JP4805554B2 - Vibration reducing material - Google Patents
Vibration reducing material Download PDFInfo
- Publication number
- JP4805554B2 JP4805554B2 JP2004188837A JP2004188837A JP4805554B2 JP 4805554 B2 JP4805554 B2 JP 4805554B2 JP 2004188837 A JP2004188837 A JP 2004188837A JP 2004188837 A JP2004188837 A JP 2004188837A JP 4805554 B2 JP4805554 B2 JP 4805554B2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- asphalt
- vibration reducing
- reducing material
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims description 160
- 230000001603 reducing effect Effects 0.000 title claims description 106
- 239000010426 asphalt Substances 0.000 claims description 96
- 239000011230 binding agent Substances 0.000 claims description 69
- 239000000839 emulsion Substances 0.000 claims description 41
- 239000004576 sand Substances 0.000 claims description 40
- 230000009467 reduction Effects 0.000 claims description 39
- 239000013013 elastic material Substances 0.000 claims description 35
- 239000004568 cement Substances 0.000 claims description 25
- 239000007787 solid Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000003208 petroleum Substances 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 11
- 239000011347 resin Substances 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 10
- 230000001747 exhibiting effect Effects 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 29
- 238000004898 kneading Methods 0.000 description 15
- 238000013016 damping Methods 0.000 description 14
- 239000011324 bead Substances 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 13
- 238000002156 mixing Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000006260 foam Substances 0.000 description 12
- 239000000057 synthetic resin Substances 0.000 description 12
- 229920003002 synthetic resin Polymers 0.000 description 12
- 238000009472 formulation Methods 0.000 description 11
- 238000010276 construction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011400 blast furnace cement Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011346 highly viscous material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Landscapes
- Vibration Prevention Devices (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、建築物への振動低減工法等に用いられる新規な振動低減材に関するものである。 The present invention relates to a novel vibration reducing material used for a vibration reducing method for a building or the like.
例えば、都市部において新たに地下鉄路線や鉄道路線を建設する場合には、土地の制約等により既存の建築物の付近に建設されるの通常である。このような場合、建設直前には予想が困難であった振動や固体音、騒音の被害が既存の建築物周辺環境に及ぼす事例が報告されている。 For example, when a new subway line or railway line is constructed in an urban area, it is usually constructed near an existing building due to land restrictions. In such a case, there have been reports of cases in which damage to vibration, solid sound, and noise, which was difficult to predict immediately before construction, affects the surrounding environment of existing buildings.
地下鉄路線における電車の走行に伴う衝撃によって引き起こされる固体音、騒音に起因する被害のなかでも、63Hz帯域にピークを有する固体音振動数領域の振動による騒音被害が問題となっている。
このような問題に対する対策としては、ゴム板等を建築物の側面や底面に貼り付ける等の工法が採用されているが、施工が容易でないこと、コストが高騰すること等の問題点が挙げられ、新たな対策の確立が望まれているところである。
Among the damage caused by the solid sound and noise caused by the impact of the train traveling on the subway line, the noise damage due to the vibration in the solid sound frequency region having a peak in the 63 Hz band is a problem.
As measures against such problems, methods such as attaching rubber plates to the side and bottom of buildings are adopted, but problems such as construction is not easy and costs rise. Therefore, establishment of new measures is desired.
特許文献1には、集合住宅等に対する交通振動を低減するためにコンクリートの基礎本体の下部に振動減衰用のゴムシートを敷設した構造の建物の基礎構造が提案されている。
しかし、この特許文献1の建物の基礎構造の場合、支持地盤に設けた穴部の底にゴムシートを敷設し、その上にコンクリートを打設して基礎本体を構築するものであり、既存の建築物への適用は困難である。
However, in the case of the foundation structure of the building of this Patent Document 1, a rubber sheet is laid on the bottom of the hole provided in the support ground, and concrete is placed thereon to construct the foundation main body. Application to buildings is difficult.
本発明は、従来、この種の技術分野において、優れた振動伝達低減性能を有し、且つ、既存の建築物へも容易に設置し得る振動低減材が存在しない実情に鑑み、特に地下鉄線路の電車走行等で騒音が問題となる固体音振動数域において優れた振動伝達低減性能を有しながら種々の工法で容易に施工し得る振動低減材を提供することにある。 In view of the fact that there is no vibration reducing material that has an excellent vibration transmission reduction performance and can be easily installed in an existing building in the technical field of this type, the present invention has been known in particular. An object of the present invention is to provide a vibration reducing material that can be easily constructed by various methods while having excellent vibration transmission reduction performance in a solid sound frequency range where noise is a problem in train traveling or the like .
本発明の振動低減材は、質量比で、30〜45%の弾性材又はゴムチップと30〜45%の土砂とを主材とし、結合材である10〜40%のアスファルト又はストレートアスファルトを混練して、厚さ0.5mとし、固体音振動数域における振動数8〜125Hzの振動数域において平均値で2dBから9dBの振動低減特性を発揮する構成としたことを最も主要な特徴とする。 The vibration reducing material of the present invention is composed of 30 to 45% of an elastic material or rubber chip and 30 to 45% of earth and sand as a main material, and knead 10 to 40% asphalt or straight asphalt as a binder. The most important feature is that the thickness is 0.5 m, and the vibration reduction characteristic of 2 dB to 9 dB is exhibited as an average value in the frequency range of 8 to 125 Hz in the solid sound frequency range.
本発明によれば、以下の効果を奏する。
請求項1記載の発明によれば、質量比で、30〜45%の弾性材又はゴムチップと30〜45%の土砂とを主材とし、結合材である10〜40%のアスファルト又はストレートアスファルトを混練して、厚さ0.5mとし、固体音振動数域における振動数8〜125Hzの振動数域において平均値で2dBから9dBの振動低減特性を発揮する振動低減材としたものであるから、優れた振動伝達低減性能を有するアスファルト又はストレートアスファルト系の振動低減材を提供できる。
The present invention has the following effects.
According to the first aspect of the present invention, by mass ratio, 30 to 45% of an elastic material or rubber chip and 30 to 45% of earth and sand are used as main materials, and 10 to 40% of asphalt or straight asphalt which is a binder is obtained. Since it is kneaded to a thickness of 0.5 m, it is a vibration reducing material that exhibits a vibration reduction characteristic of 2 dB to 9 dB on average in the frequency range of 8 to 125 Hz in the solid sound frequency range, Asphalt or straight asphalt type vibration reducing material having excellent vibration transmission reduction performance can be provided.
請求項2記載の発明によれば、質量比で、30〜45%の弾性材又はゴムチップと30〜45%の土砂とを主材とし、添加材である3〜15%の石油樹脂、結合材である10〜40%のアスファルト又はストレートアスファルトを混練して、厚さ0.5mとし、固体音振動数域における振動数8〜125Hzの振動数域において平均値で2dBから9dBの振動低減特性を発揮する振動低減材としたものであるから、優れた振動伝達低減性能を有し、且つ、特に一軸圧縮強度に優れたアスファルト又はストレートアスファルト系の振動低減材を提供できる。 According to the second aspect of the present invention, by mass ratio, 30 to 45% of an elastic material or rubber chip and 30 to 45% of earth and sand are used as main materials, and 3 to 15% of petroleum resin and binder as additive materials. 10 to 40% asphalt or straight asphalt is kneaded to a thickness of 0.5 m, and a vibration reduction characteristic of 2 dB to 9 dB on average in the frequency range of 8 to 125 Hz in the solid sound frequency range. Since it is a vibration reducing material to be exhibited, it is possible to provide an asphalt or straight asphalt type vibration reducing material having excellent vibration transmission reduction performance and particularly excellent in uniaxial compressive strength.
