JP4804444B2 - Structure of light emitting diode and manufacturing method thereof - Google Patents

Structure of light emitting diode and manufacturing method thereof Download PDF

Info

Publication number
JP4804444B2
JP4804444B2 JP2007284034A JP2007284034A JP4804444B2 JP 4804444 B2 JP4804444 B2 JP 4804444B2 JP 2007284034 A JP2007284034 A JP 2007284034A JP 2007284034 A JP2007284034 A JP 2007284034A JP 4804444 B2 JP4804444 B2 JP 4804444B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
substrate
emitting diode
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007284034A
Other languages
Japanese (ja)
Other versions
JP2009111269A (en
Inventor
宏誠 林
家銘 李
振瀛 ▲き▼
Original Assignee
泰谷光電科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰谷光電科技股▲ふん▼有限公司 filed Critical 泰谷光電科技股▲ふん▼有限公司
Priority to JP2007284034A priority Critical patent/JP4804444B2/en
Publication of JP2009111269A publication Critical patent/JP2009111269A/en
Application granted granted Critical
Publication of JP4804444B2 publication Critical patent/JP4804444B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発光ダイオードの構造及びその製造方法に係り、特に、切削線領域の表面に複数の凹部と凸部を形成した発光ダイオードの構造及びその製造方法に関する。   The present invention relates to a structure of a light emitting diode and a manufacturing method thereof, and more particularly to a structure of a light emitting diode having a plurality of concave portions and convex portions formed on a surface of a cutting line region and a manufacturing method thereof.

ソリッド照明を実現するため、発光効率を向上した発光ダイオードの開発が急がれている。発光ダイオードの発光効率改善の方法は二つの部分に分けられる。その一つは発光ダイオードの内部量子効率を向上することで、もう一つは発光ダイオードの光ピックアップ効率(光取出し率)を増すことである。   In order to realize solid state lighting, development of light emitting diodes with improved luminous efficiency is urgently needed. The method of improving the light emission efficiency of the light emitting diode can be divided into two parts. One is to improve the internal quantum efficiency of the light-emitting diode, and the other is to increase the optical pickup efficiency (light extraction rate) of the light-emitting diode.

外部量子効率方面では、一般に半導体材料とパッケージ材料の屈折率の違いが大きいために、全反射角が小さくなり、ゆえに発光ダイオードの発生する光が空気との界面に到達した時、臨界角より大きい光は全反射されて発光ダイオードダイの内部に戻る。光子の境界面にて半導体を離れる確率は小さくなり、光子はただ内部で全部が吸収されて熱に転成するまで全反射され続けるだけであり、このため、発光効率が悪くなる。   In the external quantum efficiency direction, the difference in refractive index between the semiconductor material and the package material is generally large, so that the total reflection angle is small. Therefore, when the light generated by the light emitting diode reaches the interface with air, it is larger than the critical angle. The light is totally reflected and returns to the inside of the light emitting diode die. The probability of leaving the semiconductor at the interface between photons is reduced, and the photons are only totally reflected until they are completely absorbed and converted into heat, and the light emission efficiency is deteriorated.

このため基板の幾何形状を変化させることが光取出し効率を高めて発光効率をアップする有効な方法の一つである。特許文献1によると、周囲に凹凸幾何形状を具備する半導体発光素子が記載され、発光ダイオード素子の周囲が平坦な形状の場合と較べて、横方向伝播の光はこれら凹部或いは凸部の影響を受けて、散乱或いは回折効果を発生し、大幅に外部量子効率がアップする。   Therefore, changing the geometric shape of the substrate is one of effective methods for increasing the light extraction efficiency and increasing the light emission efficiency. According to Patent Document 1, a semiconductor light emitting device having a concave-convex geometric shape is described, and the light propagating in the lateral direction has an influence of these concave portions or convex portions as compared with a flat shape around the light emitting diode device. In response, a scattering or diffraction effect is generated, and the external quantum efficiency is greatly increased.

米国特許第7,075,115号明細書US Pat. No. 7,075,115

但し、この技術の、基板に対して凹部或いは凸部を具備する幾何形状を形成する方法は、先ず鈍化層構造を基板の上方に形成し、更にリソグラフィー方式を利用し、凹部或いは凸部の幾何形状の外形のパターンを画定し、更にドライエッチング或いはウェットエッチングの方式で基板に対して凹部或いは凸部構造を形成する。このような製造過程は煩瑣であり、製造コストが増し、発光ダイオードの商業応用に符合しない。   However, the method of forming a geometrical shape having a concave portion or a convex portion with respect to the substrate of this technique first forms a blunt layer structure above the substrate, and further uses a lithography method to form the geometric shape of the concave portion or the convex portion. A pattern having an outer shape is defined, and a concave or convex structure is formed on the substrate by dry etching or wet etching. Such a manufacturing process is cumbersome, increases the manufacturing cost, and does not match the commercial application of light emitting diodes.

本発明は一種の発光ダイオードの構造及びその製造方法を提供することを目的とし、それは切削線領域の表面に化学反応層を形成し、該化学反応層をエッチングマスクとし、ウェットエッチング或いはドライエッチングにより、凹凸表面を具えた不規則幾何形状を該基板の切削線領域の表面上に形成し、更にエピタキシャル成長方式を利用し、周囲に凹凸幾何形状を具えた半導体発光素子を形成し、発光ダイオードの外部量子効率をアップし、商業上の大量生産に適合する。   An object of the present invention is to provide a structure of a kind of light emitting diode and a manufacturing method thereof, which forms a chemical reaction layer on the surface of a cutting line region, uses the chemical reaction layer as an etching mask, and performs wet etching or dry etching. Forming an irregular geometric shape with an uneven surface on the surface of the cutting line region of the substrate, and further using an epitaxial growth method to form a semiconductor light emitting device with an uneven geometric shape around the outside of the light emitting diode Increases quantum efficiency and suits commercial mass production.

