JP4804773B2 - Grout method - Google Patents

Grout method Download PDF

Info

Publication number
JP4804773B2
JP4804773B2 JP2005068833A JP2005068833A JP4804773B2 JP 4804773 B2 JP4804773 B2 JP 4804773B2 JP 2005068833 A JP2005068833 A JP 2005068833A JP 2005068833 A JP2005068833 A JP 2005068833A JP 4804773 B2 JP4804773 B2 JP 4804773B2
Authority
JP
Japan
Prior art keywords
aqueous solution
water stop
target location
calcium
stop target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005068833A
Other languages
Japanese (ja)
Other versions
JP2006249294A (en
Inventor
一三 小林
一彦 升元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2005068833A priority Critical patent/JP4804773B2/en
Publication of JP2006249294A publication Critical patent/JP2006249294A/en
Application granted granted Critical
Publication of JP4804773B2 publication Critical patent/JP4804773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,天然または人工の地盤・岩盤や諸構造物の止水に好適なグラウト工法に関する。 The present invention relates to a suitable grout method to stop water natural or artificial soil, rock and various structures.

天然または人工の地盤・岩盤や諸構造物をより強固にするために,それらの中にグラウト材料を注入することが行なわれている。恒久的な止水を目標としたグラウト材料としては,無機材料を液中に分散させて止水目標箇所に無機材料を止まらせて閉塞させる粘土系グラウトや,止水目標箇所で固化させるセメント系グラウトまたは水ガラス系グラウトが代表的である。   In order to strengthen natural or artificial ground, bedrock and structures, grout materials are injected into them. The grout materials aimed at permanent water stop include clay-type grout that disperses inorganic materials in the liquid and stops the inorganic material at the water stop target location, and cement that solidifies at the water stop target location. A grout or water glass grout is typical.

しかし,微細な亀裂にまで恒久的な止水を達成しようとしても,粘土系グラウトでは粘土粒子が亀裂に比べて大きかったり,セメント系または水ガラス系では粘性が高すぎて目標箇所まで流動しなかったりして,完全な止水を期待できない場合があった。また,放射性廃棄物処分場においてセメント系またはガラス系グラウトの適用を想定した場合,これらの材料は化学的にみて長期安定性に問題があり,また周辺地下水環境のpHを上昇させるので他の人工バリアへの影響が懸念されるといった問題があった。   However, even if it is attempted to achieve permanent water stop even with fine cracks, clay particles are larger than cracks in clay-based grout, and viscosity is too high in cement-based or water-glass systems to flow to the target location. In some cases, complete water stoppage could not be expected. Also, assuming the application of cement-based or glass-based grout at radioactive waste disposal sites, these materials have problems in terms of long-term stability from a chemical point of view, and also raise the pH of the surrounding groundwater environment, and other artificial There was a problem that the impact on the barrier was concerned.

特殊なグラウト材料として特許文献1や2のように炭酸カルシウムを利用するものや,特許文献3のように硫酸カルシウムを利用するものがある。
特開2003−200144号公報 特開2004−149685号公報 特開平11−241064号公報
As a special grout material, there are a material using calcium carbonate as in Patent Documents 1 and 2, and a material using calcium sulfate as in Patent Document 3.
JP 2003-200144 A Japanese Patent Application Laid-Open No. 2004-149685 Japanese Patent Laid-Open No. 11-244104

前記のような事情から,本発明は理想的には粒子粉末を懸濁しない2種以上の水溶液を注入し,この水溶液から止水目標箇所で化学的に安定な無機物質を析出させることによって前記の問題を解決することを課題としたものである。前掲特許文献1〜3の場合も,無機質の粒子粉末が懸濁しているスラリーを用いるものであり,粒子が流入しないような微細な亀裂まで完全な止水を期待するには無理がある。   In view of the above circumstances, the present invention ideally injects two or more aqueous solutions that do not suspend the particle powder, and deposits a chemically stable inorganic substance from the aqueous solution at the water stop target location. The problem is to solve this problem. In the case of Patent Documents 1 to 3 described above, a slurry in which inorganic particle powder is suspended is used, and it is impossible to expect complete water stop even for a fine crack that does not allow particles to flow.

発明によれば,カルシウムイオン含有の第一水溶液と炭酸イオン含有の第二水溶液とをそれぞれ別の注入口から止水目標箇所に向けて注入するに際し,止水目標箇所を挟んで,一方の側に陽極となる外部電極および第一水溶液注入口を設けると共に,他方の側に陰極となる外部電極および第二水溶液注入口を設け,注入された両液に外部電極による電気泳動を付与して止水目標箇所にカルシウムイオンと炭酸イオンを移動させ,該止水目標箇所において炭酸カルシウム殿物を沈積させるグラウト工法を提供する。 According to the present invention, when injected toward a second aqueous solution of the first aqueous solution and the carbonate ion content of Ca Rushiumuion containing from separate inlets into water stop target position, across the water stop target position, whereas An external electrode that serves as an anode and a first aqueous solution inlet are provided on the side of the electrode, and an external electrode that serves as a cathode and a second aqueous solution inlet are provided on the other side, and electrophoresis by the external electrode is applied to both injected liquids. A grout method is provided in which calcium ions and carbonate ions are moved to a water stop target location, and calcium carbonate deposits are deposited at the water stop target location.

本発明に従うグラウト工法によると,炭酸カルシウムによる恒久的な止水効果が得られる。また水溶液が浸透する微細な亀裂でも止水が行なえる。このため,本発明は,超長期の耐用年数が要求される地層処分事業,燃料備蓄用の岩盤地下空洞などへの適用が期待できる。   According to the grout method according to the present invention, a permanent water stop effect by calcium carbonate is obtained. In addition, water can be stopped even with minute cracks that allow the aqueous solution to penetrate. For this reason, the present invention can be expected to be applied to geological disposal projects that require an extremely long service life, underground rock cavities for fuel storage, and the like.

本発明は,天然または人工の地盤・岩盤等の止水目標箇所において,2種類の水溶液からの化学反応によって炭酸カルシウムの沈殿を析出させることに特徴がある。すなわち,止水目標箇所において炭酸カルシウムの殿物を析出させようとするものである。この二液は反応前は水溶液であり,漏水が懸念されるような微細な亀裂にも容易に浸透する。本発明に適用するグラウト液は,カルシウムイオン含有の第一水溶液と炭酸イオン含有の第二水溶液とからなり,両液の混合により炭酸カルシウムが析出するものであるThe present invention is characterized in that a precipitate of calcium carbonate is deposited by a chemical reaction from two types of aqueous solutions at a water stop target site such as natural or artificial ground or rock. In other words, calcium carbonate deposits are to be deposited at the water stop target location. These two liquids are aqueous solutions before the reaction, and easily penetrate into minute cracks that may cause water leakage. Grouting fluid to be applied to the present invention is composed of a first aqueous solution and the second aqueous solution of carbonate ion-containing calcium ion-containing one in which calcium carbonate is precipitated by mixing two liquids.

カルシウムイオン含有の第一水溶液としては塩化カルシウム(CaCl2)や水酸化カルシウム(Ca(OH)2)が溶存した水溶液を使用し,炭酸イオン含有の第二水溶液としては炭酸ナトリウム(Na2CO3),炭酸水素ナトリウム(NaHCO3),炭酸水素マグネシウム(Mg(HCO32)等を溶存した水溶液を使用することができる。第一水溶液としてはカルシウムを溶存した水溶液,第二水溶液は炭酸イオンを含む水溶液であれば使用可能である。表1に第一水溶液と第二水溶液に溶存させる化合物と,両液を反応させた場合の反応生成物の例を示した。いずれの例でも,難水溶性のCaCO3の殿物が析出し,これが亀裂を閉塞する。 An aqueous solution in which calcium chloride (CaCl 2 ) or calcium hydroxide (Ca (OH) 2 ) is dissolved is used as the first aqueous solution containing calcium ions, and sodium carbonate (Na 2 CO 3 ) is used as the second aqueous solution containing carbonate ions. ), Sodium hydrogen carbonate (NaHCO 3 ), magnesium hydrogen carbonate (Mg (HCO 3 ) 2 ) and the like can be used. Water solution dissolved the calcium as the first aqueous solution, the second aqueous solution can be used as long as including water solution carbonate ions. Table 1 shows an example of a reaction product obtained by reacting a compound dissolved in the first aqueous solution and the second aqueous solution with both solutions. In either example, a slightly water-soluble CaCO 3 deposit is deposited, which closes the crack.

Figure 0004804773
Figure 0004804773

図1は,土壌中または人工岩盤中でのCaCO3析出挙動を知るために本発明者らが行なった試験装置の概要を示したものであり,底面積が0.3m×0.5mで高さが0.3mの槽1に,試験土壌または岩盤2を装填し,2箇所の注入口3と4から第一水溶液と第二水溶液を試験土壌または岩盤中に注入し,槽底部(長辺側の側壁中央下部)に設けたドレン孔5から排水6を流出させるようにしたものである。注入口3と4は,短辺側の側壁中央から約 cm離れた対照位置に設置し,両液の注入量は両液等しい量とするが,ドレン孔5から流出する排水量を監視しながら両液の注入量を制御し,槽1からオーバーフローしないようにする。 FIG. 1 shows an outline of a test apparatus conducted by the present inventors in order to know the CaCO 3 precipitation behavior in soil or artificial rock, and the bottom area is 0.3 m × 0.5 m and high. The test soil or rock mass 2 is loaded into the tank 1 having a length of 0.3 m, the first aqueous solution and the second aqueous solution are injected into the test soil or the rock mass from the two inlets 3 and 4, and the bottom of the tank (long side) The drainage 6 is allowed to flow out from the drain hole 5 provided in the lower part of the central side wall. The inlets 3 and 4 are installed at a control position about cm away from the center of the side wall on the short side, and both liquids are injected at the same volume. However, while monitoring the amount of drainage flowing out from the drain hole 5, The liquid injection amount is controlled so as not to overflow from the tank 1.

まず,透水係数が1×10-5m/sec の土壌を槽1に装填し,濃度が 1.0 mol/LのCaCl2第一水溶液と,濃度が 1.0 mol/LのNa2CO3第二水溶液とを注入口3と4から0.05MPa〜0.2MPaの圧で注入した。注入開始後は徐々に通水量が低下することが観測された。これは土壌中で両液が合体するところでCaCO3が析出し,CaCO3析出領域7が拡大することを示している。この関係をより具体的に調べるために,図2に注入開始後の透水係数の時間変化をプロットした(●印)。図2に見られるように,透水係数が時間の経過と共に低下してゆき,約6時間後では透水係数5×10-8m/sec となり,止水作用が大きくなった。同様の試験を透水係数が5×10-5m/sec の人工岩盤について行い,その結果を図2に併記した(□印)。この場合にも,時間経過と共に止水作用が高くなることがわかる。 First, soil having a hydraulic conductivity of 1 × 10 −5 m / sec is loaded into the tank 1, and a CaCl 2 first aqueous solution having a concentration of 1.0 mol / L and a Na 2 CO 3 second aqueous solution having a concentration of 1.0 mol / L. Were injected from the inlets 3 and 4 at a pressure of 0.05 MPa to 0.2 MPa. It was observed that the water flow gradually decreased after the start of injection. This indicates that CaCO 3 is deposited where both solutions are combined in the soil, and the CaCO 3 precipitation region 7 is enlarged. In order to investigate this relationship more specifically, the time change of the hydraulic conductivity after the start of injection is plotted in FIG. As can be seen in FIG. 2, the hydraulic conductivity decreased with the passage of time, and after about 6 hours, the hydraulic conductivity became 5 × 10 −8 m / sec, and the water stopping action increased. A similar test was conducted on an artificial rock mass with a hydraulic conductivity of 5 × 10 -5 m / sec, and the results are also shown in FIG. Also in this case, it can be seen that the water stopping action increases with time.

本発明によれば,このようにカルシウムイオン含有の第一水溶液と炭酸イオン含有の第二水溶液とを別々の注入口から土壌や岩盤中に注入し,止水目標箇所で炭酸カルシウム殿物を沈積させることによって間隙を閉塞させることができる。両液の合流点は,止水目標箇所に至る前でもよいし,場合によっては止水目標箇所であってもよいが,微細な亀裂の閉塞には,その微細な亀裂内に浸透した水溶液から析出させるのが効果的である。   According to the present invention, the calcium ion-containing first aqueous solution and the carbonate ion-containing second aqueous solution are injected into the soil and the bedrock through separate inlets, and the calcium carbonate deposit is deposited at the water stop target location. By doing so, the gap can be closed. The merging point of both liquids may be before reaching the water stop target location, or in some cases it may be the water stop target location. To close a fine crack, an aqueous solution that has penetrated into the fine crack is used. It is effective to deposit.

第一水溶液および/または第二水溶液に適度な粘性を付与するために適量の増粘剤を添加することもできる。増粘剤として微粒子からなる無機増粘剤例えばベントナイトを使用することもでき,この場合には堆積岩への適用も可能となる。   An appropriate amount of a thickening agent can be added to impart an appropriate viscosity to the first aqueous solution and / or the second aqueous solution. As a thickener, an inorganic thickener composed of fine particles, such as bentonite, can be used. In this case, it can be applied to sedimentary rocks.

第一水溶液の流れと第二水溶液の流れを適切にコントロールすることによって,止水目標箇所での炭酸カルシウム殿物の沈積を行なわせることができるが,電気泳動を利用すして反応位置のコントロールを行うこともできる。   By appropriately controlling the flow of the first aqueous solution and the flow of the second aqueous solution, it is possible to deposit calcium carbonate deposits at the target water stop, but the reaction position can be controlled using electrophoresis. It can also be done.

図3は,炭酸カルシウム析出による目標止水領域C(亀裂性岩盤又は堆積岩など)の一方の側に第一水溶液(塩化カルシウム水溶液)の注入域Aを形成し,該止水領域Cの他方の側に第二水溶液(炭酸ナトリウム水溶液)の注入域Bを形成したうえ,第一水溶液の注入域Aに陽極8を,そして第二水溶液の注入域Bに陰極9を設置する状態を示している。この状態で各極に通電すると,第一水溶液の注入域Aではカルシウムイオンが止水領域Cに向けて,また第二水溶液の注入域Bでは炭酸イオンが止水領域Cに向けて電気泳動し,止水領域Cで両者が反応して炭酸カルシウムを析出する。   FIG. 3 shows that the injection area A of the first aqueous solution (calcium chloride aqueous solution) is formed on one side of the target water stop area C (cracked rock or sedimentary rock, etc.) due to calcium carbonate precipitation, and the other water stop area C The second aqueous solution (sodium carbonate aqueous solution) injection region B is formed on the side, the anode 8 is installed in the first aqueous solution injection region A, and the cathode 9 is installed in the second aqueous solution injection region B. . When each electrode is energized in this state, calcium ions are electrophoresed in the water stop region C in the injection region A of the first aqueous solution, and carbonate ions are electrophoresed in the water stop region C in the injection region B of the second aqueous solution. In the water stop region C, both react to precipitate calcium carbonate.

この場合は,カルシウムイオン含有の第一水溶液と炭酸イオン含有の第二水溶液とをそれぞれ別の注入口から止水目標箇所に向けて注入し,注入された両液に外部電極による電気泳動を付与して止水目標箇所にカルシウムイオンと炭酸イオンを移動させ,該止水目標箇所において炭酸カルシウム殿物を沈積させるグラウト工法である。 In this case, the first aqueous solution containing calcium ions and the second aqueous solution containing carbonate ions are injected from different inlets toward the water stop target location, and electrophoresis by an external electrode is applied to both injected solutions. Then, the grout method is to move calcium ions and carbonate ions to the water stop target location and deposit calcium carbonate deposits at the water stop target location.

本発明のグラウト液による炭酸カルシウム析出挙動を調べるのに使用した試験槽の略断面図である。It is a schematic sectional drawing of the test tank used in order to investigate the calcium carbonate precipitation behavior by the grout liquid of this invention. 図1の試験槽で得られた試験結果の例を示す透水係数の経時変化図である。It is a time-dependent change figure of the hydraulic conductivity which shows the example of the test result obtained with the test tank of FIG. 電気泳動を利用した本発明のグラウト工法の要部を示す説明図である。It is explanatory drawing which shows the principal part of the grout method of this invention using electrophoresis.

Claims (1)

カルシウムイオン含有の第一水溶液と炭酸イオン含有の第二水溶液とをそれぞれ別の注入口から止水目標箇所に向けて注入するに際し,止水目標箇所を挟んで,一方の側に陽極となる外部電極および第一水溶液注入口を設けると共に,他方の側に陰極となる外部電極および第二水溶液注入口を設け,注入された両液に外部電極による電気泳動を付与して止水目標箇所にカルシウムイオンと炭酸イオンを移動させ,該止水目標箇所において炭酸カルシウム殿物を沈積させるグラウト工法。 When injecting the first aqueous solution containing calcium ions and the second aqueous solution containing carbonate ions from different inlets toward the water stop target location, the outside that becomes the anode on one side across the water stop target location An electrode and a first aqueous solution inlet are provided, and an external electrode serving as a cathode and a second aqueous solution inlet are provided on the other side. Electrophoresis by the external electrode is applied to both injected liquids, and calcium is added to the water stop target location. A grout method in which ions and carbonate ions are moved to deposit calcium carbonate deposits at the water stop target location.
JP2005068833A 2005-03-11 2005-03-11 Grout method Active JP4804773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068833A JP4804773B2 (en) 2005-03-11 2005-03-11 Grout method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068833A JP4804773B2 (en) 2005-03-11 2005-03-11 Grout method

Publications (2)

Publication Number Publication Date
JP2006249294A JP2006249294A (en) 2006-09-21
JP4804773B2 true JP4804773B2 (en) 2011-11-02

Family

ID=37090112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068833A Active JP4804773B2 (en) 2005-03-11 2005-03-11 Grout method

Country Status (1)

Country Link
JP (1) JP4804773B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115618A (en) * 2006-11-06 2008-05-22 Shimizu Corp Grouting in base rock
JP5599032B2 (en) * 2010-01-29 2014-10-01 国立大学法人愛媛大学 Ground improvement method
KR101380354B1 (en) * 2011-04-21 2014-04-02 조선대학교산학협력단 Composition for improvement of soft ground and bio-grout method using the same
JP2019163644A (en) * 2018-03-20 2019-09-26 鹿島建設株式会社 Ground modification method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253924A (en) * 1995-03-16 1996-10-01 Ohbayashi Corp Chemical injection method
JPH09195262A (en) * 1996-01-19 1997-07-29 Toagosei Co Ltd Construction method for chemical grouting and chemicals feeder
JP3165646B2 (en) * 1996-10-08 2001-05-14 株式会社大林組 Ground improvement method just below the existing structure
JP3359240B2 (en) * 1996-10-08 2002-12-24 株式会社大林組 Induction injection method
JP2000104066A (en) * 1998-09-30 2000-04-11 Mitsubishi Materials Corp Water stop agent for ground and method for water stop of ground
JP3871543B2 (en) * 2001-10-09 2007-01-24 大成建設株式会社 Liquefaction prevention method
JP2004263069A (en) * 2003-02-28 2004-09-24 Taiheiyo Cement Corp Plastic grout material, and method and system for injecting the same

Also Published As

Publication number Publication date
JP2006249294A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
ES2263247T3 (en) COMPOSITIONS FLUID POLYMERICAS FOR LAND STABILIZATION AND PROCEDURE FOR USE.
JP4804773B2 (en) Grout method
Huang et al. Use of self-hardening slurry for trench cutoff wall: A review
KR100538316B1 (en) The apparatus and method of earth grouting using compressed air system for intermittent vibrated wave production
CN110983075B (en) Hole sealing method for liquid injection hole of sealing field of ionic rare earth in-situ leaching field
CN113445527A (en) Method for treating leakage of grouting waterproof curtain in underground platform of rail transit
JP2008194544A (en) Groundwater neutralization method of heavy metal- containing acidic soil
Rittirong et al. Electro-osmotic stabilization
Yoon Application of pore fluid engineering for improving the hydraulic performance of granular soils
JP5156341B2 (en) Acid soil treatment method
JP5967397B2 (en) Methods for insolubilizing hazardous substances
Jefferis Long term performance of grouts and the effects of grout by-products
JP2021519859A (en) Methods and Compositions for Limiting Matrix Permeability to Limit Liquid and Gas Inflow
JP2003073891A (en) Repairing method and repairing liquid for concrete structure
JP2012112156A (en) Method for injecting grout in bedrock
JP7215762B2 (en) Ion source and sealing composition
KR100384688B1 (en) Hydrophobic poly-urethane injection method to stop water flow through the crack of the rock bed at the bottom of vertical deep mixing wall
Giannoukos et al. Preliminary investigation on the chemical response of cementitious grouts used for borehole sealing of geologically stored CO2
JP2003176529A (en) Method for lowering water permeability of ground
Clara Saracho et al. Microbially Induced Calcite Precipitation (MICP) to mitigate contact erosion in earth embankment dams and levees
CN103993596B (en) A kind of box composite steel plate pile, vertical isolation engineering barrier and water-stop curtain
Jia Electro-osmotic grouting technique for liquefaction-mitigation of low permeability silty soils
Devarangadi et al. Sustainability of Cutoff Walls for Environmental Containment: A Review
Weiss Jr et al. Use of small-scale electro-osmotic systems in controlling groundwater movement around structures
CN103953073B (en) A kind of construction method of the vertical barrier of original position thin-walled for Control pollution underground water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4804773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250