請求項3記載の発明によれば、質量比で、30〜45%の弾性材又はゴムチップと30〜45%の土砂とを主材とし、結合材である10〜40%のアスファルト乳剤を混練して、厚さ0.5mとし、固体音振動数域における振動数8〜125Hzの振動数域において平均値で2dBから9dBの振動低減特性を発揮する振動低減材としたものであるから、優れた振動伝達低減性能を有するアスファルト乳剤系の振動低減材を提供できる。 According to the invention described in claim 3, by mass ratio, 30 to 45% of an elastic material or rubber chip and 30 to 45% of earth and sand are used as main materials, and 10 to 40% of asphalt emulsion as a binder is kneaded. Since the thickness is 0.5 m and the vibration reducing material exhibits a vibration reducing characteristic of 2 dB to 9 dB on average in the frequency range of 8 to 125 Hz in the solid sound frequency range, Asphalt emulsion-based vibration reducing material having vibration transmission reducing performance can be provided.
請求項4記載の発明によれば、質量比で、30〜45%の弾性材であるゴムチップと30〜60%の土砂とを主材とし、結合材である3〜15%のセメント及び水、並びに、10〜40%のアスファルト乳剤を混練して、厚さ0.5mとし、固体音振動数域における振動数8〜125Hzの振動数域において平均値で2dBから9dBの振動低減特性を発揮する振動低減材としたものであるから、優れた振動伝達低減性能を有するアスファルト乳剤系の振動低減材を提供できる。 According to the invention of claim 4, by mass ratio, the rubber chip as an elastic material of 30 to 45% and 30 to 60% of earth and sand as main materials, 3 to 15% of cement and water as a binder, In addition, 10 to 40% of asphalt emulsion is kneaded to a thickness of 0.5 m, and exhibits an average vibration reduction characteristic of 2 dB to 9 dB in the frequency range of 8 to 125 Hz in the solid sound frequency range. Since the vibration reducing material is used, an asphalt emulsion type vibration reducing material having excellent vibration transmission reduction performance can be provided.
本発明は、特に地下鉄線路の電車走行等で騒音が問題となる固体音振動数域において優れた振動伝達低減性能を有し、且つ、建築物へ容易に設置可能とするという目的を、質量比で、30〜45%の弾性材又はゴムチップと30〜45%の土砂とを主材とし、結合材である10〜40%のアスファルト又はストレートアスファルトを混練して、厚さ0.5mとし、固体音振動数域における振動数8〜125Hzの振動数域において平均値で2dBから9dBの振動低減特性を発揮する構成とした振動低減材により達成した。 The object of the present invention is to have excellent vibration transmission reduction performance in a solid sound frequency range in which noise is a problem especially in train traveling on a subway track, and to enable easy installation in a building. The main material is 30 to 45% elastic material or rubber chip and 30 to 45% earth and sand, and 10 to 40% asphalt or straight asphalt as a binder is kneaded to a thickness of 0.5 m. This was achieved by a vibration reducing material configured to exhibit a vibration reduction characteristic of 2 dB to 9 dB on average in the frequency range of 8 to 125 Hz in the sound frequency range.
例えば、都市部等において、地下鉄路線等を電車が走行することによって生じる周辺の既存建築物への交通振動による騒音被害を低減、防止について考察するとき、廃材である残土や年々漸増傾向にある廃材の中でも振動に対する減衰効果が高いと思われるタイヤチップ等のゴムチップや合成樹脂発泡ビーズ(例えば発泡スチロール等)を利用し、固体音、騒音の低減・防止を図ることが有効であると考え、リサイクル材で新規な振動低減材の開発を試み、本発明を完成するに至ったものである。 For example, when considering the reduction and prevention of noise damage caused by traffic vibration on existing buildings in the vicinity of trains in urban areas, etc. Among them, it is considered effective to reduce or prevent solid sound and noise by using rubber chips such as tire chips and synthetic resin foam beads (for example, polystyrene foam) that are considered to have a high damping effect against vibration. Thus, the development of a novel vibration reducing material was attempted, and the present invention was completed.
以下に本発明の実施例を詳細に説明する。
本実施例に係る振動低減対策の模式図を図1−1に示す。例えば地下鉄路線2を構成するシールドトンネル等を走行する地下電車3による振動は、地盤5中を伝搬し建築物6へ到達するため、このような振動を低減するためには振動源である地下鉄路線2の周辺への振動低減対策又は振動・騒音被害の想定される建築物6と地盤5との境界への振動低減対策が有効と考えられる。
Examples of the present invention will be described in detail below.
A schematic diagram of a vibration reduction measure according to the present embodiment is shown in FIG. For example, vibration caused by the underground train 3 traveling in a shield tunnel or the like constituting the subway line 2 propagates through the ground 5 and reaches the building 6. In order to reduce such vibration, the subway line that is a vibration source is used. It is considered effective to reduce the vibration to the periphery of No. 2 or to reduce the vibration at the boundary between the building 6 and the ground 5 where vibration / noise damage is assumed.
図1−1において、例えば地盤5の内部(地中)に新たに地下鉄路線を施工するような場合には、シールドトンネルとした地下鉄路線2の周辺へ振動低減材1を設置する対策、また、通常の防振対策としては建築物6の基礎部へ振動低減材1を設置する密接型の基礎部施工方式の対策、更に図1−2に示すように、地中へ振動低減材1を設置する地中防振壁施工方式の対策が考えられる。図1−2の符号3’は地上鉄道を示すものである。 In FIG. 1-1, for example, when a subway line is newly constructed in the ground 5 (underground), a measure for installing the vibration reducing material 1 around the subway line 2 as a shield tunnel, As a normal anti-vibration measure, a close-type foundation construction method that installs the vibration reducing material 1 on the foundation of the building 6, and further installed the vibration reducing material 1 in the ground as shown in Fig. 1-2. Measures to install underground vibration barriers can be considered. Reference numeral 3 'in FIG. 1-2 indicates a ground railway.
また、地中振動を低減する考え方には、図2に模式的に示す2通りが考えられる。
図2左欄に示す波動の遮断型は、振動低減材1により伝播する波動を遮断して振動音の低減、防止を図るものである。
この波動の遮断型において振動低減材1の材料としては、周辺地盤に比べて密度、剛性が高い材料が適している。すなわち、振動低減材1の部分が周辺地盤に対して剛なので、入射波の波動を振動低減材1で反射し、建築物6等の対象物に透過波の波動エネルギーを伝えない、又は伝えにくくするメカニズムである。
Further, there are two ways to reduce the underground vibration, schematically shown in FIG.
The wave blocking type shown in the left column of FIG. 2 is intended to reduce and prevent vibration noise by blocking the wave propagating by the vibration reducing material 1.
As the material of the vibration reducing material 1 in this wave cutoff type, a material having higher density and rigidity than the surrounding ground is suitable. That is, since the portion of the vibration reducing material 1 is rigid with respect to the surrounding ground, the wave of the incident wave is reflected by the vibration reducing material 1, and the wave energy of the transmitted wave is not transmitted to the object such as the building 6 or is difficult to transmit. Mechanism.