本発明の発光ダイオードの製造方法は、まず基板を提供し、該基板表面に鈍化層を成長させ、並びに該鈍化層をパターン化し、該鈍化層に被覆される素子領域と該基板表面に露出する切削線領域を画定し、そのうち、該基板は、サファイヤ、炭化シリコン、シリコン、ヒ素化ガリウム、窒化アルミニウム、窒化ガリウム基板のいずれかとする。該基板を第1溶液内に置いて反応させ、該切削線領域の基板表面に高密度の化学反応層を形成し、その後、該鈍化層と該化学反応層をマスクとし、該基板の切削線領域に対して選択性エッチングを行い、そのエッチング法はドライエッチング或いはウェットエッチングとし、該切削線領域において該化学反応層のない部分の複数の凹部と上方に該化学反応層を有する凸部を形成する。   The method of manufacturing a light emitting diode according to the present invention first provides a substrate, grows a blunt layer on the surface of the substrate, patterns the blunt layer, and exposes an element region covered by the blunt layer and the substrate surface. A cutting line region is defined, and the substrate is one of a sapphire, silicon carbide, silicon, gallium arsenide, aluminum nitride, and gallium nitride substrate. The substrate is placed in the first solution and reacted to form a high-density chemical reaction layer on the substrate surface in the cutting line region, and then the blunt layer and the chemical reaction layer are used as a mask to cut the substrate cutting line. Selective etching is performed on the region, and the etching method is dry etching or wet etching. In the cutting line region, a plurality of concave portions of the portion without the chemical reaction layer and a convex portion having the chemical reaction layer are formed above. To do.

更に該基板を第2溶液内に置いてエッチングし、該化学反応層を除去し、該基板の切削線領域表面に凹部と凸部を具えた不規則幾何形状を形成し、その後、該鈍化層を除去し、且つ該基板表面をクリーニングする。続いて、該基板の表面の素子領域と切削線領域にエピタキシャル成長技術を利用して、半導体層構造を成長させ、且つ該切削線領域上の半導体層構造の表面に、複数の半導体層凹部と半導体層凸部を具備させる。最後にリソグラフィー工程により、素子領域上の半導体層構造に発光ダイオード素子を形成させる。   Further, the substrate is placed in a second solution and etched to remove the chemical reaction layer, thereby forming an irregular geometric shape having concave and convex portions on the surface of the cutting line region of the substrate, and then the blunt layer And the surface of the substrate is cleaned. Subsequently, a semiconductor layer structure is grown using an epitaxial growth technique on the element region and the cutting line region on the surface of the substrate, and a plurality of semiconductor layer recesses and semiconductors are formed on the surface of the semiconductor layer structure on the cutting line region. A layer convex part is provided. Finally, a light emitting diode element is formed in the semiconductor layer structure on the element region by a lithography process.

該半導体層構造は少なくとも一つのn型半導体層、活性層、及び少なくとも一つのp型半導体層を順にエピタキシャル成長させて形成し、そのうち、該活性層は発光領域として該n型半導体層と該p型半導体層の間に形成し、且つ該p型半導体層をp型オームコンタクト電極と電気的に接続し、該n型半導体層にn型オームコンタクト電極を電気的に接続して順方向バイアスを提供し、該切削線領域を該n型半導体層までエッチングし、且つ該n型半導体層表面に複数の半導体層凹部と半導体層凸部を具備させる。   The semiconductor layer structure is formed by epitaxially growing at least one n-type semiconductor layer, an active layer, and at least one p-type semiconductor layer in order, wherein the active layer serves as the light-emitting region and the n-type semiconductor layer and the p-type semiconductor layer. Forming between semiconductor layers, electrically connecting the p-type semiconductor layer to a p-type ohmic contact electrode, and electrically connecting the n-type ohmic contact electrode to the n-type semiconductor layer to provide a forward bias Then, the cutting line region is etched to the n-type semiconductor layer, and a plurality of semiconductor layer concave portions and semiconductor layer convex portions are provided on the surface of the n-type semiconductor layer.

そのうち、第1溶液と第2溶液は酸性溶液グループ、アルカリ性溶液グループから選択された少なくとも一種類及び数種類の組合せのいずれかとされる。該酸性溶液グループは、フッ化水素(HF)、硫酸(H2 SO4 )、塩酸(HCl)、りん酸(H3 PO4 )、硝酸(HNO3 )、王水(Aqua regia)、バッファードオキサイドエッチャント(Burrered Oxide Etch;BOE)、アルミニウムエッチャント(AlEtchant)、過酸化水素(H22 )、ぎ酸(HCOOH)、酢酸(CH3 COOH)、こはく酸(C464 )及びクエン酸(Citric Acid)を包含する。該アルカリ性溶液グループは、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化カルシウム(Ca(OH)2 )、水酸化アンモニウム(NH4 OH)、テトラメチルアンモニウムヒドロキサイド(tetramethylammoniumhydroxide;TMAH)を包含する。 Of these, the first solution and the second solution are at least one selected from an acidic solution group and an alkaline solution group and a combination of several types. The acidic solution group includes hydrogen fluoride (HF), sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), phosphoric acid (H 3 PO 4 ), nitric acid (HNO 3 ), aqua regia (Aqua regia), buffered Oxide etchant (Burred Oxide Etch; BOE), aluminum etchant (AlEtchant), hydrogen peroxide (H 2 O 2 ), formic acid (HCOOH), acetic acid (CH 3 COOH), succinic acid (C 4 H 6 O 4 ) and Includes citric acid. The alkaline solution group includes potassium hydroxide (KOH), sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 ), ammonium hydroxide (NH 4 OH), tetramethylammonium hydroxide (TMAH). Is included.

該基板を第1溶液と第2溶液中に置く時間はそれぞれ1秒から200分間とし、該凹部と凸部の高度差は0.1μmから15μmとする。   The time for placing the substrate in the first solution and the second solution is 1 second to 200 minutes, respectively, and the height difference between the concave and convex portions is 0.1 μm to 15 μm.

上述の方法で形成した発光ダイオード構造は、そのうち該基板の表面が素子領域と切削線領域に分けられ、且つ該切削線領域の表面に凹部と凸部を具えた不規則幾何形状が形成され、エピタキシャル成長技術を利用して、該半導体層構造が該基板表面の素子領域と切削線領域に成長させられ、更にリソグラフィー工程により、素子領域上の半導体層構造により該発光ダイオード素子が形成される。   In the light emitting diode structure formed by the above-described method, the surface of the substrate is divided into an element region and a cutting line region, and an irregular geometric shape including a concave portion and a convex portion is formed on the surface of the cutting line region, Using an epitaxial growth technique, the semiconductor layer structure is grown on the element region and the cutting line region on the substrate surface, and the light emitting diode element is formed by the semiconductor layer structure on the element region by a lithography process.

本発明の長所は、新規な製造方法により基板の切削線表面に化学反応層を形成し、該化学反応層をエッチング用マスクとし、ウェットエッチング或いはドライエッチングにより、異なる凹凸面の不規則幾何形状を該基板の切削線表面上に形成し、更にエピタキシャル成長技術により、周囲に凹凸幾何形状を具えた半導体発光素子を形成し、これら凹部と凸部構造により発光ダイオード素子内部の光の散乱、回折効果に対して、半導体層と基板の界面中の光の横向き伝播の状況を減らし、全反射の確率を減らし、発光ダイオードの光取出し効率を向上する。このほか、該基板上方において、エピタキシャル材料を該凹凸面の不規則幾何形状に成長させ、材料中のスレッディングディスロケーション(Threading Dislocation)を減らし、エピタキシャル材料の品質を向上し、これにより内部量子効率をアップする。且つ本発明は製造が簡単で、生産コストを減らせ、大量生産に適合する。   The advantage of the present invention is that a chemical reaction layer is formed on the cutting line surface of the substrate by a novel manufacturing method, the chemical reaction layer is used as an etching mask, and irregular irregular shapes of different uneven surfaces are formed by wet etching or dry etching. Formed on the cutting line surface of the substrate, and further, by epitaxial growth technology, a semiconductor light emitting device having an uneven geometric shape is formed around it, and the concave and convex structures make it possible to scatter and diffract light inside the light emitting diode device. On the other hand, the situation of lateral propagation of light in the interface between the semiconductor layer and the substrate is reduced, the probability of total reflection is reduced, and the light extraction efficiency of the light emitting diode is improved. In addition, above the substrate, the epitaxial material is grown in the irregular geometric shape of the uneven surface, reducing threading dislocation in the material, improving the quality of the epitaxial material, thereby improving the internal quantum efficiency. Up. In addition, the present invention is easy to manufacture, reduces production costs, and is suitable for mass production.

図1から図5に示されるように、本発明の発光ダイオードの製造方法は以下を包含する。   As shown in FIGS. 1 to 5, the method for manufacturing a light emitting diode of the present invention includes the following.

まず、基板(10)を提供する。該基板(10)は、サファイヤ、炭化シリコン、シリコン、ヒ素化ガリウム、窒化アルミニウム、窒化ガリウム基板のいずれかとする。該基板(10)の表面に、鈍化層(11)を成長させ、並びに該鈍化層(11)をパターン化し、該鈍化層(11)に被覆される素子領域(101)と該基板(10)表面において露出する切削線領域(102)を画定する(図1)。   First, a substrate (10) is provided. The substrate (10) is one of sapphire, silicon carbide, silicon, gallium arsenide, aluminum nitride, and gallium nitride substrate. A blunt layer (11) is grown on the surface of the substrate (10), and the blunt layer (11) is patterned, and an element region (101) covered with the blunt layer (11) and the substrate (10) A cutting line region (102) exposed at the surface is defined (FIG. 1).

その後、サファイヤ、炭化シリコン、シリコン、ヒ素化ガリウム、窒化アルミニウム、窒化ガリウム基板のいずれかとされる該基板(10)を第1溶液内に置き反応させ、該切削線領域(102)が露出した基板(10)の表面に高密度の化学反応層(103)を形成する。
該第1溶液は酸性溶液グループ、アルカリ性溶液グループの少なくとも一つの材料、或いはそのグループの組合せのいずれかとする。
該酸性溶液グループは、フッ化水素、硫酸、塩酸、りん酸、硝酸、王水、バッファードオキサイドエッチャント、アルミニウムエッチャント、過酸化水素、ぎ酸、酢酸、こはく酸及びクエン酸を包含する。
該アルカリ性溶液グループは、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化アンモニウム、テトラメチルアンモニウムヒドロキサイドを包含する。
該基板(10)を該第1溶液内に置く時間は1秒から200分間とする。その後、該鈍化層(11)と該化学反応層(103)をマスクとして、該基板(10)の切削線領域(102)に対して選択性エッチングを行い、切削線領域(102)の該化学反応層(103)の無い部分の複数の凹部(104)と、上方に化学反応層(103)を具えた凸部(105)を形成する(図2)。
本発明は、該第1溶液を使用して、該基板(10)の切削線領域(102)に不連続の該化学反応層を形成し、続いて、選択性エッチングを行ない、このとき、該基板の、該化学反応層により被覆されていない部分に、該半導体凹部が形成され、該化学反応層により被覆された部分は反応しないため、半導体凸部が形成される。その後、さらに該化学反応層を除去し、こうして、該基板の切削線領域表面に凹部と凸部を有する不規則幾何形状を形成する。
Thereafter, the substrate (10), which is one of sapphire, silicon carbide, silicon, gallium arsenide, aluminum nitride, and gallium nitride substrate , is placed in the first solution and reacted to expose the cutting line region (102). A high-density chemical reaction layer (103) is formed on the surface of (10).
The first solution is either an acidic solution group, at least one material of an alkaline solution group, or a combination of the groups.
The acidic solution group includes hydrogen fluoride, sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, aqua regia, buffered oxide etchant, aluminum etchant, hydrogen peroxide, formic acid, acetic acid, succinic acid and citric acid.
The alkaline solution group includes potassium hydroxide, sodium hydroxide, calcium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide.
The time for placing the substrate (10) in the first solution is 1 second to 200 minutes. Thereafter, selective etching is performed on the cutting line region (102) of the substrate (10) using the blunt layer (11) and the chemical reaction layer (103) as a mask, and the chemical of the cutting line region (102) is obtained. A plurality of concave portions (104) in a portion without the reaction layer (103) and a convex portion (105) having a chemical reaction layer (103) above are formed (FIG. 2).
The present invention uses the first solution to form a discontinuous chemically reactive layer in the cutting line region (102) of the substrate (10), followed by selective etching, wherein the The semiconductor concave portion is formed in a portion of the substrate that is not covered with the chemical reaction layer, and the portion covered with the chemical reaction layer does not react, so that a semiconductor convex portion is formed. Thereafter, the chemical reaction layer is further removed, and thus an irregular geometric shape having concave and convex portions is formed on the surface of the cutting line region of the substrate.

該基板(10)をサファイヤ基板(Al23 )とする場合を例とすると(以下の説明で該基板(10)はいずれもサファイヤ基板(Al23 )とする)、サファイヤ基板(Al23 )を硫酸(H2 SO4 )(96%)中に置き(硫酸を第1溶液とする)、液体温度は摂氏約25〜400度、反応時間は1秒〜200分間とし、該基板(10)の表面に高密度ナノメータレベルの該化学反応層(103)(Al2 (SO43 或いはAl2 (SO4 )・17H2 O等)を形成する。その後、該化学反応層(103)をマスクとし、該基板(10)に対してドライエッチング或いはウェットエッチングで選択性エッチングを行う。 Taking the substrate (10) as a sapphire substrate (Al 2 O 3 ) as an example (in the following description, the substrate (10) is a sapphire substrate (Al 2 O 3 )), a sapphire substrate (Al 2 O 3 ) in sulfuric acid (H 2 SO 4 ) (96%) (sulfuric acid as the first solution), the liquid temperature is about 25 to 400 degrees Celsius, the reaction time is 1 second to 200 minutes, The high-density nanometer level chemical reaction layer (103) (Al 2 (SO 4 ) 3 or Al 2 (SO 4 ) · 17H 2 O, etc.) is formed on the surface of the substrate (10). Thereafter, selective etching is performed on the substrate (10) by dry etching or wet etching using the chemical reaction layer (103) as a mask.

ウェットエッチングでサファイヤ基板(Al23 )をエッチングする場合、その表面に凹部(104)と凸部(105)を形成させられる。また、サファイヤ基板を第1溶液例えば硫酸(H2 SO4 )でエッチングする時間を、2.5分間から20分間の間で変化させると、平均エッチング深さ(average etching deep)、平均顆粒サイズ(average grain size)、密度(density)及びRMS粗度(RMS roughness)の異なる基板(10)が得られる。原子力顕微鏡で基板(10)表面を観察した結果は、以下の表1のようになる。 When the sapphire substrate (Al 2 O 3 ) is etched by wet etching, the concave portion (104) and the convex portion (105) can be formed on the surface. In addition, when the time for etching the sapphire substrate with the first solution such as sulfuric acid (H 2 SO 4 ) is changed between 2.5 minutes and 20 minutes, the average etching depth (average etching depth) and the average granule size ( Substrates (10) with different average grain size, density and RMS roughness are obtained. The results of observing the surface of the substrate (10) with an atomic force microscope are as shown in Table 1 below.

Figure 0004804444
Figure 0004804444

さらにエッチング後の基板(10)を第2溶液内に置いてエッチングし、該化学反応層(103)を除去し、凹部(104)と凸部(105)を具えた不規則幾何形状を基板(10)の切削線領域(102)表面に形成する。
該第2溶液は酸性溶液グループ、アルカリ性溶液グループの少なくとも一つの材料、或いはそのグループの組合せのいずれかとする。
該酸性溶液グループは、フッ化水素、硫酸、塩酸、りん酸、硝酸、王水、バッファードオキサイドエッチャント、アルミニウムエッチャント、過酸化水素、ぎ酸、酢酸、こはく酸及びクエン酸を包含する。
該アルカリ性溶液グループは、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化アンモニウム、テトラメチルアンモニウムヒドロキサイドを包含する。
該基板(10)を第2溶液に置く時間は1秒から200分間とする。
該第2溶液をりん酸(H3 PO4 )とする場合を例として説明すると、該りん酸(H3PO4 )の温度は摂氏25度〜400度、該基板(10)を該第2溶液に置く時間は1秒から200分間とし、該化学反応層(103)を除去してきれいにする。その後、該鈍化層(11)を除去し、該基板(10)の表面をクリーニングし、該基板(10)の素子領域(101)表面の平坦性を維持する。
Further, the etched substrate (10) is placed in the second solution for etching, the chemical reaction layer (103) is removed, and an irregular geometric shape having a concave portion (104) and a convex portion (105) is formed on the substrate ( 10) on the surface of the cutting line region (102).
The second solution is either an acidic solution group, at least one material of an alkaline solution group, or a combination of the groups.
The acidic solution group includes hydrogen fluoride, sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, aqua regia, buffered oxide etchant, aluminum etchant, hydrogen peroxide, formic acid, acetic acid, succinic acid and citric acid.
The alkaline solution group includes potassium hydroxide, sodium hydroxide, calcium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide.
The time for placing the substrate (10) on the second solution is 1 second to 200 minutes.
The case where the second solution is phosphoric acid (H 3 PO 4 ) will be described as an example. The temperature of the phosphoric acid (H 3 PO 4 ) is 25 ° C. to 400 ° C., and the substrate (10) is The time for placing in the solution is from 1 second to 200 minutes, and the chemical reaction layer (103) is removed and cleaned. Thereafter, the blunt layer (11) is removed, the surface of the substrate (10) is cleaned, and the flatness of the surface of the element region (101) of the substrate (10) is maintained.

最後に該基板(10)の素子領域(101)表面に発光ダイオードの半導体発光構造(20)を形成する。該半導体発光構造(20)は少なくとも一つのn型半導体層(21)、活性層(22)及び少なくとも一つのp型半導体層(23)を順にエピタキシャル成長させてなり、該活性層(22)は発光領域として該n型半導体層(21)と該p型半導体層(23)の間に形成する(図4)。該半導体層構造(20)は該基板(10)の素子領域(101)の表面でその平坦性を維持し、該切削線領域(102)の表面の半導体層構造(20)(n型半導体層(21)、活性層(22)、p型半導体層(23))のエピタキシャル成長の後、該凹部(104)と凸部(105)の不規則幾何形状により凹凸が不平坦の各層を形成し、これにより複数の半導体層凹部(204)と半導体層凸部(205)を形成する。   Finally, a semiconductor light emitting structure (20) of a light emitting diode is formed on the surface of the element region (101) of the substrate (10). The semiconductor light emitting structure (20) is formed by epitaxially growing at least one n-type semiconductor layer (21), an active layer (22) and at least one p-type semiconductor layer (23) in order, and the active layer (22) emits light. A region is formed between the n-type semiconductor layer (21) and the p-type semiconductor layer (23) (FIG. 4). The semiconductor layer structure (20) maintains its flatness on the surface of the element region (101) of the substrate (10), and the semiconductor layer structure (20) (n-type semiconductor layer on the surface of the cutting line region (102)). (21) After the epitaxial growth of the active layer (22) and the p-type semiconductor layer (23)), the irregularities of the concave portion (104) and the convex portion (105) are used to form irregular layers. Thereby, a plurality of semiconductor layer concave portions (204) and semiconductor layer convex portions (205) are formed.

最後に、リソグラフィー工程により、該素子領域(101)上の半導体層構造(20)に発光ダイオード素子(30)を形成させる。すなわち、該素子領域(101)上の半導体層構造(20)上の該p型半導体層(23)とp型オームコンタクト電極(32)を電気的に接続し、該n型半導体層(21)にコンタクトウインドウを通してn型オームコンタクト電極(31)を電気的に接続し、該発光ダイオード素子(30)に順方向バイアスを提供する。該切削線領域(102)の半導体層構造(20)を該n型半導体層(21)までエッチングし、且つ該n型半導体層(21)の表面に、複数の、半導体層凹部(214)と半導体層凸部(215)を具備させる。   Finally, a light emitting diode element (30) is formed in the semiconductor layer structure (20) on the element region (101) by a lithography process. That is, the p-type semiconductor layer (23) on the semiconductor layer structure (20) on the element region (101) and the p-type ohmic contact electrode (32) are electrically connected, and the n-type semiconductor layer (21). The n-type ohmic contact electrode (31) is electrically connected to the light emitting diode element (30) through a contact window to provide a forward bias. The semiconductor layer structure (20) in the cutting line region (102) is etched to the n-type semiconductor layer (21), and a plurality of semiconductor layer recesses (214) are formed on the surface of the n-type semiconductor layer (21). A semiconductor layer convex portion (215) is provided.

該凹部(104)、凸部(105)、半導体層凹部(214)と半導体層凸部(215)の構造により、該半導体層構造(20)内部の活性層(22)の発射する光は、該基板(10)上の凹部(104)と凸部(105)構造、及び該n型半導体層(21)上の半導体層凹部(214)と半導体層凸部(215)の構造により、散乱或いは回折し、全反射の確率が減り、該基板(10)の上方或いは下方に向かう光束が増加し、発光ダイオード30の光取出し効率が増し、総発光量が増す。   Due to the structure of the concave portion (104), the convex portion (105), the semiconductor layer concave portion (214) and the semiconductor layer convex portion (215), the light emitted from the active layer (22) inside the semiconductor layer structure (20) is Depending on the structure of the recesses (104) and protrusions (105) on the substrate (10) and the structure of the semiconductor layer recesses (214) and semiconductor layer protrusions (215) on the n-type semiconductor layer (21), scattering or The probability of total reflection is reduced, the luminous flux directed upward or downward of the substrate (10) is increased, the light extraction efficiency of the light emitting diode 30 is increased, and the total light emission amount is increased.

上述の方法で形成した発光ダイオードの構造は、基板(10)であって、該基板(10)の表面が素子領域(101)と切削線領域(102)に分けられ、且つ切削線領域(102)の表面に凹部(104)と凸部(105)を具えた不規則幾何形状が形成された、上記基板(10)と、半導体層構造(20)であって、該基板(10)の表面の素子領域(101)と切削線領域(102)にエピタキシャル成長技術を利用して形成され、且つ該切削線領域(102)上の該半導体層構造(20)の表面に複数の半導体層凹部(204)と半導体層凸部(205)が形成され、更にリソグラフィー工程により、素子領域(101)上の半導体層構造(20)が該発光ダイオード素子(30)を形成し、該切削線領域(102)の半導体層構造(20)が該n型半導体層(21)までエッチングされ、且つ該n型半導体層(21)表面に複数の半導体層凹部(214)と半導体層凸部(215)を具備する、上記半導体層構造(20)と、を包含する。   The structure of the light emitting diode formed by the above-described method is a substrate (10), and the surface of the substrate (10) is divided into an element region (101) and a cutting line region (102), and the cutting line region (102 ) On the surface of the substrate (10) and the semiconductor layer structure (20), the surface of the substrate (10) having an irregular geometric shape having concave portions (104) and convex portions (105). The element region (101) and the cutting line region (102) are formed using an epitaxial growth technique, and a plurality of semiconductor layer recesses (204) are formed on the surface of the semiconductor layer structure (20) on the cutting line region (102). ) And a semiconductor layer protrusion (205) are formed, and the semiconductor layer structure (20) on the element region (101) forms the light emitting diode element (30) by a lithography process, and the cutting line region (102) Semiconductor layer structure 20) is etched to the n-type semiconductor layer (21), and has a plurality of semiconductor layer recesses (214) and semiconductor layer protrusions (215) on the surface of the n-type semiconductor layer (21). (20).

本発明の精神は、切削線領域(102)の表面に化学反応層(103)を形成し、その後、選択性エッチングにより、該基板(10)の切削線領域(102)の表面を凹部(104)と凸部(105)を具えた構造とし、更にエピタキシャル成長技術を利用し、切削線上の半導体層表面に不規則な凹凸幾何形状を形成する。これら凹部(104)と凸部(105)構造と、これら半導体層凹部(214)と半導体層凸部(215)により、該発光ダイオード素子(30)内部の光はこれら凹部(104)、凸部(105)、半導体層凹部(214)と半導体層凸部(215)部分で散乱、回折効果を発生し、該n型半導体層(21)と該基板(10)の界面中の光の横方向伝播の状況を減らし、全反射の確率を減らし、該発光ダイオード素子(30)の光取出し効率を高める。   The spirit of the present invention is that a chemical reaction layer (103) is formed on the surface of the cutting line region (102), and then the surface of the cutting line region (102) of the substrate (10) is recessed (104) by selective etching. ) And protrusions (105), and an irregular growth geometry is formed on the surface of the semiconductor layer on the cutting line by using an epitaxial growth technique. Due to the concave portion (104) and the convex portion (105) structure, and the semiconductor layer concave portion (214) and the semiconductor layer convex portion (215), the light inside the light emitting diode element (30) is reflected by the concave portion (104) and the convex portion. (105) Scattering and diffraction effects are generated in the semiconductor layer concave portion (214) and the semiconductor layer convex portion (215), and the lateral direction of light in the interface between the n-type semiconductor layer (21) and the substrate (10) The propagation situation is reduced, the probability of total reflection is reduced, and the light extraction efficiency of the light emitting diode element (30) is increased.

以上の実施例は本発明の範囲を限定するものではなく、本発明に基づきなし得る細部の修飾或いは変更はいずれも本発明の請求範囲に属するものとする。   The above embodiments do not limit the scope of the present invention, and any modification or change in detail that can be made based on the present invention shall fall within the scope of the claims of the present invention.

本発明の基板表面の鈍化層のパターン化の表示図である。It is a display figure of patterning of the blunting layer of the substrate surface of the present invention. 本発明の基板表面に化学反応層を形成してエッチングした後の構造表示図である。It is a structure display figure after forming and etching a chemical reaction layer on the substrate surface of the present invention. 本発明の切削線領域の凹部と凸部を具えた構造表示図である。It is a structure display figure provided with the recessed part and convex part of the cutting line area | region of this invention. 本発明の基板表面のエピタキシャル半導体層の構造表示図である。It is a structure display figure of the epitaxial semiconductor layer of the substrate surface of the present invention. 本発明の発光ダイオード構造の表示図である。It is a display figure of the light emitting diode structure of this invention.

10 基板 11 鈍化層
103 化学反応層
101 素子領域 102 切削線領域
104 凹部 105 凸部
204 半導体層凹部 205 半導体層凸部
20 半導体層構造 30発光ダイオード素子
214 半導体層凹部 215 半導体層凸部
DESCRIPTION OF SYMBOLS 10 Board | substrate 11 Blunt layer 103 Chemical reaction layer 101 Element area | region 102 Cutting line area | region 104 Concave part 105 Convex part 204 Semiconductor layer recessed part 205 Semiconductor layer convex part 20 Semiconductor layer structure 30 Light emitting diode element 214 Semiconductor layer recessed part 215 Semiconductor layer convex part

Claims (12)

発光ダイオードの製造方法において、
基板(10)を提供し、その表面に鈍化層(11)を成長させ、並びに該鈍化層(11)をパターン化し、該鈍化層(11)に被覆される素子領域(101)と該基板(10)表面に露出する切削線領域(102)を画定する工程、
該基板(10)を第1溶液内に置いて反応させ、該切削線領域(102)の露出した基板(10)表面に高密度の化学反応層(103)を形成する工程、
その後、該鈍化層(11)と該化学反応層(103)をマスクとし、該基板(10)の切削線領域(102)に対して選択性エッチングを行い、該切削線領域(102)において該化学反応層(103)のない部分の複数の凹部(104)と上方に該化学反応層(103)を有する凸部(105)を形成する工程、
更に該基板(10)を第2溶液内に置いてエッチングし、該化学反応層(103)を除去し、該基板(10)の切削線領域(102)表面に凹部(104)と凸部(105)を具えた不規則幾何形状を形成する工程、
該鈍化層(11)を除去し、且つ該基板(10)表面をクリーニングする工程、
該基板(10)の表面の素子領域(101)と切削線領域(102)にエピタキシャル成長技術を利用して、半導体層構造(20)を成長させ、且つ該切削線領域(102)上の半導体層構造(20)の表面に、複数の半導体層凹部(204)と半導体層凸部(205)を具備させる工程、
リソグラフィー工程により、素子領域(101)上の半導体層構造(20)に発光ダイオード素子(30)を形成させる工程、
を包含したことを特徴とする、発光ダイオードの製造方法。
In the method of manufacturing a light emitting diode,
A substrate (10) is provided, a blunt layer (11) is grown on the surface, and the blunt layer (11) is patterned, and an element region (101) covered with the blunt layer (11) and the substrate ( 10) defining a cutting line area (102) exposed on the surface;
Placing the substrate (10) in a first solution and reacting to form a high-density chemical reaction layer (103) on the exposed substrate (10) surface of the cutting line region (102);
Thereafter, selective etching is performed on the cutting line region (102) of the substrate (10) using the blunt layer (11) and the chemical reaction layer (103) as a mask, and the cutting line region (102) Forming a plurality of concave portions (104) in a portion without the chemical reaction layer (103) and a convex portion (105) having the chemical reaction layer (103) above;
Further, the substrate (10) is placed in the second solution and etched to remove the chemical reaction layer (103), and a concave portion (104) and a convex portion (on the surface of the cutting line region (102) of the substrate (10) ( 105) forming an irregular geometry comprising
Removing the blunt layer (11) and cleaning the surface of the substrate (10);
A semiconductor layer structure (20) is grown on the element region (101) and the cutting line region (102) on the surface of the substrate (10) by using an epitaxial growth technique, and the semiconductor layer on the cutting line region (102) is formed. Providing a plurality of semiconductor layer recesses (204) and semiconductor layer protrusions (205) on the surface of the structure (20);
Forming a light emitting diode element (30) in the semiconductor layer structure (20) on the element region (101) by a lithography process;
A method for producing a light emitting diode, comprising:
請求項1記載の発光ダイオードの製造方法において、該基板(10)はサファイヤ、炭化シリコン、シリコン、ヒ素化ガリウム、窒化アルミニウム、窒化ガリウム基板のいずれかとすることを特徴とする、発光ダイオードの製造方法。   2. The method of manufacturing a light emitting diode according to claim 1, wherein the substrate (10) is one of sapphire, silicon carbide, silicon, gallium arsenide, aluminum nitride, and gallium nitride substrate. . 請求項1記載の発光ダイオードの製造方法において、該第1溶液と第2溶液は酸性溶液グループ、アルカリ性溶液グループの少なくとも一つの材料、或いはそのグループの組合せのいずれかとすることを特徴とする、発光ダイオードの製造方法。   The light emitting diode manufacturing method according to claim 1, wherein the first solution and the second solution are at least one material of an acidic solution group, an alkaline solution group, or a combination of the groups. Diode manufacturing method. 請求項3記載の発光ダイオードの製造方法において、該酸性溶液グループは、フッ化水素、硫酸、塩酸、りん酸、硝酸、王水、バッファードオキサイドエッチャント、アルミニウムエッチャント、過酸化水素、ぎ酸、酢酸、こはく酸及びクエン酸を包含することを特徴とする、発光ダイオードの製造方法。   4. The light emitting diode manufacturing method according to claim 3, wherein the acidic solution group includes hydrogen fluoride, sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, aqua regia, buffered oxide etchant, aluminum etchant, hydrogen peroxide, formic acid, acetic acid. A method for producing a light-emitting diode, comprising succinic acid and citric acid. 請求項3記載の発光ダイオードの製造方法において、該アルカリ性溶液グループは、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化アンモニウム、テトラメチルアンモニウムヒドロキサイドを包含することを特徴とする、発光ダイオードの製造方法。   4. The light emitting diode manufacturing method according to claim 3, wherein the alkaline solution group includes potassium hydroxide, sodium hydroxide, calcium hydroxide, ammonium hydroxide, and tetramethylammonium hydroxide. Manufacturing method. 請求項1記載の発光ダイオードの製造方法において、該基板(10)を第1溶液に置く時間は1秒から200分間とする、発光ダイオードの製造方法。   The method of manufacturing a light emitting diode according to claim 1, wherein the time for placing the substrate (10) in the first solution is 1 second to 200 minutes. 請求項1記載の発光ダイオードの製造方法において、該基板(10)を第2溶液に置く時間は1秒から200分間とする、発光ダイオードの製造方法。   The method of manufacturing a light emitting diode according to claim 1, wherein the time for placing the substrate (10) in the second solution is 1 second to 200 minutes. 請求項1記載の発光ダイオードの製造方法において、該凹部(104)と凸部(105)の高度差を0.1μmから15μmとする、発光ダイオードの製造方法。   The method for manufacturing a light emitting diode according to claim 1, wherein the height difference between the concave portion (104) and the convex portion (105) is set to 0.1 to 15 µm. 請求項1記載の発光ダイオードの製造方法において、該半導体発光構造(20)は、少なくとも一つのn型半導体層(21)、活性層(22)、及び少なくとも一つのp型半導体層(23)を順にエピタキシャル成長させて形成し、そのうち、該活性層(22)は発光領域として該n型半導体層(21)と該p型半導体層(23)の間に形成し、且つリソグラフィー工程により、該p型半導体層(23)をp型オームコンタクト電極(32)と電気的に接続し、該n型半導体層(21)にn型オームコンタクト電極(31)を電気的に接続して該発光ダイオード素子(30)に順方向バイアスを提供し、該切削線領域(102)を該n型半導体層(21)までエッチングし、且つ該n型半導体層(21)表面に複数の半導体層凹部(214)と半導体層凸部(215)を具備させることを特徴とする、発光ダイオードの製造方法。   The method of manufacturing a light emitting diode according to claim 1, wherein the semiconductor light emitting structure (20) comprises at least one n-type semiconductor layer (21), an active layer (22), and at least one p-type semiconductor layer (23). The active layer (22) is formed between the n-type semiconductor layer (21) and the p-type semiconductor layer (23) as a light emitting region, and the p-type is formed by a lithography process. The semiconductor layer (23) is electrically connected to the p-type ohmic contact electrode (32), the n-type ohmic contact electrode (31) is electrically connected to the n-type semiconductor layer (21), and the light-emitting diode element ( 30) providing a forward bias, etching the cutting line region (102) to the n-type semiconductor layer (21), and a plurality of semiconductor layer recesses (214) on the surface of the n-type semiconductor layer (21). Characterized in that to comprise a semiconductor layer projecting portion (215), method for producing a light-emitting diode. 発光ダイオードの構造において、
基板(10)であって、該基板(10)の表面が素子領域(101)と切削線領域(102)に分けられ、且つ切削線領域(102)表面に複数の凹部(104)と凸部(105)を具えた不規則幾何形状が形成された、上記基板(10)と、
発光ダイオード素子(30)であって、エピタキシャル成長技術を利用し、半導体層構造(20)が該基板(10)表面の素子領域(101)と切削線領域(102)に形成され、且つ該切削線領域(102)上の該半導体層構造(20)が複数の半導体層凹部(204)と半導体層凸部(205)を具え、更にリソグラフィー工程によって、素子領域(101)上の半導体層構造(20)で該発光ダイオード素子(30)が形成された、上記発光ダイオード素子(30)と、
を包含し、
該半導体発光構造(20)は、少なくとも一つのn型半導体層(21)、活性層(22)、及び少なくとも一つのp型半導体層(23)を順にエピタキシャル成長させて形成され、そのうち、該活性層(22)は発光領域とされ該n型半導体層(21)と該p型半導体層(23)の間に形成され、且つリソグラフィー工程により、該p型半導体層(23)がp型オームコンタクト電極(32)と電気的に接続され、該n型半導体層(21)にn型オームコンタクト電極(31)が電気的に接続され該発光ダイオード素子(30)に順方向バイアスが提供され、該切削線領域(102)が該n型半導体層(21)までエッチングされ、且つ該n型半導体層(21)表面に複数の半導体層凹部(214)と半導体層凸部(215)を具備することを特徴とする、発光ダイオードの構造。
In the structure of light emitting diode,
A surface of the substrate (10) is divided into an element region (101) and a cutting line region (102), and a plurality of concave portions (104) and convex portions are formed on the surface of the cutting line region (102). The substrate (10) formed with an irregular geometry comprising (105);
A light emitting diode element (30), using an epitaxial growth technique, a semiconductor layer structure (20) is formed in an element region (101) and a cutting line region (102) on the surface of the substrate (10), and the cutting line The semiconductor layer structure (20) on the region (102) includes a plurality of semiconductor layer concave portions (204) and semiconductor layer convex portions (205), and further, a semiconductor layer structure (20 on the element region (101) is formed by a lithography process. The light-emitting diode element (30) in which the light-emitting diode element (30) is formed,
It encompasses,
The semiconductor light emitting structure (20) is formed by epitaxially growing at least one n-type semiconductor layer (21), an active layer (22), and at least one p-type semiconductor layer (23) in order, of which the active layer (22) is a light emitting region, formed between the n-type semiconductor layer (21) and the p-type semiconductor layer (23), and the p-type semiconductor layer (23) is formed into a p-type ohmic contact electrode by a lithography process. The n-type ohmic contact electrode (31) is electrically connected to the n-type semiconductor layer (21), and a forward bias is provided to the light emitting diode element (30). The line region (102) is etched to the n-type semiconductor layer (21), and a plurality of semiconductor layer concave portions (214) and semiconductor layer convex portions (215) are provided on the surface of the n-type semiconductor layer (21). It characterized the structure of a light emitting diode.
請求項10記載の発光ダイオードの構造において、該基板(10)がサファイヤ、炭化シリコン、シリコン、ヒ素化ガリウム、窒化アルミニウム、窒化ガリウム基板のいずれかとされたことを特徴とする、発光ダイオードの構造。   11. A light emitting diode structure according to claim 10, characterized in that the substrate (10) is one of a sapphire, silicon carbide, silicon, gallium arsenide, aluminum nitride or gallium nitride substrate. 請求項10記載の発光ダイオードの構造において、該凹部(104)と凸部(105)の高度差が0.1μmから15μmである、発光ダイオードの構造。   The structure of a light emitting diode according to claim 10, wherein the height difference between the concave portion (104) and the convex portion (105) is from 0.1 µm to 15 µm.
JP2007284034A 2007-10-31 2007-10-31 Structure of light emitting diode and manufacturing method thereof Expired - Fee Related JP4804444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007284034A JP4804444B2 (en) 2007-10-31 2007-10-31 Structure of light emitting diode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007284034A JP4804444B2 (en) 2007-10-31 2007-10-31 Structure of light emitting diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009111269A JP2009111269A (en) 2009-05-21
JP4804444B2 true JP4804444B2 (en) 2011-11-02

Family

ID=40779423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284034A Expired - Fee Related JP4804444B2 (en) 2007-10-31 2007-10-31 Structure of light emitting diode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4804444B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882659A (en) * 2010-06-28 2010-11-10 亚威朗光电(中国)有限公司 Light-emitting diode chip and method for manufacturing same
JP5921091B2 (en) * 2011-06-03 2016-05-24 林純薬工業株式会社 Etching solution composition and etching method
CN103378221B (en) * 2012-04-20 2016-06-29 东莞市中镓半导体科技有限公司 A kind of method preparing graphic sapphire substrate for GaN growth
KR102013363B1 (en) * 2012-11-09 2019-08-22 서울바이오시스 주식회사 Light emitting device and method of fabricating the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197961A (en) * 2001-12-27 2003-07-11 Toyoda Gosei Co Ltd Group iii nitride-based compound semiconductor light emitting element
JP4201079B2 (en) * 2002-12-20 2008-12-24 昭和電工株式会社 LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND LED LAMP
JP2005354020A (en) * 2004-05-10 2005-12-22 Univ Meijo Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device
JP2007266577A (en) * 2006-03-03 2007-10-11 Matsushita Electric Ind Co Ltd Nitride semiconductor device and manufacturing method thereof
KR100828873B1 (en) * 2006-04-25 2008-05-09 엘지이노텍 주식회사 Nitride semiconductor LED and fabrication method thereof
JP4957130B2 (en) * 2006-09-06 2012-06-20 日立電線株式会社 Light emitting diode
DE102006043400A1 (en) * 2006-09-15 2008-03-27 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP5176334B2 (en) * 2007-02-01 2013-04-03 日亜化学工業株式会社 Semiconductor light emitting device
JP4799528B2 (en) * 2007-10-31 2011-10-26 泰谷光電科技股▲ふん▼有限公司 Structure of light emitting diode and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009111269A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US7713769B2 (en) Method for fabricating light emitting diode structure having irregular serrations
US9082934B2 (en) Semiconductor optoelectronic structure with increased light extraction efficiency
US7598105B2 (en) Light emitting diode structure and method for fabricating the same
JP5570697B2 (en) LED using substrate modification to improve light extraction and method of making the same
EP1983581B1 (en) Method of fabricating a light emitting diode having improved external light extraction
EP1858090A2 (en) Light emitting diode having multi-pattern structure
US20140319536A1 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
CN101414653B (en) LED structure and manufacturing method thereof
JP2008072126A (en) Optoelectronic semiconductor chip
JP2007168066A (en) Manufacturing method of substrate with nanostructure formed thereon, light emitting element, and its manufacturing method
JP2012114407A (en) Method for fabricating vertical light emitting devices and substrate module for the same
JP2012142580A (en) Method for fabricating light emitting diode chip
JP4804444B2 (en) Structure of light emitting diode and manufacturing method thereof
CN102255010B (en) Manufacturing method of gallium nitride light-emitting diode
WO2010021212A1 (en) Light emitting element, and method for manufacturing the element
KR100593941B1 (en) Method for manufacturing iii-nitride light emitting device
CN101420003B (en) Manufacturing method for LED
JP4799528B2 (en) Structure of light emitting diode and manufacturing method thereof
TW200913311A (en) A structure of LED and its manufacturing method
JP2009076647A (en) Manufacturing method of light emitting diode element
JP6724687B2 (en) Nanorod forming method and semiconductor device manufacturing method
TWI384643B (en) Manufacturing method of light emitting diode structure
CN102306693A (en) Graphical nitride-based luminescent epitaxial wafer and luminescent chip, and manufacturing methods thereof
KR20090002313A (en) Semiconductor light emitting device and method of manufacturing the same
TWI407594B (en) Method for making light emitting diode chip

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4804444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees