JPH10227154A - Vibration-isolation material and vibration isolating structure - Google Patents

Vibration-isolation material and vibration isolating structure

Info

Publication number
JPH10227154A
JPH10227154A JP4487397A JP4487397A JPH10227154A JP H10227154 A JPH10227154 A JP H10227154A JP 4487397 A JP4487397 A JP 4487397A JP 4487397 A JP4487397 A JP 4487397A JP H10227154 A JPH10227154 A JP H10227154A
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation material
asphalt
particles
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4487397A
Other languages
Japanese (ja)
Inventor
Toshihiro Mori
利弘 森
Norio Watanabe
則雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP4487397A priority Critical patent/JPH10227154A/en
Publication of JPH10227154A publication Critical patent/JPH10227154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure sufficient attenuation performance by supporting many rubber particles or sand particles that are adhered with mutual voids interven ing, using asphalt as a binder, beneath a structure or in the ground below it. SOLUTION: It is preferable to support a structure 12 on the ground 14 by placing beneath the structure 12 and to form multiple columnar or cylindrical bodies in the vertical direction. Therefore, individual vibration-isolation material 10 receive greater vertical load per unit area than flat vibration-isolation material, and exhibit better vibration-isolation effect. In such case, the vibration- isolation material 10 is made of many rubber particles that are adhered with voids intervening, using asphalt as a binder, or many rubber particles and many sand particles. And whole or part of the circumferenetial face of each particle is thinly covered, asphalt that binds the particles attenuates earthquake energy inputted into the vibration-isolation material 10 and reduces the input acceleration of the earthquake into the structure 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は構造物の免震のため
に用いられる免震材および構造物の免震構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation material used for seismic isolation of a structure and a seismic isolation structure of the structure.

【0002】[0002]

【従来の技術】従来、アスファルトで被覆された砂粒子
からなる免震材と、前記アスファルトで被覆された多数
の砂粒子を構造物の直下に敷きつめ該構造物を支持する
免震構造とが提案されている(特開平3−33527
号)。
2. Description of the Related Art Conventionally, a seismic isolation material made of sand particles covered with asphalt and a seismic isolation structure in which a large number of sand particles covered with the asphalt are laid directly under a structure to support the structure have been proposed. (Japanese Unexamined Patent Application Publication No. 3-33527).
issue).

【0003】[0003]

【発明が解決しようとする課題】前記従来の免震材およ
びこれを用いた免震構造にあっては、アスファルトで覆
われた砂がその剛性をもって構造物を支持し、また、前
記アスファルトがこれに入力する地震エネルギを減衰す
る機能を担う。
In the conventional seismic isolation material and the seismic isolation structure using the same, the sand covered with asphalt supports the structure with its rigidity, and the asphalt supports the structure. It has the function of attenuating the seismic energy input to the system.

【0004】ところで、このような免震材が十分な減衰
性能を発揮するための条件が知られている。すなわち、
免震材が有する固有の振動周期の大きさが、該免震材に
入力する地震の振動周期の大きさより大きいという条件
である。この点、砂粒子とこれを覆うアスファルトとか
らなる前記従来の免震材にあっては、該免震材の大部分
を砂粒子が占めているためにその剛性が比較的高く、前
記免震材の固有振動周期の大きさは地震の振動周期より
小さい。このため、前記従来の免震材を用いた免震構造
にあっては十分な減衰性能が発揮されない。
[0004] By the way, conditions for such a seismic isolation material to exhibit sufficient damping performance are known. That is,
The condition is that the magnitude of the inherent vibration cycle of the seismic isolation material is greater than the magnitude of the vibration cycle of the earthquake input to the seismic isolation material. In this respect, in the conventional seismic isolation material including sand particles and asphalt covering the same, the rigidity thereof is relatively high because most of the seismic isolation material is occupied by sand particles, The magnitude of the natural vibration period of the material is smaller than the vibration period of the earthquake. For this reason, the conventional seismic isolation structure using the seismic isolation material does not exhibit sufficient damping performance.

【0005】本発明の目的は、減衰性能をより効果的に
発揮する免震材および免震構造を提供することにある。
An object of the present invention is to provide a seismic isolation material and a seismic isolation structure that exhibit more effective damping performance.

【0006】[0006]

【課題を解決するための手段】本発明に係る免震材は、
アスファルトをバインダとして互いに空隙をおいて接着
された多数のゴム粒子または多数のゴム粒子と多数の砂
粒子とを含む。
According to the present invention, there is provided a seismic isolation material comprising:
It includes a large number of rubber particles or a large number of rubber particles and a large number of sand particles bonded to each other with a gap therebetween using asphalt as a binder.

【0007】前記免震材は、構造物の直下で該構造物を
支持するように、または、構造物の下方の地盤中に設置
される。いずれの場合も、前記免震材は平板状を呈する
もの、また、特に前記構造物の直下に設置される免震材
は複数の円柱体または円筒体からなるものとすることが
できる。
[0007] The seismic isolation material is installed so as to support the structure directly below the structure or in the ground below the structure. In any case, the seismic isolation member may have a flat plate shape, and particularly, the seismic isolation member installed immediately below the structure may include a plurality of cylinders or cylinders.

【0008】[0008]

【発明の作用および効果】本発明によれば、免震材中の
多数のゴム粒子のバインダであるアスファルト成分が地
震エネルギの減衰機能を担う。この免震材にあっては、
前記アスファルトによる接着対象が弾性体である多数の
ゴム粒子であること、および、前記多数のゴム粒子相互
間に該粒子の移動または変形を許す空隙が存することか
ら、その剛性は前記従来の免震材と比べて小さい。ま
た、この低剛性により、免震材の固有振動周期の大きさ
を地震周期より大きいものに設定することができる。こ
のことから、本発明の免震材およびこれを用いた免震構
造においては、前記免震材の減衰性能が十分にまた効果
的に発揮される。
According to the present invention, the asphalt component, which is a binder of a large number of rubber particles in the seismic isolation material, has a function of damping seismic energy. In this seismic isolation material,
Since the asphalt-bonded object is a large number of rubber particles that are elastic, and there is a gap between the large number of rubber particles that allows the movement or deformation of the particles, the rigidity of the asphalt is the same as that of the conventional seismic isolation. Smaller than wood. Also, due to this low rigidity, the magnitude of the natural vibration cycle of the seismic isolation material can be set to be larger than the earthquake cycle. For this reason, in the seismic isolation material of the present invention and the seismic isolation structure using the same, the damping performance of the seismic isolation material is sufficiently and effectively exhibited.

【0009】また、免震材が前記ゴム粒子の外に前記ア
スファルトにより互いに空隙をおいて接着された多数の
砂粒子を含むものとすることにより、免震材の前記減衰
性能の低下を最小限に抑えかつその剛性を高めることす
なわち構造物に対する支持力を高めることができる。こ
れにより、重量の大きい構造物をも免震対象とすること
ができる。
In addition, the seismic isolation material includes a large number of sand particles bonded to each other with a gap between the rubber particles and the asphalt, thereby minimizing the deterioration of the damping performance of the seismic isolation material. In addition, it is possible to increase the rigidity, that is, to increase the supporting force for the structure. As a result, even a heavy structure can be subjected to seismic isolation.

【0010】前記免震材は前記構造物の直下に配置し、
該免震材で前記構造物を地盤上に支持することができ
る。前記免震材は、地盤上に敷き均された平板状のもの
とすることができるが、好ましくは例えば上下方向に伸
びる複数の円柱体または円筒体とする。これによれば、
個々の免震材は前記平板状のものに比べて単位面積当た
り大きい垂直荷重を受け、より優れた免震効果を発揮す
る。また、平板状の免震材を前記構造物下の地盤中に配
置するときは、該免震材は前記構造物の重量のほかに該
構造物と前記免震材との間の地盤の重量を担うことか
ら、前記平板状の免震材を構造物の直下に配置する場合
と比べて、より優れた免震効果を発揮する。
[0010] The seismic isolation material is disposed immediately below the structure,
The structure can be supported on the ground by the seismic isolation material. The seismic isolation member may be a flat plate spread on the ground, but preferably, for example, a plurality of cylinders or cylinders extending in the vertical direction. According to this,
Each of the seismic isolation members receives a greater vertical load per unit area than the above-mentioned plate-shaped one, and exerts a superior seismic isolation effect. Further, when a flat-shaped seismic isolator is placed in the ground below the structure, the seismic isolator is not only the weight of the structure but also the weight of the ground between the structure and the seismic isolator. Therefore, a superior seismic isolation effect is exhibited as compared with a case where the flat seismic isolation member is disposed immediately below a structure.

【0011】[0011]

【発明の実施の形態】本発明に係る免震材10は、図1
〜図4に示すように、建築物のような構造物12を直接
に支持すべく該構造物の直下に配置され、あるいは、図
5に示すように、構造物12の下方の地盤14中に配置
され、このような配置構造が構造物12のための免震構
造をなす。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A seismic isolation material 10 according to the present invention is shown in FIG.
As shown in FIG. 4, it is disposed directly below the structure 12 to directly support the structure 12 such as a building, or as shown in FIG. 5, in the ground 14 below the structure 12. It is arranged, and such an arrangement structure forms a seismic isolation structure for the structure 12.

【0012】図1および図2に示す免震材10は全体に
上端開放の箱状体からなり、その開放上端が地表面に開
放している。構造物12は、その底部において、免震材
10の箱状空間内に受け入れられている。免震材10
は、地盤14が比較的良質であるときは、例えば掘削さ
れた地盤上に割栗石16(図1)上に、あるいは、掘削
された地盤上(図3)上に直接に設置することができ
る。また、地盤14が軟弱であるときは、予め改良され
た地盤17上に配置する。
The seismic isolation member 10 shown in FIGS. 1 and 2 is formed entirely of a box-like body having an open upper end, and the open upper end is open to the ground surface. The structure 12 is received at its bottom in the box-shaped space of the seismic isolation material 10. Seismic isolation material 10
When the ground 14 is of relatively good quality, it can be installed, for example, on the excavated ground, on the split stone 16 (FIG. 1), or directly on the excavated ground (FIG. 3). . When the ground 14 is soft, it is arranged on the ground 17 which has been improved in advance.

【0013】また、図3および図4に示す免震材10
は、上下方向へ伸びる円柱体すなわち円柱状の形態を有
するものからなり、その複数個が水平方向に互いに間隔
をおいて配置されている。各円柱体はその上下両端面に
おいて構造物12および地盤14にそれぞれ接してい
る。前記円柱体に代えて、円筒体(好ましくは厚肉の円
筒体)、角柱体等とすることができる。
The seismic isolation material 10 shown in FIGS.
Has a columnar shape extending in the vertical direction, that is, a columnar shape, and a plurality of them are arranged at intervals in the horizontal direction. Each cylindrical body is in contact with the structure 12 and the ground 14 at both upper and lower end surfaces thereof. Instead of the cylinder, a cylinder (preferably a thick cylinder), a prism, or the like can be used.

【0014】さらに、図5に示す免震材10は、平板体
すなわち平板状に水平に伸びるものからなる。
Further, the seismic isolation member 10 shown in FIG. 5 is made of a flat plate, that is, a plate extending horizontally.

【0015】各図に示す免震材10は、アスファルト1
8をバインダとして互いに空隙20をおいて接着された
多数のゴム粒子22(図6参照)、あるいは、アスファ
ルト18をバインダとして互いに空隙20をおいて接着
された多数のゴム粒子22と多数の砂粒子24とからな
る。
The seismic isolation material 10 shown in each figure is made of asphalt 1
A large number of rubber particles 22 (see FIG. 6) bonded to each other with a gap 20 using the binder 8 as a binder, or a large number of rubber particles 22 and a large number of sand particles bonded together with a gap 20 using the asphalt 18 as a binder 24.

【0016】各粒子22,24の周面の全部またはその
一部を薄く覆いかつこれらの粒子を互いにつなぐアスフ
ァルト18は、地震時、免震材10に入力する地震エネ
ルギを減衰する作用をなす。これにより、構造物12へ
の地震の入力加速度が低減される。
The asphalt 18 covering the whole or a part of the peripheral surface of each of the particles 22 and 24 and connecting these particles to each other acts to attenuate the seismic energy input to the seismic isolation member 10 during an earthquake. Thereby, the input acceleration of the earthquake to the structure 12 is reduced.

【0017】図6に示す免震材10にあっては、ゴム粒
子22自体が弾性を有し、また、免震材10に外力(地
震力)が作用するときにゴム粒子22相互間の空隙20
が該ゴム粒子の移動またはその変形を許す構造を有する
ことから、免震材10全体としての剛性は比較的小さ
い。このため、免震材10の固有の振動周期について、
地震の振動周期より大きいものに設定することができ
る。この大きい固有振動周期のため、アスファルト18
の減衰能力が十分に発揮され、構造物12に対する地震
の入力加速度の大幅な低減を実現することができる。
In the seismic isolation member 10 shown in FIG. 6, the rubber particles 22 themselves have elasticity, and the gap between the rubber particles 22 when an external force (seismic force) acts on the seismic isolation member 10 is shown. 20
Has a structure that allows the rubber particles to move or deform, and therefore the rigidity of the seismic isolation member 10 as a whole is relatively small. For this reason, regarding the inherent vibration period of the seismic isolation material 10,
It can be set to be larger than the vibration cycle of the earthquake. Because of this large natural frequency, asphalt 18
Is sufficiently exhibited, and the input acceleration of the earthquake to the structure 12 can be significantly reduced.

【0018】このことは、ゴム粒子22のほかに砂粒子
24を含む図7の免震材10においても同様である。図
7に示す免震材10にあっては、砂粒子24が非弾性材
料であることから、図6に示す免震材10より剛性が高
い。しかし、この剛性の増大は、前記免震材の固有振動
周期を著しく低下させるものではなく、ゴム粒子22の
存在により、前記固有振動数は、依然として、地震の振
動周期より大きいものに維持される。図7の免震材10
は、図6の免震材10が有する剛性を以ては支持するこ
とが困難であるような重量を有する構造物に適用するこ
とができる。
The same applies to the seismic isolation member 10 shown in FIG. 7 including the sand particles 24 in addition to the rubber particles 22. The seismic isolation member 10 shown in FIG. 7 has higher rigidity than the seismic isolation member 10 shown in FIG. 6 because the sand particles 24 are an inelastic material. However, this increase in stiffness does not significantly reduce the natural frequency of the seismic isolation material. Due to the presence of the rubber particles 22, the natural frequency is still maintained at a value larger than the frequency of the earthquake. . Seismic isolation material 10 in FIG.
Can be applied to a structure having a weight that is difficult to support with the rigidity of the seismic isolation member 10 of FIG.

【0019】ゴム粒子22はチップ状または粉末状を呈
する。ゴムチップおよびゴム粉末の形状は、それぞれ、
細長いもの、丸いもの、角張ったもの等、任意に選択す
ることができる。ゴム粒子22は、例えば、ゴムタイヤ
の廃材から得ることができる。
The rubber particles 22 have a chip shape or a powder shape. The shapes of the rubber chip and rubber powder are
It can be arbitrarily selected from an elongated one, a round one, a square one, and the like. The rubber particles 22 can be obtained, for example, from waste rubber tires.

【0020】免震材10は、アスファルト乳剤、該アス
ファルト乳剤を固化させるための固化剤(例えば、セメ
ント、ポリウレタン樹脂液)および分散剤(前記固化剤
の凝集を防ぐ目的で用いられる。)の混合液に多数のゴ
ム粒子を加え、混合してなる混合物(便宜上、「混合物
A」という。)、または、混合物Aにさらに多数の砂粒
子を加え、混合してなる混合物(便宜上、「混合物B」
という。)を現場で適当な厚さに板状に敷き均して、あ
るいは、工場で適当な形状に成形して得ることができ
る。図1、2および図5に示す免震材10は前者、すな
わち現場施工されたものであり、また、図3および4に
示す免震材10は後者の工場生産によるものである。
The seismic isolation material 10 is a mixture of an asphalt emulsion, a solidifying agent for solidifying the asphalt emulsion (for example, cement or polyurethane resin liquid), and a dispersing agent (used for preventing the solidifying agent from agglomerating). A mixture obtained by adding and mixing a large number of rubber particles to a liquid (for convenience, referred to as “mixture A”), or a mixture obtained by adding and mixing a large number of sand particles to the mixture A (for convenience, “mixture B”)
That. ) Can be obtained by spreading them in a plate shape at an appropriate thickness in the field, or forming them into an appropriate shape at a factory. The seismic isolation material 10 shown in FIGS. 1, 2 and 5 is the former, that is, the one that was constructed on site, and the seismic isolation material 10 shown in FIGS.

【0021】前記混合物Aと前記混合物Bの一例を以下
に示す。
An example of the mixture A and the mixture B is shown below.

【0022】前記混合物Aは、前記ゴム粒子が1.41〜3.
36mmの粒径を有するゴムチップからなり、前記アスファ
ルト乳剤がベースアスファルトの針入度が 60/80である
アスファルト乳剤からなり、また、固化剤が普通ポルト
ランドセメントからなる。混合物Aの成分重量比は、4
(ゴム粒子): 1.5(アスファルト乳剤): 0.5(固化
剤)である。
In the mixture A, the rubber particles are 1.41 to 3.
It is composed of rubber chips having a particle size of 36 mm, the asphalt emulsion is composed of an asphalt emulsion having a base asphalt penetration of 60/80, and the solidifying agent is usually composed of Portland cement. The weight ratio of the components of the mixture A is 4
(Rubber particles): 1.5 (asphalt emulsion): 0.5 (solidifying agent).

【0023】前記混合物Bは、混合物Aにおけると同様
のゴム粒子、アスファルト乳剤および固化剤と、豊浦砂
からなる砂粒子とからなる。混合物Bの成分重量比は、
4(ゴム粒子): 1.5(アスファルト乳剤): 0.5(固
化剤):4(砂粒子)である。
The mixture B comprises the same rubber particles, asphalt emulsion and solidifying agent as in the mixture A, and sand particles composed of Toyoura sand. The component weight ratio of mixture B is
4 (rubber particles): 1.5 (asphalt emulsion): 0.5 (solidifying agent): 4 (sand particles).

【0024】前記混合物中のセメントは、前記アスファ
ルト乳剤中の水分と反応して固化し、これに伴って前記
アスファルト乳剤が固化され、アスファルトとなる。前
記ゴム粒子相互、前記ゴム粒子および前記砂粒子相互、
および前記砂粒子相互は前記アスファルトにより結合さ
れる。前記アスファルト乳剤は前記ゴム粒子および前記
砂粒子に比べて量が少なく、その量は、前記ゴム粒子相
互間、前記ゴム粒子と前記砂粒子との間、および、前記
砂粒子相互間を埋めるほどの量ではない。すなわち、前
記アスファルトの量は、前記ゴム粒子および前記砂粒子
の表面の全部または一部を薄く覆う程度の量である。こ
のため、互いに結合された前記粒子間に空隙が生じる。
The cement in the mixture reacts with the water in the asphalt emulsion and solidifies, whereby the asphalt emulsion solidifies to form asphalt. The rubber particles, the rubber particles and the sand particles,
And the sand particles are bound by the asphalt. The amount of the asphalt emulsion is smaller than the rubber particles and the sand particles, and the amount is such that the rubber particles and the sand particles are filled between the rubber particles and the sand particles, and between the sand particles. Not quantity. That is, the amount of the asphalt is an amount such that the whole or a part of the surface of the rubber particles and the sand particles is covered thinly. For this reason, voids are generated between the particles bonded to each other.

【0025】前記混合物Aを成形してなる円柱体(直径
50mmおよび高さ100mm )と、前記混合物Bを成形してな
る円柱体(直径50mmおよび高さ100mm )とを、それぞ
れ、振動三軸試験装置に設置し、前記円柱体からなる試
験体への側圧を一定に保ちかつ前記試験体に対する軸圧
を変動させたところ、図8に示すような試験結果が得ら
れた。この試験結果によれば、本発明に係る免震材は、
混合物Aおよび混合物Bのいずれからなるものも、比較
的小さいひずみの領域から比較的高い減衰効果を発揮す
ることがわかる。
A cylinder (diameter) obtained by molding the mixture A
50 mm and a height of 100 mm) and a cylindrical body (diameter of 50 mm and a height of 100 mm) obtained by molding the mixture B were respectively installed in a vibration triaxial testing apparatus, and a lateral pressure applied to a test body composed of the cylindrical body was measured. Was kept constant and the axial pressure on the test piece was varied, and the test results as shown in FIG. 8 were obtained. According to the test results, the seismic isolation material according to the present invention
It can be seen that both of the mixture A and the mixture B exhibit a relatively high damping effect from a region of relatively small strain.

【0026】なお、前記アスファルト乳剤の固化の程度
は前記セメントの混入量に依存する。すなわち、前記セ
メントの混入量の増大に伴い、前記アスファルト乳剤が
固化したときの硬度すなわちアスファルトの硬度が増大
し、前記アスファルトの減衰能力が低下する。したがっ
て、前記セメントの混入量は、前記アスファルトの減衰
能力を考慮して設定する。また、前記砂粒子の重量が増
大すると、前記免震材の前記ゴム粒子による剛性軽減効
果が減殺される。このことを考慮して、前記砂粒子の量
は、重量比でみて、前記ゴム粒子の重量以下とすること
が望ましい。但し、前記砂粒子の増量によっては、前記
アスファルトの減衰能力は低下しない。
The degree of solidification of the asphalt emulsion depends on the amount of the cement mixed. That is, as the amount of the cement mixed increases, the hardness when the asphalt emulsion is solidified, that is, the hardness of the asphalt increases, and the damping ability of the asphalt decreases. Therefore, the mixing amount of the cement is set in consideration of the damping ability of the asphalt. Further, when the weight of the sand particles increases, the effect of reducing the rigidity of the seismic isolation material by the rubber particles is reduced. In view of this, it is desirable that the amount of the sand particles be equal to or less than the weight of the rubber particles in terms of weight ratio. However, the damping ability of the asphalt does not decrease by increasing the amount of the sand particles.

【0027】本発明の免震材10は、これに及ぼされる
垂直荷重が大きいほど、大きい免震効果すなわち前記減
衰の効果、免震材10への地震入力に伴う該免震材の振
動周期の長期化等が発揮される。
The seismic isolation material 10 of the present invention has a greater seismic isolation effect, that is, the above-described damping effect, as the vertical load applied to the seismic isolation material 10 is larger, and the vibration period of the seismic isolation material 10 accompanying the earthquake input to the seismic isolation material 10 Prolonged operation is exhibited.

【0028】図3および図5に示す免震材10は、この
ことを考慮して配置されている。すなわち、図3に示す
例では、図1に示す例に比べて、個々の免震材は単位面
積当たり大きい垂直荷重を受け、また、図5に示す例で
は、免震材10と構造物12との間に介在する土砂の重
量のために図1に示す例に比べて、免震材10はより大
きい垂直荷重を受ける。
The seismic isolation member 10 shown in FIGS. 3 and 5 is arranged in consideration of this. That is, in the example shown in FIG. 3, the individual seismic isolation members receive a larger vertical load per unit area than in the example shown in FIG. 1, and in the example shown in FIG. The seismic isolation member 10 receives a larger vertical load than the example shown in FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の免震材の配置状態および免震構造の一
例を示す概略図である。
FIG. 1 is a schematic view showing an example of an arrangement state of a seismic isolation material of the present invention and an example of a seismic isolation structure.

【図2】本発明の免震材の配置状態および免震構造の他
の例を示す概略図である。
FIG. 2 is a schematic view showing another example of the arrangement of the seismic isolation material and the seismic isolation structure of the present invention.

【図3】本発明の免震材の配置状態および免震構造のさ
らに他の例を示す概略図である。
FIG. 3 is a schematic view showing still another example of an arrangement state of a seismic isolation material and a seismic isolation structure of the present invention.

【図4】図3に示す複数の免震材の配列例を示す概略図
である。
FIG. 4 is a schematic view showing an example of the arrangement of a plurality of seismic isolation members shown in FIG.

【図5】本発明の免震材の配置状態および免震構造のさ
らに他の例を示す概略図である。
FIG. 5 is a schematic view showing still another example of an arrangement state of a seismic isolation member and a seismic isolation structure of the present invention.

【図6】免震材の構造を示す概略図である。FIG. 6 is a schematic view showing the structure of a seismic isolation material.

【図7】他の例の免震材の構造を示す概略図である。FIG. 7 is a schematic view showing the structure of another example of the seismic isolation material.

【図8】免震材の剛性試験の結果を示すグラフである。FIG. 8 is a graph showing the results of a rigidity test of a seismic isolation material.

【符号の説明】[Explanation of symbols]

10 免震材 12 構造物 14 地盤 18 アスファルト 20 空隙 22 ゴム粒子 24 砂粒子 DESCRIPTION OF SYMBOLS 10 Seismic isolation material 12 Structure 14 Ground 18 Asphalt 20 Void 22 Rubber particles 24 Sand particles

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 構造物下に設置される免震材であって、
アスファルトをバインダとして互いに空隙をおいて接着
された多数のゴム粒子を含む、免震材。
1. A seismic isolation material installed under a structure,
A seismic isolation material containing a large number of rubber particles that are bonded to each other with an air gap using asphalt as a binder.
【請求項2】 さらに、多数の砂粒子を含み、前記ゴム
粒子と前記砂粒子とが前記アスファルトをバインダとし
て互いに空隙をおいて接着されている、請求項1に記載
の免震材。
2. The seismic isolation material according to claim 1, further comprising a large number of sand particles, wherein the rubber particles and the sand particles are bonded to each other with a gap therebetween using the asphalt as a binder.
【請求項3】 構造物の直下に設置され該構造物を支持
する免震材を含み、前記免震材が、アスファルトをバイ
ンダとして互いに空隙をおいて接着された多数のゴム粒
子を含む、免震構造。
3. A seismic isolation material installed immediately below a structure and supporting the structure, wherein the seismic isolation material includes a large number of rubber particles adhered to each other with an air gap using asphalt as a binder. Seismic structure.
【請求項4】 前記免震材がさらに多数の砂粒子を含
み、前記ゴム粒子と前記砂粒子とが前記アスファルトを
バインダとして互いに空隙をおいて接着されている、請
求項3に記載の免震構造。
4. The seismic isolation material according to claim 3, wherein the seismic isolation material further includes a large number of sand particles, and the rubber particles and the sand particles are bonded to each other with the asphalt as a binder with a gap therebetween. Construction.
【請求項5】 構造物の下方の地盤中に設置された免震
材を含み、前記免震材が、アスファルトをバインダとし
て互いに空隙をおいて接着された多数のゴム粒子を含
む、免震構造。
5. A seismic isolation structure including a seismic isolation material installed in the ground below a structure, wherein the seismic isolation material includes a large number of rubber particles bonded to each other with a gap using asphalt as a binder. .
【請求項6】 前記免震材が、さらに、多数の砂粒子を
含み、前記ゴム粒子と前記砂粒子とが前記アスファルト
をバインダとして互いに空隙をおいて接着されている、
請求項5に記載の免震構造。
6. The seismic isolation material further includes a number of sand particles, and the rubber particles and the sand particles are bonded to each other with a gap using the asphalt as a binder.
The seismic isolation structure according to claim 5.
【請求項7】 前記免震材が平板からなる、請求項3ま
たは5に記載の免震構造。
7. The seismic isolation structure according to claim 3, wherein the seismic isolation member is formed of a flat plate.
【請求項8】 前記免震材が、水平方向に互いに間隔を
おいて配置された複数の円柱体からなる、請求項3に記
載の免震構造。
8. The seismic isolation structure according to claim 3, wherein the seismic isolation member is composed of a plurality of cylinders arranged at intervals in the horizontal direction.
【請求項9】 前記免震材が、水平方向に互いに間隔を
おいて配置された複数の円筒体からなる、請求項3に記
載の免震構造。
9. The seismic isolation structure according to claim 3, wherein the seismic isolation member is composed of a plurality of cylinders arranged at intervals in a horizontal direction.
JP4487397A 1997-02-14 1997-02-14 Vibration-isolation material and vibration isolating structure Pending JPH10227154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4487397A JPH10227154A (en) 1997-02-14 1997-02-14 Vibration-isolation material and vibration isolating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4487397A JPH10227154A (en) 1997-02-14 1997-02-14 Vibration-isolation material and vibration isolating structure

Publications (1)

Publication Number Publication Date
JPH10227154A true JPH10227154A (en) 1998-08-25

Family

ID=12703625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4487397A Pending JPH10227154A (en) 1997-02-14 1997-02-14 Vibration-isolation material and vibration isolating structure

Country Status (1)

Country Link
JP (1) JPH10227154A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20010100168A (en) * 2001-03-29 2002-12-02 Συνεργατες Καρυδη Α.Ε. System for anti-seismic protection of constructions using elastic foundations
JP2006008455A (en) * 2004-06-25 2006-01-12 Yakumo Kk Vibration reducing material
JP2007070955A (en) * 2005-09-09 2007-03-22 Toru Fukushima Vibration isolation foundation block
JP2007126892A (en) * 2005-11-04 2007-05-24 Teruyuki Tsunabuchi Hollow construction
JP2008231805A (en) * 2007-03-22 2008-10-02 Chem Grouting Co Ltd Preparation construction method of building foundation
JP2011063992A (en) * 2009-09-17 2011-03-31 Kihara Corporation:Kk Ground base-isolated structure and ground base-isolation method using the same
CN103382725A (en) * 2013-01-22 2013-11-06 刘方成 Geocell reinforced rubber particles-sand mixture compound shock insulation layer and strip
CN112049659A (en) * 2020-09-07 2020-12-08 天地科技股份有限公司 Rock burst roadway bottom plate buffering and damping structure and arrangement method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20010100168A (en) * 2001-03-29 2002-12-02 Συνεργατες Καρυδη Α.Ε. System for anti-seismic protection of constructions using elastic foundations
JP2006008455A (en) * 2004-06-25 2006-01-12 Yakumo Kk Vibration reducing material
JP2007070955A (en) * 2005-09-09 2007-03-22 Toru Fukushima Vibration isolation foundation block
JP2007126892A (en) * 2005-11-04 2007-05-24 Teruyuki Tsunabuchi Hollow construction
JP2008231805A (en) * 2007-03-22 2008-10-02 Chem Grouting Co Ltd Preparation construction method of building foundation
JP2011063992A (en) * 2009-09-17 2011-03-31 Kihara Corporation:Kk Ground base-isolated structure and ground base-isolation method using the same
CN103382725A (en) * 2013-01-22 2013-11-06 刘方成 Geocell reinforced rubber particles-sand mixture compound shock insulation layer and strip
CN112049659A (en) * 2020-09-07 2020-12-08 天地科技股份有限公司 Rock burst roadway bottom plate buffering and damping structure and arrangement method thereof

Similar Documents

Publication Publication Date Title
JPH10227154A (en) Vibration-isolation material and vibration isolating structure
CN106049194A (en) Vibration attenuation rail system and vibration isolator thereof
US1951217A (en) Vibration dampener and isolator
JPS63293340A (en) Laminated rubber bearing
KR100920200B1 (en) Plywood panel type floating floor system using damping plywood
JP2006194073A (en) Vibration reducer
KR20120035409A (en) Anti vibration device for construction
JPH04213650A (en) Structure of sound-proof floor
Stewart et al. Implementation of soil-structure interaction models in performance based design procedures
JPH0882339A (en) Base isolation structure
Amick et al. Modification of concrete damping properties for vibration control in technology facilities
JP3690499B2 (en) Basic structure of equipment
JP3677696B2 (en) Damping structure
Brownjohn et al. Effects of human postures on energy dissipation from vibrating floors
JP4302052B2 (en) Beam structure and soundproof material for beams
JPH07252967A (en) Vibration prevention structure
JP2003014045A (en) Vibration isolation rubber
JPH09177368A (en) Vibration isolator
JP3401647B2 (en) Building structures with vibration control devices
CN215670229U (en) Utilize structure floor to realize shock-absorbing structure that multimode system shakes
JPS62211470A (en) Structure for attenuating external force of structure
JPH02269254A (en) Shock absorbing supporter
JP2001027284A (en) Base isolation laminated rubber and base isolation structure comprising the same
JPH02274945A (en) Vibration absorbing panel
JPH05163742A (en) Vibration proofing foundation of structure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216