図2右欄に示す波動エネルギーの吸収型は、振動低減材1により波動エネルギーを吸収して振動や固体音、騒音の低減を図るものである。この波動エネルギーの吸収型において、振動低減材1の材料としては、周辺地盤に対して剛性、密度が小さく、且つ、減衰効果の大きい材料が適している。これは、振動低減材1の部分に波動を集中させ、振動低減材1の部分に入射波に対する大きな減衰効果(吸収効果)を持たせることで、振動低減材1からの透過波の波動エネルギーを低減させるメカニズムである。 The wave energy absorption type shown in the right column of FIG. 2 is intended to reduce vibration, solid sound, and noise by absorbing the wave energy with the vibration reducing material 1. In this wave energy absorption type, as the material of the vibration reducing material 1, a material having a small rigidity and density with respect to the surrounding ground and a large damping effect is suitable. This is because the wave energy is concentrated on the portion of the vibration reducing material 1 and the portion of the vibration reducing material 1 has a large attenuation effect (absorption effect) on the incident wave, thereby reducing the wave energy of the transmitted wave from the vibration reducing material 1. It is a mechanism to reduce.
本実施例では、振動低減材1を形成するための材料である振動低減材の物性値を調べるのに、図3に示すような振動三軸試験機10を用い振動低減材により形成した供試体11の試験を行った。供試体11の寸法は、直径D5cm×高さH10cmのものを用いた。 In this example, in order to examine the physical property value of the vibration reducing material, which is a material for forming the vibration reducing material 1, a specimen formed of the vibration reducing material using a vibration triaxial testing machine 10 as shown in FIG. Eleven tests were performed. The specimen 11 had a diameter D5 cm × height H10 cm.
試験方法は、地盤工学会発行の地盤材料の変形特性を求めるための繰返し三軸試験方法(ステージテスト)に基づき実施した。
ステージテストとは、上記供試体11に対して載荷ピストン18により繰返し載荷を行い、軸ひずみ振幅に対して剛性低下や減衰定数を調べる試験方法である。試験条件は、載荷波形を正弦波、載荷周波数を1Hz、繰り返し載荷回数11回、有効拘束圧を50〜150kPa(地中深さを5〜10mの想定)に設定した。
The test method was carried out based on the repeated triaxial test method (stage test) for determining the deformation characteristics of the ground material published by the Geotechnical Society.
The stage test is a test method in which the specimen 11 is repeatedly loaded by the loading piston 18 and the rigidity reduction and the damping constant are examined with respect to the axial strain amplitude. The test conditions were set such that the loading waveform was a sine wave, the loading frequency was 1 Hz, the number of repeated loadings was 11 times, and the effective restraint pressure was 50 to 150 kPa (assuming that the underground depth was 5 to 10 m).
上記以外の詳細事項としては、べディングエラーによる計測不良が考えられるため、セメント系を主体とした供試体11の場合は、LDT(局所軸変位計)12を用いて計測を行った。また、供試体11の飽和度を高めるために、二酸化炭素、脱気水を供試体11に通し、ビュレット13を使用して背圧を50〜100kPa程度加えた。載荷は非排水状態で行った。
なお、図3中、14は荷重計、15は変位計、16は微小変位計、17は間隙水圧計である。
As detailed matters other than the above, measurement failure due to a bedding error is considered, and in the case of the specimen 11 mainly composed of cement, measurement was performed using an LDT (local axial displacement meter) 12. Further, in order to increase the degree of saturation of the specimen 11, carbon dioxide and deaerated water were passed through the specimen 11, and a back pressure of about 50 to 100 kPa was applied using the burette 13. Loading was performed in an undrained state.
In FIG. 3, 14 is a load meter, 15 is a displacement meter, 16 is a minute displacement meter, and 17 is a pore water pressure meter.
ここで、本実施例に係る振動低減材を構成する各素材の配合例について図4を参照して説明する。
図4において、配合No.A−1及び配合No.A−2はアスファルトの内の特にストレートアスファルト系の振動低減材を示し、配合No.AE−1及び配合No.AE−2はアスファルト乳剤系の振動低減材を示すものである。図4における配合No.A−1及び配合No.A−2はアスファルトの内の特にストレートアスファルト系の振動低減材を示すものであるが、本発明はこれに限定されるものではなく、ストレートアスファルト系以外のアスファルトを用いることができる。
Here, a blending example of each material constituting the vibration reducing material according to the present embodiment will be described with reference to FIG.
In FIG. A-1 and formulation No. A-2 is a straight asphalt type vibration reducing material among asphalts. AE-1 and formulation no. AE-2 indicates an asphalt emulsion type vibration reducing material. In FIG. A-1 and formulation No. Although A-2 shows the vibration reduction material of straight asphalt especially in asphalt, this invention is not limited to this, Asphalt other than straight asphalt can be used.
配合No.A−1の振動低減材は、弾性材である例えばタイヤチップ等のゴムチップと、土砂とを主材とし、添加材として石油樹脂、結合材としてストレートアスファルトを混練してなるものである。なお、この配合比は代表例を示すものであり、本発明の振動低減材は、これに限定されるものではない。 Compound No. Vibration reduction material A-1 comprises a rubber chip for example, such as tire chips is an elastic member, and a sediment was composed primarily, petroleum resin as an additive material, those obtained by kneading the straight asphalt as a binder. This blending ratio is a representative example, and the vibration reducing material of the present invention is not limited to this.
配合No.A−2の振動低減材は、弾性材である例えばタイヤチップ等のゴムチップと、土砂とを主材とし、結合材であるストレートアスファルトを混練してなるものである。なお、この配合比は代表例を示すものであり、本発明の振動低減材は、これに限定されるものではない。
本実施例に係るアスファルト系又はストレートアスファルト系の結合材を用いてなる振動低減材1を構成する各素材の配合例、代表的な配合比に関しては以下の通りである。
(1)弾性材と土砂とを主材とし、結合材としてアスファルト又はストレートアスファルトを混練してなる振動低減材1。
(2)弾性材であるゴムチップと土砂とを主材とし、結合材であるアスファルト又はストレートアスファルトを混練してなる振動低減材1。
(3)質量比で、30〜45%の弾性材又はゴムチップと30〜45%の土砂とを主材とし、結合材である10〜40%のアスファルト又はストレートアスファルトを混練してなる振動低減材1。
(4)弾性材と土砂とを主材とし、添加材として石油樹脂、結合材としてアスファルト又はストレートアスファルトを混練してなることを特徴とする振動低減材1。
(5)弾性材であるゴムチップと土砂とを主材とし、添加材として石油樹脂、結合材としてアスファルト又はストレートアスファルトを混練してなる振動低減材1。
(6)質量比で、30〜45%の弾性材又はゴムチップと30〜45%の土砂とを主材とし、添加材である3〜15%の石油樹脂、結合材である10〜40%のアスファルト又はストレートアスファルトを混練してなる振動低減材1。
Compound No. The vibration reducing material A-2 is formed by kneading a straight asphalt as a binding material with a rubber chip such as a tire chip as an elastic material and earth and sand as main materials. This blending ratio is a representative example, and the vibration reducing material of the present invention is not limited to this.
The blending examples and typical blending ratios of the materials constituting the vibration reducing material 1 using the asphalt-based or straight asphalt-based binder according to the present embodiment are as follows.
(1) A vibration reducing material 1 comprising an elastic material and earth and sand as main materials and kneaded asphalt or straight asphalt as a binder.
(2) A vibration reducing material 1 comprising a rubber chip as an elastic material and earth and sand as main materials and kneaded asphalt or straight asphalt as a binder.
(3) A vibration reducing material obtained by kneading 10 to 40% of asphalt or straight asphalt which is a binder with 30 to 45% of an elastic material or rubber chip and 30 to 45% of earth and sand as a main material. 1.
(4) A vibration reducing material 1 comprising an elastic material and earth and sand as a main material, kneaded with petroleum resin as an additive and asphalt or straight asphalt as a binder.
(5) A vibration reducing material 1 comprising a rubber chip, which is an elastic material, and earth and sand as main materials, kneaded with petroleum resin as an additive and asphalt or straight asphalt as a binder.
(6) By mass ratio, 30 to 45% of an elastic material or rubber chip and 30 to 45% of earth and sand are the main materials, 3 to 15% petroleum resin as an additive, and 10 to 40% of a binder. A vibration reducing material 1 obtained by kneading asphalt or straight asphalt.
配合No.AE−1の振動低減材1は、弾性材である例えばタイヤチップ等のゴムチップと、土砂とを主材とし、結合材としてセメント(高炉セメント)、水、及び、アスファルト乳剤を混練してなるものである。なお、この配合比は代表例を示すものであり、本発明の振動低減材1は、これに限定されるものではない。 Compound No. Vibration reduction material 1 AE-1 includes a Gomuchi' flop such as an elastic material such as tires chip and sediment as a main material, cement (blast furnace cement) as a binder, water, and made by kneading an asphalt emulsion Is. In addition, this compounding ratio shows a representative example, and the vibration reducing material 1 of the present invention is not limited to this.
配合No.AE−2の振動低減材1は、弾性材である例えばタイヤチップ等のゴムチップと土砂とを主材とし、結合材としてアスファルト乳剤を混練してなるものである。なお、この配合比は代表例を示すものであり、本発明の振動低減材1は、これに限定されるものではない。
本実施例に係るアスファルト乳剤系の結合材を用いてなる振動低減材1を構成する各素材の配合例、代表的な配合比に関しては以下の通りである。
(1)弾性材と土砂とを主材とし、結合材としてアスファルト乳剤を混練してなる振動低減材1。
(2)弾性材であるゴムチップと土砂とを主材とし、結合材としてアスファルト乳剤を混練してなる振動低減材1。
(3)質量比で、30〜45%の弾性材又はゴムチップと30〜45%の土砂とを主材とし、結合材である10〜40%のアスファルト乳剤を混練してなる振動低減材1。
(4)弾性材である合成樹脂発泡ビーズと土砂とを主材とし、結合材としてアスファルト乳剤を混練してなる振動低減材1。
(5)質量比で、5〜30%の合成樹脂発泡ビーズと30〜45%の土砂とを主材とし、結合材である10〜40%のアスファルト乳剤を混練してなる振動低減材1。
(6)弾性材であるゴムチップ及び合成樹脂発泡ビーズと土砂とを主材とし、結合材としてアスファルト乳剤を混練してなる振動低減材1。
(7)質量比で、10〜45%のゴムチップ及び合成樹脂発泡ビーズと30〜45%の土砂とを主材とし、結合材である10〜40%のアスファルト乳剤を混練してなる振動低減材1。
(8)弾性材と土砂とを主材とし、結合材としてセメント、水、及びアスファルト乳剤を混練してなる振動低減材1。
(9)弾性材であるゴムチップと土砂とを主材とし、結合材としてセメント、水、及びアスファルト乳剤を混練してなる振動低減材1。
(10)質量比で、30〜45%の弾性材であるゴムチップと30〜60%の土砂とを主材とし、結合材である3〜15%のセメント、水、及び10〜40%のアスファルト乳剤を混練してなる振動低減材1。
(11)弾性材である合成樹脂発泡ビーズと土砂を主材とし、結合材としてセメント、水、及びアスファルト乳剤を混練してなる振動低減材1。
(12)質量比で、5〜30%の弾性材である合成樹脂発泡ビーズと30〜60%の土砂とを主材とし、結合材である3〜15%のセメント、水、及び10〜40%のアスファルト乳剤を混練してなる振動低減材1。
(13)弾性材であるゴムチップ及び合成樹脂発泡ビーズと土砂を主材とし、結合材としてセメント、水、結合材としてアスファルト乳剤を混練してなる振動低減材1。
(14)質量比で、10〜40%の弾性材であるゴムチップ及び合成樹脂発泡ビーズと30〜50%の土砂とを主材とし、結合材である3〜15%のセメント、水、及び10〜40%のアスファルト乳剤を混練してなる振動低減材1。
(15)弾性材と土砂を主材とし、添加材として石油樹脂エマルジョン、結合材としてアスファルト乳剤を混練してなる振動低減材1。
(16)弾性材であるゴムチップと土砂を主材とし、添加材として石油樹脂エマルジョン、結合材としてアスファルト乳剤を混練してなる振動低減材。
(17)弾性材である合成樹脂発泡ビーズと土砂とを主材とし、添加材として石油樹脂エマルジョン、結合材としてアスファルト乳剤を混練してなる振動低減材。
(18)弾性材であるゴムチップ及び合成樹脂発泡ビーズと土砂を主材とし、添加材として石油樹脂エマルジョン、結合材としてアスファルト乳剤を混練してなる振動低減材。
Compound No. The vibration reducing material 1 of AE-2 is obtained by kneading an asphalt emulsion as a binding material, with a rubber chip such as a tire chip and earth and sand, which are elastic materials, as main materials. In addition, this compounding ratio shows a representative example, and the vibration reducing material 1 of the present invention is not limited to this.
The blending examples and typical blending ratios of the respective materials constituting the vibration reducing material 1 using the asphalt emulsion-based binder according to this example are as follows.
(1) A vibration reducing material 1 comprising an elastic material and earth and sand as main materials and an asphalt emulsion as a binder.
(2) A vibration reducing material 1 formed by kneading an asphalt emulsion as a binder with rubber chips and earth and sand as elastic materials as main materials.
(3) A vibration reducing material 1 obtained by kneading 30 to 45% of an elastic material or rubber chip and 30 to 45% of earth and sand as a main material and 10 to 40% of an asphalt emulsion as a binder.
(4) A vibration reducing material 1 comprising a synthetic resin foam bead and earth and sand as elastic materials as main materials and an asphalt emulsion as a binder.
(5) A vibration reducing material 1 in which 5 to 30% synthetic resin foam beads and 30 to 45% earth and sand are mixed as a main material and 10 to 40% asphalt emulsion as a binder is kneaded.
(6) A vibration reducing material 1 comprising a rubber chip as an elastic material and synthetic resin foam beads and earth and sand as main materials and an asphalt emulsion as a binder.
(7) A vibration reducing material comprising 10 to 45% of rubber chips and synthetic resin foam beads and 30 to 45% of earth and sand as a main material and kneading 10 to 40% of asphalt emulsion as a binder. 1.
(8) A vibration reducing material 1 comprising an elastic material and earth and sand as main materials and kneading cement, water and asphalt emulsion as a binder.
(9) A vibration reducing material 1 in which rubber chips and earth and sand, which are elastic materials, are used as main materials and cement, water, and asphalt emulsion are kneaded as a binder.
(10) By mass ratio, rubber chip which is 30-45% elastic material and 30-60% earth and sand as main materials, 3-15% cement, water and 10-40% asphalt which are binders A vibration reducing material 1 obtained by kneading an emulsion.
(11) A vibration reducing material 1 comprising a synthetic resin foam bead and earth and sand, which are elastic materials, as main materials and cement, water, and asphalt emulsion as a binder.
(12) By mass ratio, synthetic resin foam beads, which are 5-30% elastic material, and 30-60% earth and sand are the main materials, and 3-15% cement, water, and 10-40, which are binders. % Vibration reducing material 1 kneaded with asphalt emulsion.
(13) A vibration reducing material 1 comprising a rubber chip as an elastic material and synthetic resin foam beads and earth and sand as main materials, cement and water as a binder, and asphalt emulsion as a binder.
(14) By weight ratio, rubber chips and synthetic resin foam beads, which are 10 to 40% elastic material, and 30 to 50% earth and sand are the main materials, and 3 to 15% cement, water, and 10 which are binders Vibration reducing material 1 obtained by kneading -40% asphalt emulsion.
(15) A vibration reducing material 1 comprising an elastic material and earth and sand as main materials, a petroleum resin emulsion as an additive, and an asphalt emulsion as a binder.
(16) A vibration reducing material obtained by kneading an elastic material such as rubber chips and earth and sand, kneading a petroleum resin emulsion as an additive and an asphalt emulsion as a binder.
(17) A vibration reducing material obtained by kneading a synthetic resin foam bead and earth and sand, which are elastic materials, as a main material, a petroleum resin emulsion as an additive, and an asphalt emulsion as a binder.
(18) A vibration reducing material comprising a rubber chip as an elastic material and synthetic resin foam beads and earth and sand as main materials, a petroleum resin emulsion as an additive, and an asphalt emulsion as a binder.
図5は本実施例におけるストレートアスファルトの物性を示すものである。
ストレートアスファルトは、原油を常圧蒸留装置、減圧蒸留装置にかけて、ガソリン・灯油・軽油等の燃料油や潤滑油の留分を除いて製造され、このようにして製造されたストレートアスファルトを本実施例の一例においては使用している。
FIG. 5 shows the physical properties of straight asphalt in this example.
Straight asphalt is produced by subjecting crude oil to atmospheric distillation equipment and vacuum distillation equipment and removing fuel oil and lubricating oil fractions such as gasoline, kerosene, and light oil. In one example, it is used.
図6はアスファルト乳剤を模式的に示すものであり、アスファルト乳剤は、アスファルト原料と乳化剤を水に溶解して得た乳化液を適度に加温し、ホモジナイザ、コロイドミル等の乳化機により機械的に微細化することにより、アスファルトを水中に微粒子で分散させた褐色の液体(エマルジョン)である。アスファルト乳剤は、化学的に安定、耐薬品性、耐腐食性、粘着性に優れるという優れた特性を有している。 FIG. 6 schematically shows an asphalt emulsion. An asphalt emulsion is obtained by appropriately heating an emulsion obtained by dissolving an asphalt raw material and an emulsifier in water, and mechanically using an emulsifier such as a homogenizer or a colloid mill. It is a brown liquid (emulsion) in which asphalt is dispersed as fine particles in water. Asphalt emulsions have excellent properties such as chemical stability, chemical resistance, corrosion resistance, and excellent tackiness.
図7は、アスファルト乳剤の物性を示すものである。 FIG. 7 shows the physical properties of the asphalt emulsion.
次に、図3に示す振動三軸試験機10を用い振動低減材により形成した供試体11の試験について詳述する。
供試体11は結合材を基本に考えると、セメント系、アスファルト系の2種類に分けることができる。なお、比較のため、実際の振動低減対策で用いられているゴム板より切り出した供試体(防振ゴム硬度60度)の実験も行った。
Next, the test of the specimen 11 formed of the vibration reducing material using the vibration triaxial testing machine 10 shown in FIG. 3 will be described in detail.
The specimen 11 can be divided into two types, cement type and asphalt type, based on the binder. For comparison, an experiment was also conducted on a specimen (anti-vibration rubber hardness 60 degrees) cut out from a rubber plate used in actual vibration reduction measures.
なお、結合材に用いたアスファルトであるストレートアスファルトは施工時に熱を加えなければならない。
本試験例では、常温で混合でき、アスファルト又はストレートアスファルトと比較して省エネルギー且つCO2の抑制に寄与するなど環境に優しい他、火傷や火災の危険性もなく極めて安全性の高い供試体11を作成できるアスファルト乳剤と、一軸圧縮強度の改善を計る目的で石油樹脂にも着目した。
Note that straight asphalt, which is the asphalt used for the binder, must be heated during construction.
In this test example, the specimen 11 can be mixed at room temperature and is environmentally friendly such as energy saving and CO 2 suppression compared to asphalt or straight asphalt. We also paid attention to petroleum resins for the purpose of improving asphalt emulsions that can be prepared and uniaxial compressive strength.
前記振動三軸試験機10による供試体11への繰返し載荷により得られた応力−ひずみ関係を示す履歴減衰hの定義を図8に、ヤング率の定義を図9に各々模式的に示す。履歴減衰hは下記数1により求められる。
なお、図8において、ΔWは履歴面積、Wは三角形abcの面積を表している。
FIG. 8 schematically shows the definition of the hysteresis damping h indicating the stress-strain relationship obtained by repeated loading of the vibration triaxial testing machine 10 onto the specimen 11, and FIG. 9 shows the definition of the Young's modulus. The history attenuation h is obtained by the following equation (1).
In FIG. 8, ΔW represents the history area, and W represents the area of the triangle abc.
本実施例では、前記振動三軸試験機10により試験を行っているので、弾性係数は図9に示すような割線ヤング率Eを用いて評価している。また、後述する解析ではせん断剛性Gの値が必要となるので、下記数2によりせん断剛性Gを求めている。 In this embodiment, since the test is performed by the vibration triaxial testing machine 10, the elastic modulus is evaluated using a secant Young's modulus E as shown in FIG. Further, since the value of the shear stiffness G is required in the analysis described later, the shear stiffness G is obtained by the following formula 2.
ここでG:せん断剛性、E:ヤング率、ν:ポアソン比である。なお、本実施例に係る試験では非排水状態による載荷であるため、ν=0.5としてせん断剛性Gを算出した。また、密度は作成した供試体11の寸法と質量より算出している。 Here, G: shear rigidity, E: Young's modulus, and ν: Poisson's ratio. In addition, in the test which concerns on a present Example, since it is the load by a non-drainage state, shearing rigidity G was computed as (nu) = 0.5. The density is calculated from the dimensions and mass of the prepared specimen 11.
次に、前記振動三軸試験機10による試験結果、すなわち、結合材:セメント系、防振ゴム(硬度60度)及び結合材:アスファルトの各供試体11についての試験結果(軸ひずみε−応力)について、図10乃至図12を参照して説明する。 Next, test results by the vibration triaxial testing machine 10, that is, test results (axial strain ε-stress) for each specimen 11 of the binder: cement system, anti-vibration rubber (hardness 60 degrees) and binder: asphalt. ) Will be described with reference to FIGS.
図10に示すセメント系結合材の供試体11は、混入した材料の種類に拘わらず、防振ゴム(硬度60度)に比べヤング率Eが15〜40倍と大きく増大し、履歴減衰hが0.25〜0.8倍と低下する傾向を示した。一方、アスファルト系結合材の供試体11は、ヤング率Eは図11に示す防振ゴム(硬度60度)とほぼ同程度であったが、履歴減衰hは1〜3.5倍程度と増大した。
図12に示す供試体11では、弾性範囲であるにも拘わらず履歴減衰h=24.3%と大きい値を示している。
The specimen 11 of the cement-based binder shown in FIG. 10 has a Young's modulus E that is 15 to 40 times larger than that of the anti-vibration rubber (hardness 60 degrees) regardless of the type of the mixed material, and the hysteresis attenuation h is The tendency to decrease to 0.25 to 0.8 times was shown. On the other hand, the specimen 11 of the asphalt-based binder had a Young's modulus E almost the same as that of the vibration-proof rubber (hardness 60 degrees) shown in FIG. 11, but the hysteresis damping h increased to about 1 to 3.5 times. did.
In the specimen 11 shown in FIG. 12, the hysteresis attenuation h = 24.33%, which is a large value in spite of the elastic range.
次に、前記各供試体11のヤング率E及び履歴減衰hの軸ひずみ依存性について言及する。
セメント系結合材の供試体11は、軸ひずみεの増大に伴い、ヤング率Eが低下し履歴減衰hが増加するという傾向が見られた。アスファルト系結合材の供試体11や防振ゴム(硬度60度)の供試体11では、軸ひずみεが増大してもヤング率Eがそれほど低下せず、また履歴減衰hもほぼ横ばいであった。
Next, the axial strain dependence of the Young's modulus E and the hysteresis damping h of each specimen 11 will be described.
The specimen 11 of the cement-based binder showed a tendency that the Young's modulus E decreased and the hysteresis damping h increased as the axial strain ε increased. In the specimen 11 of the asphalt-based binder and the specimen 11 of the vibration-proof rubber (hardness 60 degrees), the Young's modulus E did not decrease so much even when the axial strain ε increased, and the hysteresis attenuation h was almost flat. .
このような結果となった原因としては、以下のことが考えられる。
セメント系結合材の供試体11は、セメントの固化作用によって弾性係数の改善は見られたものの、10レベルのひずみでは既に構造の破壊が生じ、剛性の低下が見られた。
すなわち、弾性範囲ではセメントの固化作用が優位となり、例えばタイヤチップ等のゴムチップ(又は合成樹脂発泡ビーズ;発泡スチロールビーズ等)の弾性に富んだ性質が発揮されていない。
The following can be considered as the cause of such a result.
Although the specimen 11 of the cement-based binder showed an improvement in the elastic modulus due to the solidification action of the cement, the structure was already destroyed at a strain of 10 levels, and the rigidity was reduced.
In other words, the solidification action of cement is dominant in the elastic range, and for example, rubber chips such as tire chips (or synthetic resin foam beads; expanded polystyrene beads, etc.) are not exhibiting the elastic properties.
これに対し、アスファルト系結合材の供試体11は、10レベルの変形に対してもさほど大きなヤング率Eの低下が見られず、非常に大きな軸ひずみεの範囲においても弾性的な性質を示した。 On the other hand, the specimen 11 of the asphalt-based binder does not show a significant decrease in Young's modulus E even with 10 levels of deformation, and exhibits an elastic property even within a very large range of axial strain ε. It was.
また、履歴減衰hは、防振ゴム(硬度60度)の供試体11に比べてほぼ同じ若しくは数倍大きくなっていた。これは、アスファルト自体が粘性に富んだ材料であり、これを結合材に用いた場合、ゴムチップの弾力性や粘りの性質を損なわせることなく発揮させることができるためこのような傾向が見られたと考えられる。結合材に種類の異なるアスファルトを用いることで、履歴減衰hの増大やヤング率Eの調整を図ることが可能であることが理解される。 Further, the hysteresis attenuation h was substantially the same or several times larger than that of the specimen 11 of the vibration-proof rubber (hardness 60 degrees). This is because the asphalt itself is a highly viscous material, and when used as a binder, this tendency was seen because it can be exhibited without damaging the elasticity and stickiness of the rubber chip. Conceivable. It is understood that the hysteresis damping h can be increased and the Young's modulus E can be adjusted by using different types of asphalt for the binder.
次に、図13、図14を参照して本実施例に係る振動低減材1を実際に地盤5内に設置した場合にどの程度の振動低減効果があるのかを把握するための解析について説明する。
本実施例に係る解析は、図13に示す重複反射理論を用い、図14に示す解析モデルにより行った。なお、この実施例で行った解析は、半無限の長さで地盤改良を行った場合を想定しているため、波の回折による影響や距離による減衰は考慮していない。また、図14に示す解析モデルにおいては、図1−1に示す建築物密接型の地盤改良を想定したものとし、振動低減材1の厚さHは実際の施工条件を考慮して0.5m、1mの2ケースとした。
Next, with reference to FIG. 13 and FIG. 14, an analysis for grasping how much vibration reduction effect is obtained when the vibration reducing material 1 according to the present embodiment is actually installed in the ground 5 will be described. .
The analysis according to this example was performed using the double reflection theory shown in FIG. 13 and the analysis model shown in FIG. In addition, since the analysis performed in this Example assumes the case where the ground is improved with a semi-infinite length, the influence of wave diffraction and attenuation due to distance are not taken into consideration. Further, in the analysis model shown in FIG. 14, it is assumed that the building close-type ground improvement shown in FIG. 1-1 is assumed, and the thickness H of the vibration reducing material 1 is 0.5 m in consideration of actual construction conditions. Two cases of 1 m were used.
本実施例に係る解析において、波動の透過損失の評価は、下記数3により行った。数3において、β:透過損失レベル、τ 1 :発生した波の加速度振幅、τ 2 :建築物に透過した波の加速度振幅である。 In the analysis according to this example, the wave transmission loss was evaluated by the following equation (3). In Equation 3, β: transmission loss level, τ 1 : generated wave acceleration amplitude, τ 2 : wave acceleration amplitude transmitted through the building.
振動源と建築物間に位置する地盤5は、N値が10、せん断波速度Vs=200m/s、γ=18kN/mと想定したものであるが、初期せん断剛性G、せん断波速度Vs、砂地盤の質量密度は下記数4、数5、数6を用いて算出した。数4、数5、数6において、G:初期せん断剛性、N:標準貫入試験によるN値、ρ:砂地盤の質量密度、γ:砂地盤の単位体積重量である。 The ground 5 located between the vibration source and the building is assumed to have an N value of 10, shear wave velocity Vs = 200 m / s, and γ = 18 kN / m, but initial shear stiffness G, shear wave velocity Vs, The mass density of the sand ground was calculated using the following equations (4), (5), and (6). In Equations 4, 5, and 6, G: initial shear stiffness, N: N value by standard penetration test, ρ: mass density of sand ground, and γ: unit volume weight of sand ground.
次に、本実施例に係る解析結果について説明する。
セメント系結合材、防振ゴム(硬度60度)、アスファルト系結合材を使用した振動低減材1の解析結果(周波数−加速度レベル特性)の一例を図15、図16及び図17に示す。
Next, analysis results according to the present embodiment will be described.
Examples of analysis results (frequency-acceleration level characteristics) of the vibration reducing material 1 using cement-based binder, vibration-proof rubber (hardness 60 degrees), and asphalt-based binder are shown in FIG. 15, FIG. 16, and FIG.
図15乃至図17において、各破線部分は計算から直接得られた結果であるが、実効値としては平均的な値による評価が妥当と考えられる。そこで山と谷の部分を区切り、透過損失レベルを平均値として求め、図15乃至図17において、実線で表している。 15 to 17, each broken line portion is a result obtained directly from the calculation, but it is considered that an evaluation based on an average value is appropriate as an effective value. Therefore, the peak and valley portions are separated, and the transmission loss level is obtained as an average value, and is represented by a solid line in FIGS.
上述した3種の解析結果を特に地下鉄線路の電車走行等で騒音が問題となる固体音振動数域の振動数として8〜125Hzの振動数域(図15乃至図17において領域Aで示す)に着目して比較すると、セメント系結合材の振動低減材1は、厚さ0.5m、1.0mのいずれの振動低減材1もほぼゼロ付近で横ばいに推移しているため、特に振動の低減効果が得られない部材と考えられる。 The three types of analysis results described above are applied to a frequency range of 8 to 125 Hz (indicated by a region A in FIGS. 15 to 17) as a frequency of a solid sound frequency range in which noise is a problem particularly when traveling on a subway train . When compared with a focus, the vibration reducing material 1 of the cement-based binder is particularly low in vibration because both the vibration reducing materials 1 having a thickness of 0.5 m and 1.0 m are almost flat near zero. It is considered that the member is not effective.
これに対し、アスファルト系結合材の振動低減材1は、平均して2dBから9dB程度の透過損失を示した。これは、従来から振動低減対策として用いられている防振ゴム(硬度60度)の場合と比較し、周波数−加速度レベル特性に関して略同等若しくはそれ以上の振動低減効果を発揮することを意味するものである。
従って、振動・固体音、騒音の低減に対して最も効果があると考えられる部材は、例えばタイヤチップ等のゴムチップの弾力のある材料と結合材としてのアスファルトとを組み合わせた振動低減材1であることが判明した。
On the other hand, the vibration reducing material 1 of the asphalt-based binder showed an average transmission loss of about 2 dB to 9 dB. This means that the vibration-reducing rubber (60 degrees hardness), which has been used as a vibration reduction measure in the past, exhibits a vibration reduction effect that is substantially equal to or greater than the frequency-acceleration level characteristic. It is.
Therefore, the member that is considered to be most effective for reducing vibration, solid sound, and noise is the vibration reducing material 1 that combines a resilient material such as a rubber chip such as a tire chip and asphalt as a binder. It has been found.
図18は、図4に示した本実施例に係る4種類の配合が異なる振動低減材を用いて形成した振動低減材1(配合No.A−1、配合No.A−2、配合No.AE−1、配合No.AE−2)と、3種類のセメント系結合材の振動低減材1(配合No.B−1、配合No.B−2、配合No.B−3)と、5種類のゴム系の結合材の振動低減材1についてのヤング率E、砂地盤の質量密度ρ、振動減衰hの試験結果を示すものである。 18 shows a vibration reducing material 1 (compound No. A-1, blend No. A-2, blend no. AE-1, blending No. AE-2), vibration reducing material 1 (mixing No. B-1, blending No. B-2, blending No. B-3) of three types of cementitious binders, 5 The test results of Young's modulus E, sand ground mass density ρ, and vibration damping h for the vibration-reducing material 1 of various types of rubber-based binder are shown.
本実施例の配合No.A−1、配合No.A−2、配合No.AE−1、配合No.AE−2の各振動低減材1は、いずれも3種類のセメント系結合材の振動低減材1や5種類のゴム系の結合材の振動低減材1に比較し、振動減衰hの値は約2倍乃至13倍の範囲であり、優れた振動低減性能を発揮することが明らかになった。 In this example, the formulation No. A-1, Formulation No. A-2, Formulation No. AE-1, Formulation No. Each of the vibration reducing materials 1 of AE-2 has a vibration damping h value of about 3 as compared with the vibration reducing material 1 of three types of cement-based binders and the vibration reducing material 1 of five types of rubber-based binders. It has become clear that it is in the range of 2 to 13 times and exhibits excellent vibration reduction performance.
図19乃至図22は、前記配合No.AE−2の振動低減材1についての軸ひずみε−応力の動的特性(周波数−応力特性)の夫々試験結果を示すものである。この場合には、特に地下鉄線路の電車走行等で騒音が問題となる固体音振動数域に含まれる振動数として0.1Hz、1.0Hz、5Hz、10Hzの4種類について動的特性を求めた。図19乃至図22から明らかなように、特に固体音領域の振動数5Hz、10Hzの場合において振動減衰hの値が22(%)、25(%)と高い値を示し、優れた振動低減性能を発揮することが明らかになった。 19 to FIG. The test result of the dynamic characteristic (frequency-stress characteristic) of axial strain (epsilon) -stress about the vibration reduction material 1 of AE-2 is shown, respectively. In this case, dynamic characteristics were obtained for four types of frequencies of 0.1 Hz, 1.0 Hz, 5 Hz, and 10 Hz as frequencies included in the solid sound frequency range in which noise is a problem particularly when traveling on a subway train . . As is apparent from FIGS. 19 to 22, the vibration attenuation h is a high value of 22 (%) and 25 (%) especially in the case of frequencies 5 Hz and 10 Hz in the solid sound region, and excellent vibration reduction performance. It became clear to demonstrate.
以上の解析結果から、セメント系結合材の振動低減材1は、弾性範囲内ではセメントの固化作用によりゴム材等の弾性に富んだ性質を活用できない。これに対し、アスファルト結合材の振動低減材1は、例えばタイヤチップ等のゴムチップのような弾性材の弾性力や粘りの性質を十分活用し、履歴減衰hの増大やヤング率Eの調整を図ることができる。 From the above analysis results, the vibration reducing material 1 of the cement-based binder cannot use the elastic rich properties of the rubber material or the like within the elastic range due to the solidification action of the cement. On the other hand, the vibration reducing material 1 of asphalt bonding material makes full use of the elastic force and stickiness properties of an elastic material such as a rubber chip such as a tire chip to increase the hysteresis damping h and adjust the Young's modulus E. be able to.
また、セメント系結合材の振動低減材1は、特に振動低減効果がないと考えられるが、アスファルト結合材の振動低減材1は、ゴム板等を使用する振動低減材1による振動低減性能に比べ同等若しくはそれ以上の効果を発揮させることができ、また、固体音振動数領域の振動による固体音防止・騒音防止にはゴムチップをベースとし結合材としてアスファルトを用いた振動低減材1が極めて有効であることが判明した。 Further, the vibration reducing material 1 of the cement-based binder is considered not to have a vibration reducing effect in particular, but the vibration reducing material 1 of the asphalt binder is compared with the vibration reducing performance of the vibration reducing material 1 using a rubber plate or the like. The vibration reducing material 1 that uses asphalt as a binder based on a rubber chip can be very effective for preventing solid noise and noise caused by vibration in the solid sound frequency range. It turned out to be.
このような本実施例に係る振動低減材1を用いて施工される振動伝達低減工法によれば、既述したような優れた履歴減衰特性を発揮する各振動低減材1によって、地下鉄路線2における地下電車3の走行に伴って発生する振動の建築物6への伝達を大幅に低減させ、建築物6の居住環境の快適性を高めることが可能となる。 According to the vibration transmission reducing method constructed using the vibration reducing material 1 according to this embodiment, each vibration reducing material 1 exhibiting excellent hysteresis damping characteristics as described above can be used in the subway line 2. It is possible to greatly reduce the transmission of vibrations generated by the traveling of the underground train 3 to the building 6 and to improve the comfort of the living environment of the building 6.
本発明は、上述したような地下鉄路線の付近に適用する場合の他、交通振動を発生する地上の幹線道路、鉄道路線や、高速道路構造物等の付近における振動低減対策用としても適用可能である。 The present invention can be applied not only to the vicinity of subway lines as described above, but also to vibration reduction measures in the vicinity of ground trunk roads, railway lines, highway structures, etc. that generate traffic vibrations. is there.
1 振動低減材
2 地下鉄路線
3 地下電車
3’ 地上鉄道
5 地盤
6 建築物
10 振動三軸試験機
11 供試体
12 LDT
13 ビュレット
14 荷重計
15 変位計
16 微小変位計
17 間隙水圧計
18 載荷ピストン
DESCRIPTION OF SYMBOLS 1 Vibration reduction material 2 Subway line 3 Underground train 3 'Ground railway 5 Ground 6 Building 10 Vibration triaxial testing machine 11 Specimen 12 LDT
13 Burette 14 Load meter 15 Displacement meter 16 Minute displacement meter 17 Pore water pressure meter 18 Loading piston
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004188837A JP4805554B2 (en) | 2004-06-25 | 2004-06-25 | Vibration reducing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004188837A JP4805554B2 (en) | 2004-06-25 | 2004-06-25 | Vibration reducing material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006008455A JP2006008455A (en) | 2006-01-12 |
JP4805554B2 true JP4805554B2 (en) | 2011-11-02 |
Family
ID=35776103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004188837A Expired - Lifetime JP4805554B2 (en) | 2004-06-25 | 2004-06-25 | Vibration reducing material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4805554B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007126892A (en) * | 2005-11-04 | 2007-05-24 | Teruyuki Tsunabuchi | Hollow construction |
JP2008106552A (en) * | 2006-10-26 | 2008-05-08 | Jsp Corp | Method of constructing underground vibration isolation wall |
JP5072347B2 (en) * | 2006-12-27 | 2012-11-14 | 東亜道路工業株式会社 | Injection chemical composition for seismic isolation of underground structures and seismic isolation method using the same |
JP2010001668A (en) * | 2008-06-20 | 2010-01-07 | Kumagai Gumi Co Ltd | Ground vibration transmission suppressing system |
JP6592226B2 (en) * | 2013-01-31 | 2019-10-16 | 株式会社竹中工務店 | Construction method of vibration isolation structure |
CN104743964A (en) * | 2015-03-05 | 2015-07-01 | 国家电网公司 | Sound absorbing and noise reducing material and transformer vibration isolating and noise reducing device |
CN109972668B (en) * | 2019-03-29 | 2024-05-14 | 北京市劳动保护科学研究所 | Vibration isolation barrier for isolating building vibration caused by subway, preparation method and system |
JP7455774B2 (en) | 2021-03-22 | 2024-03-26 | カネカフォームプラスチックス株式会社 | Anti-vibration structure of buildings |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57167360A (en) * | 1981-04-08 | 1982-10-15 | Kuraray Co Ltd | Vibration-damping paint |
JPS5842650A (en) * | 1981-09-05 | 1983-03-12 | Mitsubishi Motors Corp | Soundproofing material containing polyurethane material blended therewith |
JPH0665620B2 (en) * | 1986-12-18 | 1994-08-24 | 日本特殊塗料株式会社 | Vibration control sheet for vehicles |
JP2607383B2 (en) * | 1988-08-11 | 1997-05-07 | 昭和シェル石油株式会社 | Asphalt vibration damping material |
JPH0719282A (en) * | 1993-06-30 | 1995-01-20 | Bridgestone Corp | Vibration insulating noise absorbing body |
JPH07269648A (en) * | 1994-03-28 | 1995-10-20 | M R C Du Pont Kk | Vibration controlling material |
JPH08135844A (en) * | 1994-11-08 | 1996-05-31 | Asahi Chem Ind Co Ltd | Buried pipe propulsion construction method |
JPH08183648A (en) * | 1994-12-28 | 1996-07-16 | Toyota Motor Corp | Industrial material |
JPH0977545A (en) * | 1995-09-18 | 1997-03-25 | Bridgestone Corp | Elastic body composition |
JPH09310531A (en) * | 1996-05-23 | 1997-12-02 | Shimizu Corp | Vibration-control device with limited damping force |
JPH10227154A (en) * | 1997-02-14 | 1998-08-25 | Kumagai Gumi Co Ltd | Vibration-isolation material and vibration isolating structure |
JPH11180748A (en) * | 1997-09-30 | 1999-07-06 | Nichireki Co Ltd | Method for utilizing grubbing material and cold mixture for elastic pavement body utilizing grubbing material |
JP4272293B2 (en) * | 1998-03-18 | 2009-06-03 | 北川辺町 | Normal temperature mixture for elastic pavement and elastic pavement using the same |
JP2000007922A (en) * | 1998-06-19 | 2000-01-11 | Nippon Tokushu Toryo Co Ltd | Asphalt-based low specific gravity vibration-damping material and damping vibration |
JP2001247744A (en) * | 2000-03-06 | 2001-09-11 | Ethylene Chem Kk | Emulsion type damping material composition |
JP2002308658A (en) * | 2001-02-05 | 2002-10-23 | Tomio Ushida | Decorative block |
-
2004
- 2004-06-25 JP JP2004188837A patent/JP4805554B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006008455A (en) | 2006-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fathali et al. | Influence of tire-derived aggregates on the properties of railway ballast material | |
Thompson et al. | Mitigation of railway-induced vibration by using subgrade stiffening | |
Praticò et al. | Trends and issues in mitigating traffic noise through quiet pavements | |
JP4805554B2 (en) | Vibration reducing material | |
Chen et al. | Dynamic vertical displacement for ballastless track-subgrade system under high-speed train moving loads | |
Heckman et al. | Vibrations associated with pile driving | |
Hajek et al. | Mitigation of highway traffic-induced vibration | |
Luo et al. | Performance evaluation of open-graded epoxy asphalt concrete with two nominal maximum aggregate sizes | |
JP5747458B2 (en) | Ground displacement absorption isolation structure | |
Hildebrand | Countermeasures against railway ground and track vibrations | |
Zhang et al. | A parametric study on factors affecting ground vibrations during pile driving through finite element simulations | |
Fernández-Ruiz et al. | Concrete wave barriers to mitigate ground vibrations induced by railway traffic: a three-dimensional numerical study | |
Esmaeili et al. | Reducing slab track vibrations by using asphalt concrete in the substructure | |
Coulier et al. | Numerical and experimental study of stiff wave barriers for the mitigation of railway induced vibrations | |
Jiang et al. | The influence of soil conditions on railway induced ground-borne vibration and relevant mitigation measures | |
Zhao et al. | Viability analysis of waste tires as material for rail vibration and noise control in modern tram track systems | |
Praticò et al. | Low-noise road mixtures for electric vehicles | |
Bernal-Sanchez et al. | Dynamic behaviour of a geotechnical seismic isolation system with rubber-sand mixtures to enhance seismic protection | |
Lee et al. | Evaluation of optimum rubblized depth to prevent reflection cracks | |
Lu et al. | Effects of the canyon topography on railway environment vibrations | |
JP7443133B2 (en) | Rubber composition for seismic damper, method for producing the same, and seismic damper | |
Fujii et al. | Propagation properties of train-induced vibration from tunnels | |
Kim et al. | Ground vibration reduction technology using high damping polymer concrete | |
Toward et al. | Mitigation of railway induced vibrations by using subgrade stiffening and wave impeding blocks | |
Fojtík et al. | Dynamic experimental analysis of a steel bridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110404 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110624 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110712 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110811 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4805554 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |