrigerant leak detection device and refrigeration air conditioner
CN116997876A (en) Correction device, prediction device, method, program, and correction model
KR101549754B1 (en) Fault diagnosis method of variable Speed Refrigeration System
JP2008249226A (en) Refrigerant leakage detecting method of refrigerating device
US20240142125A1 (en) Air conditioning system, abnormality estimation method for air conditioning system, air conditioner, and abnormality estimation method for air conditioner
US20240175595A1 (en) Air conditioning system, refrigerant amount estimation method for air conditioning system, air conditioner, and refrigerant amount estimation method for air conditioner
WO2024135664A1 (en) Apparatus performance prediction method, apparatus performance prediction device, and program
Behfar Simulation of Fault Characteristics for Commercial Refrigeration Systems via Semi-Empirical Models
JP2023051341A (en) Information processing system, method, and program
JP2011064410A (en) Refrigerating air conditioning device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5525965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250