JP4804221B2 - Superconducting magnet device - Google Patents

Superconducting magnet device Download PDF

Info

Publication number
JP4804221B2
JP4804221B2 JP2006137621A JP2006137621A JP4804221B2 JP 4804221 B2 JP4804221 B2 JP 4804221B2 JP 2006137621 A JP2006137621 A JP 2006137621A JP 2006137621 A JP2006137621 A JP 2006137621A JP 4804221 B2 JP4804221 B2 JP 4804221B2
Authority
JP
Japan
Prior art keywords
heat shield
shield plate
prepreg sheet
superconducting magnet
cfrp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006137621A
Other languages
Japanese (ja)
Other versions
JP2007311471A (en
Inventor
晴弘 織田
俊之 天野
毅志 尾崎
洋次 森永
栄久 草田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Central Japan Railway Co
Original Assignee
Mitsubishi Electric Corp
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Central Japan Railway Co filed Critical Mitsubishi Electric Corp
Priority to JP2006137621A priority Critical patent/JP4804221B2/en
Publication of JP2007311471A publication Critical patent/JP2007311471A/en
Application granted granted Critical
Publication of JP4804221B2 publication Critical patent/JP4804221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

この発明は、磁気浮上式鉄道に使用される超電導磁石装置に関し、特に超電導コイルを収納した内槽の輻射熱シールド板に関する。   The present invention relates to a superconducting magnet device used in a magnetically levitated railway, and more particularly to a radiant heat shield plate for an inner tank containing a superconducting coil.

従来の磁気浮上式鉄道に使用される超電導磁石装置においては、軽量で電気抵抗が高く、熱伝導率も高い材質として炭素繊維に樹脂を含浸した強化プラスチック材(CFRP)を使用して輻射熱シールド板を構成している(例えば特許文献1参照)。   In a superconducting magnet device used in a conventional magnetic levitation railway, a radiant heat shield plate using a reinforced plastic material (CFRP) in which carbon fiber is impregnated with resin as a material that is lightweight, has high electrical resistance, and high thermal conductivity. (For example, refer to Patent Document 1).

特開平6−232461号公報(第2頁)Japanese Patent Laid-Open No. 6-232461 (2nd page)

従来の超電導磁石装置では、主に熱伝導性を向上させることによって輻射熱シールド板の温度分布を均一に保ち、内槽への熱侵入量低減が図られている。即ち、輻射熱シールド板を構成する液体窒素(LN2)冷却配管、金属製熱シールド板、CFRP製熱シールド板の温度分布の均一化が図られている。   In the conventional superconducting magnet device, the temperature distribution of the radiant heat shield plate is kept uniform by mainly improving the thermal conductivity, and the amount of heat penetration into the inner tank is reduced. That is, the temperature distribution of the liquid nitrogen (LN2) cooling pipe, the metal heat shield plate, and the CFRP heat shield plate constituting the radiant heat shield plate is made uniform.

しかし、剛性確保と熱伝導のため、アルミニウム或いは銅などの合金が使用されるLN2冷却配管と金属製熱シールド板は、CFRP製熱シールド板との熱膨張率の差が顕著であり、超電導磁石装置が極低温に冷却される際、熱膨張差から生じる熱応力に留意する必要があった。   However, in order to ensure rigidity and heat conduction, the difference between the thermal expansion coefficient of the CFRP heat shield plate and the LN2 cooling pipe in which an alloy such as aluminum or copper is used and the metal heat shield plate is significant, and the superconducting magnet When the device was cooled to cryogenic temperature, it was necessary to pay attention to the thermal stress resulting from the differential thermal expansion.

この発明は、上述のような課題を解決するためになされたもので、CFRP製熱シールド板の熱膨張率をLN2冷却配管の熱膨張率に近づけることによって、超電導磁石装置の信頼性を向上することを目的とする。   The present invention has been made to solve the above-described problems, and improves the reliability of the superconducting magnet device by bringing the thermal expansion coefficient of the CFRP heat shield plate closer to the thermal expansion coefficient of the LN2 cooling pipe. For the purpose.

この発明に係る超電導磁石装置は、超電導コイルと、前記超電導コイルを極低温で収納する内槽と、前記内槽を間接的に冷却するための液体窒素を封入している冷却配管と、前記冷却配管を備え、前記内槽を被覆して熱侵入を抑制する輻射熱シールド板とを備えた超電導磁石装置において、前記輻射熱シールド板は、±60度に繊維配向した第1のプリプレグシートと第2のプリプレグシートとを積層して形成した炭素繊維強化プラスチックから成り、前記第1のプリプレグシートは、前記第2のプリプレグシートよりも弾性率、熱伝導率が共に大きく、前記第2のプリプレグシートの外側に積層されることを特徴とする。

The superconducting magnet device according to the present invention includes a superconducting coil, an inner tank that houses the superconducting coil at a cryogenic temperature, a cooling pipe that encloses liquid nitrogen for indirectly cooling the inner tank, and the cooling In the superconducting magnet apparatus including a piping and a radiant heat shield plate that covers the inner tank and suppresses heat intrusion, the radiant heat shield plate includes a first prepreg sheet and a second fiber oriented at ± 60 degrees . Ri consists of carbon fiber reinforced plastic formed by laminating a prepreg sheet, said first prepreg sheet, the elastic modulus than said second prepreg sheet, the thermal conductivity are both large, the second prepreg sheet It is characterized by being laminated on the outside .

この発明によれば、輻射熱シールド板を構成するLN2冷却配管、金属製熱シールド板、CFRP製熱シールド板の熱膨張差が小さくなり、超電導磁石装置冷却時の熱応力に対する信頼性を向上することができる。   According to the present invention, the difference in thermal expansion of the LN2 cooling pipe, the metal heat shield plate, and the CFRP heat shield plate constituting the radiant heat shield plate is reduced, and the reliability against thermal stress during cooling of the superconducting magnet device is improved. Can do.

実施の形態
図1は、本発明の超電導磁石装置を適用した磁気浮上式鉄道の概略図である。
図1において、超電導磁石装置1は車両2の台車3の両側に取り付けられ、U字型のガイドウェイ4に設置されている地上コイル5と電磁気的に作用することにより、車両2を浮上走行させている。
Embodiment FIG. 1 is a schematic diagram of a magnetically levitated railway to which a superconducting magnet apparatus of the present invention is applied.
In FIG. 1, the superconducting magnet device 1 is attached to both sides of a carriage 3 of a vehicle 2 and electromagnetically acts with a ground coil 5 installed on a U-shaped guideway 4 so that the vehicle 2 floats. ing.

図2は、本発明の超電導磁石装置の断面図である。
図2において、超電導磁石装置1は、超電導コイル6を収納する内槽7に液体ヘリウムなどの冷却剤を満たして冷却し、さらに、外部からの熱侵入を抑制するための輻射熱シールド板8で内槽7を被覆し、内部を真空断熱した外槽9に荷重支持材10によって結合支持されている。
FIG. 2 is a cross-sectional view of the superconducting magnet device of the present invention.
In FIG. 2, the superconducting magnet device 1 is filled with a coolant such as liquid helium in an inner tank 7 that houses a superconducting coil 6 and cooled, and further, a radiant heat shield plate 8 is used to suppress heat intrusion from the outside. The tank 7 is covered and bonded and supported by a load supporting material 10 to an outer tank 9 whose inside is vacuum insulated.

この輻射熱シールド板8は、磁場中での振動による渦電流発熱を抑制する目的で、軽量で電気抵抗が高く、熱伝導率が高い材質として炭素繊維に樹脂を含浸した強化プラスチック材(以下CFRPと略する)によって構成されている。   This radiant heat shield plate 8 is a reinforced plastic material (hereinafter referred to as CFRP) in which carbon fiber is impregnated with resin as a material having a light weight, high electrical resistance, and high thermal conductivity for the purpose of suppressing eddy current heat generation due to vibration in a magnetic field. (Abbreviated).

図3に輻射熱シールド板8の構成を示す。図3において、輻射熱シールド板8の全面を構成するCFRP製熱シールド板11には、液体窒素などの冷却剤が封入された金属製の冷却配管12が引き回され、Alなどの金属製熱シールド板13を介して温度分布が均一となるように冷却されている。   FIG. 3 shows the configuration of the radiant heat shield plate 8. In FIG. 3, a CFRP heat shield plate 11 constituting the entire surface of the radiant heat shield plate 8 is provided with a metal cooling pipe 12 filled with a coolant such as liquid nitrogen, and a metal heat shield such as Al. It is cooled via the plate 13 so that the temperature distribution is uniform.

冷却配管12と金属製熱シールド板13は、溶接などによって固定され、金属製熱シールド板13とCFRP製熱シールド板11は、リベット止めによって接合されているため、それぞれに適用されている材料の線膨張係数に大きな差があると熱応力が発生する。   The cooling pipe 12 and the metal heat shield plate 13 are fixed by welding or the like, and the metal heat shield plate 13 and the CFRP heat shield plate 11 are joined by riveting. Thermal stress occurs when there is a large difference in the linear expansion coefficient.

銅やアルミニウム合金などから成る冷却配管12、及び金属製熱シールド板13の線膨張係数は10〜25ppm/Kであり、CFRP製熱シールド板11の線膨張係数−1ppm/Kとの差が顕著であり、超電導磁石装置1の冷却・昇温過程毎に熱応力が発生し、特に冷却配管12の接合部などに熱応力の厳しい部分が生じる可能性があった。   The linear expansion coefficient of the cooling pipe 12 made of copper or aluminum alloy and the metal heat shield plate 13 is 10-25 ppm / K, and the difference from the linear expansion coefficient of the CFRP heat shield plate 11 of −1 ppm / K is remarkable. Thus, thermal stress is generated every time the superconducting magnet device 1 is cooled and heated, and there is a possibility that particularly severe portions of the thermal stress occur in the joint portion of the cooling pipe 12.

そのため、例えば図4に示すようにCFRP製熱シールド板11として、弾性率850GPa以上で熱伝導率300W/m・K以上の炭素繊維からなる第1のプリプレグシート14を外側に、その内側に弾性率850GPa未満で熱伝導率300W/m・K未満の炭素繊維からなる第2のプリプレグシート15を、それぞれ繊維配向角度(θ)を±θとして積層し、成形・加工した。   Therefore, for example, as shown in FIG. 4, as the CFRP heat shield plate 11, the first prepreg sheet 14 made of carbon fiber having an elastic modulus of 850 GPa or more and a thermal conductivity of 300 W / m · K or more is formed on the outside and elastic on the inside. Second prepreg sheets 15 made of carbon fibers having a rate of less than 850 GPa and a thermal conductivity of less than 300 W / m · K were laminated with a fiber orientation angle (θ) of ± θ, and molded and processed.

図5は、上述のように積層し、成形・加工したCFRP製熱シールド板11の繊維配向角度と線膨張係数の関係を示したものである。この結果、繊維配向角度を90度に近づけるほど、CFRP製熱シールド板11の線膨張係数が大きくなることがわかる。   FIG. 5 shows the relationship between the fiber orientation angle and the linear expansion coefficient of the CFRP heat shield plate 11 laminated, molded and processed as described above. As a result, it can be seen that the linear expansion coefficient of the heat shield plate 11 made of CFRP increases as the fiber orientation angle approaches 90 degrees.

一方、図6は上述のように積層し、成形・加工したCFRP製熱シールド板11の繊維配向角度と弾性率の関係を示したものである。各繊維配向角度(±45〜75度)で積層したCFRPにおいて、(1)θ=0度(配管方向)、(2)θ=45度、(3)θ=90度の3方向の弾性率を示している。
この結果、(3)は繊維配向角度が90度に近づくほど弾性率が増大しているが、(1)及び(2)は繊維配向角度が90度に近づくほど弾性率が低下し、繊維配向角度が60度を超えるとCFRP製熱シールド板11が従来並の剛性(10GPa)を確保できなくなる。
On the other hand, FIG. 6 shows the relationship between the fiber orientation angle and the elastic modulus of the CFRP heat shield plate 11 laminated, molded and processed as described above. In CFRP laminated at each fiber orientation angle (± 45 to 75 degrees), (1) θ = 0 degree (pipe direction), (2) θ = 45 degrees, (3) θ = 90 degrees in three directions of elastic modulus Is shown.
As a result, in (3), the elastic modulus increases as the fiber orientation angle approaches 90 degrees, but in (1) and (2), the elastic modulus decreases as the fiber orientation angle approaches 90 degrees, and the fiber orientation If the angle exceeds 60 degrees, the CFRP heat shield plate 11 cannot secure the same rigidity (10 GPa) as the conventional one.

以上の結果より、第1のプリプレグシート14と第2のプリプレグシート15を繊維配向角度を60度として積層し、成形・加工することにより、(1)〜(3)の全ての方向で従来並の剛性を確保し、且つ線膨張係数が冷却配管12とほぼ同等の10ppm/KであるCFRP製熱シールド板11を得ることができる。   From the above results, the first prepreg sheet 14 and the second prepreg sheet 15 are laminated at a fiber orientation angle of 60 degrees, and molded and processed, so that the conventional prepreg sheet 14 is aligned in all directions (1) to (3). The CFRP heat shield plate 11 having a linear expansion coefficient of 10 ppm / K which is substantially equal to that of the cooling pipe 12 can be obtained.

例えば、超電導磁石装置が極低温に冷却された状態では、冷却配管12とCFRP製熱シールド板11は−196℃になり、冷却配管12と従来のCFRP製熱シールド板11の間に生じる熱収縮差は、0.00424であったが、冷却配管12と本実施の形態のCFRP製熱シールド板11の間に生じる熱収縮差は、0.00178となり、熱収縮差を従来のCFRP製熱シールド板を使用したときと比較して約60%低減でき、発生する熱応力も約60%低減することができる。   For example, when the superconducting magnet device is cooled to a very low temperature, the cooling pipe 12 and the CFRP heat shield plate 11 are at −196 ° C., and the heat shrinkage that occurs between the cooling pipe 12 and the conventional CFRP heat shield plate 11. Although the difference was 0.00424, the heat shrinkage difference generated between the cooling pipe 12 and the CFRP heat shield plate 11 of the present embodiment is 0.00178, and the heat shrinkage difference is reduced to the conventional CFRP heat shield. Compared to the case of using a plate, it can be reduced by about 60%, and the generated thermal stress can also be reduced by about 60%.

また、超電導磁石装置を常温に戻して保守・点検を行い、その終了後再び極低温に冷却する冷却・昇温過程の度にも冷却配管12とCFRP製熱シールド板11の間に同様の熱応力が生じていたが、これについても本実施の形態のCFRP製熱シールド板11を使用することにより、繰り返し発生する熱応力が約60%低減することができる。   In addition, the superconducting magnet device is returned to room temperature for maintenance and inspection, and after the completion, the same heat is applied between the cooling pipe 12 and the CFRP heat shield plate 11 every time the cooling / heating process is performed. Although stress was generated, the thermal stress repeatedly generated can be reduced by about 60% by using the CFRP heat shield plate 11 of this embodiment.

以上、本実施の形態では、第2のプリプレグシート15を1層ずつ配向させて積層したが、複合則によれば線対称に積層すれば特性差は生じないため、2層ずつ、3層ずつとして配向させて積層する、或いは厚さ(繊維密度)が第1のプリプレグシート14の2倍、3倍の第2のプリプレグシート15を配向させて積層しても同様のCFRP製熱シールド板11を得ることができ、作業効率が向上する。   As described above, in the present embodiment, the second prepreg sheets 15 are oriented and laminated one layer at a time. However, according to the composite rule, there is no characteristic difference when laminated in line symmetry. If the second prepreg sheet 15 having a thickness (fiber density) twice or three times that of the first prepreg sheet 14 is oriented and laminated, the same CFRP heat shield plate 11 is used. Work efficiency can be improved.

以上のように本発明の実施の形態に係る超電導磁石装置は、従来並の剛性を有し、且つ、冷却配管12や金属製熱シールド板13とほぼ同等の線膨張係数を有することによって、繰り返し冷却・昇温された場合でも各々の接合面で生じる熱応力が緩和され、信頼性を向上することができる。 As described above, the superconducting magnet device according to the embodiment of the present invention has the same rigidity as the conventional one, and has a linear expansion coefficient substantially equal to that of the cooling pipe 12 and the metal heat shield plate 13, so that Even when it is cooled and heated, the thermal stress generated at each joint surface is alleviated and the reliability can be improved.

本発明の実施の形態の磁気浮上式鉄道の概略断面図である。1 is a schematic sectional view of a magnetically levitated railway according to an embodiment of the present invention. 本発明の実施の形態の超電導磁石装置の断面図である。It is sectional drawing of the superconducting magnet apparatus of embodiment of this invention. 本発明の実施の形態の輻射熱シールド板の構成図である。It is a block diagram of the radiation heat shield board of embodiment of this invention. 本発明の実施の形態のCFRP製熱シールド板の構成図である。It is a block diagram of the heat shield board made from CFRP of embodiment of this invention. 本発明の実施の形態のCFRP製熱シールド板の繊維配向角度と線膨張係数の関係を示した図である。It is the figure which showed the relationship between the fiber orientation angle of the CFRP heat shield board of embodiment of this invention, and a linear expansion coefficient. 本発明の実施の形態のCFRP製熱シールド板の繊維配向角度と弾性率の関係を示した図である。It is the figure which showed the relationship between the fiber orientation angle and elastic modulus of the CFRP heat shield board of embodiment of this invention.

符号の説明Explanation of symbols

1 超電導磁石装置、 2 車両、 3 台車、 4 ガイドウェイ、 5 地上コイル、 6 超電導コイル、 7 内槽、 8 輻射熱シールド板、 9 外槽、 10 荷重支持材、 11 CFRP製熱シールド板、 12 冷却配管、 13 金属製熱シールド板、 14 第1のプリプレグシート、 15 第2のプリプレグシート。   DESCRIPTION OF SYMBOLS 1 Superconducting magnet apparatus, 2 Vehicle, 3 cart, 4 Guide way, 5 Ground coil, 6 Superconducting coil, 7 Inner tank, 8 Radiation heat shield board, 9 Outer tank, 10 Load support material, 11 CFRP heat shield board, 12 Cooling Piping, 13 metal heat shield plate, 14 first prepreg sheet, 15 second prepreg sheet.

Claims (2)

超電導コイルと、
前記超電導コイルを極低温で収納する内槽と、
前記内槽を間接的に冷却するための液体窒素を封入している冷却配管と、
前記冷却配管を備え、前記内槽を被覆して熱侵入を抑制する輻射熱シールド板とを備えた超電導磁石装置において、
前記輻射熱シールド板は、
±60度に繊維配向した第1のプリプレグシートと第2のプリプレグシートとを積層して形成した炭素繊維強化プラスチックから成り、
前記第1のプリプレグシートは、
前記第2のプリプレグシートよりも弾性率、熱伝導率が共に大きく、前記第2のプリプレグシートの外側に積層される
ことを特徴とする超電導磁石装置。
A superconducting coil;
An inner tank for storing the superconducting coil at a cryogenic temperature;
A cooling pipe enclosing liquid nitrogen for indirectly cooling the inner tank;
In the superconducting magnet device provided with the cooling pipe and the radiant heat shield plate that covers the inner tank and suppresses heat intrusion,
The radiant heat shield plate is
Ri from ± 60 ° to the first prepreg sheet and carbon fiber reinforced plastic formed by laminating a second prepreg sheets fiber orientation formed,
The first prepreg sheet is
The superconducting magnet apparatus , wherein both the elastic modulus and the thermal conductivity are larger than those of the second prepreg sheet, and are laminated on the outer side of the second prepreg sheet .
輻射熱シールド板は、
弾性率850GPa以上で熱伝導率300W/m・K以上の炭素繊維からなる第1のプリプレグシートを外側に積層し、
弾性率850GPa未満で熱伝導率300W/m・K未満の炭素繊維からなる第2のプリプレグシートをその内側に積層して、成形・加工した炭素繊維強化プラスチックから成ることを特徴とする請求項1に記載の超電導磁石装置。
Radiant heat shield plate
A first prepreg sheet made of carbon fiber having an elastic modulus of 850 GPa or more and a thermal conductivity of 300 W / m · K or more is laminated on the outside;
A second prepreg sheet made of carbon fiber having an elastic modulus of less than 850 GPa and a thermal conductivity of less than 300 W / m · K is made of a carbon fiber reinforced plastic laminated and processed inside. The superconducting magnet device according to 1.
JP2006137621A 2006-05-17 2006-05-17 Superconducting magnet device Expired - Fee Related JP4804221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137621A JP4804221B2 (en) 2006-05-17 2006-05-17 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137621A JP4804221B2 (en) 2006-05-17 2006-05-17 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JP2007311471A JP2007311471A (en) 2007-11-29
JP4804221B2 true JP4804221B2 (en) 2011-11-02

Family

ID=38844077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137621A Expired - Fee Related JP4804221B2 (en) 2006-05-17 2006-05-17 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP4804221B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173808A (en) * 1984-02-17 1985-09-07 Sumitomo Electric Ind Ltd Bobbin of superconductive coil
JPH04369876A (en) * 1991-04-08 1992-12-22 Mitsubishi Electric Corp Superconducting magnet device for magnetic levitation vehicle
JP2986972B2 (en) * 1991-09-06 1999-12-06 株式会社東芝 Radiation shield plate for superconducting magnet
JPH05283228A (en) * 1992-03-31 1993-10-29 Toshiba Toransupooto Eng Kk Superconducting magnet
JPH0669552A (en) * 1992-08-17 1994-03-11 Toshiba Corp Radiant heat shielding for superconducting magnet
JP3268047B2 (en) * 1993-02-02 2002-03-25 株式会社東芝 Superconducting magnet device
JP3765040B2 (en) * 1994-10-20 2006-04-12 株式会社日立製作所 Permanent current switch
JP2723181B2 (en) * 1995-11-02 1998-03-09 防衛庁技術研究本部長 SQUID magnetometer
JP2002124709A (en) * 2000-10-16 2002-04-26 Mitsubishi Electric Corp Radiation shield, cryogenic vessel and attaching method of cooling plate
JP2003274507A (en) * 2002-03-12 2003-09-26 Railway Technical Res Inst Inductive collector coil device
JP2004212189A (en) * 2002-12-27 2004-07-29 Konica Minolta Holdings Inc Radiation image conversion panel and method for manufacturing it

Also Published As

Publication number Publication date
JP2007311471A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4804221B2 (en) Superconducting magnet device
JP2009218444A (en) Superconducting device
JP5341405B2 (en) Superconducting rotating equipment
JP4788377B2 (en) Superconducting coil
CN111863373A (en) Superconducting magnet with electromagnetic protection component
CN112172840A (en) Vacuum pipeline system of high-speed magnetic suspension train
GB2435918A (en) Thermal barriers
JP3279031B2 (en) Superconducting electromagnet device for charged particles and charged particle storage ring
JP4895860B2 (en) Superconducting magnet device
JP2868936B2 (en) Superconducting magnet
JP3268047B2 (en) Superconducting magnet device
CN220235324U (en) Inner shielding plate for ultrahigh-speed low-vacuum pipeline magnetic levitation transportation system ground module
JP5384245B2 (en) RE-based superconducting coil conduction cooling method and apparatus therefor
JP3302757B2 (en) Superconducting magnet device
JP3122493B2 (en) Superconducting coil device
US20240203627A1 (en) Magnetic field generating device
CN219017347U (en) Heat insulation device for dynamic low-temperature superconducting magnet and dynamic low-temperature superconducting magnet
JPH06176925A (en) Superconductive magnet device
Koshurnikov et al. Magnetic System of the Gas-Filled Separator GASSOL for Studying Properties of Superheavy Elements
WO2024195203A1 (en) Superconducting rotary machine and method for cooling same
JP5394999B2 (en) FRP cryostat
JPH04369876A (en) Superconducting magnet device for magnetic levitation vehicle
JPS5959041A (en) Superconductive rotor
CN118039283A (en) Heat insulation device for dynamic low-temperature superconducting magnet and dynamic low-temperature superconducting magnet
Schwartz et al. 24 Tesla superconducting toroidal field magnet concept for a commercial Tokamak reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Ref document number: 4804221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees