JP4803020B2 - Evaluation method for chipping resistance of automotive paint outer panels - Google Patents

Evaluation method for chipping resistance of automotive paint outer panels Download PDF

Info

Publication number
JP4803020B2
JP4803020B2 JP2006343982A JP2006343982A JP4803020B2 JP 4803020 B2 JP4803020 B2 JP 4803020B2 JP 2006343982 A JP2006343982 A JP 2006343982A JP 2006343982 A JP2006343982 A JP 2006343982A JP 4803020 B2 JP4803020 B2 JP 4803020B2
Authority
JP
Japan
Prior art keywords
coating film
outer plate
stone
stepping stone
breaking energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006343982A
Other languages
Japanese (ja)
Other versions
JP2008157656A (en
Inventor
和人 笹西
寛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2006343982A priority Critical patent/JP4803020B2/en
Publication of JP2008157656A publication Critical patent/JP2008157656A/en
Application granted granted Critical
Publication of JP4803020B2 publication Critical patent/JP4803020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、自動車塗装外板の耐チッピング性評価方法に関する。   The present invention relates to a method for evaluating chipping resistance of automobile paint outer plates.

自動車塗装外板の耐チッピング性評価方法には、特許文献1に示すように、エアにより砕石を上方に噴出して、走行する車両の目前に砕石のカーテンを形成するものが提案されている。このものによれば、実際に生じるチッピングに近似した精度のよいシュミレーションを行うことができる。
特開平10−054780号公報
As a method for evaluating the chipping resistance of an automobile paint outer plate, as shown in Patent Document 1, a method has been proposed in which crushed stone is jetted upward by air to form a crushed stone curtain in front of a traveling vehicle. According to this configuration, it is possible to perform accurate simulation that approximates chipping that actually occurs.
Japanese Patent Laid-Open No. 10-054780

しかし、上記耐チッピング性評価方法においては、実車が用いられるばかりか、その耐チッピング性評価方法を行う装置も大掛かりなものにならざるを得ない。   However, in the above-described chipping resistance evaluation method, not only an actual vehicle is used, but also the apparatus for performing the chipping resistance evaluation method has to be large.

本発明は、上記事情に鑑みてなされたもので、その技術的課題は、精度を確保しつつ、極力簡単に耐チッピング性評価を行うことができる自動車塗装外板の耐チッピング性評価方法を提供することにある。   The present invention has been made in view of the above circumstances, and its technical problem is to provide a chipping resistance evaluation method for an automobile coating outer plate that can perform chipping resistance evaluation as easily as possible while ensuring accuracy. There is to do.

前記技術的課題を達成するために本発明(請求項1に係る発明)においては、
対象外板と同仕様の試験板に種々の異なる塗膜破壊エネルギーを飛石をもって付与する試験を該各塗膜破壊エネルギー毎に複数回行って、該各塗膜破壊エネルギーにより生じる塗膜剥離発生率をそれぞれ調べることにより求めた特性式であって、塗膜破壊エネルギーと塗膜剥離発生率との関係を示すものを用意し、
次に、前記対象外板に飛ぶべき飛石の条件を求めて、該対象外板の高さ方向における各部位毎に想定塗膜破壊エネルギーをそれぞれ算出すると共に、該各想定塗膜破壊エネルギーと前記特性式とに基づき該各想定塗膜破壊エネルギーに応じた想定塗膜剥離発生率をそれぞれ求め、
次に、予め求めておいた前記対象外板の高さ方向における各部位毎の飛石存在分布と前記各想定塗膜剥離発生率とにより、対象外板の高さ方向における各部位毎の塗膜剥離個数をそれぞれ求め、
次に、前記各塗膜剥離個数の総和を求めると共に、その総和から前記対象外板全体の塗膜剥離発生率を算出して、その塗膜剥離発生率と評価基準とを比較する、
ことを特徴とする自動車塗装外板の耐チッピング性評価方法とした構成としてある。
In order to achieve the technical problem, in the present invention (the invention according to claim 1),
The rate of occurrence of coating film peeling caused by each coating film breaking energy by performing a test to apply various different coating film breaking energy to the test plate of the same specification as the target outer plate with each stepping stone multiple times for each coating film breaking energy. Is a characteristic equation obtained by examining each of the above, and preparing a relationship between the coating film breaking energy and the coating film peeling rate,
Next, the condition of the stepping stone to fly to the target outer plate is obtained, and the estimated coating film breaking energy is calculated for each part in the height direction of the target outer plate, and each of the assumed coating film breaking energy and the Based on the characteristic formula, the respective expected coating film peeling occurrence rate corresponding to each assumed coating film breaking energy is obtained,
Next, the coating film for each part in the height direction of the target outer plate according to the stepping stone presence distribution for each part in the height direction of the target outer plate and the respective assumed coating film peeling occurrence rate obtained in advance. Find the number of peels,
Next, while calculating the total number of the coating film peeling number, calculating the coating film peeling occurrence rate of the entire target outer plate from the total, and comparing the coating film peeling occurrence rate and the evaluation criteria,
It is set as the structure used as the chipping-proof evaluation method of the automotive painting outer plate | board characterized by this.

上述の構成により、対象外板と同仕様の試験板に対する簡易な試験(飛石数を少なくできること等)を行って、塗膜破壊エネルギーと塗膜剥離発生率との関係を示す特性式を求めて用意すれば、後は、計算で処理できることになり、対象外板全体の塗膜剥離発生率を求める度に、実車も、大掛かりな装置も用いる必要はなくなる。その一方、対象外板と同仕様の試験板に対して試験を行って基礎データを確保し、それを用いて対象外板全体の塗膜剥離発生率を得ており、耐チッピング性評価の精度は低くはない。   With the above-mentioned configuration, a simple test is performed on a test plate with the same specifications as the target outer plate (the number of stepping stones can be reduced, etc.), and a characteristic equation indicating the relationship between the coating film breaking energy and the coating film peeling occurrence rate is obtained. If it is prepared, it can be processed later by calculation, and it is not necessary to use an actual vehicle or a large-scale device every time the coating film peeling occurrence rate of the entire outer plate is obtained. On the other hand, basic data is obtained by performing tests on test plates with the same specifications as the target outer plate, and the rate of occurrence of coating film peeling on the entire target outer plate is obtained using this data. Is not low.

請求項1の好ましい態様として、前記種々の異なる各塗膜破壊エネルギーが、前記試験板に対する飛石の重量、速度、進入角度の少なくとも1つを変えたものである構成を採ることができる(請求項2対応)。この構成により、飛石が塗膜に与えるエネルギーのうち、垂直成分を塗膜破壊エネルギーとして捉えることができることに基づき、試験板に対する飛石の重量、速度、進入角度の少なくとも1つを変えることにより、塗膜破壊エネルギーを異ならせることができる。このため、塗膜破壊エネルギーを異ならせることにより、その各塗膜破壊エネルギーにより生じる塗膜剥離発生率をそれぞれ調べて、塗膜破壊エネルギーと塗膜剥離発生率との関係を示す該試験板の特性式を的確に得ることができる。   As a preferred aspect of claim 1, it is possible to adopt a configuration in which each of the various different coating film breaking energies is obtained by changing at least one of the weight, speed, and approach angle of the stepping stone with respect to the test plate. 2 correspondence). Based on the fact that the vertical component of the energy given to the coating film by the stepping stone can be regarded as the coating film breaking energy, the coating material is changed by changing at least one of the weight, speed, and approach angle of the stepping stone with respect to the test plate. The film breaking energy can be varied. For this reason, by differentiating the coating film breaking energy, the coating film peeling occurrence rate caused by each coating film breaking energy was investigated, and the test plate showing the relationship between the coating film breaking energy and the coating film peeling occurrence rate. The characteristic formula can be obtained accurately.

請求項1の好ましい態様として、前記対象外板に飛ぶべき飛石の条件として、該飛石の重量、速度、該対象外板の各部位に対する飛石の進入角度を求める構成を採ることができる(請求項3対応)。この構成により、対象外板の高さ方向における各部位毎に想定塗膜破壊エネルギーを的確にそれぞれ算出することができる。   As a preferred aspect of claim 1, as a stepping stone to fly to the target outer plate, it is possible to adopt a configuration in which the weight of the stepping stone, the speed, and the approach angle of the stepping stone with respect to each part of the target outer plate are obtained. 3 correspondence). With this configuration, it is possible to accurately calculate the assumed coating film breaking energy for each part in the height direction of the target outer plate.

請求項1の好ましい態様として、前記対象外板の各部位に対する飛石の進入角度を求めるに際して、該対象外板の各部位に対する飛石の進入角度と、その各部位の高さ位置との関係を利用する構成を採ることができる(請求項4対応)。この構成により、対象外板の各部位に対する飛石の進入角度と、その各部位の高さ位置との関係を予め準備しておくことにより、それを利用して、対象外板の各部位に対する飛石の進入角度を迅速且つ簡単にに求めることができる。   As a preferred aspect of claim 1, when determining the stepping stone approach angle with respect to each part of the target outer plate, the relationship between the stepping stone approach angle with respect to each part of the target outer plate and the height position of each part is used. The structure which carries out can be taken (corresponding to claim 4). With this configuration, a stepping stone for each part of the target outer plate is used by preparing in advance the relationship between the approach angle of the stepping stone with respect to each part of the target outer plate and the height position of each part. Can be quickly and easily obtained.

請求項1の好ましい態様として、前記飛石の速度を求めるに際して、飛石の重量と飛石の速度との関係を利用する構成を採ることができる(請求項5対応)。この構成により、本件発明者が見出した知見に基づき、飛石の速度を簡単化して取り扱うことができ、想定塗膜破壊エネルギーの算出を容易にできる。   As a preferred aspect of claim 1, when determining the speed of the stepping stone, it is possible to adopt a configuration utilizing the relationship between the weight of the stepping stone and the speed of the stepping stone (corresponding to claim 5). With this configuration, the speed of the stepping stone can be simplified and handled based on the knowledge found by the present inventor, and the assumed coating film breaking energy can be easily calculated.

請求項1の好ましい態様として、前記想定塗膜破壊エネルギーをそれぞれ算出するに際して、前記対象外板の高さ方向の各部位毎に飛石の各石重量について行い、前記対象外板の高さ方向における各部位毎の塗膜剥離個数をそれぞれ求めるに際して、予め求めておいた前記対象外板の高さ方向における各部位毎の飛石の石重量分布と前記各想定塗膜剥離発生率とを用いる構成を採ることができる(請求項6対応)。この構成により、飛石の各石重量が想定塗膜剥離発生率の精度を高めることになり、これに伴い、対象外板の高さ方向における各部位毎の塗膜剥離個数の精度を高めることができる。   As a preferable aspect of claim 1, when calculating the assumed coating film breaking energy, it is performed for each stone weight of the stepping stone for each part in the height direction of the target outer plate, and in the height direction of the target outer plate. When determining the number of coating film peeling for each part, a configuration using the stone weight distribution of the stepping stones for each part in the height direction of the target outer plate and the respective assumed coating film peeling occurrence rate obtained in advance. It can be taken (corresponding to claim 6). With this configuration, the weight of each stepping stone will increase the accuracy of the assumed coating film peeling occurrence rate, and accordingly, the accuracy of the number of coating film peeling for each part in the height direction of the target outer plate can be increased. it can.

請求項1の好ましい態様として、対象外板がボンネットである構成を採ることができる(請求項7対応)。この構成により、対象外板がボンネットであっても、精度を確保しつつ、極力簡単に耐チッピング性評価を行うことができる。   As a preferable aspect of claim 1, a configuration in which the target outer plate is a bonnet can be taken (corresponding to claim 7). With this configuration, even when the target outer plate is a bonnet, the chipping resistance evaluation can be performed as easily as possible while ensuring accuracy.

本発明(請求項1に係る発明)によれば、精度を確保しつつ、極力簡単に耐チッピング性評価を行うことができる。   According to the present invention (the invention according to claim 1), it is possible to perform the chipping resistance evaluation as easily as possible while ensuring accuracy.

以下、本発明の実施形態について、図面に基づいて説明する。
本件評価方法は、図1に示す順序に従って行われる。
(1)先ず、試験板が用意される。
試験板は、評価すべき対象外板としてのボンネットと同じものが用いられ、その試験板には、ボンネット同様の塗膜が形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
This case evaluation method is performed according to the order shown in FIG.
(1) First, a test plate is prepared.
The test plate is the same as the bonnet as the outer plate to be evaluated, and a coating film similar to the bonnet is formed on the test plate.

(2)次に、前記試験板について、塗膜破壊エネルギーと塗膜剥離発生率との関係を示す特性式が求められる。後の工程において、想定塗膜剥離発生率を求めることができるようにするためである。
1)上記特性式を求めるためには、具体的には、試験板に種々の異なる塗膜破壊エネルギーを飛石をもって付与する試験をその各塗膜破壊エネルギー毎に複数回行って、各塗膜破壊エネルギーにより生じる塗膜剥離発生率がそれぞれ調べられる。
1−1)試験板に対する塗膜破壊エネルギーの付与には、石を飛ばす飛石試験機(グラベロ試験機、ダイヤモンドショット試験機等)が用いられ、その飛石試験機により塗膜破壊エネルギーが石(飛石)を介して試験板に付与される。
1−2)塗膜破壊エネルギーEcは、(数1)式で定義される。これは、図2に示すように、飛石1が試験板2の塗膜に与えるエネルギーのうち、垂直成分が塗膜破壊エネルギーEcと考えられるからである。このため、塗膜破壊エネルギーEcは、(数1)に示すように、石の重量m、石の速度v、試験板2に対する進入角度θを構成因子として有する。

Ec=1/2・(mv2)・sinθ ・・・(数1)
(2) Next, with respect to the test plate, a characteristic equation indicating the relationship between the coating film breaking energy and the coating film peeling occurrence rate is obtained. This is because an assumed coating film peeling occurrence rate can be obtained in a later process.
1) In order to obtain the above characteristic equation, specifically, a test for applying various different coating film breaking energies to the test plate with stepping stones is performed a plurality of times for each coating film breaking energy. The rate of occurrence of film peeling caused by energy is examined.
1-1) For applying the coating film breaking energy to the test plate, a flying stone testing machine (gravelo testing machine, diamond shot testing machine, etc.) that blows stones is used. ) To the test plate.
1-2) The coating film breaking energy Ec is defined by the formula (1). This is because, as shown in FIG. 2, the vertical component of the energy given by the stepping stone 1 to the coating film of the test plate 2 is considered to be the coating film breaking energy Ec. For this reason, the coating film breaking energy Ec has, as shown in (Equation 1), the stone weight m, the stone velocity v, and the approach angle θ with respect to the test plate 2 as constituent factors.

Ec = 1/2 · (mv 2 ) · sinθ (Expression 1)

1−3)試験板に対して種々の異なる塗膜破壊エネルギーを付与するのは、塗膜破壊エネルギーと塗膜剥離発生率との間に相関関係があり、試験板に塗膜破壊エネルギーを付与することにより、それに応じた塗膜剥離発生率を得ることができると考えられるからである。これは、図3に示すように、塗膜剥離発生率と石重量mとの間に相関関係があると共に、塗膜剥離発生率と飛石の進入角度θとの間に相関関係があり、これら石重量m、飛石の進入角度θを構成因子とする塗膜破壊エネルギーと塗膜剥離発生率との間にも相関関係があると考えられることに基づいている。このため、塗膜破壊エネルギーEcが、石の重量m、石の速度v、試験板に対する石の進入角度θを構成因子として保有することに基づき、付与すべき各塗膜破壊エネルギーは、石の重量m、石の速度v、試験板に対する石(飛石)の進入角度θの少なくとも1つが変えられたものとされる。
1−4)種々の異なる塗膜破壊エネルギーを付与する試験を各塗膜破壊エネルギー毎に複数回行うのは、各塗膜破壊エネルギー毎に塗膜剥離の数を数えて試験板の塗膜剥離発生率を導けるようにするためである。この場合、各塗膜破壊エネルギー毎に複数個の石が用いられるが、このとき、同じ塗膜破壊エネルギーの下で、石を1個づつ複数回に亘って試験板に衝突させてもよいし、複数の石を一気に試験板に衝突させてもよい。
1-3) Various different coating film breaking energies are imparted to the test plate because there is a correlation between the coating film breaking energy and the rate of occurrence of coating film peeling, and the coating plate breaking energy is imparted to the test plate. This is because it is considered that a coating film peeling occurrence rate corresponding to that can be obtained. As shown in FIG. 3, there is a correlation between the coating film peeling occurrence rate and the stone weight m, and there is a correlation between the coating film peeling occurrence rate and the stepping angle θ of the stepping stone. This is based on the fact that there is also a correlation between the coating film breaking energy and the coating film peeling occurrence rate with the stone weight m and the stepping stone approach angle θ as constituent factors. For this reason, based on the fact that the coating film breaking energy Ec has the stone weight m, the stone velocity v, and the stone entry angle θ with respect to the test plate as constituent factors, It is assumed that at least one of the weight m, the stone velocity v, and the approach angle θ of the stone (stepping stone) with respect to the test plate is changed.
1-4) The test for imparting various different coating film breaking energy is performed a plurality of times for each coating film breaking energy by counting the number of coating film peelings for each coating film breaking energy and peeling the coating film on the test plate. This is to guide the incidence. In this case, a plurality of stones are used for each coating film breaking energy. At this time, the stones may collide with the test plate one by one under the same coating film breaking energy. A plurality of stones may collide with the test plate at once.

1−5)試験板に対する種々の異なる各塗膜破壊エネルギーの付与は、例えば、図4に示すように、石重量m、石速度vを一定にする一方、試験板に対する石の進入角度θのみを異ならせる条件下で行われる。
1−6)試験板の塗膜剥離発生率に関しては、本実施形態においては、試験板に傷として生じる「剥離」、「削剥」等の数の和を総和とし、その総和に対する「剥離」の数の割合を試験板の塗膜剥離発生率としている。これは、後の工程において利用することになる飛石重量分布を計測するに際して、ボンネットに当たった飛石のうち、無傷のものを数えることが容易でないことに基づく。
1-5) Application of various different coating film breaking energies to the test plate, for example, as shown in FIG. 4, while making the stone weight m and the stone velocity v constant, only the stone entrance angle θ with respect to the test plate Is performed under different conditions.
1-6) Regarding the coating film peeling occurrence rate of the test plate, in this embodiment, the sum of numbers such as “peeling” and “scraping” generated as scratches on the test plate is defined as the sum, and “peeling” of the sum is calculated. The ratio of the number is defined as the rate of occurrence of film peeling on the test plate. This is based on the fact that it is not easy to count intact ones of the stepping stones that hit the bonnet when measuring the weight distribution of stepping stones that will be used in the subsequent steps.

2)前記特性式は、前述の塗膜破壊エネルギーと塗膜剥離発生率との間の相関関係から、下記(数2)で示され、その特性式は、図5に示すように、直線式として示される。ここで、PRは塗膜剥離発生率、Ecは塗膜破壊エネルギー、aは比例定数、bは切片を示す。勿論、この特性式については、上述の内容を行うことにより、予め求めておくことができる。

PR=aEc+b ・・・・(数2)
2) The above characteristic equation is expressed by the following (Equation 2) from the correlation between the coating film breaking energy and the coating film peeling occurrence rate, and the characteristic equation is a linear equation as shown in FIG. As shown. Here, PR is the coating film peeling occurrence rate, Ec is the coating film breaking energy, a is a proportionality constant, and b is an intercept. Of course, this characteristic equation can be obtained in advance by performing the above-described contents.

PR = aEc + b (2)

(3)次に、評価すべきボンネットに飛ぶべき飛石の条件を求めて、そのボンネットの高さ方向(投影高さ方向(上下方向))における各部位毎に想定塗膜破壊エネルギーがそれぞれ算出されると共に、その各想定塗膜破壊エネルギーと前記特性式(数1参照)とに基づきその各想定塗膜破壊エネルギーに応じた想定塗膜剥離発生率がそれぞれ求められる。
1)ボンネットの高さ方向における各部位毎に想定塗膜破壊エネルギーをそれぞれ算出するのは、特性式(数1参照)に基づき、その各想定塗膜破壊エネルギーに応じた想定塗膜剥離発生率をそれぞれ算出できるようにするためである。
(3) Next, the condition of the stepping stone to fly to the bonnet to be evaluated is obtained, and the assumed coating film breaking energy is calculated for each part in the height direction (projection height direction (vertical direction)) of the bonnet. In addition, an assumed coating film peeling occurrence rate corresponding to each assumed coating film breaking energy is obtained based on each assumed coating film breaking energy and the characteristic formula (see Equation 1).
1) The assumed coating film breaking energy is calculated for each part in the height direction of the bonnet based on the characteristic equation (see Equation 1), and the assumed coating film peeling occurrence rate corresponding to each assumed coating film breaking energy. This is because each can be calculated.

2)各想定塗膜破壊エネルギーは、評価すべきボンネットに飛ぶべき飛石条件に基づき算出されるが、この飛石条件として、飛石の重量、速度、ボンネットの各部位に対する飛石の進入角度が求められる。想定塗膜破壊エネルギーも、塗膜破壊エネルギーEcとして、それらを構成因子として有し、それら因子が想定塗膜剥離発生率に反映されることになるからである。尚、この各想定塗膜破壊エネルギーについては、予め算出しておいてもよい。
2−1)想定塗膜破壊エネルギー算出のための飛石条件としての各石重量については、実際上の問題となる石を想定すべく、6号砕石(5〜13mmサイズ)の重量が用いられる。このため、6号砕石の重量の範囲で、例えば、0.15,0.25,0.35,0.45,0.55,0.65gが各石重量として用いられる(図9等参照)。本実施形態においては、精度を高める観点から、石重量を複数に分けて想定塗膜破壊エネルギーを算出しているが、勿論、簡略化を図るために、これら各石重量の平均値を1つだけ用いることもできる。
2) Each assumed coating film breaking energy is calculated based on the stepping stone condition to fly to the bonnet to be evaluated. As the stepping stone condition, the weight of the stepping stone, the speed, and the stepping stone approach angle with respect to each part of the bonnet are obtained. This is because the assumed coating film breaking energy also has them as constituent factors as the coating film breaking energy Ec, and these factors are reflected in the assumed coating film peeling occurrence rate. Each assumed coating film breaking energy may be calculated in advance.
2-1) About the weight of each stone as the stepping stone condition for calculating the assumed coating film breaking energy, the weight of No. 6 crushed stone (5 to 13 mm size) is used so as to assume a stone that is a practical problem. For this reason, in the range of the weight of No. 6 crushed stone, for example, 0.15,0.25,0.35,0.45,0.55,0.65g is used as each stone weight (refer FIG. 9 etc.). . In the present embodiment, from the viewpoint of improving accuracy, the assumed coating film breaking energy is calculated by dividing the stone weight into a plurality of pieces, but of course, for simplification, the average value of these stone weights is one. Can also be used.

2−2)想定塗膜破壊エネルギー算出のための石の速度(飛石条件)については、本件発明者が得た知見が利用される。本件発明者は、図6に示すように、6号砕石(石)を重量で分けて、タイヤ3を回転(150km/h相当)させることにより各重量の石1を飛ばし、その各重量の石1の飛石状態を高速VTR4で撮影し、画像解析から各重量毎の石1の速度を測定したところ、図7に示すように、石の速度は、80km/h〜120km/hであることを見出した。このため、想定塗膜破壊エネルギーをそれぞれ算出するに際して、上記石の速度として、上記80km/h〜120km/hの中間値100km/hが用いられる(図9参照)。
2−3)想定塗膜破壊エネルギー算出のための飛石の進入角度θ(飛石条件)については、評価すべきボンネットの高さ方向における各部位位置が反映されたものが用いられる。図8に示すように、ボンネット5の投影高さ方向(高さ方向)における各部位(Hs1〜Hs3)から水平方向に延ばす仮想線6とボンネット5とがなす角度(例えばθs1〜θs3)は、ボンネット5に対する飛石の進入角度と見ることができ、ボンネット5の投影高さ方向における各部位と、ボンネット5に対する飛石の進入角度とは、関連性を有している。このため、ここでは、ボンネットの投影高さ方向における各部位に対応する各飛石の進入角度θs1〜θs3を、予め用意されている評価すべきボンネット5のデータ(座標点等、各種情報)から求め、その各飛石の進入角度が、ボンネット5の投影高さ方向における各部位を示すものとして、また、ボンネット5の投影高さ方向における各部位を反映したものとして想定塗膜破壊エネルギー算出のために用いられる。
2−4)この際、本実施形態においては、ボンネット5上面が、図14に示すように複数の傾斜角度(例えばθ0〜θ3)をもって概念的に示せることが考慮されている。すなわち、図14に示すように、上記ボンネット5が複数の傾斜角度θ0〜θ3をもって示されると、それに基づき、ボンネット5の投影高さ方向における各部位は、上下方向における所定の範囲で、当該部位から水平方向に延ばす仮想線6とボンネット5とがなす角度が略同一状態を示すこと(同位角)になり、その角度は、そのときの仮想線6が至るボンネット5の傾斜角度に等しくなる(逆角)。このため、予め用意されている評価すべきボンネットのデータから、ボンネット5の各傾斜角度θ0〜θ3、その各傾斜角度変更点の高さ位置H0〜H3が抽出され、それを利用することにより、ボンネット5の投影高さ方向における部位H0〜H1(最初の角度変更点高さ)までが進入角度θ0(例えばθ0=30°)、部位H1〜H2(第2番目の角度変更点高さ)までが進入角度θ1(例えばθ1=20°)、部位H2〜H3(第3番目の角度変更点高さ)までが進入角度θ2(例えばθ2=15°)、部位H3を超えるものが進入角度θ3(例えばθ3=10°)に対応すると関連付けられる。
2−5)勿論この場合、図15に示すように、ボンネットの形状が上記ボンネット5と異なる場合(例えばボンネット上面の傾斜角度が大きい態様の場合)においても、予め用意されているその評価すべきボンネット5’のデータに基づき、上記と同様の処理が行われる。すなわち、予め用意されている評価すべきボンネット5’のデータから、ボンネット5’の各傾斜角度θ0’〜θ3’、その各傾斜角度変更点の高さ位置H0’〜H3’が抽出され、それを利用して、ボンネット5の投影高さ方向における部位H0〜H1’(最初の角度変更点高さ)までが進入角度θ0’、部位H1’〜H2’(第2番目の角度変更点高さ)までが進入角度θ1’、部位H2’〜H3’(第3番目の角度変更点高さ)までが進入角度θ2’、部位H3’以上が進入角度θ3’に対応すると関連付けられる。
2−6)各想定塗膜破壊エネルギーは、上記各因子と(数1)式とを用いて、図9に示すように算出される。尚、図9においては、ボンネットの投影高さ方向における部位に代えて、それを反映した各飛石の進入角度θ0=30°、θ1=20°、θ2=15°、θ3=10°(図14に対応するもの)が示されている。
2-2) The knowledge obtained by the present inventor is used for the speed (stepping stone condition) of the stone for calculating the assumed coating film breaking energy. As shown in FIG. 6, the present inventor divides No. 6 crushed stone (stone) by weight, and by rotating the tire 3 (corresponding to 150 km / h), the stone 1 of each weight is skipped, and the stone of each weight 1 was shot with a high-speed VTR 4 and the speed of the stone 1 for each weight was measured from image analysis. As shown in FIG. 7, the speed of the stone was 80 km / h to 120 km / h. I found it. Therefore, when calculating the assumed coating film breaking energy, an intermediate value of 100 km / h between 80 km / h and 120 km / h is used as the speed of the stone (see FIG. 9).
2-3) As the stepping stone approach angle θ (stepping stone condition) for calculating the assumed coating film breaking energy, those reflecting the position of each part in the height direction of the bonnet to be evaluated are used. As shown in FIG. 8, the angle (for example, θs1 to θs3) formed by the imaginary line 6 and the bonnet 5 extending in the horizontal direction from each portion (Hs1 to Hs3) in the projection height direction (height direction) of the bonnet 5 is It can be seen that the stepping stone enters the bonnet 5, and each part in the projected height direction of the bonnet 5 is related to the stepping stone entering angle with respect to the bonnet 5. For this reason, here, the approach angles θs1 to θs3 of the stepping stones corresponding to the respective parts in the projection height direction of the bonnet are obtained from the data (coordinate points and other various information) of the bonnet 5 to be evaluated prepared in advance. In order to calculate the assumed coating film breaking energy, the approach angle of each stepping stone indicates each part in the projected height direction of the bonnet 5 and reflects each part in the projected height direction of the bonnet 5. Used.
2-4) In this embodiment, it is considered that the upper surface of the bonnet 5 can be conceptually shown with a plurality of inclination angles (for example, θ0 to θ3) as shown in FIG. That is, as shown in FIG. 14, when the bonnet 5 is shown with a plurality of inclination angles θ0 to θ3, each part in the projection height direction of the bonnet 5 is based on a predetermined range in the vertical direction. The angle between the virtual line 6 extending in the horizontal direction and the bonnet 5 indicates substantially the same state (isotopic angle), and the angle is equal to the inclination angle of the bonnet 5 to which the virtual line 6 reaches at that time ( Reverse angle). For this reason, from the bonnet data to be evaluated prepared in advance, the inclination angles θ0 to θ3 of the bonnet 5 and the height positions H0 to H3 of the respective inclination angle change points are extracted, and by using them, Up to a portion H0 to H1 (first angle change point height) in the projection height direction of the bonnet 5 is an approach angle θ0 (for example, θ0 = 30 °) and a portion H1 to H2 (second angle change point height). Is the approach angle θ1 (for example, θ1 = 20 °), the part H2 to H3 (the third angle change point height) is the approach angle θ2 (for example, θ2 = 15 °), and the part exceeding the part H3 is the approach angle θ3 ( For example, it corresponds to correspond to θ3 = 10 °).
2-5) Of course, in this case, as shown in FIG. 15, even when the shape of the bonnet is different from that of the bonnet 5 (for example, in the case where the inclination angle of the upper surface of the bonnet is large), it should be evaluated in advance. Based on the data of the hood 5 ′, the same processing as described above is performed. That is, the inclination angle θ0 ′ to θ3 ′ of the bonnet 5 ′ and the height positions H0 ′ to H3 ′ of the inclination angle change points are extracted from the data of the bonnet 5 ′ to be evaluated prepared in advance. , The entry angle θ0 ′ and the portions H1 ′ to H2 ′ (second angle change point heights) up to the portions H0 to H1 ′ (first angle change point heights) in the projection height direction of the bonnet 5 are used. ) Up to the approach angle θ1 ′, the parts H2 ′ to H3 ′ (the third angle change point height) up to the approach angle θ2 ′, and the parts H3 ′ and above correspond to the approach angle θ3 ′.
2-6) Each assumed coating film breaking energy is calculated as shown in FIG. 9 using each of the above factors and the equation (1). In FIG. 9, instead of the part in the projected height direction of the bonnet, the entry angles θ0 = 30 °, θ1 = 20 °, θ2 = 15 °, θ3 = 10 ° reflecting each of the flying stones (FIG. 14). Is shown).

3)各想定塗膜破壊エネルギーと前記特性式(数1参照)とに基づき、各想定塗膜破壊エネルギーに応じた想定塗膜剥離発生率をそれぞれ求めるのは、後の工程において、ボンネット上の飛石分布(後述の図12参照)との関係で、ボンネット5の投影高さ方向における各部位毎(ボンネットに対する飛石の進入角度θ毎)の塗膜剥離個数を算出できるようにするためである。
3−1)具体的には、想定塗膜剥離発生率は、図9に示す前記各想定塗膜破壊エネルギーと図5に示す特性式とにより、図5,図10に示すように、それぞれ求められる。図10中、m1,m2,m3,・・・・・は、ボンネットの投影高さ方向における各部位(ボンネットに対する飛石の進入角度θ)毎の各石重量についての想定塗膜剥離発生率(数値)である。
3) Based on each assumed coating film breaking energy and the above-mentioned characteristic formula (see Equation 1), the estimated coating film peeling occurrence rate corresponding to each assumed coating film breaking energy is determined on the bonnet in a later step. This is because it is possible to calculate the number of coating film peeling for each part (for each stepping angle θ of the stepping stone with respect to the bonnet) in the projected height direction of the bonnet 5 in relation to the stepping stone distribution (see FIG. 12 described later).
3-1) Specifically, the assumed coating film peeling occurrence rate is obtained from each assumed coating film breaking energy shown in FIG. 9 and the characteristic formula shown in FIG. It is done. In FIG. 10, m1, m2, m3,... Are assumed coating film peeling occurrence rates (numerical values) for each stone weight at each site in the bonnet projection height direction (stepping angle θ of the stepping stone with respect to the bonnet). ).

(4)次に、予め求めておいたボンネットの投影高さ方向における飛石の各石重量(傷個数)分布と前記各想定塗膜剥離発生率とにより、ボンネットの投影高さ方向における各部位毎の各石重量についての塗膜剥離個数がそれぞれ求められる。
1)ボンネットの投影高さ方向における各石重量の分布は、予め、実車についてのチッピング調査により得られている。その実車についてのチッピング調査は、図11に示すように、6号砕石を重量で分け、その各重量の石1を前車7の後輪8の下に敷き詰め、前輪を固定したまま後輪8を空転させてその石1を後車9に向けて飛ばす。そして、その各重量の飛石1によって後車9のボンネットに付く傷(剥離、削剥等)の分布を前方からの投影像として得、それを、ボンネットの投影高さ方向における飛石の各石重量分布とする。この場合、ボンネットの横方向の分布については、均一に分散されていると考える。
(4) Next, for each part in the projected height direction of the bonnet, the distribution of the weight (number of scratches) of the stepping stones in the projected height direction of the bonnet and the estimated coating film peeling occurrence rate obtained in advance. The number of coating films peeled for each stone weight is determined.
1) The distribution of the weight of each stone in the projected height direction of the bonnet is obtained in advance by a chipping survey on an actual vehicle. As shown in FIG. 11, the chipping survey for the actual vehicle was conducted by dividing No. 6 crushed stones by weight, laying stones 1 of each weight under the rear wheel 8 of the front wheel 7, and fixing the front wheel to the rear wheel 8. Is idled and the stone 1 is blown toward the rear car 9. Then, the distribution of scratches (peeling, scraping, etc.) on the hood of the rear wheel 9 is obtained as a projected image from the front by the stepping stones 1 of the respective weights, and the distribution of the weight of each stepping stone in the height direction of the bonnet is obtained. And In this case, it is considered that the lateral distribution of the bonnet is uniformly distributed.

上記ボンネットの投影高さ方向における各石重量の分布は、その使用に際して、前述の想定塗膜破壊エネルギー算出のために求めた飛石進入角度と関連付けられているボンネットの投影高さ方向における部位毎に整理し直される。前述の図14に示すボンネット5を評価すべきボンネットとして説明すれば、先ず、ボンネット5に対して飛石進入角がθ0(=30°)をなすときの上限高さである部位位置H1(最初の角度変更点高さ)が、前述の想定塗膜破壊エネルギー算出の際のデータから抽出され、それに基づき、投影高さ方向における各石重量分布データの中から、その部位位置H1までのもの(データ(傷の数))を収集し、その収集したデータから各石重量(各想定塗膜破壊エネルギーの石重量に対応させて、0.15,0.25,0.35・・・・g)毎のデータを選別し、その各石重量毎のデータ(傷の数)を、飛石進入角度θ0に対応する部位H0〜H1の範囲でのデータとする。つまり、分布データのうち、投影高さ方向における部位位置H1までに含まれるデータをボンネット5に対する飛石進入角度θ0に対応するデータとするのである。以下同様に、分布データの中から、飛石進入角がθ1(=20°)をなす部位位置H1を超えて上限部位位置H2までのデータを収集し、その収集したデータから各石重量毎のデータを選別し、その各石重量毎のデータを、進入角度θ1に対応する部位H1〜H2の範囲のデータとする。次に、分布データの中から、飛石進入角がθ2(=15°)をなす部位位置H2を超えて上限部位位置H3までのデータを収集し、その収集したデータから各石重量毎のデータを選別し、その各石重量毎のデータを、進入角度θ2に対応する部位H2〜H3の範囲のデータとする。次に、分布データの中から、飛石進入角がθ3(=10°)をなす部位位置H3を超える高さのデータを収集し、その収集したデータから各石重量毎のデータを選別し、その各石重量毎のデータを、進入角度θ3に対応する部位H3位置を超える範囲でのデータとする。図12は、上記のようにして求めた当該ボンネットに対する飛石分布(各重量の石に基づく傷の数)を示しており、図12は、前述の各想定塗膜剥離発生率を示すことになる図10に対応して、当該ボンネットの投影高さ方向における各部位毎(図10の進入角毎に対応するH0〜H1、H1〜H2、H2〜H3、H3を超えるもの)の各石重量についての分布を示すことになる。その図12中、n1,n2,n3,・・・・・は、ボンネットの投影高さ方向における各部位毎(図9,図10の進入角度毎に対応)の各石重量についての傷(剥離、削剥等)の数であり、Tnは、その傷の総個数を示す。     The distribution of the weight of each stone in the projected height direction of the bonnet is determined for each site in the projected height direction of the bonnet associated with the stepping stone approach angle obtained for the above-described calculation of the assumed coating film breaking energy. Rearranged. If the bonnet 5 shown in FIG. 14 is described as a bonnet to be evaluated, first, the position H1 (the first position) that is the upper limit height when the stepping stone approach angle is θ0 (= 30 °) with respect to the bonnet 5. The angle change point height) is extracted from the data for calculating the assumed coating film breaking energy described above, and based on that, the data from the stone weight distribution data in the projected height direction to the portion position H1 (data) (Number of scratches)), and the weight of each stone from the collected data (0.15, 0.25, 0.35, ... g, corresponding to the stone weight of each assumed coating breaking energy) Each piece of data is selected, and the data (number of flaws) for each stone weight is used as data in the range of the parts H0 to H1 corresponding to the stepping stone approach angle θ0. That is, in the distribution data, data included up to the site position H1 in the projection height direction is set as data corresponding to the stepping stone approach angle θ0 with respect to the bonnet 5. Similarly, from the distribution data, data from the position H1 where the stepping stone approach angle is θ1 (= 20 °) to the upper limit position H2 is collected, and data for each stone weight is collected from the collected data. And the data for each stone weight is set as data in the range of the portions H1 to H2 corresponding to the approach angle θ1. Next, from the distribution data, data is collected from the part position H2 where the stepping stone approach angle is θ2 (= 15 °) to the upper limit part position H3, and data for each stone weight is obtained from the collected data. The data for each stone weight is selected and used as data in the range of the parts H2 to H3 corresponding to the approach angle θ2. Next, from the distribution data, the data of the height exceeding the part position H3 where the stepping stone approach angle forms θ3 (= 10 °) is collected, and the data for each stone weight is selected from the collected data. The data for each stone weight is data in a range exceeding the position H3 position corresponding to the approach angle θ3. FIG. 12 shows the stepping stone distribution (the number of scratches based on the stones of each weight) for the bonnet determined as described above, and FIG. 12 shows the above-mentioned respective assumed coating film peeling occurrence rates. Corresponding to FIG. 10, each stone weight for each part in the projected height direction of the bonnet (exceeding H0 to H1, H1 to H2, H2 to H3, and H3 corresponding to each approach angle in FIG. 10) Will be shown. In FIG. 12, n1, n2, n3,... Are scratches (peeling) for each stone weight at each site in the bonnet projection height direction (corresponding to each approach angle in FIGS. 9 and 10). , Scraping, etc.), and Tn represents the total number of scratches.

2)ボンネットの投影高さ方向における各部位毎の各石重量についての塗膜剥離個数は、前記各部位毎(図9,図10の進入角度毎に対応)の各石重量の分布n1,n2,・・・・(図12)に対して、該当する前記各想定塗膜剥離発生率m1,m2,・・・・(図10)を掛けることにより得られる。図13は、そのボンネットの投影高さ方向における各部位毎(図9,図10の進入角度毎に対応)の各石重量についての塗膜剥離個数m1・n1,m2・n2,・・・・を示している。     2) The number of coating films peeled off for each stone weight at each part in the projected height direction of the bonnet is the distribution of the stone weights n1, n2 for each part (corresponding to each approach angle in FIGS. 9 and 10). ,... (FIG. 12) is obtained by multiplying the corresponding assumed coating film peeling occurrence rates m1, m2,... (FIG. 10). FIG. 13 shows the number of coating film peeling m1, n1, m2, n2,... For each stone weight in each part in the projection height direction of the bonnet (corresponding to each approach angle in FIGS. 9 and 10). Is shown.

(5)次に、前記各塗膜剥離個数の総和が求められると共に、その総和からボンネット全体の塗膜剥離発生率が算出されて、その塗膜剥離発生率と評価基準とが比較される。
1)各塗膜剥離個数の総和は、図13に示す各各塗膜剥離個数m1・n1,m2・n2,・・・を加算することにより得られたものであり、それは、図13においては、塗膜剥離総個数Tmnとして示されている。
2)ボンネット全体の塗膜剥離発生率は、上記図13に示す塗膜剥離総個数Tmnを前記図12に示すTnで割ったものTmn/Tnである。
3)ボンネット全体の塗膜剥離発生率Tmn/Tnと評価基準との比較は、ボンネットの塗装の程度を判定するために行われるが、この評価基準には、基準となるべきボンネット全体の塗膜剥離発生率Tmn/Tnが適宜用いられる。
(5) Next, the total sum of the numbers of peeled coating films is obtained, and the coating film peeling occurrence rate of the entire bonnet is calculated from the sum, and the coating film peeling occurrence rate is compared with the evaluation criteria.
1) The total number of peeled films is obtained by adding the number of peeled films m1, n1, m2, n2,... Shown in FIG. This is shown as the total number Tmn of coating film peeling.
2) The occurrence rate of coating film peeling of the entire bonnet is Tmn / Tn obtained by dividing the total number Tmn of coating film peeling shown in FIG. 13 by Tn shown in FIG.
3) The comparison between the film peeling rate Tmn / Tn of the entire bonnet and the evaluation standard is performed in order to determine the degree of coating of the bonnet. The peeling occurrence rate Tmn / Tn is appropriately used.

本件方法の精度を確認すべく、ボンネット自体に対する試験(三次試験場)と、そのボンネットの試験板に対して行う本件方法とを実施したところ、ボンネット自体に対する試験の場合には、剥離91個、削剥93個となり、ボンネット全体に対する塗膜剥離発生率が49%となったのに対して、本件方法においては、傷の総個数Tn(図12において数えられた傷の総数Tn)が249個の下で、塗膜剥離総個数Tmnが115となり、塗膜剥離発生率Tmn/Tnが46%となった。このように、両者は、互いに近い値を示し、本件方法に係る評価方法の妥当性が確認された。   In order to confirm the accuracy of the method, a test on the bonnet itself (tertiary test site) and the method performed on the test plate of the bonnet were carried out. In this method, the total number of scratches Tn (total number of scratches Tn counted in FIG. 12) is less than 249. Thus, the total number of coating film peeling Tmn was 115, and the coating film peeling occurrence rate Tmn / Tn was 46%. Thus, both showed the value close | similar to each other, and the validity of the evaluation method which concerns on this method was confirmed.

実施形態の方法の順序を示す工程図。Process drawing which shows the order of the method of embodiment. 塗膜破壊エネルギーを示す説明図。Explanatory drawing which shows coating-film destruction energy. 塗膜剥離発生率と塗膜破壊エネルギー(石重量、石の進入角度)との関係を説明する説明図。Explanatory drawing explaining the relationship between coating-film peeling incidence and coating-film destruction energy (stone weight, stone approach angle). 種々の異なる塗膜破壊エネルギー付与の具体例を説明する説明図。Explanatory drawing explaining the specific example of various different coating-film destruction energy provision. 塗膜剥離発生率と塗膜破壊エネルギーとの関係を示す特性式を表す図。The figure showing the characteristic formula which shows the relationship between coating-film peeling incidence and coating-film destruction energy. 飛石の各石重量と飛石速度との関係を調べる実験方法を説明する説明図。Explanatory drawing explaining the experimental method which investigates the relationship between each stone weight of stepping stone, and stepping stone speed. 飛石の各石重量と飛石速度との関係を説明する説明図。Explanatory drawing explaining the relationship between each stone weight of stepping stone and stepping stone speed. ボンネットの投影高さ方向における部位と、その各部位から水平方向に延びる仮想線とボンネットとがなす角度との関係を説明する説明図。Explanatory drawing explaining the relationship between the site | part in the projection height direction of a bonnet, and the angle which the imaginary line extended in the horizontal direction from each site | part and a bonnet makes. 算出すべき想定塗膜破壊エネルギーを説明する説明図。Explanatory drawing explaining the assumed coating-film destruction energy which should be calculated. 算出すべき想定塗膜剥離発生率を説明する説明図。Explanatory drawing explaining the assumption coating-film peeling incidence which should be calculated. ボンネットに対する飛石の各重量分布を調べる実験方法を説明する説明図。Explanatory drawing explaining the experimental method which investigates each weight distribution of the stepping stone with respect to a bonnet. ボンネットの高さ方向における各部位毎の飛石各重量についての分布を説明する説明図。Explanatory drawing explaining the distribution about each weight of stepping stones for each part in the height direction of the bonnet. 図10の内容と図12の内容とに基づき、ボンネットの投影高さ方向における各部位毎の各石重量についての塗膜剥離個数が得られることを説明する説明図。Explanatory drawing explaining that the coating film peeling number about each stone weight for every site | part in the projection height direction of a bonnet is obtained based on the content of FIG. 10, and the content of FIG. 評価すべきボンネットのデータに基づき、必要情報(ボンネットに対する進入角度、その進入角度に対応するボンネットの投影高さ方向における最大高さ位置等)を求めることを説明する説明図。Explanatory drawing explaining obtaining required information (the approach angle with respect to a bonnet, the maximum height position in the projection height direction of a bonnet corresponding to the approach angle, etc.) based on the data of the bonnet to be evaluated. 評価すべき別のボンネットのデータに基づき、必要情報を求めることを説明する説明図。Explanatory drawing explaining calculating | requiring required information based on the data of another bonnet which should be evaluated.

符号の説明Explanation of symbols

1 飛石
2 試験板
5 ボンネット(対象外板)
Tn 傷の総個数
Tmn 塗膜剥離総個数
Tmn/Tn 全体の塗膜剥離発生率


1 Stepping stone 2 Test plate 5 Bonnet (outside plate)
Tn Total number of scratches Tmn Total number of film peeling Tmn / Tn Total film peeling rate


Claims (7)

対象外板と同仕様の試験板に種々の異なる塗膜破壊エネルギーを飛石をもって付与する試験を該各塗膜破壊エネルギー毎に複数回行って、該各塗膜破壊エネルギーにより生じる塗膜剥離発生率をそれぞれ調べることにより求めた特性式であって、塗膜破壊エネルギーと塗膜剥離発生率との関係を示すものを用意し、
次に、前記対象外板に飛ぶべき飛石の条件を求めて、該対象外板の高さ方向における各部位毎に想定塗膜破壊エネルギーをそれぞれ算出すると共に、該各想定塗膜破壊エネルギーと前記特性式とに基づき該各想定塗膜破壊エネルギーに応じた想定塗膜剥離発生率をそれぞれ求め、
次に、予め求めておいた前記対象外板の高さ方向における各部位毎の飛石存在分布と前記各想定塗膜剥離発生率とにより、対象外板の高さ方向における各部位毎の塗膜剥離個数をそれぞれ求め、
次に、前記各塗膜剥離個数の総和を求めると共に、その総和から前記対象外板全体の塗膜剥離発生率を算出して、その塗膜剥離発生率と評価基準とを比較する、
ことを特徴とする自動車塗装外板の耐チッピング性評価方法。
The rate of occurrence of coating film peeling caused by each coating film breaking energy by performing a test to apply various different coating film breaking energy to the test plate of the same specification as the target outer plate with each stepping stone multiple times for each coating film breaking energy. Is a characteristic equation obtained by examining each of the above, and preparing a relationship between the coating film breaking energy and the coating film peeling rate,
Next, the condition of the stepping stone to fly to the target outer plate is obtained, and the estimated coating film breaking energy is calculated for each part in the height direction of the target outer plate, and each of the assumed coating film breaking energy and the Based on the characteristic formula, the respective expected coating film peeling occurrence rate corresponding to each assumed coating film breaking energy is obtained,
Next, the coating film for each part in the height direction of the target outer plate according to the stepping stone presence distribution for each part in the height direction of the target outer plate and the respective assumed coating film peeling occurrence rate obtained in advance. Find the number of peels,
Next, while calculating the total number of the coating film peeling number, calculating the coating film peeling occurrence rate of the entire target outer plate from the total, and comparing the coating film peeling occurrence rate and the evaluation criteria,
A method for evaluating chipping resistance of an automobile paint outer plate characterized by the above.
請求項1において、
前記種々の異なる各塗膜破壊エネルギーが、前記試験板に対する飛石の重量、速度、進入角度の少なくとも1つを変えたものである、
ことを特徴とする自動車塗装外板の耐チッピング性評価方法。
In claim 1,
Each of the various different coating film breaking energies is a change in at least one of the weight, speed, and entry angle of the stepping stone with respect to the test plate.
A method for evaluating chipping resistance of an automobile paint outer plate characterized by the above.
請求項1又は2において、
前記対象外板に飛ぶべき飛石の条件として、該飛石の重量、速度、該対象外板の各部位に対する飛石の進入角度を求める、
ことを特徴とする自動車塗装外板の耐チッピング性評価方法。
In claim 1 or 2,
As a stepping stone to fly to the target outer plate, the weight of the stepping stone, the speed, and the approach angle of the stepping stone with respect to each part of the target outer plate,
A method for evaluating chipping resistance of an automobile paint outer plate characterized by the above.
請求項3において、
前記対象外板の各部位に対する飛石の進入角度を求めるに際して、該対象外板の各部位に対する飛石の進入角度と、その各部位の高さ位置との関係を利用する、
ことを特徴とする自動車塗装外板の耐チッピング性評価方法。
In claim 3,
When determining the approach angle of the stepping stone for each part of the target outer plate, utilizing the relationship between the stepping stone approach angle for each part of the target outer plate and the height position of each part,
A method for evaluating chipping resistance of an automobile paint outer plate characterized by the above.
請求項3において、
前記飛石の速度を求めるに際して、飛石の重量と飛石の速度との関係を利用する、
ことを特徴とする自動車塗装外板の耐チッピング性評価方法。
In claim 3,
When determining the speed of the stepping stone, use the relationship between the weight of the stepping stone and the speed of the stepping stone.
A method for evaluating chipping resistance of an automobile paint outer plate characterized by the above.
請求項1において、
前記想定塗膜破壊エネルギーをそれぞれ算出するに際して、前記対象外板の高さ方向の各部位毎に飛石の各石重量について行い、
前記対象外板の高さ方向における各部位毎の塗膜剥離個数をそれぞれ求めるに際して、予め求めておいた前記対象外板の高さ方向における各部位毎の飛石の石重量分布と前記各想定塗膜剥離発生率とを用いる、
ことを特徴とする自動車塗装外板の耐チッピング性評価方法。
In claim 1,
When calculating each of the assumed coating film breaking energy, for each stone weight of stepping stone for each part in the height direction of the target outer plate,
When obtaining the number of coating film peelings for each part in the height direction of the target outer plate, the stone weight distribution of the stepping stones for each part in the height direction of the target outer plate and the respective assumed coatings obtained in advance. Using the film peeling occurrence rate,
A method for evaluating chipping resistance of an automobile paint outer plate characterized by the above.
請求項1〜6のいずれか1項において、
前記対象外板がボンネットである、
ことを特徴とする自動車塗装外板の耐チッピング性評価方法。
In any one of Claims 1-6,
The target outer plate is a bonnet;
A method for evaluating chipping resistance of an automobile paint outer plate characterized by the above.
JP2006343982A 2006-12-21 2006-12-21 Evaluation method for chipping resistance of automotive paint outer panels Expired - Fee Related JP4803020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006343982A JP4803020B2 (en) 2006-12-21 2006-12-21 Evaluation method for chipping resistance of automotive paint outer panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006343982A JP4803020B2 (en) 2006-12-21 2006-12-21 Evaluation method for chipping resistance of automotive paint outer panels

Publications (2)

Publication Number Publication Date
JP2008157656A JP2008157656A (en) 2008-07-10
JP4803020B2 true JP4803020B2 (en) 2011-10-26

Family

ID=39658736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006343982A Expired - Fee Related JP4803020B2 (en) 2006-12-21 2006-12-21 Evaluation method for chipping resistance of automotive paint outer panels

Country Status (1)

Country Link
JP (1) JP4803020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018159A (en) * 2012-11-30 2013-04-03 重庆长鹏实业(集团)有限公司 180-degree stripping strength testing method for car roof shell fabric

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925969B2 (en) * 1979-11-09 1984-06-22 日産自動車株式会社 Paint film stepping stone test method
JPS5794633A (en) * 1980-12-03 1982-06-12 Nissan Motor Co Ltd Impact testing method for paint film
JPS58148647U (en) * 1982-03-30 1983-10-05 マツダ株式会社 Chipping simulation device for vehicles
JP3455362B2 (en) * 1996-05-10 2003-10-14 日本油脂Basfコーティングス株式会社 Automotive intermediate coating composition
JP3585658B2 (en) * 1996-08-09 2004-11-04 富士重工業株式会社 Chipping test equipment
JP3663346B2 (en) * 2000-09-13 2005-06-22 トヨタ自動車株式会社 Chipping simulation method, chipping simulation apparatus, and vehicle design method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018159A (en) * 2012-11-30 2013-04-03 重庆长鹏实业(集团)有限公司 180-degree stripping strength testing method for car roof shell fabric

Also Published As

Publication number Publication date
JP2008157656A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
US9289880B2 (en) Method for setting shot-peening process condition
Zhan et al. Bridge surface roughness identification based on vehicle–bridge interaction
CN103983188B (en) Volume measurement method and device of moving object
CN103778299B (en) A kind of Chang Zhi highways neighboring area noise prediction method based on Dynamic Traffic Flow
JP4803020B2 (en) Evaluation method for chipping resistance of automotive paint outer panels
CN109238855A (en) Constitutive parameter, the acquisition of dynamic failure parameter and verification method and device
JPH07286838A (en) Instrument and method for measuring head speed and opened angle
CN107255805A (en) The Forecasting Methodology of radar target RCS based on weighted least-squares
KR101248836B1 (en) Method and system for detecting an information of golf shot
CN106066907A (en) The setting loss grading method judged based on many parts multi-model
CN106331666A (en) Trapezoidal projection terminal correction method and device, and projection terminal
CN107037199B (en) Asphalt antiskid method of evaluating performance based on gray relative
CN104392245B (en) The method for recognizing road surface types and device of Multi-sensor Fusion
CN102163259B (en) System assessment method of simulation model of pedestrian microscopic traffic flow
KR101691577B1 (en) Apparatus for simulating a golf game
Arani et al. Numerical and experimental investigation of the erosion of zirconia particulate‐reinforced epoxy matrix composites by angular silicon carbide particles
CN114564901B (en) Simulation evaluation method for stone-impact resistance of automobile coating by combining random function
US20150251054A1 (en) Point of contact detection
JP4525627B2 (en) Shape data processing method and pedestrian protection test line creation method
Nguyen et al. Runway debris impact threat maps for transport aircraft
JP3663346B2 (en) Chipping simulation method, chipping simulation apparatus, and vehicle design method
CN115618669A (en) Method for predicting shot blasting intensity of shot blasting strengthening process
JPH08304253A (en) Method and instrument for measuring shock absorbing property
JPS5925969B2 (en) Paint film stepping stone test method
CN206353025U (en) A kind of reinforcement location analyzer calibrating installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Ref document number: 4803020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees