JP4803989B2 - Method for determining the maintenance time of a processing equipment for hazardous component-containing gas - Google Patents

Method for determining the maintenance time of a processing equipment for hazardous component-containing gas Download PDF

Info

Publication number
JP4803989B2
JP4803989B2 JP2004296374A JP2004296374A JP4803989B2 JP 4803989 B2 JP4803989 B2 JP 4803989B2 JP 2004296374 A JP2004296374 A JP 2004296374A JP 2004296374 A JP2004296374 A JP 2004296374A JP 4803989 B2 JP4803989 B2 JP 4803989B2
Authority
JP
Japan
Prior art keywords
containing gas
plasma
power
harmful component
effective power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004296374A
Other languages
Japanese (ja)
Other versions
JP2006102718A (en
Inventor
由章 杉森
大貴 万行
忠治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2004296374A priority Critical patent/JP4803989B2/en
Publication of JP2006102718A publication Critical patent/JP2006102718A/en
Application granted granted Critical
Publication of JP4803989B2 publication Critical patent/JP4803989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、有害成分含有ガスの処理装置の保守整備時期判定方法に関するものである。   The present invention relates to a method for determining the maintenance time of a processing apparatus for harmful component-containing gas.

半導体製造工程におけるエッチング工程、CVD(化学気相成長)チャンバーのクリーニング工程などでは、パーフルオロメタン(以下、「CF」と略記する)、パーフルオロエタン(C)、パーフルオロプロペン(C)、パーフルオロペンタジエン(C)、トリフルオロメタン(CHF)、3フッ化窒素(NF)、6フッ化硫黄(SF)などが大量に使用されている。これらのガスはパーフルオロコンパウンド(以下、「PFC」と略記する)と総称され、地球温暖化の原因である温室効果ガスとされている。従って、PFCの処理を適切に行い、その排出を抑制することが求められている。 In an etching process in a semiconductor manufacturing process, a CVD (chemical vapor deposition) chamber cleaning process, and the like, perfluoromethane (hereinafter abbreviated as “CF 4 ”), perfluoroethane (C 2 F 6 ), perfluoropropene ( C 3 F 6 ), perfluoropentadiene (C 5 F 8 ), trifluoromethane (CHF 3 ), nitrogen trifluoride (NF 3 ), sulfur hexafluoride (SF 6 ) and the like are used in large quantities. These gases are collectively called perfluoro compounds (hereinafter abbreviated as “PFC”), and are considered as greenhouse gases that cause global warming. Therefore, it is required to appropriately perform PFC processing and suppress the discharge thereof.

現在、使用されている処理方法としては、燃焼分解方法、加熱分解方法、触媒分解方法、加熱反応方法、回収処理方法、プラズマ分解方法などが挙げられる。これらの中でも、装置の構造が比較的簡単であることから、プラズマ分解方法が最も実用的であるとされており、近年、精力的に研究されている(例えば、特許文献1参照。)。プラズマ分解方法とは、マイクロ波などの電磁波を用いて、PFCなどの有害成分含有ガスをプラズマ化して分解する方法である。   Currently used treatment methods include combustion decomposition methods, heat decomposition methods, catalyst decomposition methods, heat reaction methods, recovery treatment methods, plasma decomposition methods, and the like. Among these, since the structure of the apparatus is relatively simple, the plasma decomposition method is considered to be the most practical and has been energetically studied in recent years (see, for example, Patent Document 1). The plasma decomposing method is a method for decomposing a gas containing harmful components such as PFC into plasma using electromagnetic waves such as microwaves.

プラズマ分解方法に用いられる処理装置の一例を図1に示す。この例の処理装置は、反応性ガス供給機構10と、プラズマ発生機構20と、プラズマ容器30とから概略構成されており、有害成分含有ガスとして、半導体製造装置から排出されるPFCを処理するものである。
反応性ガス供給機構10は、プラズマ容器30に反応性ガスを供給するためのものである。この反応性ガスは、プラズマ化されたPFCと反応して二酸化炭素、フッ化水素などの安定な化合物を生成し、PFC同士の再結合を防止するものである。反応性ガスとしては、加水分解反応を起こす水蒸気、酸化反応を起こす酸素などの酸化剤が用いられる。
An example of a processing apparatus used in the plasma decomposition method is shown in FIG. The processing apparatus of this example is generally composed of a reactive gas supply mechanism 10, a plasma generation mechanism 20, and a plasma container 30, and processes PFC discharged from a semiconductor manufacturing apparatus as a harmful component-containing gas. It is.
The reactive gas supply mechanism 10 is for supplying a reactive gas to the plasma container 30. This reactive gas reacts with the PFC converted into plasma to generate a stable compound such as carbon dioxide and hydrogen fluoride, and prevents recombination of the PFCs. As the reactive gas, an oxidizing agent such as water vapor that causes a hydrolysis reaction or oxygen that causes an oxidation reaction is used.

プラズマ発生機構20は、PFCをプラズマ化するためのマイクロ波を発生して、プラズマ容器30に入射させるためのものである。このプラズマ発生機構20には、マイクロ波電源21とマイクロ波発振器22とが設けられており、両者は互いに電気ケーブルにより連結されている。このマイクロ波電源21を操作し、マイクロ波発振器22に駆動用電力を供給すると、このマイクロ波発振器22から所定の周波数を有するマイクロ波が発生する。   The plasma generation mechanism 20 is for generating a microwave for converting the PFC into plasma and making it incident on the plasma container 30. The plasma generation mechanism 20 is provided with a microwave power source 21 and a microwave oscillator 22, which are connected to each other by an electric cable. When the microwave power source 21 is operated and driving power is supplied to the microwave oscillator 22, a microwave having a predetermined frequency is generated from the microwave oscillator 22.

発生したマイクロ波は、導波管23、アイソレータ24を介してパワーモニタ25に伝播し、このパワーモニタ25により入射電力が検出される。アイソレータ24は、プラズマ容器30から反射するマイクロ波を吸収して、マイクロ波発振器22を保護するためのものである。また、この反射するマイクロ波にあっては、その反射電力をパワーモニタ25によって検出することができる。
ついで、マイクロ波は、整合器26、テーパ導波管27を介してプラズマ容器30に入射する。この整合器26は、反射が最小限になるように負荷を整合するためのものである。また、テーパ導波管27はプラズマ容器30に効率良くマイクロ波を伝播するためのものである。
The generated microwave propagates to the power monitor 25 via the waveguide 23 and the isolator 24, and incident power is detected by the power monitor 25. The isolator 24 is for protecting the microwave oscillator 22 by absorbing the microwave reflected from the plasma container 30. In addition, in the reflected microwave, the reflected power can be detected by the power monitor 25.
Next, the microwave enters the plasma container 30 via the matching unit 26 and the tapered waveguide 27. The matching unit 26 is for matching the load so that reflection is minimized. Further, the tapered waveguide 27 is for efficiently propagating microwaves to the plasma container 30.

プラズマ容器30は、その内部においてPFCをプラズマ化して処理するためのものである。このプラズマ容器30の上部には、ガス流入管31が取り付けられており、半導体製造装置40から排出されたPFCを0.01〜10%程度含んだ窒素ベースの処理ガスが流通している。このガス流入管31には、上記反応性ガス供給機構10が設けられており、反応性ガスが処理ガス中に添加されるようになっている。また、ガス流入管31は、ガス導入部32と連通しており、処理ガスと反応性ガスとからなる混合ガスがプラズマ容器30の内部に導入されるようになっている。   The plasma container 30 is for processing PFC into plasma inside thereof. A gas inflow pipe 31 is attached to the upper portion of the plasma container 30, and a nitrogen-based processing gas containing about 0.01 to 10% of PFC discharged from the semiconductor manufacturing apparatus 40 is in circulation. The gas inflow pipe 31 is provided with the reactive gas supply mechanism 10 so that the reactive gas is added to the processing gas. Further, the gas inflow pipe 31 communicates with the gas introduction part 32, and a mixed gas composed of a processing gas and a reactive gas is introduced into the plasma container 30.

ガス導入部32の下部には、空洞共振器33が設けられている。この空洞共振器33にプラズマ発生機構20からマイクロ波が入射するとともに共振することにより、ガス導入部32から導入され、空洞共振器33内を貫通しているガス流通管39(石英等のセラミックで製作されている)内を下降する混合ガスがプラズマ化される。空洞共振器33の下部には、延長管34、反応管35が続けて設けられており、プラズマ化された混合ガスは、これらを通って下降するとともに、PFCと反応性ガスとが反応することにより、二酸化炭素、フッ化水素などの安定なガスを生成する。なお、符号100はプラズマ容器30において発生したプラズマを示す。   A cavity resonator 33 is provided below the gas introduction part 32. When a microwave is incident on the cavity resonator 33 from the plasma generation mechanism 20 and resonates, a gas flow pipe 39 (through a ceramic such as quartz) introduced from the gas introduction section 32 and penetrating through the cavity resonator 33. The mixed gas descending inside is made into plasma. An extension pipe 34 and a reaction pipe 35 are continuously provided at the lower part of the cavity resonator 33, and the plasma mixed gas descends through these, and the PFC reacts with the reactive gas. Thus, a stable gas such as carbon dioxide or hydrogen fluoride is generated. Reference numeral 100 indicates plasma generated in the plasma container 30.

プラズマ容器30の底部には冷却装置36が設けられており、この冷却装置36から冷却用水が噴霧されることにより、生成したガスが冷却される。その後、一方では、吸引ポンプ37によってガスがプラズマ容器30から排出される。また、他方では、排水ポンプ38によってプラズマ容器30の底に溜まった水がプラズマ容器30から排出される。
このような処理装置を用いることにより、PFCを無害なガスに変換して処理することができる。
A cooling device 36 is provided at the bottom of the plasma container 30, and the generated gas is cooled by spraying cooling water from the cooling device 36. Thereafter, on the other hand, the gas is discharged from the plasma container 30 by the suction pump 37. On the other hand, water accumulated at the bottom of the plasma container 30 is discharged from the plasma container 30 by the drain pump 38.
By using such a processing apparatus, PFC can be converted into a harmless gas for processing.

ところで、上記処理装置を用いて有害成分含有ガスのプラズマ化を繰り返すと、空洞共振器33内のガス流通管39に有害成分含有ガス由来の不純物が付着・蓄積する。この不純物により、整合器26によって整合したバランスが崩れ、マイクロ波反射電力値が大きくなり、結果、有害成分含有ガスのプラズマ化に寄与するマイクロ波の電力が低下し、処理効率(すなわち、マイクロ波の電力に対する有害成分含有ガスの分解率)が低下する。従って、処理効率を高く維持するためには、空洞共振器33のガス流通管39の状態を綺麗に保つように、保守整備を定期的に行う必要がある。この保守整備は、通常、有害成分含有ガスの分解率が低下した時点において行われている。
特開2003−245520号公報
By the way, when the plasma of the harmful component-containing gas is repeated using the processing apparatus, impurities derived from the harmful component-containing gas adhere to and accumulate in the gas flow pipe 39 in the cavity resonator 33. Due to this impurity, the balance matched by the matching unit 26 is lost, and the microwave reflected power value is increased. As a result, the power of the microwave contributing to the plasma of the harmful component-containing gas is reduced, and the processing efficiency (that is, the microwave) Degradation rate of harmful component-containing gas with respect to electric power) decreases. Therefore, in order to maintain high processing efficiency, it is necessary to periodically perform maintenance and maintenance so as to keep the state of the gas flow pipe 39 of the cavity resonator 33 clean. This maintenance is usually performed when the decomposition rate of the harmful component-containing gas decreases.
JP 2003-245520 A

しかしながら、有害成分含有ガスの分解率の計測にあっては、吸引ポンプ37から排出されるガスを分析する必要があるため時間が掛かり、即時に計測することができなかった。従って、有害成分含有ガスの分解率が計測された時点においては、既に大量の不純物が空洞共振器33に付着・蓄積しており、保守整備時期を正確に判定することが困難であるという問題があった。
また、前記ガス流通管39の内部を直接検査すれば、保守整備の時期を正確に判定することはできるが、この直接検査には、処理装置を一部分解する必要があるため時間が掛かり、その間、有害成分含有ガスの処理ができないという問題があった。
However, the measurement of the decomposition rate of the harmful component-containing gas takes time because it is necessary to analyze the gas discharged from the suction pump 37, and cannot be measured immediately. Therefore, when the decomposition rate of the harmful component-containing gas is measured, there is a problem that a large amount of impurities have already adhered and accumulated in the cavity resonator 33 and it is difficult to accurately determine the maintenance timing. there were.
In addition, if the inside of the gas distribution pipe 39 is directly inspected, it is possible to accurately determine the maintenance timing. However, this direct inspection takes time because it is necessary to disassemble a part of the processing apparatus. There was a problem that it was not possible to treat the harmful component-containing gas.

本発明は、上記従来技術の問題点に鑑み、
PFCなどの有害成分含有ガスの処理装置の保守整備時期を正確かつ即時に判定することができる保守整備時期判定方法を提供することを目的とする。
In view of the above-mentioned problems of the prior art, the present invention
It is an object of the present invention to provide a maintenance and maintenance time determination method capable of accurately and immediately determining the maintenance and maintenance time of a processing apparatus for harmful component-containing gas such as PFC.

かかる課題を解決するため、
請求項1にかかる発明は、プラズマ容器と、このプラズマ容器内にプラズマを発生させるプラズマ発生機構とを備え、半導体製造装置から排出される有害成分含有ガスの処理装置の保守整備時期判定方法であって、前記プラズマ発生機構から前記プラズマ容器に入射するマイクロ波の入射電力と、前記プラズマ容器から前記プラズマ発生機構に反射するマイクロ波の反射電力との差である実効電力を計測し、前記実効電力から前記有害成分含有ガスの分解率を判断することを特徴とする有害成分含有ガスの処理装置の保守整備時期判定方法である。
To solve this problem,
The invention according to claim 1 is a method for determining a maintenance timing of a processing apparatus for a harmful component-containing gas discharged from a semiconductor manufacturing apparatus , comprising a plasma container and a plasma generation mechanism for generating plasma in the plasma container. Te measures the incident microwave power incident on the plasma container from the plasma generation mechanism, the effective power is the difference between the reflected power of the microwave reflected by the plasma generating mechanism from the plasma container, wherein the effective power From the above, the decomposition rate of the harmful component-containing gas is determined, and the maintenance and maintenance time determination method for the harmful component-containing gas treatment device is provided.

請求項2にかかる発明は、処理装置の運転初期における実効電力と、運転初期以降における実効電力とを比較し、運転初期以降における実効電力が運転初期における実効電力の90%以下となる時期を保守整備時期とすることを特徴とする請求項1記載の有害成分含有ガスの処理装置の保守整備時期判定方法である。
請求項3にかかる発明は、前記有害成分含有ガスがCF であることを特徴とする請求項1乃至2記載の有害成分含有ガスの処理装置の保守整備時期判定方法である。
The invention according to claim 2 compares the effective power in the initial stage of operation of the processing device with the effective power in the initial stage of operation and maintains the time when the effective power after the initial stage of operation is 90% or less of the effective power in the initial stage of operation. The method for determining a maintenance time of a processing apparatus for a harmful component-containing gas according to claim 1, wherein the maintenance time is a maintenance time.
According to a third aspect of the present invention, there is provided a method for determining a maintenance timing of a harmful component-containing gas treatment apparatus according to the first or second aspect , wherein the harmful component-containing gas is CF 4 .

本発明にかかる有害成分含有ガスの処理装置の保守整備時期判定方法によれば、マイクロ波の入射電力と反射電力との差が、有害成分含有ガスのプラズマ化に寄与する電力に相当し、その計測が簡便であるため、処理装置の保守整備時期を正確かつ即時に判定することができる。   According to the method for determining the maintenance time of the processing apparatus for harmful component-containing gas according to the present invention, the difference between the incident power of the microwave and the reflected power corresponds to the power that contributes to the plasma of the harmful component-containing gas, Since the measurement is simple, the maintenance time of the processing apparatus can be determined accurately and immediately.

本発明にかかる保守整備時期判定方法の一実施形態を、図面に基づいて説明する。
先ず、空洞共振器33内を貫通しているガス流通管39に流入する混合ガスを、プラズマ発生機構20から入射するマイクロ波によりプラズマ化する。この際、空洞共振器33に入射するマイクロ波の入射電力を、パワーメータ25により計測する。また、空洞共振器33から反射するマイクロ波の反射電力も同様に計測し、これら入射電力と反射電力の差(以下、「実効電力」と略記する)を求める。上記パワーメータ25を用いると、実効電力を簡便かつ即時に計測することができる。
An embodiment of a maintenance time determination method according to the present invention will be described with reference to the drawings.
First, the mixed gas flowing into the gas flow pipe 39 penetrating the cavity resonator 33 is turned into plasma by the microwave incident from the plasma generation mechanism 20. At this time, the incident power of the microwave incident on the cavity resonator 33 is measured by the power meter 25. Further, the reflected power of the microwave reflected from the cavity resonator 33 is measured in the same manner, and the difference between the incident power and the reflected power (hereinafter abbreviated as “effective power”) is obtained. When the power meter 25 is used, the effective power can be measured easily and immediately.

実効電力は、空洞共振器33において消費された電力、すなわち有害成分含有ガスのプラズマ化に寄与する電力に相当する。図2に、マイクロ波の実効電力に対するCFの分解率を表すグラフの一例を示す。CFは、有害成分含有ガスの1種類である。このグラフから、実効電力はCFの分解率に対して単調に増加していることがわかる。従って、実効電力と有害成分含有ガスの分解率の間には相関関係があり、実効電力を計測することにより、分解率を推定することができる。なお、CF以外の有害成分含有ガスついて同様の測定を行ったところ、実効電力に対してCFと同様の相関関係があることが確認された。 The effective power corresponds to the power consumed in the cavity resonator 33, that is, the power that contributes to the plasma conversion of the harmful component-containing gas. FIG. 2 shows an example of a graph representing the decomposition rate of CF 4 with respect to the effective microwave power. CF 4 is one type of harmful component-containing gas. From this graph, it can be seen that the effective power monotonically increases with respect to the decomposition rate of CF 4 . Therefore, there is a correlation between the effective power and the decomposition rate of the harmful component-containing gas, and the decomposition rate can be estimated by measuring the effective power. Note that measurement was performed similar with noxious component-containing gases other than CF 4, that there is a similar correlation with CF 4 relative to the effective power is confirmed.

次に、上述したような実効電力と有害成分含有ガスの分解率の相関関係に基づいて、高い分解率を示す処理装置の運転初期における初期実効電力値を記録する。ついで、処理装置を用いて有害成分含有ガスを処理するとともに、実効電力を計測し、初期実効電力値と比較する。実効電力の計測値が初期実効電力値以上である場合には、有害成分含有ガスの分解率は良好であり、空洞共振器33内のガス流通管39の内面における不純物量は少ないと判断される。一方、実効電力の計測値が初期実効電力値未満、例えば、初期実効電力値の90%以下となった場合には、有害成分含有ガスの分解率が低下し、前記ガス流通管39内の不純物量が多いと判断される。すなわち、処理装置の保守整備時期であると判定される。   Next, based on the correlation between the effective power and the decomposition rate of the harmful component-containing gas as described above, the initial effective power value in the initial operation of the processing apparatus showing a high decomposition rate is recorded. Next, the processing apparatus is used to process the harmful component-containing gas, and the effective power is measured and compared with the initial effective power value. When the measured value of the effective power is equal to or greater than the initial effective power value, the decomposition rate of the harmful component-containing gas is good, and it is determined that the amount of impurities on the inner surface of the gas flow pipe 39 in the cavity resonator 33 is small. . On the other hand, when the measured value of the effective power is less than the initial effective power value, for example, 90% or less of the initial effective power value, the decomposition rate of the harmful component-containing gas decreases, and the impurities in the gas circulation pipe 39 It is judged that the amount is large. That is, it is determined that it is time for maintenance of the processing apparatus.

このように、実効電力を計測することにより、有害成分含有ガスの分解率を推定することができる。また、実効電力は、上述したように、パワーメータ25により簡便かつ即時に計測され得るものである。従って、実効電力を扱うことにより、処理装置の保守整備時期を正確かつ即時に判定することができる。   Thus, by measuring the effective power, it is possible to estimate the decomposition rate of the harmful component-containing gas. The effective power can be measured easily and immediately by the power meter 25 as described above. Therefore, by handling the effective power, it is possible to accurately and immediately determine the maintenance timing of the processing apparatus.

本発明におけるプラズマ式処理装置の一例を示す図である。It is a figure which shows an example of the plasma type processing apparatus in this invention. 本発明の実施形態にかかるマイクロ波の実効電力に対するCFの分解率を表すグラフの一例である。To the effective power of the microwave according to an embodiment of the present invention is an example of a graph representing the decomposition rate of CF 4.

符号の説明Explanation of symbols

20・・・マイクロ波発生機構、30・・・プラズマ容器、100・・・プラズマ

20 ... microwave generation mechanism, 30 ... plasma vessel, 100 ... plasma

Claims (3)

プラズマ容器と、このプラズマ容器内にプラズマを発生させるプラズマ発生機構とを備え、半導体製造装置から排出される有害成分含有ガスの処理装置の保守整備時期判定方法であって、
前記プラズマ発生機構から前記プラズマ容器に入射するマイクロ波の入射電力と、前記プラズマ容器から前記プラズマ発生機構に反射するマイクロ波の反射電力との差である実効電力を計測し、前記実効電力から前記有害成分含有ガスの分解率を判断することを特徴とする有害成分含有ガスの処理装置の保守整備時期判定方法。
A plasma container and a plasma generation mechanism for generating plasma in the plasma container, and a method for determining a maintenance time of a processing apparatus for harmful component-containing gas discharged from a semiconductor manufacturing apparatus ,
The effective power that is the difference between the incident power of the microwave incident on the plasma container from the plasma generation mechanism and the reflected power of the microwave reflected from the plasma container to the plasma generation mechanism is measured, and the effective power is calculated from the effective power. A method for determining a maintenance period of a processing apparatus for a harmful component-containing gas, characterized by determining a decomposition rate of the harmful component-containing gas.
処理装置の運転初期における実効電力と、運転初期以降における実効電力とを比較し、運転初期以降における実効電力が運転初期における実効電力の90%以下となる時期を保守整備時期とすることを特徴とする請求項1記載の有害成分含有ガスの処理装置の保守整備時期判定方法。 The effective power at the initial stage of operation of the processing device is compared with the effective power after the initial stage of operation, and the time when the effective power after the initial stage of operation is 90% or less of the effective power at the initial stage of operation is the maintenance period. A method for determining a maintenance time of a processing apparatus for a harmful component-containing gas according to claim 1. 前記有害成分含有ガスがCFThe harmful component-containing gas is CF 4 であることを特徴とする請求項1乃至2記載の有害成分含有ガスの処理装置の保守整備時期判定方法。The method for determining the maintenance timing of a processing apparatus for a harmful component-containing gas according to claim 1 or 2, wherein:
JP2004296374A 2004-10-08 2004-10-08 Method for determining the maintenance time of a processing equipment for hazardous component-containing gas Active JP4803989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296374A JP4803989B2 (en) 2004-10-08 2004-10-08 Method for determining the maintenance time of a processing equipment for hazardous component-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296374A JP4803989B2 (en) 2004-10-08 2004-10-08 Method for determining the maintenance time of a processing equipment for hazardous component-containing gas

Publications (2)

Publication Number Publication Date
JP2006102718A JP2006102718A (en) 2006-04-20
JP4803989B2 true JP4803989B2 (en) 2011-10-26

Family

ID=36373015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296374A Active JP4803989B2 (en) 2004-10-08 2004-10-08 Method for determining the maintenance time of a processing equipment for hazardous component-containing gas

Country Status (1)

Country Link
JP (1) JP4803989B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104214A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Plasma treatment device and its failure preventive and diagnostic method
JP2001314749A (en) * 2000-05-12 2001-11-13 Honda Motor Co Ltd Abnormality judging method of plasma reactor
JP4374814B2 (en) * 2001-09-20 2009-12-02 株式会社日立製作所 Treatment method for perfluoride treatment
JP2003236338A (en) * 2002-02-15 2003-08-26 Mitsubishi Electric Corp Method and device for treating gas containing organic halide

Also Published As

Publication number Publication date
JP2006102718A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP5307556B2 (en) Gas processing equipment
US6689252B1 (en) Abatement of hazardous gases in effluent
US6673323B1 (en) Treatment of hazardous gases in effluent
CN100480170C (en) Method and apparatus for producing F2-containing gas, and method and apparatus for modifying article surface
KR100658374B1 (en) Plasma scrubber for elimination of waste cleaning gases emitted from semiconductor industries
KR100637884B1 (en) Method and apparatus for treating waste gas containing fluorochemical
EP1297891A1 (en) Object processing apparatus and plasma facility comprising the same
US20030012718A1 (en) Processes and apparatuses for treating halogen-containing gases
JP5643679B2 (en) Method for removing silicon carbide
US20010009652A1 (en) Apparatus and method for point-of-use abatement of fluorocompounds
JP2007196160A (en) Waste gas treatment apparatus
Han et al. Large scale treatment of perfluorocompounds using a thermal plasma scrubber
KR20120021651A (en) Apparatus and method for pfcs gas decomposition
JP2009082893A (en) Exhaust gas treating apparatus
JP4803989B2 (en) Method for determining the maintenance time of a processing equipment for hazardous component-containing gas
US20040123879A1 (en) Method for cleaning a deposition chamber and deposition apparatus for performing in situ cleaning
KR20090011467A (en) A exhaust gas disposal appartus of semiconductor
JP2014049684A (en) Cleaning endpoint detection method
JP5214316B2 (en) Cleaning method of plasma film forming apparatus
JP2010058009A (en) Method of decomposing nitrogen trifluoride and device using this method
JP2006116424A (en) Method for treating gas containing harmful ingredient
JP2006102717A (en) Treatment method and treatment apparatus for harmful component-containing gas
KR102407755B1 (en) The apparatus of multi-stage scrubber exhaust gas treatment and the method thereof
JP2005026409A (en) Cleaning method in process chamber and substrate processing equipment
KR101738524B1 (en) Remote Plasma Cleaning Method and Cleaning Apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4803989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250