JP2003274507A - Inductive collector coil device - Google Patents

Inductive collector coil device

Info

Publication number
JP2003274507A
JP2003274507A JP2002066680A JP2002066680A JP2003274507A JP 2003274507 A JP2003274507 A JP 2003274507A JP 2002066680 A JP2002066680 A JP 2002066680A JP 2002066680 A JP2002066680 A JP 2002066680A JP 2003274507 A JP2003274507 A JP 2003274507A
Authority
JP
Japan
Prior art keywords
coil
current collecting
induction current
collecting coil
coil device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002066680A
Other languages
Japanese (ja)
Inventor
Hitoshi Hasegawa
均 長谷川
Toshiaki Murai
敏昭 村井
Hitoshi Matsue
仁 松江
Toshihiro Fukagawa
敏広 深川
Akihiko Yoshitani
明彦 葭谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Mitsubishi Kagaku Sanshi Corp
Original Assignee
Railway Technical Research Institute
Mitsubishi Kagaku Sanshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Mitsubishi Kagaku Sanshi Corp filed Critical Railway Technical Research Institute
Priority to JP2002066680A priority Critical patent/JP2003274507A/en
Publication of JP2003274507A publication Critical patent/JP2003274507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make an inductive collector coil device light in weight, and to provide the inductive collector coil device that improves the overall rigidity of a superconductive magnet, by firmly fixing the coil to the outer case surface of the superconductive magnet. <P>SOLUTION: In the inductive collector coil device 6 that is mounted on the outer surface 3 of a low-temperature case for the superconductive magnet for a magnetic-levitation car, a highly elastic material having insulation properties is used for the structural material 3 of the inductive collector coil 5 to make the coil 5 light in weight. This coil 5 and the surface of the outer case 1 of the superconductive coil are fixed firmly. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気浮上用車両の
超電導磁石低温容器外槽表面に実装される誘導集電用コ
イル装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coil device for induction current collection mounted on the surface of an outer tank of a superconducting magnet cryogenic container of a magnetic levitation vehicle.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
以下に示すようなものがあった。
2. Description of the Related Art Conventionally, as a technique in such a field,
There was something like the following.

【0003】図12はかかる従来の誘導集電装置の基本
構成図であり、図12(a)はその横断模式図、図12
(b)は図12(a)のA部拡大図である。
FIG. 12 is a basic configuration diagram of such a conventional induction current collector, and FIG. 12 (a) is a schematic cross-sectional view thereof.
FIG. 12B is an enlarged view of part A of FIG.

【0004】これらの図において、101は車両、10
2は台車、103はその台車102に設けられる超電導
磁石低温容器外槽、104はその超電導磁石低温容器外
槽103内に配置される超電導コイル、105はその超
電導磁石低温容器外槽103表面に設けられる誘導集電
用コイル、106は力率改善及び電力制御用コンバー
タ、107は蓄電池、108は車内負荷、110は軌
道、111はその軌道110に配置される浮上コイルで
ある。
In these figures, 101 is a vehicle and 10 is a vehicle.
2 is a dolly, 103 is a superconducting magnet low temperature container outer tank provided on the dolly 102, 104 is a superconducting coil arranged in the superconducting magnet low temperature container outer tank 103, and 105 is provided on the surface of the superconducting magnet low temperature container outer tank 103. An induction current collecting coil, 106 is a converter for power factor improvement and power control, 107 is a storage battery, 108 is an in-vehicle load, 110 is a track, and 111 is a levitation coil arranged on the track 110.

【0005】ここで、図12(b)に示すように、超電
導コイル104によって生じる移動磁界(太線)が浮上
コイル111に作用して車両101は浮上する。また、
浮上コイル111によって生じる高調波磁界(細線)
は、誘導集電用コイル105に速度起電力を発生させ、
この速度起電力が、誘導集電用コイル105に電流を発
生させるが、電力制御用コンバータ106によって誘導
集電用コイル105の電流の力率及び振幅を制御して、
車内負荷108及び蓄電池107に電力を供給する。
Here, as shown in FIG. 12B, the moving magnetic field (thick line) generated by the superconducting coil 104 acts on the levitation coil 111 to levitate the vehicle 101. Also,
Harmonic magnetic field (fine wire) generated by the levitation coil 111
Generates velocity electromotive force in the induction current collecting coil 105,
This speed electromotive force causes a current to be generated in the induction current collecting coil 105, but the power control converter 106 controls the power factor and amplitude of the current in the induction current collecting coil 105,
Electric power is supplied to the vehicle interior load 108 and the storage battery 107.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た従来の誘導集電装置では、超電導磁石低温容器外槽表
面に誘導集電用コイルを設ける場合には、その誘導集電
用コイルに構造材としてガラス繊維強化プラスチック
(GFRP)を用いて構成するようにしていた。
However, in the above-described conventional induction current collector, when the induction current collection coil is provided on the surface of the outer tank of the superconducting magnet cryogenic container, the induction current collection coil is provided with a structural material. It was configured to use glass fiber reinforced plastic (GFRP).

【0007】したがって、GFRPを構造材とした誘導
集電装置は、その重量が重くなり、また、そのために超
電導磁石低温容器外槽の機械的剛性も弱くなるといった
問題があった。
Therefore, the induction current collector using GFRP as a structural material has a problem that the weight thereof becomes heavy and the mechanical rigidity of the superconducting magnet cryogenic container outer tank is weakened accordingly.

【0008】本発明は、上記状況に鑑みて、誘導集電用
コイルの軽量化を図るとともに、誘導集電用コイルと超
電導磁石外槽表面とを強固に固定することにより、超電
導磁石の全体剛性の向上を図ることができる誘導集電用
コイル装置を提供することを目的とする。
In view of the above situation, the present invention aims to reduce the weight of the induction current collecting coil and to firmly fix the induction current collecting coil and the surface of the outer tub of the superconducting magnet to thereby improve the overall rigidity of the superconducting magnet. It is an object of the present invention to provide an induction current collecting coil device capable of improving the above.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕磁気浮上用車両の超電導磁石低温容器外槽表面に
実装される誘導集電用コイル装置において、誘導集電用
コイルの構造材に絶縁性を持たせた高弾性材料を使用
し、前記誘導集電用コイルの軽量化を図るとともに、前
記誘導集電用コイルと超電導磁石外槽表面に固定した場
合に、前記超電導磁石を高剛性にすることを特徴とす
る。
In order to achieve the above object, the present invention provides: [1] a coil device for induction current collection mounted on the surface of an outer tank of a superconducting magnet cryogenic container of a magnetic levitation vehicle. When using a highly elastic material with insulating properties for the structural material of the electricity collecting coil to reduce the weight of the induction collecting coil and to fix it to the induction collecting coil and the superconducting magnet outer tank surface The superconducting magnet has high rigidity.

【0010】〔2〕上記〔1〕記載の誘導集電用コイル
装置において、前記誘導集電用コイルの構造材が、一方
向の繊維を有する炭素繊維強化プラスチックの複合体か
らなることを特徴とする。
[2] In the coil device for induction current collection according to the above [1], the structural material of the induction current collection coil is a composite of carbon fiber reinforced plastics having unidirectional fibers. To do.

【0011】〔3〕上記〔1〕記載の誘導集電用コイル
装置において、前記誘導集電用コイルの構造材が、絶縁
シートを挟んだ炭素繊維強化プラスチックの複合体から
なることを特徴とする。
[3] The induction current collecting coil device according to the above [1], wherein the structural material of the induction current collecting coil is composed of a composite of carbon fiber reinforced plastics sandwiching an insulating sheet. .

【0012】〔4〕上記〔3〕記載の誘導集電用コイル
装置において、前記炭素繊維強化プラスチックが一方向
の繊維からなることを特徴とする。
[4] In the coil device for induction current collection as described in [3] above, the carbon fiber reinforced plastic is composed of unidirectional fibers.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0014】高磁場を発生する超電導機器では鉄心を使
用することができないため、漏れ磁束が周囲の金属に鎖
交し、渦電流損失を生じる。CFRP(Carbon
Fiber Reinforced Plastic)
は強化繊維に導電性があり、構造材に使用すると、金属
と同様に渦電流が発生する可能性がある。電気機器とし
ての効率は、損失をいかに低減するかにかかっており、
炭素強化繊維の構成に異方性を持たせたり、絶縁物を介
在させることで渦電流の発生を防ぎ、渦電流損が増加し
ないようにすることが重要である。
Since the iron core cannot be used in the superconducting equipment which generates a high magnetic field, the leakage magnetic flux interlinks with the surrounding metal to cause an eddy current loss. CFRP (Carbon
Fiber Reinforced Plastic)
Has a conductive property in the reinforcing fiber, and when used as a structural material, eddy current may be generated like metal. Efficiency as an electrical device depends on how to reduce loss,
It is important to prevent the generation of eddy current and prevent eddy current loss from increasing by making the structure of carbon reinforced fiber anisotropic or by interposing an insulator.

【0015】本発明では、渦電流損の発生を防いだCF
RPを構造材に使用することで、超電導磁石の剛性が高
くなり、かつ誘導集電能力に低下がない装置を提案する
ものである。
In the present invention, the CF which prevents the occurrence of eddy current loss
By using RP as a structural material, it is proposed that the rigidity of the superconducting magnet is increased and the induction current collecting capability is not deteriorated.

【0016】〔CFRP材の交流損失の検討〕 CFRPの各繊維構成 CFRPは高弾性で軽量なため、高剛性を要求される構
造材として使用される一方、炭素繊維に導電性があるた
め、電気電子部品にも応用されている。このような導電
体に交流磁束が鎖交すると、渦電流損失(交流損失)が
発生する。そこで、CFRPを超電導機器で使用する場
合は、渦電流が低減するように工夫する必要がある。
[Study of AC loss of CFRP material] CFRP fiber constituent CFRP is used as a structural material that requires high rigidity because it is highly elastic and lightweight. It is also applied to electronic parts. When an AC magnetic flux links with such a conductor, eddy current loss (AC loss) occurs. Therefore, when the CFRP is used in a superconducting device, it is necessary to devise it so that the eddy current is reduced.

【0017】発生する渦電流を抑えるためには、素材自
体の抵抗率を高くするか、渦電流の流路を遮るようにす
ればよい。
In order to suppress the eddy current generated, the resistivity of the material itself may be increased or the flow path of the eddy current may be blocked.

【0018】このような観点から、炭素繊維の方向を変
化させたり、絶縁シート(薄いガラスシート)を介在さ
せたCFRPを提案する。
From such a viewpoint, a CFRP in which the direction of carbon fibers is changed or an insulating sheet (thin glass sheet) is interposed is proposed.

【0019】図1にCFRPの構造を模式的に示す。図
1(a)はCFRPの等方積層構造、図1(b)はCF
RPの一方性積層構造、図1(c)は絶縁シートを挟ん
だCFRP等方配置の積層複合構造、図1(d)は絶縁
シートを挟んだCFRP一方性配置の積層複合構造を示
している。
FIG. 1 schematically shows the structure of CFRP. 1 (a) is an isotropic laminated structure of CFRP, and FIG. 1 (b) is CF.
RP unidirectional laminated structure, FIG. 1C shows a CFRP isotropically arranged laminated composite structure with an insulating sheet sandwiched therebetween, and FIG. 1D shows a CFRP unidirectionally arranged laminated composite structure with an insulating sheet sandwiched therebetween. .

【0020】 抵抗率の検討 繊維方向と繊維直角方向で、数百倍程度の抵抗の差が生
じることが文献(1)〔河田他編:「最新複合材料・技
術総覧」、産業技術サービスセンター、pp.400、
1990年〕に公表されている。
Examination of resistivity A difference in resistance of several hundreds of times occurs in the fiber direction and the fiber orthogonal direction (1) [Kawada et al .: "Latest composite materials and technology overview", Industrial Technology Service Center, pp. 400,
1990].

【0021】 渦電流損失の検討 CFRPの渦電流損失がどの程度あるのか、測定を行っ
た結果、次のことに考慮すべきことが分かった。
Examination of eddy current loss As a result of measuring how much the eddy current loss of CFRP is, it was found that the following should be considered.

【0022】(1)等方CFRP〔図1(a)〕では、
積層間で炭素繊維の接触があるため、渦電流路が構成さ
れている。
(1) In isotropic CFRP [FIG. 1 (a)],
An eddy current path is formed because of the contact of carbon fibers between the stacks.

【0023】(2)一方向CFRP〔図1(b)〕で
は、繊維間の接触が多いため抵抗率が大きくなり渦電流
が流れにくい。
(2) In the unidirectional CFRP [FIG. 1 (b)], the number of contacts between the fibers is large, so that the resistivity is large and the eddy current does not easily flow.

【0024】(3)等方でも積層間に絶縁物を挟み込む
ことで積層間で炭素繊維が接触せず渦電流が流れなくな
るため、一方向CFRPと同等の効果がある。
(3) Even if it is isotropic, since an insulating material is sandwiched between the laminated layers, the carbon fibers do not come into contact with each other between the laminated layers and the eddy current does not flow.

【0025】このように、導電性のある強化繊維を使用
したCFRPでも繊維方向に異方性を持たせたり、絶縁
物を介在させることにより渦電流の発生を防ぐことがで
きる。このため、繊維の構成を工夫することで渦電流損
失の少ないCFRPを製作可能である。
Thus, even in CFRP using conductive reinforcing fibers, it is possible to prevent the generation of eddy currents by providing anisotropy in the fiber direction or by interposing an insulator. Therefore, it is possible to manufacture a CFRP with a small eddy current loss by devising a fiber structure.

【0026】〔誘導集電装置にCFRPを適用した場
合〕上記の結果をもとに、超電導磁気浮上式鉄道用誘導
集電装置の誘導集電能力と、超電導磁石の性能について
検討した。
[When CFRP is applied to the induction current collector] Based on the above results, the induction current collection capability of the superconducting magnetic levitation type railway current collector and the performance of the superconducting magnet were examined.

【0027】 誘導集電装置の構成とCFRPの必要
性 誘導集電装置は図2に示すように、車両の各台車Aに設
置された超電導磁石B表面に集電用コイル装置Cを取り
付け、走行に伴って発生する浮上コイルからの高調波磁
界による集電用コイルの誘起電圧から電力を得る。高調
波磁界は浮上コイルが走行路に集中巻きで設置されてい
るために発生するもので、例えば現状の超電導磁気浮上
式車両では同期周波数の6倍の周波数である。仮に50
0km/hで走行した場合、約300Hzに達するた
め、集電用コイルの交流抵抗増加(渦電流損失)は商用
周波数に比べて大きなものとなる。このため、集電用コ
イルは交流抵抗の増加をできるだけ抑えるため素線を細
分化するなどの対策が打たれている。
Structure of Induction Current Collector and Necessity of CFRP As shown in FIG. 2, the induction current collector has a coil device C for current collection mounted on the surface of a superconducting magnet B installed on each trolley A of the vehicle to drive the vehicle. The electric power is obtained from the induced voltage of the current collecting coil due to the harmonic magnetic field from the levitation coil which is generated with the above. The harmonic magnetic field is generated because the levitation coil is concentratedly wound around the traveling path. For example, in a current superconducting magnetic levitation vehicle, the harmonic magnetic field has a frequency that is 6 times the synchronous frequency. If 50
When the vehicle travels at 0 km / h, the frequency reaches about 300 Hz, and therefore the increase in the AC resistance (eddy current loss) of the current collecting coil is larger than that at the commercial frequency. For this reason, in the current collecting coil, in order to suppress an increase in AC resistance as much as possible, measures are taken such as subdividing the wires.

【0028】また、超電導磁石外槽の交流磁気遮蔽効果
による誘導電圧の低下を防ぐために、超電導磁石外槽と
集電用コイル間に空隙を設けたり、上下非対称にするな
どの工夫もなされている。なお、図2において、DはP
WMコンバータである。
Further, in order to prevent the reduction of the induced voltage due to the AC magnetic shielding effect of the superconducting magnet outer tank, a device such as providing a gap between the superconducting magnet outer tank and the current collecting coil or making them vertically asymmetrical has been made. . In FIG. 2, D is P
It is a WM converter.

【0029】また、超電導磁石の性能を表す一つの指標
として、内槽の発熱量がある。内槽の発熱量増加は、超
電導コイルの冷媒である液体ヘリウムの蒸発量の増加と
なり、冷凍機の負担となる。このため内槽の発熱量は低
いほど好ましい。内槽の発熱原因の一つは、超電導磁石
外槽に発生する電磁力により、外槽振動が発生し、この
外槽振動が加振力となり、内槽にねじり運動が生じるこ
とにある。この内槽のねじり運動により、支持部材等に
局所的な摩擦が生じ、発熱となる。
Further, as one index showing the performance of the superconducting magnet, there is the heat generation amount of the inner tank. The increase in the amount of heat generated in the inner tank increases the amount of evaporation of liquid helium, which is the refrigerant of the superconducting coil, and becomes a burden on the refrigerator. Therefore, the lower the calorific value of the inner tank, the better. One of the causes of heat generation in the inner tank is that electromagnetic force generated in the outer tank of the superconducting magnet causes vibration of the outer tank, and the vibration of the outer tank serves as an exciting force to cause a twisting motion in the inner tank. This torsional movement of the inner tank causes local friction on the support member and the like, which causes heat generation.

【0030】電磁力は外槽に発生する渦電流と超電導コ
イルからの磁界により生じるもので、この電磁力による
振動を抑えるためには、外槽の剛性を高くすることが効
果的である。
The electromagnetic force is generated by the eddy current generated in the outer tank and the magnetic field from the superconducting coil. In order to suppress the vibration due to this electromagnetic force, it is effective to increase the rigidity of the outer tank.

【0031】集電用コイルは、超電導磁石外槽に強固に
固定されるため、集電用コイルは外槽の構造部材と考え
られる。GFRPに比べて軽量かつ高剛性の素材とし
て、CFRPを集電用コイル構造材に使用することで、
集電用コイルの剛性が高くなり、外槽剛性を高めること
ができると考えられる。
Since the current collecting coil is firmly fixed to the superconducting magnet outer tank, the current collecting coil is considered to be a structural member of the outer tank. By using CFRP as a current collecting coil structure material, which is lighter and more rigid than GFRP,
It is considered that the rigidity of the current collecting coil is increased and the rigidity of the outer tank can be increased.

【0032】 構造解析における剛性評価 CFRPを集電用コイルの構造材に使用した場合の超電
導磁石外槽の剛性について構造計算を行った。解析には
有限要素法を使用し、各要素はシェル要素にて近似し
た。対称性を考慮して、1/2モデルとした。
Stiffness Evaluation in Structural Analysis Structural calculation was performed on the rigidity of the superconducting magnet outer tank when CFRP was used as the structural material of the current collecting coil. The finite element method was used for the analysis, and each element was approximated by a shell element. Taking the symmetry into consideration, a 1/2 model was used.

【0033】図3に解析モデルと表1に解析諸元を示
す。
FIG. 3 shows the analytical model and Table 1 shows the analytical specifications.

【0034】[0034]

【表1】 [Table 1]

【0035】外槽の剛性は、ある荷重を与えたときの変
位を比較すればよい。通常、ねじりや上下、左右方向に
荷重を与えるが、ここでは、左右方向(図Y方向)に誘
導集電装置動作時の外槽に働く電磁力を分布荷重として
図3のように入力を与えた。
To determine the rigidity of the outer tank, the displacement when a certain load is applied may be compared. Normally, loads are applied in the twisting, vertical and horizontal directions, but here, the electromagnetic force acting on the outer tub when the induction current collector operates in the horizontal direction (Y direction in the figure) is applied as a distributed load as shown in Fig. 3. It was

【0036】超電導磁石外槽には、浮上コイル磁界と集
電用コイル磁界による渦電流がそれぞれ発生する。これ
らの渦電流と超電導磁石の主磁束により電磁力に外槽に
働く。ところが、集電用コイル渦電流による電磁力は、
集電電流による電磁力に相殺されるため、浮上コイルに
よる電磁力のみが残り、外槽の振動を発生させる。
Eddy currents due to the levitation coil magnetic field and the collecting coil magnetic field are generated in the superconducting magnet outer tank. These eddy currents and the main magnetic flux of the superconducting magnet act on the outer tank with electromagnetic force. However, the electromagnetic force due to the coil eddy current for current collection is
Since it is canceled by the electromagnetic force due to the current collecting current, only the electromagnetic force due to the levitation coil remains, causing vibration in the outer tank.

【0037】この振動による外槽の変位は蒸発量に関連
するため、実際の荷重分布で与えることにより、外槽の
加振力の変化が比較できる。これにより、振動時の変位
が分かり、蒸発量増減の判断ができる。
Since the displacement of the outer tank due to this vibration is related to the evaporation amount, it is possible to compare the changes in the vibration force of the outer tank by giving the actual load distribution. As a result, the displacement at the time of vibration can be known and the increase / decrease of the evaporation amount can be determined.

【0038】そこで、解析による、外槽にかかる電磁力
(最大電磁力により規格化し荷重条件とした)によるC
FRPを使用したコイル〔図4(b)〕とGFRP〔図
4(a)〕を使用したコイルの変形の違いを図4に示
す。与えられた電磁力により、超電導コイルに対してね
じれの変形を起こすことが分かる。このねじれ変形の最
大変位で比較すると、誘導集電用コイル構造材がGFR
Pの場合とCFRPの場合では、約20%CFRPの場
合の方が剛性が高くなっている。
Therefore, by analysis, C by the electromagnetic force applied to the outer tank (normalized by the maximum electromagnetic force and used as the load condition)
FIG. 4 shows the difference in deformation between the coil using FRP [FIG. 4 (b)] and the coil using GFRP [FIG. 4 (a)]. It can be seen that the applied electromagnetic force causes torsional deformation of the superconducting coil. Comparing the maximum displacement of this torsional deformation, the coil structure material for induction current collection is GFR
In the case of P and the case of CFRP, the rigidity is higher in the case of about 20% CFRP.

【0039】集電用コイルは超電導磁石外槽表面に強固
に固定されているため、外槽の構造部材の一部として考
えられる。このため、集電用コイルが高弾性のものとな
れば、外槽全体の剛性が上がり、集電能力の低下なしに
集電用コイルの高弾性化ができれば、超電導磁石の機械
的な発熱低減が実現できる。
Since the current collecting coil is firmly fixed to the surface of the superconducting magnet outer tank, it can be considered as a part of the structural member of the outer tank. Therefore, if the current-collecting coil is highly elastic, the rigidity of the entire outer tank will increase, and if the current-collecting coil can be made highly elastic without lowering the current-collecting capability, the mechanical heat generation of the superconducting magnet will be reduced. Can be realized.

【0040】 各CFRPにおける集電電力 誘導集電用コイル構造材にCFRPを適用した場合の集
電電力について検討を行った結果を図5に示す。この図
5において、横軸は速度(km/h)、縦軸は出力(k
w)である。
FIG. 5 shows the results of studying the current collection power when CFRP is applied to the coil structure material for induction power collection in each CFRP. In FIG. 5, the horizontal axis represents speed (km / h) and the vertical axis represents output (k / h).
w).

【0041】計算では片台車あたりの出力を計算し、P
WMコンバータの効率を90%、力率1制御を行った場
合のものである。
In the calculation, the output per cart is calculated and P
This is a case where the efficiency of the WM converter is 90% and the power factor of 1 is controlled.

【0042】図5から明らかなように、渦電流対策を施
したCFRP(曲線a)では、現状のGFRPと同等の
集電能力を示し、約300km/hから必要電力を発生
させている。しかし、渦電流対策なしのCFRP(曲線
b)では、350km/h以上にならないと必要電力が
得られない結果となった。このように、高速域ではCF
RPによる損失が大きくなるため、渦電流対策が不可欠
であることが分かる。
As is clear from FIG. 5, the CFRP (curve a) provided with countermeasures against eddy currents has a current collecting capability equivalent to that of the current GFRP, and the required power is generated from about 300 km / h. However, with CFRP (curve b) without countermeasures against eddy currents, the required power cannot be obtained unless the speed is 350 km / h or higher. In this way, CF is high speed
It can be seen that eddy current countermeasures are indispensable because the loss due to RP increases.

【0043】なお、GFRP(測定値○印)はコンバー
タが必要電力を得られると電力一定運転を行うため、3
00km/h以上で一定の出力となる。
In the case of GFRP (measured value ◯ mark), the constant electric power operation is performed when the converter can obtain the required electric power.
A constant output is obtained at 00 km / h or more.

【0044】このように、本発明では、繊維構成の異な
るCFRPを製作し、一次コイルの交流抵抗を測定し、
解析と同様の結果が得られることを確認した。この測定
および解析により異方性CFRPまたは絶縁物を積層し
たCFRPを使用することで渦電流損増加のない材料を
製作できることが分かった。
As described above, according to the present invention, CFRPs having different fiber configurations are manufactured, and the AC resistance of the primary coil is measured.
It was confirmed that the same result as the analysis was obtained. From this measurement and analysis, it was found that a material without an increase in eddy current loss can be manufactured by using anisotropic CFRP or CFRP laminated with an insulator.

【0045】上記した結果より、超電導磁気浮上式鉄道
用誘導集電装置にCFRPを使用した場合について検討
を行った。CFRPを構造材に採用することで、外槽の
剛性が従来のGFRPを構造材とする集電用コイルを使
用したものに比べて高くなることが分かった。さらに、
誘導集電装置の電気的特性を計算し、集電装置の性能低
下がないことが分かった。また、GFRPに比べて重量
が30%以上削減できるため、本システムのような移動
体には有用であると考えられる。
Based on the above results, the case of using CFRP in the superconducting magnetic levitation railway induction current collector was examined. It has been found that by adopting CFRP as the structural material, the rigidity of the outer tank is higher than that in the case where the current collecting coil having the conventional GFRP as the structural material is used. further,
The electrical characteristics of the inductive current collector were calculated and it was found that the performance of the current collector did not deteriorate. Further, since the weight can be reduced by 30% or more as compared with GFRP, it is considered to be useful for a mobile body such as this system.

【0046】〔実施例〕図6は本発明の第1実施例を示
す誘導集電用コイル装置の構成図であり、図6(a)は
その誘導集電用コイル装置の分解断面図、図6(b)は
その誘導集電用コイル装置の実装状態を示す断面図、図
7は本発明の第1実施例を示す誘導集電用コイルの構造
材の構成図である。
[Embodiment] FIG. 6 is a block diagram of an induction current collecting coil device showing a first embodiment of the present invention. FIG. 6A is an exploded sectional view of the induction current collecting coil device. 6 (b) is a cross-sectional view showing a mounted state of the induction current collecting coil device, and FIG. 7 is a configuration diagram of a structural material of the induction current collecting coil showing the first embodiment of the present invention.

【0047】これらの図に示すように、内部に超電導コ
イル2が設けられる超電導磁石低温容器外槽1の表面
へ、本発明の絶縁性を持たせた高弾性材料である構造材
3を用いて誘導集電用コイル装置6を構成する。31は
地上コイルである。
As shown in these figures, the surface of the superconducting magnet cryogenic container outer tank 1 in which the superconducting coil 2 is provided is made of the structural material 3 of the present invention, which is a highly elastic material having insulation properties. An induction current collecting coil device 6 is configured. Reference numeral 31 is a ground coil.

【0048】この実施例では、図7に示すように、構造
材3としては、一方向炭素繊維強化プラスチック(異方
性炭素繊維強化プラスチック)4を用いる。このような
異方性炭素繊維強化プラスチック4を接着材(図示な
し)により誘導集電用コイル5と一体化して誘導集電用
コイル装置6を得ることができる。
In this embodiment, as shown in FIG. 7, a unidirectional carbon fiber reinforced plastic (anisotropic carbon fiber reinforced plastic) 4 is used as the structural material 3. Such an anisotropic carbon fiber reinforced plastic 4 can be integrated with the induction current collecting coil 5 by an adhesive (not shown) to obtain the induction current collecting coil device 6.

【0049】図8は本発明の第2実施例を示す誘導集電
用コイル装置の構成図であり、図8(a)はその誘導集
電用コイル装置の分解断面図、図8(b)はその誘導集
電用コイル装置の実装状態を示す断面図、図9は本発明
の第2実施例を示す誘導集電用コイルの構造材の構成図
である。
FIG. 8 is a block diagram of an induction current collecting coil device showing a second embodiment of the present invention. FIG. 8 (a) is an exploded sectional view of the induction current collecting coil device, and FIG. 8 (b). Is a cross-sectional view showing a mounted state of the induction current collecting coil device, and FIG. 9 is a configuration diagram of a structural material of the induction current collecting coil showing a second embodiment of the present invention.

【0050】これらの図に示すように、内部に超電導コ
イル2が設けられる超電導磁石低温容器外槽1の表面へ
絶縁性を持たせた高弾性材料である構造材11を用いて
誘導集電用コイル装置15を構成する。31は地上コイ
ルである。
As shown in these figures, the superconducting magnet cryogenic container outer tank 1 in which the superconducting coil 2 is provided is used for induction current collection by using the structural material 11 which is a highly elastic material having an insulating property. The coil device 15 is configured. Reference numeral 31 is a ground coil.

【0051】そこで、この実施例では、図9に示すよう
に、構造材11としては、ここでは、方向が異なった炭
素繊維強化プラスチック12を絶縁シート13で挟んだ
複合したCFRP複合体を用いる。このような複合した
CFRP複合体を接着材(図示なし)により誘導集電用
コイル14と一体化して誘導集電用コイル装置15を得
ることができる。
Therefore, in this embodiment, as shown in FIG. 9, as the structural material 11, here, a composite CFRP composite in which carbon fiber reinforced plastics 12 having different directions are sandwiched between insulating sheets 13 is used. The composite CFRP composite as described above can be integrated with the induction current collecting coil 14 by an adhesive (not shown) to obtain the induction current collecting coil device 15.

【0052】図10は本発明の第3実施例を示す誘導集
電用コイル装置の構成図であり、図10(a)はその誘
導集電用コイル装置の分解断面図、図10(b)はその
誘導集電用コイル装置の実装状態を示す断面図、図11
は本発明の第3実施例を示す誘導集電用コイルの構造材
の構成図である。
FIG. 10 is a block diagram of an induction current collecting coil device showing a third embodiment of the present invention. FIG. 10 (a) is an exploded sectional view of the induction current collecting coil device, and FIG. 10 (b). 11 is a cross-sectional view showing the mounted state of the induction current collecting coil device, FIG.
FIG. 7 is a structural diagram of a structural material of an induction current collecting coil showing a third embodiment of the present invention.

【0053】この実施例では、これらの図に示すよう
に、構造材16としては順次一方性を有する炭素繊維強
化プラスチックの複合体(異方性炭素繊維強化プラスチ
ック)17を絶縁シート18で挟んだCFRP複合体を
用いる。このような複合CFRP複合体を接着材(図示
なし)により誘導集電用コイル19と一体化して誘導集
電用コイル装置20を得ることができる。
In this embodiment, as shown in these figures, a carbon fiber reinforced plastic composite (anisotropic carbon fiber reinforced plastic) 17 having unidirectionality was sandwiched between insulating sheets 18 as a structural material 16. The CFRP complex is used. Such a composite CFRP composite can be integrated with the induction current collecting coil 19 by an adhesive (not shown) to obtain the induction current collecting coil device 20.

【0054】第3実施例によれば、第2実施例の構造材
よりは、耐渦電流特性を向上させることができる。
According to the third embodiment, it is possible to improve the eddy current resistance characteristics as compared with the structural material of the second embodiment.

【0055】このように構成したので、軽量で、絶縁性
を有するとともに機械的に強度の高い高弾性材料からな
る構造材を有する誘導集電用コイル装置を得ることがで
きる。
With the above construction, it is possible to obtain an induction current collecting coil device having a structural member made of a highly elastic material which is lightweight, has an insulating property, and has a high mechanical strength.

【0056】さらに、より耐渦電流特性が向上した誘導
集電用コイル装置を得ることができる。
Furthermore, it is possible to obtain an induction current collecting coil device having improved eddy current resistance.

【0057】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、それらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, which are not excluded from the scope of the present invention.

【0058】[0058]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described in detail above, according to the present invention, the following effects can be achieved.

【0059】(A)分散型誘導集電装置の誘導集電用コ
イルの構造材に絶縁性を有する高弾性材料を使用するこ
とにより、誘導集電用コイルの軽量化を図るとともに、
誘導集電用コイルが超電導磁石外槽に強固に固定するこ
とにより、超電導磁石の全体剛性の向上を図ることがで
きる。
(A) By using a highly elastic material having an insulating property for the structural material of the induction current collecting coil of the distributed induction current collecting apparatus, the weight of the induction current collecting coil can be reduced, and
By firmly fixing the induction current collecting coil to the superconducting magnet outer tank, it is possible to improve the overall rigidity of the superconducting magnet.

【0060】(B)また、誘導集電能力の低下を抑える
ことができる。
(B) Further, it is possible to suppress the reduction of the induction current collecting ability.

【図面の簡単な説明】[Brief description of drawings]

【図1】解析や試験に供したCFRPの構造を示す模式
図である。
FIG. 1 is a schematic diagram showing the structure of CFRP used for analysis and testing.

【図2】分散型誘導集電装置の概要図である。FIG. 2 is a schematic diagram of a distributed induction current collector.

【図3】構造解析モデルを示す図である。FIG. 3 is a diagram showing a structural analysis model.

【図4】外槽剛性の解析結果を示す図である。FIG. 4 is a diagram showing an analysis result of outer tank rigidity.

【図5】誘導集電用コイル構造材にCFRPを適用した
場合の集電電力特性図である。
FIG. 5 is a current collection power characteristic diagram when CFRP is applied to a coil structure material for induction current collection.

【図6】本発明の第1実施例を示す誘導集電用コイル装
置の構成図である。
FIG. 6 is a configuration diagram of an induction current collecting coil device according to the first embodiment of the present invention.

【図7】本発明の第1実施例を示す誘導集電用コイルの
構造材の構成図である。
FIG. 7 is a structural diagram of a structural member of an induction current collecting coil according to the first embodiment of the present invention.

【図8】本発明の第2実施例を示す誘導集電用コイル装
置の構成図である。
FIG. 8 is a configuration diagram of an induction current collecting coil device showing a second embodiment of the present invention.

【図9】本発明の第2実施例を示す誘導集電用コイルの
構造材の構成図である。
FIG. 9 is a structural diagram of a structural material of an induction current collecting coil showing a second embodiment of the present invention.

【図10】本発明の第3実施例を示す誘導集電用コイル
装置の構成図である。
FIG. 10 is a configuration diagram of an induction current collecting coil device showing a third embodiment of the present invention.

【図11】本発明の第3実施例を示す誘導集電用コイル
の構造材の構成図である。
FIG. 11 is a structural diagram of a structural material of an induction current collecting coil showing a third embodiment of the present invention.

【図12】従来の誘導集電装置の基本構成図である。FIG. 12 is a basic configuration diagram of a conventional induction current collector.

【符号の説明】[Explanation of symbols]

1 超電導磁石低温容器外槽 2 超電導コイル 3,11,16 絶縁性を持たせた高弾性材料である
構造材 4,17 一方向CFRP(異方性炭素繊維強化プラ
スチック)RP) 5,14,19 誘導集電用コイル 6,15,20 誘導集電用コイル装置 12 炭素繊維強化プラスチック(CFRP) 13,18 絶縁シート 31 地上コイル A 台車 B 超電導磁石 C 集電用コイル装置 D PWMコンバータ
1 Superconducting Magnet Cryocontainer Outer Tank 2 Superconducting Coil 3,11,16 Structural Material 4,17 which is a highly elastic material with insulating properties Unidirectional CFRP (anisotropic carbon fiber reinforced plastic) RP) 5,14,19 Induction current collecting coil 6,15,20 Induction current collecting coil device 12 Carbon fiber reinforced plastic (CFRP) 13,18 Insulation sheet 31 Ground coil A Cart B Superconducting magnet C Current collecting coil device D PWM converter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村井 敏昭 東京都国分寺市光町二丁目8番地38 財団 法人 鉄道総合技術研究所内 (72)発明者 松江 仁 東京都国分寺市光町二丁目8番地38 財団 法人 鉄道総合技術研究所内 (72)発明者 深川 敏広 香川県坂出市番の州町1番地 三菱化学産 資株式会社坂出工場内 (72)発明者 葭谷 明彦 東京都千代田区丸の内1−8−2 三菱化 学産資株式会社内 Fターム(参考) 5H105 AA14 BA01 BB03 CC05 DD10 EE14 5H113 BB03 CC04 DA05 DB03 DB14 DC03 DC14 DD02 EE03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiaki Murai             38-8, Hikarimachi, Kokubunji, Tokyo 38 Foundation             Corporate Railway Technical Research Institute (72) Inventor Hitoshi Matsue             38-8, Hikarimachi, Kokubunji, Tokyo 38 Foundation             Corporate Railway Technical Research Institute (72) Inventor Toshihiro Fukagawa             No. 1 state town in Sakaide City, Kagawa Prefecture Mitsubishi Chemical             Sakaide factory (72) Inventor Akihiko Ashiya             1-8-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi             Within Gakusanshi Co., Ltd. F-term (reference) 5H105 AA14 BA01 BB03 CC05 DD10                       EE14                 5H113 BB03 CC04 DA05 DB03 DB14                       DC03 DC14 DD02 EE03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁気浮上用車両の超電導磁石低温容器外
槽表面に実装される誘導集電用コイル装置において、 誘導集電用コイルの構造材に絶縁性を持たせた高弾性材
料を使用し、前記誘導集電用コイルの軽量化を図るとと
もに、前記誘導集電用コイルを超電導磁石外槽表面に固
定した場合に、前記超電導磁石が高剛性となることを特
徴とする誘導集電用コイル装置。
1. A superconducting magnet for a magnetic levitation vehicle, comprising: a superconducting magnet, which is mounted on the surface of an outer vessel of a cryogenic container, and uses a highly elastic material having an insulating property as a structural material of the induction collecting coil. In addition to reducing the weight of the induction current collecting coil, the superconducting magnet has high rigidity when the induction current collecting coil is fixed to the surface of the outer tank of the superconducting magnet. apparatus.
【請求項2】 請求項1記載の誘導集電用コイル装置に
おいて、前記誘導集電用コイルの構造材が、一方向の繊
維を有する炭素繊維強化プラスチックの複合体からなる
ことを特徴とする誘導集電用コイル装置。
2. The induction current collecting coil device according to claim 1, wherein the structural material of the induction current collecting coil is a composite of carbon fiber reinforced plastic having unidirectional fibers. Coil device for current collection.
【請求項3】 請求項1記載の誘導集電用コイル装置に
おいて、前記誘導集電用コイルの構造材が、絶縁シート
を挟んだ炭素繊維強化プラスチックの複合体からなるこ
とを特徴とする誘導集電用コイル装置。
3. The induction current collecting coil device according to claim 1, wherein the structural material of the induction current collecting coil is a composite of carbon fiber reinforced plastics sandwiching an insulating sheet. Electric coil device.
【請求項4】 請求項3記載の誘導集電用コイル装置に
おいて、前記炭素繊維強化プラスチックが一方向の繊維
からなることを特徴とする誘導集電用コイル装置。
4. The induction current collecting coil device according to claim 3, wherein the carbon fiber reinforced plastic is composed of unidirectional fibers.
JP2002066680A 2002-03-12 2002-03-12 Inductive collector coil device Pending JP2003274507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066680A JP2003274507A (en) 2002-03-12 2002-03-12 Inductive collector coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066680A JP2003274507A (en) 2002-03-12 2002-03-12 Inductive collector coil device

Publications (1)

Publication Number Publication Date
JP2003274507A true JP2003274507A (en) 2003-09-26

Family

ID=29198347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066680A Pending JP2003274507A (en) 2002-03-12 2002-03-12 Inductive collector coil device

Country Status (1)

Country Link
JP (1) JP2003274507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311471A (en) * 2006-05-17 2007-11-29 Mitsubishi Electric Corp Superconductive magnet device
JP2010190691A (en) * 2009-02-18 2010-09-02 Railway Technical Res Inst Method and apparatus for simulation measurement of eddy current loss at ground coil conductor in superconducting magnetic levitation railroad
WO2012026763A2 (en) * 2010-08-25 2012-03-01 한국과학기술원 Current-collecting apparatus
KR101169035B1 (en) * 2010-07-09 2012-07-27 한국과학기술원 Collector device for electric vehicle with active cancellation of emf

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311471A (en) * 2006-05-17 2007-11-29 Mitsubishi Electric Corp Superconductive magnet device
JP2010190691A (en) * 2009-02-18 2010-09-02 Railway Technical Res Inst Method and apparatus for simulation measurement of eddy current loss at ground coil conductor in superconducting magnetic levitation railroad
KR101169035B1 (en) * 2010-07-09 2012-07-27 한국과학기술원 Collector device for electric vehicle with active cancellation of emf
WO2012026763A2 (en) * 2010-08-25 2012-03-01 한국과학기술원 Current-collecting apparatus
WO2012026763A3 (en) * 2010-08-25 2012-05-03 한국과학기술원 Current-collecting apparatus
KR101179468B1 (en) 2010-08-25 2012-09-10 한국과학기술원 Collector device for electric vehicle

Similar Documents

Publication Publication Date Title
Jayawant Review lecture-electromagnetic suspension and levitation techniques
KR101091199B1 (en) coil bobbin for superconducting magnetic energy storage
KR20110135334A (en) Non-contact power feeding device
US5094173A (en) Superconducting magnetic levitated train, train system method of controlling the same, and superconducting coil for magnetic levitated train
Wang et al. Recent development of high temperature superconducting Maglev system in China
Yu et al. Vibration suppression of high-temperature superconducting maglev system via electromagnetic shunt damper
De Oliveira et al. Optimized linear motor for urban superconducting magnetic levitation vehicles
JPH11122718A (en) Propelling, floating and guiding ground coil for magnetic levitated railway system, connection thereof and supporting and guiding structure of magnetic levitated railway system
JP2003274507A (en) Inductive collector coil device
Hu et al. Design, fabrication and test of a high-temperature superconducting linear synchronous motor mover magnet prototype for high-speed maglev
Wang et al. Halbach-type coupler WPT system with flux-shielding function for linear motor
CN111863373A (en) Superconducting magnet with electromagnetic protection component
CN212708970U (en) Vehicle-mounted wireless power transmission device suitable for vacuum pipeline maglev train
CN114496452B (en) Dynamic superconducting magnet and magnetic levitation train
Mizuno et al. Mechanical vibration tests on real-scale REBCO coil
Zhao et al. 3-D Analytical model of racetrack HTS coil subject to travelling magnetic fields
JPS5939961B2 (en) In-car power supply for ultra-high-speed magnetic levitation trains
JP3274093B2 (en) Maglev vehicle
JP2000152424A (en) Noncontact induction current collector
JP3151512B2 (en) Superconducting magnet for maglev train
JP3122709B2 (en) Superconducting magnet device
US11552580B1 (en) Levitation, guidance and propulsion integrated superconducting magnetic levitation train
CN219017347U (en) Heat insulation device for dynamic low-temperature superconducting magnet and dynamic low-temperature superconducting magnet
Atherton et al. Design, analysis and test results for a superconducting linear synchronous motor
Han et al. Great enhancement of energy harvesting properties of piezoelectric/magnet composites by the employment of magnetic concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070713

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080423