JP2010190691A - Method and apparatus for simulation measurement of eddy current loss at ground coil conductor in superconducting magnetic levitation railroad - Google Patents

Method and apparatus for simulation measurement of eddy current loss at ground coil conductor in superconducting magnetic levitation railroad Download PDF

Info

Publication number
JP2010190691A
JP2010190691A JP2009034676A JP2009034676A JP2010190691A JP 2010190691 A JP2010190691 A JP 2010190691A JP 2009034676 A JP2009034676 A JP 2009034676A JP 2009034676 A JP2009034676 A JP 2009034676A JP 2010190691 A JP2010190691 A JP 2010190691A
Authority
JP
Japan
Prior art keywords
eddy current
current loss
magnetic levitation
rotating disk
superconducting magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009034676A
Other languages
Japanese (ja)
Other versions
JP5165614B2 (en
Inventor
Masayuki Aeba
雅之 饗庭
Masao Suzuki
正夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2009034676A priority Critical patent/JP5165614B2/en
Publication of JP2010190691A publication Critical patent/JP2010190691A/en
Application granted granted Critical
Publication of JP5165614B2 publication Critical patent/JP5165614B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for simulation measurement of eddy current losses at electric conductors present on the side of ground coils in a superconducting magnetic levitation railroad, and capable of measuring and evaluating eddy current losses on the basis of traveling magnetic fields similar to principles of actual occurrences for evaluating eddy current losses at electric conductors present in the vicinity of a guide way which occur with the travel of the superconducting magnetic levitation railroad vehicle. <P>SOLUTION: In the simulation measurement method of eddy current losses of ground coil conductors (electric conductors) in a superconducting magnetic levitation railroad, a nonmagnetic/electrically nonconductive rotating disk 2 fixed to a rotating shaft 1 is provided with a specimen 11 made of an electric conductor. On the basis of value changes in value of rotation torque acting on the rotating disk 2 by the presence of the application of magnetic fields by a magnetic field generating device, eddy current losses of the electric conductors caused by the specimen 11 are measured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、移動磁場中における導電体の渦電流損失の測定方法およびその装置に係り、特に超電導磁気浮上式鉄道における地上コイル導体(導電体)の渦電流損失の模擬測定方法およびその装置に関するものである。   The present invention relates to a method and apparatus for measuring eddy current loss of a conductor in a moving magnetic field, and more particularly to a method and apparatus for simulating eddy current loss of a ground coil conductor (conductor) in a superconducting magnetic levitation railway. It is.

図6は従来の超電導磁気浮上式鉄道の模式図である。   FIG. 6 is a schematic diagram of a conventional superconducting magnetic levitation railway.

この図において、101はガイドウエイ、102はそのガイドウエイ101の側壁、103はそのガイドウエイ101の側壁102の車両に対向する内側面に配置される推進コイル、104はその推進コイル3の表側に配置される浮上コイル、105は超電導磁気浮上式鉄道の車両、106はその車両105の両側に配置される超電導磁石である。   In this figure, 101 is a guideway, 102 is a side wall of the guideway 101, 103 is a propulsion coil disposed on the inner surface of the sideway 102 of the guideway 101 facing the vehicle, and 104 is on the front side of the propulsion coil 3. The levitation coil to be arranged, 105 is a vehicle of a superconducting magnetic levitation railway, and 106 is a superconducting magnet arranged on both sides of the vehicle 105.

このような超電導磁気浮上式鉄道においては、車両の移動に伴い、ガイドウエイ101に存在する導電体に渦電流が発生し、車両に対する制動力となる。   In such a superconducting magnetic levitation railway, an eddy current is generated in the conductor existing in the guideway 101 as the vehicle moves, and this serves as a braking force for the vehicle.

ところで、定置試験による渦電流損失の測定方法には、従来、温度変化(発熱量)を測定する方法〔渦電流損の評価方法およびその装置(下記特許文献1参照)〕、〔ストランド線を用いた低損失型浮上コイルの開発と損失評価(下記非特許文献1参照)〕があった。   By the way, as a method of measuring eddy current loss by a stationary test, conventionally, a method of measuring a temperature change (a calorific value) [an evaluation method of eddy current loss and an apparatus thereof (see Patent Document 1 below)], [a strand wire is used. Development and loss evaluation of a low-loss levitation coil (see Non-Patent Document 1 below)].

特開2003−234225号公報JP 2003-234225 A

小村昭義他,「ストランド線を用いた低損失型浮上コイルの開発と損失評価」,LD−98−82,1998年12月 電気学会リニアドライブ研究会資料,pp.25−30Akiyoshi Komura et al., “Development and Loss Evaluation of Low Loss Levitation Coil Using Strand Wire”, LD-98-82, December 1998, IEEJ Linear Drive Study Group, pp. 25-30

しかしながら、上記した渦電流損失の測定方法では、図6に示すような超電導磁気浮上式鉄道においてガイドウエイの地上コイル導体の渦電流損失を模擬測定するには不向きであり、満足のいく渦電流損失評価がなされていないのが現状である。   However, the above eddy current loss measurement method is not suitable for simulating the eddy current loss of the ground coil conductor of the guideway in a superconducting magnetic levitation railway as shown in FIG. The current situation has not been evaluated.

本発明は、上記状況に鑑みて、超電導磁気浮上式鉄道車両の走行に伴い発生するガイドウェイ付近にある導電体の渦電流損失の評価のため、実際の発生原理と同様な移動磁場により渦電流損失を測定し、評価することができる超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定方法およびその装置を提供することを目的とする。   In view of the above situation, the present invention provides an eddy current using a moving magnetic field similar to the actual generation principle in order to evaluate the eddy current loss of a conductor in the vicinity of a guideway that is generated when a superconducting magnetic levitation railway vehicle is traveling. It is an object of the present invention to provide a method and apparatus for simulating eddy current loss of a ground coil conductor in a superconducting magnetic levitation railway capable of measuring and evaluating loss.

本発明は、上記目的を達成するために、
〔1〕超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定方法において、回転軸に固定される非磁性・非導電性の回転円板に導電体からなる供試体を設け、磁場生成装置による磁場印加の有無による前記回転円板に作用する回転トルク値の変化により前記供試体に起因する前記導電体の渦電流損失の測定を行うことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a simulation method for eddy current loss of ground coil conductors in a superconducting magnetic levitation railway, a nonmagnetic / nonconductive rotating disk fixed to the rotating shaft is provided with a test specimen made of a conductor to generate a magnetic field. The eddy current loss of the conductor caused by the specimen is measured by a change in rotational torque value acting on the rotating disk depending on whether or not a magnetic field is applied by the apparatus.

〔2〕上記〔1〕記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定方法において、前記回転円板に前記供試体を固定することを特徴とする。   [2] In the method for simulating eddy current loss of ground coil conductors in the superconducting magnetic levitation railway described in [1] above, the specimen is fixed to the rotating disk.

〔3〕上記〔1〕記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定方法において、前記回転円板は2枚の回転円板からなり、この2枚の回転円板のギャップに固定される供試体を設定することを特徴とする。   [3] In the simulation method for eddy current loss of the ground coil conductor in the superconducting magnetic levitation railway described in [1] above, the rotating disk is composed of two rotating disks, and the two rotating disks It is characterized by setting a specimen to be fixed to the gap.

〔4〕超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置において、回転軸に固定される非磁性・非導電性の回転円板と、この回転円板に印加される磁場生成装置と、前記回転円板に接続される回転トルク計と、前記回転円板に作用可能な導電体からなる供試体とを具備することを特徴とする。   [4] In a simulation apparatus for eddy current loss of ground coil conductors in a superconducting magnetic levitation railway, a nonmagnetic / nonconductive rotating disk fixed to a rotating shaft and generation of a magnetic field applied to the rotating disk An apparatus, a rotational torque meter connected to the rotating disk, and a specimen made of a conductor that can act on the rotating disk are provided.

〔5〕上記〔4〕記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置において、前記供試体を前記回転円板に固定することを特徴とする。   [5] In the apparatus for simulating eddy current loss of ground coil conductors in the superconducting magnetic levitation railway described in [4] above, the specimen is fixed to the rotating disk.

〔6〕上記〔4〕記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置において、前記回転円板は2枚の回転円板であり、この2枚の回転円板のギャップに固定される供試体を設定することを特徴とする。   [6] In the apparatus for simulating eddy current loss of ground coil conductors in the superconducting magnetic levitation railway described in [4] above, the rotating disks are two rotating disks, and the two rotating disks It is characterized by setting a specimen to be fixed to the gap.

〔7〕上記〔4〕記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置において、前記磁場生成装置が固定部に配置される電磁石であることを特徴とする。   [7] In the apparatus for simulating eddy current loss of ground coil conductors in the superconducting magnetic levitation railway described in [4] above, the magnetic field generating device is an electromagnet disposed in a fixed portion.

〔8〕上記〔4〕記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置において、前記磁場生成装置が回転円板に配置される永久磁石であることを特徴とする。   [8] In the apparatus for simulating eddy current loss of ground coil conductors in the superconducting magnetic levitation railway described in [4] above, the magnetic field generator is a permanent magnet disposed on a rotating disk.

本発明によれば、次のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

超電導磁気浮上式鉄道における地上コイル導体の渦電流損失をその発生原理を模擬することにより測定をすることができる。これにより、測定の数値計算との比較が容易となり、より正確な渦電流損失の評価が可能となる。   It is possible to measure the eddy current loss of the ground coil conductor in the superconducting magnetic levitation railway by simulating the generation principle. This facilitates the comparison with the numerical calculation of the measurement, and enables more accurate evaluation of the eddy current loss.

本発明の第1実施例を示す移動磁場中における導電体の渦電流損失の測定装置の模式図である。It is a schematic diagram of the measuring apparatus of the eddy current loss of the conductor in the moving magnetic field which shows 1st Example of this invention. 本発明の第1実施例を示す渦電流損失の算定フローチャートである。It is a calculation flowchart of the eddy current loss which shows 1st Example of this invention. 本発明の第2実施例を示す移動磁場中における導電体の渦電流損失の測定装置の模式図である。It is a schematic diagram of the measuring apparatus of the eddy current loss of the conductor in the moving magnetic field which shows 2nd Example of this invention. 本発明の第2実施例を示す渦電流損失の算定フローチャートである。It is a calculation flowchart of the eddy current loss which shows 2nd Example of this invention. 具体化された移動磁場中における導電体の渦電流損失の模擬測定装置の模式図である。It is the schematic diagram of the simulation measuring apparatus of the eddy current loss of the conductor in the embodied moving magnetic field. 従来の超電導磁気浮上式鉄道の模式図である。It is a schematic diagram of a conventional superconducting magnetic levitation railway.

本発明の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定方法は、回転軸に固定される非磁性・非導電性の回転円板に導電体からなる供試体を設け、磁場生成装置による磁場印加の有無による前記回転円板に作用する回転トルク値の変化により前記供試体に起因する前記導電体の渦電流損失の測定を行う。   The method for simulating eddy current loss of ground coil conductors in a superconducting magnetic levitation railway according to the present invention is a method of generating a magnetic field by providing a specimen made of a conductor on a nonmagnetic / nonconductive rotating disk fixed to a rotating shaft. The eddy current loss of the conductor due to the specimen is measured by a change in the rotational torque value acting on the rotating disk depending on whether or not a magnetic field is applied by the apparatus.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の第1実施例を示す移動磁界中における導体の渦電流損失の模擬測定装置の模式図、図2はそれを用いた渦電流損失の算出フローチャートである。   FIG. 1 is a schematic diagram of an apparatus for simulating the measurement of eddy current loss of a conductor in a moving magnetic field according to a first embodiment of the present invention, and FIG. 2 is a flowchart for calculating eddy current loss using the apparatus.

図1において、1は回転軸、2は回転軸1に固定される非磁性・非導電性の回転円板、3〜10は電磁石であり、それぞれ1組の対向した電磁石が固定部材に固定されており、それらの固定された電磁石間のギャップを回転円板2が通過する。また、電磁石3〜10には、直流電流が通電され、隣接する電磁石3と4,4と5,5と6,6と7,7と8,8と9,9と10はそれぞれ逆極性となるように配置されている。11は非磁性・導電性の供試体であり回転円板2に固定される。なお、図示していないが、回転軸1には回転トルク計が接続される。   In FIG. 1, 1 is a rotating shaft, 2 is a non-magnetic / non-conductive rotating disk fixed to the rotating shaft 1, and 3 to 10 are electromagnets, each having a pair of opposed electromagnets fixed to a fixing member. The rotating disk 2 passes through the gap between the fixed electromagnets. The electromagnets 3 to 10 are supplied with a direct current, and the adjacent electromagnets 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 9, and 10 have opposite polarities. It is arranged to be. Reference numeral 11 denotes a nonmagnetic / conductive specimen, which is fixed to the rotating disk 2. Although not shown, a rotary torque meter is connected to the rotary shaft 1.

ここで、超電導磁気浮上式鉄道における地上コイル導体に供試体11が対応し、超電導磁気浮上式車両に搭載される超電導磁石が電磁石3〜10に対応する。つまり、超電導磁気浮上式鉄道の構成とは相対的に逆になっているが、供試体11が地上側に固定され、電磁石3〜10が超電導磁気浮上式車両に搭載され移動することと同じになり、実際の発生原理と同様な移動磁場により渦電流損失を測定することができる。   Here, the specimen 11 corresponds to the ground coil conductor in the superconducting magnetic levitation railway, and the superconducting magnets mounted on the superconducting magnetic levitation vehicle correspond to the electromagnets 3 to 10. That is, the configuration of the superconducting magnetic levitation railway is relatively opposite, but the specimen 11 is fixed on the ground side, and the electromagnets 3 to 10 are mounted on the superconducting magnetic levitation vehicle and move. Thus, eddy current loss can be measured by a moving magnetic field similar to the actual generation principle.

このように構成することにより、電磁石3〜10の無励磁時、つまり、地上コイル側に導電体が存在していない(全く残されていない)場合と同じ状態の回転トルクと、電磁石3〜10の励磁時、つまり、地上コイル側に導電体が存在している(導電体が残されている)場合と同じ状態の回転トルクとを求めて、両者の回転トルクの差により渦電流損失を算出する。   By configuring in this way, the rotational torque in the same state as when the electromagnets 3 to 10 are not excited, that is, when no conductor is present on the ground coil side (nothing is left), and the electromagnets 3 to 10 are used. Rotation torque in the same state as when there is a conductor on the ground coil side (the conductor is left), and eddy current loss is calculated from the difference between the two torques To do.

渦電流損失の算出手順は、図2に示すように、まず、(1)電磁石3〜10の無励磁時の回転トルク(A)の計測を行い(ステップS1)、次いで(2)電磁石3〜10の励磁時の回転トルク(B)を行い(ステップS2)、(3)上記で計測した回転トルク(B)と回転トルク(A)との差により供試体11による渦電流損失の算出を行う(ステップS3)。   As shown in FIG. 2, the calculation procedure of the eddy current loss is as follows: (1) Measure the rotational torque (A) when the electromagnets 3 to 10 are not excited (step S1), and then (2) electromagnets 3 to 3. 10 is performed (step S2), and (3) eddy current loss due to the specimen 11 is calculated based on the difference between the rotational torque (B) and the rotational torque (A) measured above. (Step S3).

図3は本発明の第2実施例を示す移動磁場中における導電体の渦電流損失の模擬測定装置の模式図、図4はそれを用いた渦電流損失の算定フローチャートである。   FIG. 3 is a schematic diagram of an apparatus for simulating measurement of eddy current loss of a conductor in a moving magnetic field according to a second embodiment of the present invention, and FIG. 4 is a calculation flowchart of eddy current loss using the same.

図3において、21は回転軸、22は回転軸21に固定される上部回転円板、23は回転軸21に固定される下部回転円板である。24〜31は上部回転円板22と下部回転円板23とに対になって固定された永久磁石であり、隣接する電磁石24と25,25と26,26と27,27と28,28と29,29と30,30と31は逆極性となるように配置されている。32は非磁性・導電性の供試体であり、上部回転円板22と下部回転円板23とのギャップ中に固定されている。なお、図示していないが、回転軸21には回転トルク計が接続される。   In FIG. 3, 21 is a rotating shaft, 22 is an upper rotating disk fixed to the rotating shaft 21, and 23 is a lower rotating disk fixed to the rotating shaft 21. Reference numerals 24 to 31 are permanent magnets fixed to the upper rotating disk 22 and the lower rotating disk 23 in pairs, and adjacent electromagnets 24 and 25, 25 and 26, 26 and 27, 27 and 28, 28, 29, 29 and 30, 30 and 31 are arranged to have opposite polarities. Reference numeral 32 denotes a nonmagnetic / conductive specimen, which is fixed in the gap between the upper rotating disk 22 and the lower rotating disk 23. Although not shown, a rotary torque meter is connected to the rotary shaft 21.

本実施例では、永久磁石24〜31を回転円板22,23に固定し(超電導磁気浮上式車両に搭載される超電導磁石に相当)、上部回転円板22及び下部回転円板23の間に固定された供試体32(地上コイル側の導電体に相当)近傍を通過させるように構成した。ここでは、供試体32の有無による回転トルクの差により渦電流損失を測定する。   In this embodiment, the permanent magnets 24 to 31 are fixed to the rotating disks 22 and 23 (corresponding to a superconducting magnet mounted on a superconducting magnetic levitation vehicle), and between the upper rotating disk 22 and the lower rotating disk 23. The fixed specimen 32 (corresponding to the conductor on the ground coil side) was passed in the vicinity. Here, eddy current loss is measured by the difference in rotational torque depending on the presence or absence of the specimen 32.

渦電流損失の算出手順は、図4に示すように、まず、(1)永久磁石21〜31を有する2枚の回転円板22,23を回転させて、回転トルク(A)の計測を行い(ステップS11)、次いで、(2)2枚の回転円板22,23の間のギャップに固定部材(図示なし)に固定された供試体32を設定して回転トルク(B)の計測を行い(ステップS12)、(3)上記で計測した回転トルク(B)と回転トルク(A)との差により供試体32による渦電流損失の算出を行う(ステップS13)。   As shown in FIG. 4, the eddy current loss calculation procedure is as follows: (1) Rotating the two rotating disks 22 and 23 having the permanent magnets 21 to 31 to measure the rotational torque (A). (Step S11), (2) Then, the specimen 32 fixed to a fixing member (not shown) is set in the gap between the two rotating disks 22 and 23, and the rotational torque (B) is measured. (Step S12), (3) The eddy current loss by the specimen 32 is calculated based on the difference between the rotational torque (B) and the rotational torque (A) measured above (Step S13).

図5は具体化された移動磁場中における導電体の渦電流損失の模擬測定装置の模式図であり、図5(a)は供試体が存在しない状態を示す図、図5(b)は供試体が存在する状態を示す図である。   FIG. 5 is a schematic diagram of a simulation apparatus for eddy current loss of a conductor in a specific moving magnetic field. FIG. 5 (a) is a diagram showing a state in which no specimen is present, and FIG. It is a figure which shows the state in which a sample exists.

これらの図において、41は回転軸、42は回転軸41に固定された非磁性・非導電性の回転円板、43は回転軸41に設けられる回転トルク計、44は回転円板42を駆動する、回転軸41に接続されるモーター、45,46はコの字形状の固定部材であり、互いに対向するように配置されている。47,48はコの字形状の固定部材45,46に回転円板42を挟んで上下に対向するように配置される電磁石である。回転円板42は上下に対になった電磁石の間を回転するように構成されている。つまり、回転円板42には電磁石47,48によって磁場が印加されるように構成されている。   In these drawings, reference numeral 41 denotes a rotating shaft, 42 denotes a non-magnetic / non-conductive rotating disc fixed to the rotating shaft 41, 43 denotes a rotational torque meter provided on the rotating shaft 41, and 44 drives the rotating disc 42. The motors 45 and 46 connected to the rotary shaft 41 are U-shaped fixing members and are arranged so as to face each other. Reference numerals 47 and 48 denote electromagnets arranged so as to be opposed to each other vertically with a rotating disk 42 sandwiched between U-shaped fixing members 45 and 46. The rotating disk 42 is configured to rotate between a pair of upper and lower electromagnets. That is, a magnetic field is applied to the rotating disk 42 by the electromagnets 47 and 48.

このように構成したので、まず、図5(b)に示すように、供試体49を回転円板42に固定して、電磁石47,48を励磁しない状態で回転円板42を回転させて、その時の回転トルク計43によるトルク値を求めておき、次いで、電磁石47,48を励磁した状態で回転円板42を回転させて、その時の回転トルク計43によるトルク値を求める。   Since it comprised in this way, first, as shown in FIG.5 (b), the specimen 49 is fixed to the rotation disc 42, the rotation disc 42 is rotated in the state which does not excite the electromagnets 47 and 48, A torque value by the rotational torque meter 43 at that time is obtained, and then the rotating disk 42 is rotated in a state where the electromagnets 47 and 48 are excited, and a torque value by the rotational torque meter 43 at that time is obtained.

すると、電磁石47,48の励磁の有無により、回転トルク計43により測定されるトルク値が異なる。また、供試体49の量が多くなるほどトルク値が増大することになり、このトルク値の増加分が導電体としての供試体49による渦電流損失に比例することになる。   Then, the torque value measured by the rotational torque meter 43 varies depending on whether the electromagnets 47 and 48 are excited. Further, as the amount of the specimen 49 increases, the torque value increases, and the increase in the torque value is proportional to the eddy current loss due to the specimen 49 as a conductor.

したがって、移動磁場中における導電体の渦電流損失の模擬測定を行うことができ、その結果を、超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の評価に用いることができる。   Therefore, the eddy current loss of the conductor in the moving magnetic field can be simulated, and the result can be used to evaluate the eddy current loss of the ground coil conductor in the superconducting magnetic levitation railway.

すなわち、図5において、電磁石47,48が超電導磁気浮上式鉄道車両に搭載される超電導磁石に対応し、回転円板42が地上コイルを有するガイドウェイの側壁に対応し、供試体49はその側壁に配置された地上コイル導体などの導電体に対応する。   That is, in FIG. 5, the electromagnets 47 and 48 correspond to the superconducting magnets mounted on the superconducting magnetic levitation railway vehicle, the rotating disk 42 corresponds to the side wall of the guideway having the ground coil, and the specimen 49 is the side wall. Corresponds to a conductor such as a ground coil conductor disposed in

そこで、ガイドウェイの側壁に供試体としての導電体が多く存在する場合には、その導電体の量を供試体の量として設定することにより、供試体による渦電流損失として測定することができる。これにより、ガイドウェイの側壁に配置された導電体としての供試体と、超電導磁気浮上式鉄道車両に搭載される超電導磁石としての電磁石との関係に基づいて、ガイドウェイの側壁に配置された導電体の渦電流損失の程度を推定し計測することができる。   Therefore, when there are many conductors as specimens on the side walls of the guideway, it is possible to measure the eddy current loss due to the specimen by setting the amount of the conductor as the quantity of the specimen. Thus, based on the relationship between the specimen as the conductor disposed on the side wall of the guideway and the electromagnet as the superconducting magnet mounted on the superconducting magnetic levitation railway vehicle, the electrical conductivity disposed on the side wall of the guideway. The degree of eddy current loss of the body can be estimated and measured.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.

本発明の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の測定方法およびその装置は、超電導磁気浮上式鉄道において地上コイル以外にガイドウェイの側壁に配置された導電体による渦電流損失の程度を評価するためのツールとして利用可能である。   The method and apparatus for measuring eddy current loss of a ground coil conductor in a superconducting magnetic levitation railway according to the present invention is the degree of eddy current loss due to a conductor disposed on the side wall of a guideway in addition to the ground coil in a superconducting magnetic levitation railway It can be used as a tool for evaluating

1,21,41 回転軸
2,42 非磁性・非導電性の回転円板
3〜10,47,48 電磁石
11,32,49 供試体
22 上部回転円板
23 下部回転円板
24〜31 永久磁石
43 回転トルク計
44 モーター
45,46 コの字形状の固定部材
1,21,41 Rotating shaft 2,42 Nonmagnetic / nonconductive rotating disk 3-10, 47, 48 Electromagnet 11, 32, 49 Specimen 22 Upper rotating disk 23 Lower rotating disk 24-31 Permanent magnet 43 Rotating torque meter 44 Motor 45, 46 U-shaped fixing member

Claims (8)

回転軸に固定される非磁性・非導電性の回転円板に導電体からなる供試体を設け、磁場生成装置による磁場印加の有無による前記回転円板に作用する回転トルク値の変化により前記供試体に起因する前記導電体の渦電流損失の測定を行うことを特徴とする超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定方法。   A specimen made of a conductive material is provided on a non-magnetic / non-conductive rotating disk fixed to the rotating shaft. A method for simulating eddy current loss of a ground coil conductor in a superconducting magnetic levitation railway, wherein eddy current loss of the conductor caused by a specimen is measured. 請求項1記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定方法において、前記回転円板に前記供試体を固定することを特徴とする超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定方法。   2. The method for simulating eddy current loss of ground coil conductors in a superconducting magnetic levitation railway according to claim 1, wherein the specimen is fixed to the rotating disk. Simulated measurement method of eddy current loss. 請求項1記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定方法において、前記回転円板は2枚の回転円板からなり、該2枚の回転円板のギャップに固定された供試体を設定することを特徴とする超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定方法。   2. The method for simulating eddy current loss of a ground coil conductor in a superconducting magnetic levitation railway according to claim 1, wherein the rotating disk is composed of two rotating disks, and is fixed to a gap between the two rotating disks. A method for simulating the eddy current loss of a ground coil conductor in a superconducting magnetic levitation railway, characterized by setting a specimen. (a)回転軸に固定される非磁性・非導電性の回転円板と、
(b)該回転円板に印加される磁場生成装置と、
(c)前記回転円板に接続される回転トルク計と、
(d)前記回転円板に作用する導電体からなる供試体とを具備することを特徴とする超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置。
(A) a non-magnetic non-conductive rotating disk fixed to the rotating shaft;
(B) a magnetic field generator applied to the rotating disk;
(C) a rotational torque meter connected to the rotating disk;
(D) An apparatus for simulating eddy current loss of a ground coil conductor in a superconducting magnetic levitation railway, comprising a specimen made of a conductor acting on the rotating disk.
請求項4記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置において、前記供試体を前記回転円板に固定することを特徴とする超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置。   5. The apparatus for simulating eddy current loss of a ground coil conductor in a superconducting magnetic levitation railway according to claim 4, wherein the specimen is fixed to the rotating disk. Simulated measurement device for eddy current loss. 請求項4記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置において、前記回転円板は2枚の回転円板からなり、該2枚の回転円板のギャップに固定された供試体を設定することを特徴とする超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置。   5. The apparatus for simulating eddy current loss of a ground coil conductor in a superconducting magnetic levitation railway according to claim 4, wherein the rotating disk is composed of two rotating disks, and is fixed to a gap between the two rotating disks. An apparatus for simulating eddy current loss of ground coil conductors in a superconducting magnetic levitation railway characterized by setting a specimen. 請求項4記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置において、前記磁場生成装置が固定部に配置される電磁石であることを特徴とする超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置。   5. The apparatus for simulating eddy current loss of a ground coil conductor in a superconducting magnetic levitation railway according to claim 4, wherein the magnetic field generating device is an electromagnet disposed in a fixed part. Simulated measurement device for eddy current loss in coil conductors. 請求項4記載の超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置において、前記磁場生成装置が回転円板に配置される永久磁石であることを特徴とする超電導磁気浮上式鉄道における地上コイル導体の渦電流損失の模擬測定装置。   5. The apparatus for simulating eddy current loss of a ground coil conductor in a superconducting magnetic levitation railway according to claim 4, wherein the magnetic field generator is a permanent magnet disposed on a rotating disk. For measuring the eddy current loss of ground coil conductors in Japan.
JP2009034676A 2009-02-18 2009-02-18 Simulated measurement method and apparatus for eddy current loss of ground coil conductor in superconducting magnetic levitation railway Expired - Fee Related JP5165614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034676A JP5165614B2 (en) 2009-02-18 2009-02-18 Simulated measurement method and apparatus for eddy current loss of ground coil conductor in superconducting magnetic levitation railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034676A JP5165614B2 (en) 2009-02-18 2009-02-18 Simulated measurement method and apparatus for eddy current loss of ground coil conductor in superconducting magnetic levitation railway

Publications (2)

Publication Number Publication Date
JP2010190691A true JP2010190691A (en) 2010-09-02
JP5165614B2 JP5165614B2 (en) 2013-03-21

Family

ID=42816890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034676A Expired - Fee Related JP5165614B2 (en) 2009-02-18 2009-02-18 Simulated measurement method and apparatus for eddy current loss of ground coil conductor in superconducting magnetic levitation railway

Country Status (1)

Country Link
JP (1) JP5165614B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292597A (en) * 2020-02-26 2020-06-16 中车青岛四方机车车辆股份有限公司 High-speed magnetic levitation linear power generation simulation system and related method and device
CN111999079A (en) * 2020-07-27 2020-11-27 西南交通大学 Magnetic suspension high-speed operation simulation test device
CN115837842A (en) * 2023-02-20 2023-03-24 成都西交华创科技有限公司 Wheeled magnetic suspension traffic system, control method and application of magnetic disk system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210103725A (en) 2020-02-14 2021-08-24 한국전력공사 Apparatus for measuring torque of superconducting coil, control method thereof and superconducting rotating device using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231471A (en) * 1985-04-08 1986-10-15 Nippon Steel Corp Apparatus for measuring magnetic characteristics of electromagnetic steel plate
JPH0365676A (en) * 1989-08-03 1991-03-20 Nippon Steel Corp Measurement of iron loss for rotary magnetic field
JPH07260902A (en) * 1994-03-16 1995-10-13 Mitsuba Electric Mfg Co Ltd Rotor core loss measuring device and method for the measurement
JPH10256064A (en) * 1997-03-13 1998-09-25 Nkk Corp Method for inspecting iron loss characteristic of core
JP2003234225A (en) * 2002-02-08 2003-08-22 Nissan Motor Co Ltd Method and device for evaluating eddy-current loss
JP2003274507A (en) * 2002-03-12 2003-09-26 Railway Technical Res Inst Inductive collector coil device
JP2008253126A (en) * 2007-03-07 2008-10-16 Railway Technical Res Inst Magnetic levitation mechanism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231471A (en) * 1985-04-08 1986-10-15 Nippon Steel Corp Apparatus for measuring magnetic characteristics of electromagnetic steel plate
JPH0365676A (en) * 1989-08-03 1991-03-20 Nippon Steel Corp Measurement of iron loss for rotary magnetic field
JPH07260902A (en) * 1994-03-16 1995-10-13 Mitsuba Electric Mfg Co Ltd Rotor core loss measuring device and method for the measurement
JPH10256064A (en) * 1997-03-13 1998-09-25 Nkk Corp Method for inspecting iron loss characteristic of core
JP2003234225A (en) * 2002-02-08 2003-08-22 Nissan Motor Co Ltd Method and device for evaluating eddy-current loss
JP2003274507A (en) * 2002-03-12 2003-09-26 Railway Technical Res Inst Inductive collector coil device
JP2008253126A (en) * 2007-03-07 2008-10-16 Railway Technical Res Inst Magnetic levitation mechanism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292597A (en) * 2020-02-26 2020-06-16 中车青岛四方机车车辆股份有限公司 High-speed magnetic levitation linear power generation simulation system and related method and device
CN111999079A (en) * 2020-07-27 2020-11-27 西南交通大学 Magnetic suspension high-speed operation simulation test device
CN111999079B (en) * 2020-07-27 2021-11-26 西南交通大学 Magnetic suspension high-speed operation simulation test device
CN115837842A (en) * 2023-02-20 2023-03-24 成都西交华创科技有限公司 Wheeled magnetic suspension traffic system, control method and application of magnetic disk system
CN115837842B (en) * 2023-02-20 2023-05-02 成都西交华创科技有限公司 Wheeled magnetic suspension traffic system, control method and application of magnetic disk system

Also Published As

Publication number Publication date
JP5165614B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
Canova et al. Analytical modeling of rotating eddy-current couplers
Walker et al. Flux-linkage calculation in permanent-magnet motors using the frozen permeabilities method
Guo et al. Measurement and modeling of rotational core losses of soft magnetic materials used in electrical machines: A review
Shin et al. Analytical torque calculations and experimental testing of permanent magnet axial eddy current brake
De Bisschop et al. Demagnetization fault detection in axial flux PM machines by using sensing coils and an analytical model
Mirimani et al. Static eccentricity fault detection in single-stator–single-rotor axial-flux permanent-magnet machines
Mohammed et al. Electrical machine permanent magnets health monitoring and diagnosis using an air-gap magnetic sensor
JP5165614B2 (en) Simulated measurement method and apparatus for eddy current loss of ground coil conductor in superconducting magnetic levitation railway
Lee et al. A study on correcting the nonlinearity between stack length and back electromotive force in spoke type ferrite magnet motors
Haddad Detection and identification of rotor faults in axial flux permanent magnet synchronous motors due to manufacturing and assembly imperfections
Mitterhofer et al. Analytical and experimental loss examination of a high speed bearingless drive
Xu et al. Online detecting magnet defect fault in PMSG with magnetic sensing
Sinmaz et al. Design and finite element analysis of a radial-flux salient-pole eddy current brake
Gulec et al. Modelling and analysis of a new axial flux permanent magnet biased eddy current brake
Younsi et al. A noninvasive external flux based method for in-service induction motors torque estimation
Dobrodeyev et al. Method for detection of broken bars in induction motors
Ginzarly et al. Electromagnetic and vibration finite element model for early fault detection in permanent magnet machine
Gulbahce et al. Investigation of the effect of pole shape on braking torque for a low power eddy current brake by finite elements method
Mirzaei et al. Rotating speed measurement using an optimized eddy current sensor
Enokizono et al. Vector magnetic characteristic analysis of electrical machines
Belkasim Identification of loss models from measurements of the magnetic properties of electrical steel sheets
Han et al. An effective method of verifying poles polarities in switched reluctance motors
RU2704567C1 (en) Diagnostic method of double-pole rotor with permanent magnets
Liu et al. Velocity measurement method for PMSMs through external stray magnetic field sensing
Młot et al. Analysis of axial flux motor performance for traction motor applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5165614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees