JP2019163644A - Ground modification method - Google Patents

Ground modification method Download PDF

Info

Publication number
JP2019163644A
JP2019163644A JP2018052429A JP2018052429A JP2019163644A JP 2019163644 A JP2019163644 A JP 2019163644A JP 2018052429 A JP2018052429 A JP 2018052429A JP 2018052429 A JP2018052429 A JP 2018052429A JP 2019163644 A JP2019163644 A JP 2019163644A
Authority
JP
Japan
Prior art keywords
ground
aquifer
culture solution
microorganism
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018052429A
Other languages
Japanese (ja)
Inventor
直人 安達
Naoto Adachi
直人 安達
貴彦 秀川
Takahiko Hidekawa
貴彦 秀川
康嗣 鈴木
Yasutsugu Suzuki
康嗣 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2018052429A priority Critical patent/JP2019163644A/en
Publication of JP2019163644A publication Critical patent/JP2019163644A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a ground modification method capable of sufficiently modifying a ground even when underground water flow is quick.SOLUTION: In a ground modification method modifying the ground having underground water flow by action of microorganism having urease activity, a liquid containing a thickener and urea is injected into the ground. Since the liquid has viscosity increased by the thickener, stay period in the ground becomes long even in the underground water flow. Thus, time during which a decomposition reaction of the urea by the urease sufficiently progresses can be secured.SELECTED DRAWING: Figure 1

Description

本発明は、地盤改質方法に関する。   The present invention relates to a ground improvement method.

従来、ウレアーゼ活性を有する微生物の培養方法と、この微生物を利用した地盤改質方法が知られている(例えば特許文献1参照)。この地盤改質方法では、ウレアーゼによる尿素の分解反応で生じる炭酸イオンが地盤中のカルシウムイオンと反応して炭酸カルシウムを生成し、炭酸カルシウムが土粒子同士を結合させ地盤を固化し、地盤の強度が向上する。   Conventionally, a method for culturing a microorganism having urease activity and a ground improvement method using this microorganism are known (see, for example, Patent Document 1). In this ground reforming method, carbonate ions generated by urease decomposition reaction with urease react with calcium ions in the ground to produce calcium carbonate, which binds the soil particles together to solidify the ground, and the strength of the ground Will improve.

特開2016−220586号公報Japanese Unexamined Patent Publication No. 2016-220586

この地盤改質方法では、地盤が十分に改質するまでに相応の時間がかかる。従って、地下水の流れの速さによっては、反応に必要な薬液を注入しても所望の改質度合いを達成するよりも早く薬液が流れ去ってしまい、改質が不十分となる虞がある。   In this ground reforming method, it takes a certain time until the ground is sufficiently reformed. Therefore, depending on the speed of the groundwater flow, even if a chemical solution necessary for the reaction is injected, the chemical solution flows away faster than achieving the desired degree of modification, and the modification may be insufficient.

そこで本発明は、ウレアーゼ活性を有する微生物を利用した地盤改質方法であって、地下水の流れが速い場合であっても十分に地盤を改質することができる地盤改質方法を提供することを目的とする。   Therefore, the present invention provides a ground improvement method using a microorganism having urease activity, and can sufficiently improve the ground even when the flow of groundwater is fast. Objective.

本発明は、地下水の流れを有する地盤をウレアーゼ活性を有する微生物の働きによって改質する地盤改質方法であって、増粘剤、及び、尿素を含む液体を地盤に注入する、地盤改質方法を提供する。   The present invention relates to a ground reforming method for modifying a ground having a flow of groundwater by the action of a microorganism having urease activity, and injecting a liquid containing a thickener and urea into the ground. I will provide a.

この地盤改質方法では、地盤に注入する液体が増粘剤を含んでいるので、液体の粘性が高められており、地下水の流れの中にあっても液体が地盤に滞留する期間が長くなる。従って、ウレアーゼによる尿素の分解反応が十分に進行するための時間を確保することができ、地盤を十分に改質することができる。   In this ground reforming method, since the liquid injected into the ground contains a thickener, the viscosity of the liquid is increased, and the period during which the liquid stays on the ground is increased even in the groundwater flow. . Therefore, it is possible to secure time for the urea decomposition reaction by urease to sufficiently proceed, and to sufficiently improve the ground.

注入する液体は、微生物、微生物の栄養源及びカルシウム源からなる群から選択される少なくとも一種を更に含むことが好ましい。これらの要素が地盤中に乏しい場合に、その乏しい要素を併せて添加すると、地盤中の微生物を一層活性化し、地盤の固化を促進させることができる。   The liquid to be injected preferably further contains at least one selected from the group consisting of microorganisms, microorganism nutrients and calcium sources. When these elements are scarce in the ground, if the scarce elements are added together, microorganisms in the ground can be further activated and solidification of the ground can be promoted.

この地盤改質方法では、互いに組成が異なる複数種の液体を調製し、地盤に対し、複数の箇所から当該複数種の液体をそれぞれ注入してもよい。例えば液体に含ませる要素候補のうち、例えばカルシウム源は、地盤に広く行き渡った状態で炭酸イオンと反応することが好ましいので、液体を地盤に注入する前では、カルシウム源は、微生物や尿素を含む液体とは別々の状態としておくことが好ましい。   In this ground reforming method, a plurality of types of liquids having different compositions may be prepared, and the plurality of types of liquids may be injected into the ground from a plurality of locations. For example, among the element candidates to be included in the liquid, for example, the calcium source preferably reacts with carbonate ions in a state of widespread in the ground. Therefore, before the liquid is injected into the ground, the calcium source includes microorganisms and urea. It is preferable to maintain a state separate from the liquid.

地盤に注入する液体は、微生物の活動に適した温度に加温したうえで地盤に注入することが好ましい。地盤の温度は大抵15〜20℃程度で安定しているが、この温度は微生物の活動に最適な温度より低いのが通常である。従って、液体を注入する前に微生物の活動に適した温度に加温しておくと、注入した直後から所定の時間にわたって微生物の活動度を高くすることができる。   The liquid to be injected into the ground is preferably injected into the ground after being heated to a temperature suitable for the activity of microorganisms. The temperature of the ground is usually stable at about 15 to 20 ° C., but this temperature is usually lower than the optimum temperature for the activity of microorganisms. Therefore, if the liquid is heated to a temperature suitable for the activity of the microorganism before the liquid is injected, the activity of the microorganism can be increased for a predetermined time immediately after the injection.

本発明によれば、ウレアーゼ活性を有する微生物を利用した地盤改質方法であって、地下水の流れが速い場合であっても十分に地盤を改質することができる地盤改質方法を提供することができる。   According to the present invention, there is provided a ground improvement method using a microorganism having urease activity, which can sufficiently improve the ground even when the flow of groundwater is fast. Can do.

(A)は、注入孔及び観測孔の位置関係を示す平面図である。(B)は、改質対象とする地盤と、地盤改質システムの様子を示す断面図である。(A) is a top view which shows the positional relationship of an injection hole and an observation hole. (B) is a cross-sectional view showing the ground to be reformed and the state of the ground reforming system. 地盤を改質した領域の地表面における常時微動の観測点を示す平面図である。It is a top view which shows the observation point of the microtremor on the ground surface of the area | region which improved the ground. 地表面の常時微動の振幅比を示すグラフである。(A)は、計測地点Qにおける振幅比を示している。(B)は、計測地点Rにおける振幅比を示している。It is a graph which shows the amplitude ratio of the microtremor on the ground surface. (A) shows the amplitude ratio at the measurement point Q. (B) shows the amplitude ratio at the measurement point R.

以下、本発明の好適な実施形態について、図面を参照しながら詳細に説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same part or an equivalent part, and the overlapping description is abbreviate | omitted.

本実施形態の地盤改質方法は、図1に示されているとおり、地盤改質システム10を用いる改質方法であって、地下水の流れを有する地盤1(1a,1b,1c)を、ウレアーゼ活性を有する微生物の働きによって改質するものである。地盤改質システム10は、改質対象とする地盤1に対して設けた複数の注入孔5a,5b及び観測孔7a,7b、並びに、注入孔5a,5bに流す培養液を貯留する貯留タンク3を有している。図1は、地上から近い順に第1の帯水層1a、粘土層1b、第2の帯水層1cをこの順に有する地盤1を示しており、本実施形態では細砂等からなる帯水層1cを改質対象とする。   As shown in FIG. 1, the ground reforming method of the present embodiment is a reforming method using a ground reforming system 10, in which ground 1 (1a, 1b, 1c) having a flow of groundwater is treated with urease. It is modified by the action of an active microorganism. The ground reforming system 10 includes a plurality of injection holes 5a, 5b and observation holes 7a, 7b provided for the ground 1 to be reformed, and a storage tank 3 for storing a culture solution to be passed through the injection holes 5a, 5b. have. FIG. 1 shows a ground 1 having a first aquifer 1a, a clay layer 1b, and a second aquifer 1c in this order from the ground. In this embodiment, the aquifer is composed of fine sand or the like. The target for reforming is 1c.

図1に示されているとおり、地上に培養液を溜める貯留タンク3を設置する。そして、培養液を帯水層1cに注入するための注入孔5a,5b、及び、帯水層1cの状態を計測するための観測孔7a,7bとして、それぞれ帯水層1cの深さに達する井戸を設ける。ここでは井戸の代わりにロッドや二重管を用いてもよい。ここでロッドとは、金属や塩化ビニルなどの材料による中空管をいう。培養液を注入する井戸は、パイプにより貯留タンク3に接続されており、その途中にはパイプ内を流れる培養液の流量を計測する計測器M、及び開閉バルブVが設けられている。   As shown in FIG. 1, a storage tank 3 for storing a culture solution is installed on the ground. Then, as the injection holes 5a and 5b for injecting the culture solution into the aquifer 1c and the observation holes 7a and 7b for measuring the state of the aquifer 1c, the depth of the aquifer 1c is reached. Establish a well. Here, a rod or a double pipe may be used instead of the well. Here, the rod means a hollow tube made of a material such as metal or vinyl chloride. The well into which the culture solution is injected is connected to the storage tank 3 by a pipe, and a measuring instrument M for measuring the flow rate of the culture solution flowing through the pipe and an open / close valve V are provided in the middle of the well.

図1(A)は二つの注入孔5a,5b及び二つの観測孔7a,7bの位置関係を示す平面図であり、図1(B)は、二つの注入孔5a,5b、及び、それらと同一直線上にある一つの観測孔7aの位置における地盤1の断面図である。二つの注入孔5a,5b及び二つの観測孔7a,7bは互いに1m間隔で離間している。ここで、帯水層1aの層厚は2.4mであり、粘土層1bの層厚は1.0mであり、帯水層1cはそれ以下の深さに存在する。   1A is a plan view showing the positional relationship between the two injection holes 5a and 5b and the two observation holes 7a and 7b, and FIG. 1B shows the two injection holes 5a and 5b, and It is sectional drawing of the ground 1 in the position of the one observation hole 7a on the same straight line. The two injection holes 5a and 5b and the two observation holes 7a and 7b are separated from each other by 1 m. Here, the thickness of the aquifer 1 a is 2.4 m, the thickness of the clay layer 1 b is 1.0 m, and the aquifer 1 c exists at a depth less than that.

注入孔5a,5bである井戸は、帯水層1cに達している部分において壁面がストレーナーSとされた部分を有しており、ここから帯水層1cとの水の出入りが行われる。観測孔7a,7bである井戸も、帯水層1cに達している部分において壁面がストレーナーSとされた部分を有しており、ここから帯水層1cとの水の出入りが行われる。また、観測孔7a,7bである井戸の帯水層1cに達している部分において、電気伝導度を計測するための計測器9a,9bを設置する。観測孔7aでは深さ3.6mの位置に、観測孔7bでは深さ4.7mの位置に設置する。また、一つの観測孔あたり複数の計測器を設置してもよい。なお図1では、観測孔7bは断面図として表れていないものであるが、説明の便宜のため計測器9bの位置が分かるように計測器9bを描いている。   The wells serving as the injection holes 5a and 5b have a portion where the wall surface is the strainer S in the portion reaching the aquifer 1c, from which water enters and exits the aquifer 1c. The wells which are the observation holes 7a and 7b also have a portion where the wall surface is the strainer S in the portion reaching the aquifer 1c, and water enters and exits the aquifer 1c from here. In addition, measuring instruments 9a and 9b for measuring electrical conductivity are installed in the portion reaching the aquifer 1c of the well, which is the observation holes 7a and 7b. The observation hole 7a is installed at a depth of 3.6 m, and the observation hole 7b is installed at a depth of 4.7 m. A plurality of measuring instruments may be installed per observation hole. In FIG. 1, the observation hole 7 b is not shown as a cross-sectional view, but for convenience of explanation, the measuring instrument 9 b is drawn so that the position of the measuring instrument 9 b can be seen.

本実施形態の地盤改質方法ではウレアーゼ活性を有する微生物の活動に資する培養液を帯水層1cに注入する。本実施形態において、培養液は微生物、微生物の栄養源、尿素、カルシウム源、及び、増粘剤を含む。培養液は、これらを水に混合し、水溶液、懸濁液、乳濁液等の状態で注入する。   In the ground reforming method of this embodiment, a culture solution that contributes to the activity of microorganisms having urease activity is injected into the aquifer 1c. In this embodiment, the culture solution contains a microorganism, a nutrient source for the microorganism, urea, a calcium source, and a thickener. The culture solution is mixed with water and injected in the form of an aqueous solution, suspension, emulsion, or the like.

微生物は、ウレアーゼ活性を有する微生物を用いる。用いる微生物は、地盤1から採取した微生物を培養したものであってもよく、国内の他の場所から採取又は購入した微生物であってもよい。なお、ウレアーゼは当該微生物が産生する酵素であり、尿素を加水分解して炭酸とアンモニアを生成する反応を触媒する。   As the microorganism, a microorganism having urease activity is used. The microorganism to be used may be one obtained by culturing a microorganism collected from the ground 1 or may be a microorganism collected or purchased from another place in the country. Urease is an enzyme produced by the microorganism and catalyzes a reaction of hydrolyzing urea to produce carbonic acid and ammonia.

微生物の栄養源として用いるものには特に制限はなく、例えば、肉エキスや、グルコース等の糖類や、デンプン等の多糖類が挙げられる。含有量としては、水1リットル当たり1〜30gであってもよく、4〜20gであってもよい。   There is no restriction | limiting in particular in what is used as a nutrient source of microorganisms, For example, polysaccharides, such as meat extract, saccharides, such as glucose, and starch. The content may be 1 to 30 g or 4 to 20 g per liter of water.

尿素の含有量は、水1リットル当たり0.1〜10モル(mol)であってもよく、0.2モル〜5モルであってもよく、0.3〜0.7モルであってもよい。尿素の含有量が高すぎると微生物の動きが悪くなり、地盤の固化効果が小さくなる傾向がある。ただし、地下水によって尿素が薄まって適度な濃度となることが期待される。   The content of urea may be 0.1 to 10 mol (mol) per liter of water, may be 0.2 to 5 mol, or may be 0.3 to 0.7 mol. Good. If the urea content is too high, the movement of microorganisms will deteriorate and the solidification effect of the ground will tend to be small. However, it is expected that urea will be diluted to an appropriate concentration by groundwater.

カルシウム源としては、水に溶解してカルシウムイオンを放出するものであればよく、塩化カルシウム、炭酸カルシウム、水酸化カルシウム、硝酸カルシウム等が挙げられる。含有量としては、水1リットル当たり0.1〜10モル(mol)であってもよく、0.2モル〜5モルであってもよく、0.3〜0.7モルであってもよい。カルシウム源の含有量が高すぎると微生物の動きが悪くなり、地盤の固化効果が小さくなる傾向がある。ただし、地下水によってカルシウム源が薄まって適度な濃度となることが期待される。   Any calcium source may be used as long as it dissolves in water and releases calcium ions, and examples thereof include calcium chloride, calcium carbonate, calcium hydroxide, and calcium nitrate. The content may be 0.1 to 10 mol (mol) per liter of water, 0.2 to 5 mol, or 0.3 to 0.7 mol. . If the content of the calcium source is too high, the movement of the microorganisms becomes worse and the solidification effect of the ground tends to be reduced. However, it is expected that the calcium source will be diluted by groundwater to an appropriate concentration.

増粘剤は、培養液の粘度を高めることができるものであればよく、セルロース誘導体が好ましい。中でも、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロースが好ましい。含有量としては、培養液の粘度が水の粘度の1〜10倍、又は、2〜5倍となるように含むことが好ましい。   Any thickener can be used as long as it can increase the viscosity of the culture solution, and a cellulose derivative is preferable. Of these, carboxymethylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose are preferable. As content, it is preferable to contain so that the viscosity of a culture solution may become 1-10 times the viscosity of water, or 2-5 times.

培養液は、上記の他にも種々の成分を含んでいてもよい。例えば、塩化アンモニウム、炭酸水素ナトリウム、空気等が挙げられる。培養液の比重が高い場合は地下水中で沈む傾向があるため、空気を含ませることで培養液が沈むことを防止することができる。   The culture solution may contain various components in addition to the above. For example, ammonium chloride, sodium hydrogencarbonate, air, etc. are mentioned. When the specific gravity of the culture solution is high, the culture solution tends to sink in the ground water. Therefore, it is possible to prevent the culture solution from sinking by including air.

上記各要素を混合して培養液を調製し、貯留タンク3に溜める。帯水層1cへの注入前に完全に混合しておくことで、帯水層1c内で所望の反応を起こすことを期待することができる。   The above elements are mixed to prepare a culture solution and stored in the storage tank 3. By completely mixing before injection into the aquifer 1c, it can be expected to cause a desired reaction in the aquifer 1c.

貯留タンク3内における培養液の電気伝導度を計測する。そして、開閉バルブVを開いて注入孔5a,5bへ培養液を供給し、帯水層1cへ培養液を注入する。注入された培養液は、注入孔5a,5bのストレーナーS部分において帯水層1c内へ進入し拡散する(図1に示した拡散範囲D)。注入の流速による圧力が拡散力となり、また、地下水の流れによっても徐々に拡散する。   The electrical conductivity of the culture solution in the storage tank 3 is measured. Then, the opening / closing valve V is opened, the culture solution is supplied to the injection holes 5a and 5b, and the culture solution is injected into the aquifer 1c. The injected culture solution enters and diffuses into the aquifer 1c in the strainer S portion of the injection holes 5a and 5b (diffusion range D shown in FIG. 1). The pressure due to the flow rate of the injection becomes the diffusing force, and also gradually diffuses due to the flow of groundwater.

培養液の注入量は計測器Mで計測することができる。   The injection amount of the culture solution can be measured with the measuring instrument M.

帯水層1c中では、微生物が産生するウレアーゼによって尿素の分解反応が起こる。この反応で生じる炭酸イオンが帯水層1c中に存在しているカルシウムイオン、又は培養液中に由来するカルシウムイオンと反応して炭酸カルシウムを生成する。そして、炭酸カルシウムが土粒子同士を結合させ地盤を固化し、地盤の強度が向上する。   In the aquifer 1c, urea is decomposed by urease produced by microorganisms. Carbonate ions generated by this reaction react with calcium ions present in the aquifer 1c or calcium ions derived from the culture solution to produce calcium carbonate. And calcium carbonate couple | bonds soil particles and solidifies a ground, and the intensity | strength of a ground improves.

注入した培養液は増粘剤を含んでいるので粘性が高められており、地下水の流れの中にあっても培養液が帯水層1cに滞留する期間が長くなる。従って、ウレアーゼによる尿素の分解反応が十分に進行するための時間を確保することができ、帯水層1cを十分に改質することができる効果が奏される。   Since the injected culture solution contains a thickener, the viscosity is increased, and the period during which the culture solution stays in the aquifer 1c is prolonged even in the flow of groundwater. Therefore, it is possible to secure a time for the urea decomposition reaction by urease to sufficiently proceed, and the aquifer 1c can be sufficiently modified.

ここで、注入する培養液は、微生物の活動に適した温度に加温したうえで注入することが好ましい。帯水層1cを含む地盤1の温度は大抵15〜20℃程度で安定しているが、この温度は微生物の活動に最適な温度より低いのが通常である。従って、培養液を注入する前に、微生物の活動に適した温度(例えば25〜40℃)に加温しておくと、注入した直後から所定の時間にわたって微生物の活動度を高くすることができる。   Here, the culture solution to be injected is preferably injected after being heated to a temperature suitable for the activity of the microorganism. The temperature of the ground 1 including the aquifer 1 c is usually stable at about 15 to 20 ° C., but this temperature is usually lower than the optimum temperature for microbial activity. Therefore, when the culture solution is injected before being heated to a temperature suitable for the activity of the microorganism (for example, 25 to 40 ° C.), the activity of the microorganism can be increased for a predetermined time immediately after the injection. .

培養液の注入は、地下水の流速に応じた量で行い、注入期間としては数時間、数日間、又は数週間にわたって行うことができる。注入が長期間にわたる場合、又は、一旦注入を止めたあとに再開する場合、培養液の拡散状況や帯水層1cの目詰まりの想定から、注入孔5aと観測孔7aとの役割を入れ替え、注入孔5aに計測器9aを設置し、観測孔7aのほうから培養液を注入してもよい。   The culture solution is injected in an amount corresponding to the flow rate of groundwater, and the injection period can be several hours, several days, or several weeks. If the injection is over a long period of time, or if the injection is resumed after stopping the injection, the roles of the injection hole 5a and the observation hole 7a are changed from the assumption of the diffusion state of the culture solution and clogging of the aquifer 1c, A measuring instrument 9a may be installed in the injection hole 5a, and the culture solution may be injected from the observation hole 7a.

培養液を注入している間から注入後の所定の期間にわたって、計測器9a,9bで地下水の電気伝導度(mS/m)を経時的に計測する。拡散した培養液が計測器9a,9bに到達したとき、その濃度に応じて地下水の電気伝導度が高まり、貯留タンク3において計測した培養液の電気伝導度の値に近づいていく。この伝電導度の変化によって、帯水層1c中での培養液の拡散範囲Dを推定することができる。   The electrical conductivity (mS / m) of groundwater is measured over time with the measuring instruments 9a and 9b over a predetermined period after the culture solution is injected. When the diffused culture solution reaches the measuring instruments 9a and 9b, the electrical conductivity of the groundwater increases according to the concentration, and approaches the value of the electrical conductivity of the culture solution measured in the storage tank 3. Based on this change in conductivity, the diffusion range D of the culture solution in the aquifer 1c can be estimated.

電気伝導度の計測は、数日間〜二週間程度続けることが好ましい。増粘剤によって粘度が高められている培養液は、通常の地下水よりも滞留する時間が長くなっており、微生物の活動によって地盤が改質(ここでは固化)される期間が長い。培養液の注入を止めた後、電気伝導度の値が下がって変化率が小さくなるまでは電気伝導度の計測を継続することが好ましい。最終的に、電気伝導度の変化率が小さくなったことを以って、帯水層1cの改質が完了したと判断することもできる。   The measurement of electrical conductivity is preferably continued for several days to two weeks. The culture liquid whose viscosity is increased by the thickener has a longer residence time than normal groundwater, and the period during which the ground is modified (solidified here) by the activity of microorganisms is long. After stopping the injection of the culture solution, it is preferable to continue measuring the electric conductivity until the value of the electric conductivity decreases and the rate of change becomes small. Finally, it can be determined that the modification of the aquifer 1c has been completed because the rate of change in electrical conductivity has decreased.

改質が完了したあと、例えば地盤の常時微動を計測することによって、改質度合い及び改質された範囲を確認することができる。図2に示されているとおり、注入孔5a,5bから十分な距離が離れている地表地点(計測地点P)を基準振動の計測位置とし、注入孔5a,5bから十分な距離が離れていてその帯水層1cが改質されていないと考えられる地表地点を第1の計測地点Qとし、注入孔5a,5bの周辺であって帯水層1cが改質されたと考えられる地表地点を第2の計測地点Rとする。ここで、図2において地下水は図示右上方向から左下方向へ向かって流れているものとし、円D’で囲われた部分は、その流れ方向、流速、及び、上記の電気伝導度の計測によって推定される、帯水層1cが改質された領域(すなわち図1における培養液の拡散範囲Dの平面視形状)を示している。   After the modification is completed, the degree of modification and the modified range can be confirmed, for example, by measuring the fine movement of the ground. As shown in FIG. 2, a ground surface point (measurement point P) that is sufficiently separated from the injection holes 5a and 5b is set as a reference vibration measurement position, and a sufficient distance is separated from the injection holes 5a and 5b. The surface point where the aquifer 1c is considered not to be modified is defined as the first measurement point Q, and the surface point around the injection holes 5a and 5b where the aquifer 1c is considered to be modified is the first. Let it be 2 measurement points R. Here, in FIG. 2, it is assumed that the groundwater flows from the upper right direction to the lower left direction in the figure, and the portion surrounded by the circle D ′ is estimated by the measurement of the flow direction, the flow velocity, and the electric conductivity. 2 shows a region where the aquifer 1c is modified (that is, the shape in plan view of the diffusion range D of the culture solution in FIG. 1).

地表面に対する鉛直振動を計測すると、計測地点Q,Rでは各振動数に対して図3に示されているような振幅比を示す。図3(A)に示されているように、計測地点Qでは、振幅比が約1.0であることから、基準振動の計測位置と比べて振動状況が同様であり、従って地盤強度が一様であることが分かる。他方、図3(B)に示されているように、計測地点Rでは、高振動数側において振幅比が0.4程度となっていることから、基準振動の計測位置と比べて振動が小さくなっており、従って地盤強度が向上したことが分かる。   When the vertical vibration with respect to the ground surface is measured, the measurement points Q and R show the amplitude ratio as shown in FIG. 3 for each frequency. As shown in FIG. 3A, since the amplitude ratio is about 1.0 at the measurement point Q, the vibration situation is the same as the measurement position of the reference vibration, and therefore the ground strength is one. It turns out that it is like. On the other hand, as shown in FIG. 3B, at the measurement point R, since the amplitude ratio is about 0.4 on the high frequency side, the vibration is smaller than the measurement position of the reference vibration. Therefore, it can be seen that the ground strength has been improved.

そして、このような常時微動の計測を地表面の複数の箇所で行うことによって、地盤が改質された範囲やその改質度合いを特定することができる。図2において、P,Q,Rの符号を付した点以外の点が、その計測地点候補である。計測間隔は、できるだけ密とすることが望ましいが、例えば円D’の内部及び周辺では1m間隔で、円D’から離れた位置では2m間隔でもよい。   And by measuring such a microtremor at a plurality of locations on the ground surface, it is possible to specify the range in which the ground has been modified and the degree of modification. In FIG. 2, points other than the points marked with P, Q, and R are the measurement point candidates. The measurement interval is desirably as close as possible. For example, the interval may be 1 m inside and around the circle D ′, and may be 2 m away from the circle D ′.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、帯水層1cに注入する液体として、上記実施形態では微生物、微生物の栄養源、尿素、カルシウム源、及び、増粘剤を含む培養液を挙げたが、微生物、微生物の栄養源及びカルシウム源については、帯水層1cに十分に含まれていることが事前の調査によって判明している場合は、その要素については液体に含ませなくてもよい。反対に、帯水層1cに含まれている量が乏しい要素については、その要素を多めに添加することで、微生物を一層活性化し、地盤の固化を促進することができるので好ましい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, as the liquid to be injected into the aquifer 1c, in the above embodiment, a culture solution containing microorganisms, microorganism nutrients, urea, calcium sources, and thickeners has been mentioned. In the case where the source is sufficiently contained in the aquifer 1c by a preliminary investigation, the element may not be included in the liquid. On the other hand, an element with a small amount contained in the aquifer 1c is preferable because a large amount of the element can be added to further activate the microorganisms and promote solidification of the ground.

また、上記実施形態では二つの注入孔5a,5bに対して同一の培養液を注入する例を示したが、注入する培養液は互いに組成が異なるものであってもよい。すなわち、互いに組成が異なる二種類の培養液を調製し、注入孔5a及び注入孔5bから別々に注入してもよい。例えば培養液に含ませる要素のうちカルシウム源は帯水層1cに広く行き渡った状態で炭酸イオンと反応することが好ましいので、培養液を帯水層1cに注入する前では、カルシウム源は微生物や尿素を含む液体とは別々の状態としておくことが好ましい。すなわち、カルシウム源を含む培養液を一方の注入孔5aから注入し、カルシウム源を含まない培養液を他方の注入孔5bから注入することが好ましい。   Moreover, although the example which inject | pours the same culture solution with respect to the two injection holes 5a and 5b was shown in the said embodiment, the culture solution to inject | pour may have a mutually different composition. That is, two types of culture solutions having different compositions may be prepared and injected separately from the injection hole 5a and the injection hole 5b. For example, among the elements included in the culture solution, it is preferable that the calcium source reacts with carbonate ions in a state of being widely distributed in the aquifer 1c. Therefore, before the culture solution is injected into the aquifer 1c, the calcium source is a microorganism or It is preferable to maintain a separate state from the liquid containing urea. That is, it is preferable to inject a culture solution containing a calcium source from one injection hole 5a and to inject a culture solution not containing a calcium source from the other injection hole 5b.

また、上記実施形態では、地盤が改質された範囲やその度合いを特定する方法として常時微動を計測する方法を挙げたが、これに代えて、地盤を掘削して試験サンプルとして取り出し、強度試験を行うことで強度を確認してもよい。   In the above-described embodiment, the method of constantly measuring the fine movement is given as a method for specifying the extent to which the ground has been modified and the degree thereof, but instead, the ground is excavated and taken out as a test sample, and a strength test is performed. You may confirm strength by doing.

また、上記実施形態では粘土層1bよりも深い部分にある帯水層1cを改質対象とした例を示したが、本発明は粘土層1bよりも浅い部分にある帯水層1aに対しても適用可能である。   Moreover, in the said embodiment, although the example which made the aquifer 1c in the deeper part than the clay layer 1b the modification | reformation object was shown, this invention is with respect to the aquifer 1a in the shallower part than the clay layer 1b. Is also applicable.

本発明は、例えば地盤の液状化対策として利用可能である。   The present invention can be used, for example, as a countermeasure for ground liquefaction.

1…地盤、1a…第1の帯水層、1b…粘土層、1c…第2の帯水層、3…貯留タンク、5a,5b…注入孔、7a,7b…観測孔、9a,9b…計測器、10…地盤改質システム、D,D’…拡散範囲、M…計測器、P,Q,R…計測地点、S…ストレーナー、V…開閉バルブ。   DESCRIPTION OF SYMBOLS 1 ... Ground, 1a ... 1st aquifer, 1b ... Clay layer, 1c ... 2nd aquifer, 3 ... Storage tank, 5a, 5b ... Injection hole, 7a, 7b ... Observation hole, 9a, 9b ... Measuring instrument, 10 ... Ground reforming system, D, D '... Diffusion range, M ... Measuring instrument, P, Q, R ... Measuring point, S ... Strainer, V ... Open / close valve.

Claims (4)

地下水の流れを有する地盤をウレアーゼ活性を有する微生物の働きによって改質する地盤改質方法であって、
増粘剤及び尿素を含む液体を前記地盤に注入する、地盤改質方法。
A ground modification method for modifying ground having a flow of groundwater by the action of microorganisms having urease activity,
A ground reforming method in which a liquid containing a thickener and urea is injected into the ground.
前記液体は、前記微生物、前記微生物の栄養源、及び、カルシウム源からなる群から選択される少なくとも一種を更に含む、請求項1記載の地盤改質方法。   The ground improvement method according to claim 1, wherein the liquid further includes at least one selected from the group consisting of the microorganism, a nutrient source for the microorganism, and a calcium source. 互いに組成が異なる複数種の前記液体を調製し、
前記地盤に対し、複数の箇所から前記複数種の液体をそれぞれ注入する、請求項1又は2記載の地盤改質方法。
Preparing a plurality of liquids having different compositions from each other;
The ground improvement method according to claim 1 or 2, wherein the plurality of kinds of liquids are respectively injected from a plurality of locations into the ground.
前記液体を、前記微生物の活動に適した温度に加温したうえで前記地盤に注入する、請求項1〜3のいずれか一項記載の地盤改質方法。   The ground improvement method according to any one of claims 1 to 3, wherein the liquid is injected into the ground after being heated to a temperature suitable for the activity of the microorganism.
JP2018052429A 2018-03-20 2018-03-20 Ground modification method Pending JP2019163644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018052429A JP2019163644A (en) 2018-03-20 2018-03-20 Ground modification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018052429A JP2019163644A (en) 2018-03-20 2018-03-20 Ground modification method

Publications (1)

Publication Number Publication Date
JP2019163644A true JP2019163644A (en) 2019-09-26

Family

ID=68064323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052429A Pending JP2019163644A (en) 2018-03-20 2018-03-20 Ground modification method

Country Status (1)

Country Link
JP (1) JP2019163644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945735A (en) * 2020-08-21 2020-11-17 西南石油大学 Microorganism alternate grouting device for soft soil solidification and use method
CN117554149A (en) * 2023-11-16 2024-02-13 北京建筑大学 Glutinous rice slurry and urease combined calcium carbonate reinforced soil sample preparation system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195321A (en) * 2002-12-17 2004-07-15 Matsushita Electric Ind Co Ltd Soil or ground water treatment method
JP2006249294A (en) * 2005-03-11 2006-09-21 Kajima Corp Grout solution and grout work using the same
US20110027850A1 (en) * 2009-08-03 2011-02-03 Crawford Ronald L In situ precipitation of calcium carbonate (CaCO3) by indigenous microorganisms to improve mechanical properties of a geomaterial
JP2014005617A (en) * 2012-06-22 2014-01-16 Kyokado Engineering Co Ltd Ground improvement construction method
CN104631430A (en) * 2014-12-29 2015-05-20 南京林业大学 Method for soft soil foundation treatment through microorganism grouting sand drain
JP2017137630A (en) * 2016-02-01 2017-08-10 太洋基礎工業株式会社 Chemical injection system and chemical injection method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195321A (en) * 2002-12-17 2004-07-15 Matsushita Electric Ind Co Ltd Soil or ground water treatment method
JP2006249294A (en) * 2005-03-11 2006-09-21 Kajima Corp Grout solution and grout work using the same
US20110027850A1 (en) * 2009-08-03 2011-02-03 Crawford Ronald L In situ precipitation of calcium carbonate (CaCO3) by indigenous microorganisms to improve mechanical properties of a geomaterial
JP2013505705A (en) * 2009-08-03 2013-02-21 ユニバーシティ オブ アイダホ In situ calcium carbonate (CaCO3) deposition by resident microorganisms that improve the mechanical properties of geomaterials
JP2014005617A (en) * 2012-06-22 2014-01-16 Kyokado Engineering Co Ltd Ground improvement construction method
CN104631430A (en) * 2014-12-29 2015-05-20 南京林业大学 Method for soft soil foundation treatment through microorganism grouting sand drain
JP2017137630A (en) * 2016-02-01 2017-08-10 太洋基礎工業株式会社 Chemical injection system and chemical injection method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945735A (en) * 2020-08-21 2020-11-17 西南石油大学 Microorganism alternate grouting device for soft soil solidification and use method
CN111945735B (en) * 2020-08-21 2021-11-30 西南石油大学 Microorganism alternate grouting device for soft soil solidification and use method
CN117554149A (en) * 2023-11-16 2024-02-13 北京建筑大学 Glutinous rice slurry and urease combined calcium carbonate reinforced soil sample preparation system and method

Similar Documents

Publication Publication Date Title
Mujah et al. State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization
Mahawish et al. Improvement of coarse sand engineering properties by microbially induced calcite precipitation
US8182604B2 (en) Microbial biocementation
Fu et al. Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review
Al Qabany et al. Factors affecting efficiency of microbially induced calcite precipitation
JP6489569B1 (en) Ground improvement method
JP6531902B2 (en) Heavy metal insolubilizing composition and method for repairing heavy metal contaminated soil
CN103291267A (en) Method for improving oil well yields by means of oil pool indigenous microorganisms
JP2019163644A (en) Ground modification method
CN109184255A (en) A method of utilizing microorganism grout sealing outer wall of basement crack
US9739129B2 (en) Methods for increased hydrocarbon recovery through mineralization sealing of hydraulically fractured rock followed by refracturing
CN206487508U (en) A kind of draining steel pipe device for rich water class earth tunnel face
CN108086298A (en) A kind of microorganism Grouting Pipe prefabricated pile and its construction method for reinforcing calcareous sand ground
CN108220196A (en) A kind of method that microbial composite bacteria group handles oil pollution clay ground
CN102677683A (en) Environment-friendly type microorganism-plant combined slope protection method
CN104650842B (en) A kind of transfer drive composition and transfer drive method
Arab et al. State-of-the-art review of enzyme-induced calcite precipitation (EICP) for ground improvement: Applications and prospects
Saif et al. Advances in enzyme induced carbonate precipitation and application to soil improvement: A review
Gao et al. Denitrification-based MICP for cementation of soil: treatment process and mechanical performance
Arab Soil stabilization using calcium carbonate precipitation via urea hydrolysis
Kim et al. Injection effect of bio-grout for soft ground
Kim et al. An environmentally friendly soil improvement technology with microorganism
CN104481475A (en) Oil well carbon dioxide carbonated water throughput production increasing method
CN104948172A (en) Tracer agent for oil field oil extraction and preparing method of tracer agent
CN113818843A (en) Micro-fluidic experimental device and method for reinforcing natural gas hydrate reservoir

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220215