JP4802478B2 - Dye-sensitized solar cell - Google Patents
Dye-sensitized solar cell Download PDFInfo
- Publication number
- JP4802478B2 JP4802478B2 JP2004317943A JP2004317943A JP4802478B2 JP 4802478 B2 JP4802478 B2 JP 4802478B2 JP 2004317943 A JP2004317943 A JP 2004317943A JP 2004317943 A JP2004317943 A JP 2004317943A JP 4802478 B2 JP4802478 B2 JP 4802478B2
- Authority
- JP
- Japan
- Prior art keywords
- dye
- electrolyte
- solar cell
- sensitized solar
- mimi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Photovoltaic Devices (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
- Hybrid Cells (AREA)
Description
この発明は、イオン性液晶電解質を用いた電気化学電池に属し、色素増感太陽電池などの光電気化学電池に利用される。 The present invention belongs to an electrochemical cell using an ionic liquid crystal electrolyte, and is used for a photoelectrochemical cell such as a dye-sensitized solar cell .
多くのイミダゾリウムアイオダイドは、室温溶融塩(イオン性液体)であることから、揮発性の溶媒を用いることなく単独で電解質として機能する。蒸気圧がなく不揮発性であるため、枯渇の心配が無く、色素増感太陽電池などへの利用が期待されている(特許文献1)。この特許文献1に記載の技術は、イミダゾリウムの複素環に結合する基を幅広く規定しているが、いずれにしても電解質が室温において液体状態であるか又は室温より低い融点を有することを必須としている。これは、一般に電解液の粘性が高くなることに伴ってイオン伝導性が低下するからであると思われる。従って、多種多様のイミダゾリウム塩のうち特許文献1の実施例で用いられているのは、光電変換効率が最大である(非特許文献2,3)と言われている1−ヘキシル−3−メチルイミダゾリウムアイオダイド(以下、「6MImI」と称する。)のみである。
Since many imidazolium iodides are room temperature molten salts (ionic liquids), they function alone as an electrolyte without using a volatile solvent. Since there is no vapor pressure and it is non-volatile, there is no fear of depletion and it is expected to be used for a dye-sensitized solar cell (Patent Document 1). Although the technique described in
また、環の構成元素として窒素を含む5員環もしくは6員環の芳香族複素環カチオンとヨウ化物イオン等のアニオンとからなる液晶性化合物が、高い粘性を保った液晶状態で高い電荷輸送性能を有することに着目し、これを電解質として用いた光電気化学電池も提案されている(特許文献2)。
しかし、特許文献1に記載の電解液は、室温において液体状態であることから、依然として漏れのおそれがあり、未だ耐久性が不十分である。
一方、特許文献2に記載の技術は、特許文献1に記載の技術の改良として提案されたものであるにも係わらず、実施例の(特許文献2では6MImIは実施例ではなく比較例です)イミダゾリウム塩を用いた場合の変換効率(同文献のサンプル番号118)は上記6MImI(サンプル番号102)よりも劣っている。
それ故、この発明の課題は、従来の流れとは全く異なり、高粘度化と電荷輸送特性の向上を両立させることのできる電解質を用いた電気化学電池を提供することにある。
However, since the electrolytic solution described in
On the other hand, although the technique described in
Therefore, an object of the present invention is to provide an electrochemical cell using an electrolyte which is completely different from the conventional flow and can achieve both high viscosity and improvement in charge transport characteristics.
上記課題を解決するために、この発明の色素増感太陽電池は、
一対の電極と、
前記電極間に配置された一種又は二種以上の下記一般式(1)で表わされるイミダゾリウムアイオダイド液晶を含むイオン性電解質からなる少なくとも一つの層を備え、
前記イオン性電解質の層は、その主面が前記一対の電極の間隔方向に対して平行乃至45度以下になるように配向していることを特徴とする。
前記イオン性液晶電解質中の電気伝導は、電荷担体であるアニオンの拡散、並びにアニオン間(例えばI3 -とI-との間)の結合交換による電子ホッピングの二つの機構に担われる。そして、この発明の電池では電解質がスメクティック相を示すイオン性液晶であるから、層間に電荷担体が局在しており、ホッピング伝導が促進される。しかも液晶層が前記のように配向しているので、電極の間隔方向とホッピング方向が一致する。よって、粘度が高くても電荷輸送特性に優れる。
In order to solve the above problems, the dye-sensitized solar cell of the present invention is
A pair of electrodes;
Comprising at least one layer composed of an ionic electrolyte including one or two or more imidazolium iodide liquid crystals represented by the following general formula (1) disposed between the electrodes;
The ionic electrolyte layer is oriented so that its main surface is parallel to or less than 45 degrees with respect to the interval direction of the pair of electrodes.
Electrical conductivity in the ionic liquid electrolyte, the diffusion of the anion is a charge carrier, as well as between the anion (e.g. I 3 - and between - and I) are borne on two mechanisms of electron hopping by binding exchange. In the battery of the present invention, since the electrolyte is an ionic liquid crystal exhibiting a smectic phase, charge carriers are localized between the layers, and hopping conduction is promoted. In addition, since the liquid crystal layer is oriented as described above, the electrode spacing direction matches the hopping direction. Therefore, even if the viscosity is high, the charge transport property is excellent.
一般式(1)のイミダゾリウムアイオダイドは、市販のイミダゾールから容易に合成可能であるし、電荷担体がヨウ素アニオンであるから耐酸化性に優れ電荷担体として安定に存在するからである。
更に好ましいのは、R3がC1−3の直鎖アルキル基の場合である。R1とR3の炭素数差が大きくて全体が非対称性且つ平面的であるほど立体障害が無くて液晶性を示しやすいからである。
尚、本発明の電池は、上記の条件を充足する限り、電解質が限定されるものではなく、液晶電解質がイオン性液体のような液体電解質と混在していてもよい。
また、電極間にゲル化剤がスメクティック液晶電解質と混在していると、電解質の液晶性が向上し、それに伴って伝導度が向上するので、好ましい。
This is because the imidazolium iodide of the general formula (1) can be easily synthesized from commercially available imidazole, and since the charge carrier is an iodine anion, it has excellent oxidation resistance and is stably present as a charge carrier.
More preferred is when R3 is a C1-3 straight chain alkyl group . This is because the larger the carbon number difference between R1 and R3 and the more asymmetric and planar the whole, the less steric hindrance and the easier the liquid crystallinity.
In the battery of the present invention, the electrolyte is not limited as long as the above conditions are satisfied, and the liquid crystal electrolyte may be mixed with a liquid electrolyte such as an ionic liquid.
Further, it is preferable that a gelling agent is mixed with the smectic liquid crystal electrolyte between the electrodes since the liquid crystallinity of the electrolyte is improved and the conductivity is improved accordingly.
高粘度に係わらず電荷輸送特性に優れているので、伝導度に優れて内部抵抗が少なく且つ耐久性にも優れており、更に、変換効率にも優れた色素増感太陽電池に適用している。 It has excellent charge transport properties regardless of high viscosity, so it is applied to dye-sensitized solar cells with excellent conductivity, low internal resistance, excellent durability, and excellent conversion efficiency. .
本発明の色素増感太陽電池の電解質に含まれるイミダゾリウム塩は、下記の化学式(2)で示される市販イミダゾールから出発し、窒素に置換基が結合していない場合は2段階のアルキル化により、片方の窒素に置換基が結合している場合は2段目のアルキル化のみにより、合成可能である。一段目のアルキル化は、イミダゾールとアルキルハライドを等モル混合して加熱することにより行われる。
[イミダゾールの例]
[Examples of imidazole]
[合成反応]
−実施例1−
[電解質の合成]
窒素気流中のドライボックス内で、メチルイミダゾールとヨウ化アルキル(アルキル基の炭素数は11又は12)を等モルずつ混合し、100℃で7日間加熱した。放冷後、アセトニトリルに溶かして再結晶化することにより、1−ドデシル−3−メチルイミダゾリウムアイオダイド(以下、「12MImI」と称する。)及び1−ウンデシル−3−メチルイミダゾリウムアイオダイド(以下、「11MImI」と称する。)を合成した。生成物の化学構造は400MHzの1H NMRにより、次の通り目的とするイミダゾリウム塩であることを確認した。
Example 1
[Synthesis of electrolyte]
In a dry box in a nitrogen stream, methylimidazole and alkyl iodide (alkyl group having 11 or 12 carbon atoms) were mixed in equimolar amounts and heated at 100 ° C. for 7 days. After being allowed to cool, it is dissolved in acetonitrile and recrystallized, whereby 1-dodecyl-3-methylimidazolium iodide (hereinafter, referred to as “12MImI”) and 1-undecyl-3-methylimidazolium iodide (hereinafter, referred to as “12decyl”). , Referred to as “11MImI”). The chemical structure of the product was confirmed to be the target imidazolium salt by 1 H NMR at 400 MHz as follows.
1H NMR(CDCl3 δ/ppm)
11MimI
0.87(3H,t,-N(CH2)10CH3),1.2-1.31(16H,m,-NCH2(CH2)9CH3),1.9(2H,m,-NCH2CH2(CH2)8CH3),4.1(3H,s,-NCH3),4.31(2H,t,-NCH2(CH2)9CH3),7.2(1H,s,H(5)),7.3(1H,s,H(4)),10.2(1H,s,H(2))
12MImI
0.87(3H,t,-N(CH2)11CH3),1.2-1.31(18H,m,-NCH2(CH2)10CH3),1.9(2H,m,-NCH2CH2(CH2)9CH3),4.1(3H,s,-NCH3),4.31(2H,t,-NCH2(CH2)10CH3),7.2(1H,s,H(5)),7.3(1H,s,H(4)),10.2(1H,s,H(2))
1 H NMR (CDCl 3 δ / ppm)
11MimI
0.87 (3H, t, -N (CH 2 ) 10 CH 3 ), 1.2-1.31 (16H, m, -NCH 2 (CH 2 ) 9 CH 3 ), 1.9 (2H, m, -NCH 2 CH 2 (CH 2 ) 8 CH 3 ), 4.1 (3H, s, -NCH 3 ), 4.31 (2H, t, -NCH 2 (CH 2 ) 9 CH 3 ), 7.2 (1H, s, H (5)), 7.3 ( 1H, s, H (4)), 10.2 (1H, s, H (2))
12MImI
0.87 (3H, t, -N (CH 2 ) 11 CH 3 ), 1.2-1.31 (18H, m, -NCH 2 (CH 2 ) 10 CH 3 ), 1.9 (2H, m, -NCH 2 CH 2 (CH 2) 9 CH 3), 4.1 (3H, s, -NCH 3), 4.31 (2H, t, -NCH 2 (CH 2) 10 CH 3), 7.2 (1H, s, H (5)), 7.3 ( 1H, s, H (4)), 10.2 (1H, s, H (2))
島津製作所製DSC-60を用いてJIS K7121に準じて上記イミダゾリウム塩の示差走査熱量(DSC)を測定した。また、偏光顕微鏡(オリンパス社製DP70)を用いて12MImI単独と12MImI及びヨウ素の混合物を40℃(液晶温度)で観察した。DSC測定結果を図1に示す。
図1に見られるように、12MImIでは80℃で相転移ピークが認められたが、11MImIでは認められなかった。上記12MImIに0.65Mのヨウ素を添加したところ、図2に示すように転移温度が45℃まで低下した。また、偏光顕微鏡で観察したところ、12MImIの撮像ではスメクティック液晶相(SmA)固有(丸善株式会社2000年発行「液晶便覧」第125頁)のフォーカルコニックファン組織が認められた。従って、12MImIは27−80℃でスメクティック液晶相(SmA)を示すことが判った。
The differential scanning calorimetry (DSC) of the imidazolium salt was measured using DSC-60 manufactured by Shimadzu Corporation according to JIS K7121. Further, using a polarizing microscope (Olympus DP70), 12 MImI alone and a mixture of 12 MImI and iodine were observed at 40 ° C. (liquid crystal temperature). The DSC measurement result is shown in FIG.
As seen in FIG. 1, a phase transition peak was observed at 80 ° C. for 12 MImI, but not for 11 MImI. When 0.65M iodine was added to the 12MImI, the transition temperature decreased to 45 ° C. as shown in FIG. Further, when observed with a polarizing microscope, a focal conic fan structure peculiar to the smectic liquid crystal phase (SmA) (Maruzen Co., Ltd., published in 2000, “Liquid Crystal Handbook”, page 125) was observed in 12 MImI imaging. Accordingly, it was found that 12 MImI exhibits a smectic liquid crystal phase (SmA) at 27-80 ° C.
[色素増感太陽電池の作成]
内面をテフロン(登録商標)でコーティングした内容積50mlのプラスチック製円筒状容器に二酸化チタン(日本アエロジル社製DegussaP-25)6g、水7 ml、分散剤としてアセチルアセトン(和光純薬工業)0.2 ml、直径3 mmのジルコニアボール70gを入れ、ペイントシェーカー(Red Devil社製)にて2時間半混合した。ジルコニアボールを除く混合物をビーカーに移した。二酸化チタンの平均粒径は2.5μmとなっていた。
フッ素を添加した酸化錫を被覆した導電性ガラス板(日本板硝子製)の導電面に、上記混合物を塗布した後、450℃で30分間加熱した。ガラス板を取りだして、下記の構造式で特定される色素Z907の3×10-4Mアセトニトリル/tert−ブタノール混合溶液に16時間浸し、続いてアセトニトリルで洗浄し乾燥することにより、二酸化チタン電極を作成した。
[Preparation of dye-sensitized solar cell]
In a plastic cylindrical container with an inner volume of 50 ml coated with Teflon (registered trademark) on the inner surface, 6 g of titanium dioxide (DegussaP-25 manufactured by Nippon Aerosil Co., Ltd.), 7 ml of water, 0.2 ml of acetylacetone (Wako Pure Chemical Industries) as a dispersant, 70 g of zirconia balls having a diameter of 3 mm were added and mixed for 2.5 hours with a paint shaker (manufactured by Red Devil). The mixture, excluding the zirconia balls, was transferred to a beaker. The average particle diameter of titanium dioxide was 2.5 μm.
The above mixture was applied to the conductive surface of a conductive glass plate (made by Nippon Sheet Glass) coated with tin oxide to which fluorine was added, and then heated at 450 ° C. for 30 minutes. A glass plate is taken out and immersed in a 3 × 10 −4 M acetonitrile / tert-butanol mixed solution of the dye Z907 specified by the following structural formula for 16 hours, followed by washing with acetonitrile and drying, whereby a titanium dioxide electrode is obtained. Created.
上記の通り合成した12MImI及び0.65Mヨウ素の混合物を二酸化チタン電極に塗布し、同じ面積の白金蒸着ガラス板を蒸着面が二酸化チタン電極と対向するように重ね合わせた。この素子を60℃、10分間加熱して、高粘度のイオン性液晶電解質を多孔質二酸化チタン電極の細孔内に浸透させた。これにより、導電性ガラス板の導電面から順に、二酸化チタン電極、色素層、電解質、白金蒸着ガラス板の白金層が積層された色素増感太陽電池が完成した。比較のために、12MImIに代えて11MImIを用いた以外は同一条件で比較用の色素増感太陽電池を作成した。 A mixture of 12MImI and 0.65M iodine synthesized as described above was applied to a titanium dioxide electrode, and a platinum-deposited glass plate having the same area was overlaid so that the deposition surface was opposed to the titanium dioxide electrode. This element was heated at 60 ° C. for 10 minutes to allow the high-viscosity ionic liquid crystal electrolyte to penetrate into the pores of the porous titanium dioxide electrode. This completed a dye-sensitized solar cell in which the titanium dioxide electrode, the dye layer, the electrolyte, and the platinum layer of the platinum-deposited glass plate were laminated in order from the conductive surface of the conductive glass plate. For comparison, a dye-sensitized solar cell for comparison was prepared under the same conditions except that 11 MImI was used instead of 12 MImI.
[I−V測定]
AM1.5フィルターを通過した強度100mW/cm2の擬似太陽光(JIS C 8933 1.0sun)を色素増感太陽電池に照射し、40℃で電流電圧(I−V)を測定した。測定結果を、光照射せずに測定した値とともに図3に示す。
図3に見られるように、液晶電解質である12MImIの短絡電流値が液体電解質である11MImIのそれの1.2倍程度となり,それにともなって変換効率も1.2倍程度向上した。
[IV measurement]
The dye-sensitized solar cell was irradiated with pseudo-sunlight (JIS C 8933 1.0 sun) having an intensity of 100 mW / cm 2 that passed through the AM1.5 filter, and the current voltage (IV) was measured at 40 ° C. A measurement result is shown in FIG. 3 with the value measured without light irradiation.
As shown in FIG. 3, the short-circuit current value of 12 MImI, which is a liquid crystal electrolyte, is about 1.2 times that of 11 MImI, which is a liquid electrolyte, and the conversion efficiency is improved by about 1.2 times.
[C−V測定]
参照極を銀線、対極を白金線、作用極を直径12μmの白金線としたマイクロ電極に、電解質として12MImI及びヨウ素(0.65M)の混合物又は11MImI及びヨウ素(0.65M)の混合物を充填し、50℃においてサイクリックボルタンモグラムを測定した。開始電位は800mV、折り返し電位は0mV、走査速度は1mV/sとした。各電解質につき2回ずつ測定し、2回とも各電解質のCV曲線に定常応答が認められ、そこからI3の還元反応(I3 -+2e=3I-)の限界電流値Ilimを求めた。Ilim=4nFDCr(n:電子数、r:作用極半径、C:I3 -濃度)に基づき、拡散係数を算出した。算出結果を表1に示す。
[CV measurement]
A microelectrode having a silver wire as a reference electrode, a platinum wire as a counter electrode, and a platinum wire having a diameter of 12 μm is filled with a mixture of 12 MImI and iodine (0.65 M) or a mixture of 11 MImI and iodine (0.65 M) as an electrolyte. Then, a cyclic voltammogram was measured at 50 ° C. The starting potential was 800 mV, the folding potential was 0 mV, and the scanning speed was 1 mV / s. Measured twice per electrolytes, both times the steady response observed in CV curves of each of the electrolyte, the reduction reaction of I 3 therefrom (I 3 - + 2e = 3I -) was determined limit current I lim of. I lim = 4nFDCr (n: number of electrons, r: working electrode radius, C: I 3 - concentration) based on, to calculate the diffusion coefficient. The calculation results are shown in Table 1.
[粘度測定]
12MImI、11MImI及び6MImIの各々にヨウ素を0.65M添加した電解質について、東機産業社製TV20型粘度測定器を用いて剪断速度を4.5mm/secから90mm/secまで変化させたときの粘度を測定した。測定結果を図4に示す。
図4に示されるように、剪断速度11.25〜45mm/secの範囲で各電解質ともに粘度はほぼ一定値を示し、12MImIは11MImIの約2.5倍の粘度値を示した。
[Viscosity measurement]
Viscosity of electrolytes obtained by adding 0.65M iodine to each of 12MImI, 11MImI, and 6MImI when the shear rate is changed from 4.5 mm / sec to 90 mm / sec using a TV20 type viscosity meter manufactured by Toki Sangyo Co., Ltd. Was measured. The measurement results are shown in FIG.
As shown in FIG. 4, the viscosity of each electrolyte was almost constant at a shear rate of 11.25 to 45 mm / sec, and 12MImI showed a viscosity value about 2.5 times 11MImI.
[電池電極の配置と電解質の伝導度]
ガラス基板上に一対の櫛形Pt電極を櫛歯同士が互いに噛み合うように且つ対向する導体間隔(図6のd)が5μmとなるように形成し、12MImIにヨウ素を0.65M添加した電解質を塗布し、cellAとした。別途、各々一方の主面全体にPt電極を形成したガラス基板とITOガラス基板を、導電面同士が対向するように厚さ300μmの絶縁材料からなる枠を介して配置し、ガラス基板と枠とで囲まれる空間に上記電解質を充填し、cellBとした。
[Battery electrode arrangement and electrolyte conductivity]
A pair of comb-shaped Pt electrodes is formed on a glass substrate so that the comb teeth mesh with each other and the opposing conductor spacing (d in FIG. 6) is 5 μm, and an electrolyte in which 0.65 M of iodine is added to 12 MImI is applied. CellA. Separately, a glass substrate and an ITO glass substrate, each having a Pt electrode formed on the entire main surface, are arranged via a frame made of an insulating material having a thickness of 300 μm so that the conductive surfaces face each other. The above electrolyte was filled into the space surrounded by, and cell B was obtained.
cellAに対してガラス基板の厚さ方向上方から偏光顕微鏡にてコノスコープ観察を行ったところ、アイソイジャ(十字像)が観察された。従って、ガラス基板に対して12MImIが垂直に配向している、即ちガラス基板に対して12MImI分子の分子軸が垂直になっていると認められた。
次に、cellA及びcellBを恒温槽に入れてそれぞれに電圧を加え、東陽テクニカ製1260型インピーダンスアナライザで30℃〜60℃までの種々の温度における伝導度を測定した。測定結果を図5に示す。
図5に示されるように、いずれのcellも高温側から低温側に向かって伝導度は下降しているが、cellAは液体−液晶相転移温度である45℃で伝導度が一旦増大した。
When conoscope observation was performed on the cell A from the upper side in the thickness direction of the glass substrate with a polarizing microscope, an isoger (cross image) was observed. Therefore, it was recognized that 12 MImI was oriented perpendicular to the glass substrate, that is, the molecular axis of 12 MImI molecules was perpendicular to the glass substrate.
Next, cell A and cell B were put into a thermostat, voltage was applied to each, and conductivity at various temperatures from 30 ° C. to 60 ° C. was measured with a 1260 impedance analyzer manufactured by Toyo Technica. The measurement results are shown in FIG.
As shown in FIG. 5, the conductivity of all cells decreased from the high temperature side to the low temperature side, but the conductivity of cell A once increased at 45 ° C., which is the liquid-liquid crystal phase transition temperature.
−実施例2−
実施例1の色素増感太陽電池において、次の4条件以外は、実施例1と同一条件で電池を作成し、I−V特性を測定した。実施例1と異なる第一の条件は、12MImIに代えて12MImIと1−テトラデシル−3−メチルイミダゾリウムブロマイド(以下、「14MImBr」と称する。)との等モル混合物を用いたことである。第二の異なる条件は、色素Z907に代えて下記に示す化学構造式の色素N719を用いたことである。第三の異なる条件は、AM1.5フィルターを通過した強度100mW/cm2の擬似太陽光(JIS C8933 1.0sun)を、さらにNDフィルターを通過して,強度70mW/cm2に強度を低下させた光を照射したことである。第四の異なる条件は、測定温度を60℃としたことである。比較のために、上記等モル混合物に代えて6MImIを用いた以外は、等モル混合物と同一条件で測定した。
-Example 2-
In the dye-sensitized solar cell of Example 1, a battery was prepared under the same conditions as in Example 1 except for the following four conditions, and the IV characteristics were measured. The first condition different from Example 1 is that an equimolar mixture of 12MImI and 1-tetradecyl-3-methylimidazolium bromide (hereinafter referred to as “14MImBr”) was used instead of 12MImI. The second different condition is that a dye N719 having the following chemical structural formula was used in place of the dye Z907. Third different conditions, a pseudo solar light of
I−V特性より求めた光電変換効率(EFF)、短絡電流密度(Jsc)、開放電圧(Voc)及び形状因子(FF)を表2に示す。
−実施例3−
実施例1の色素増感太陽電池において、次の3条件以外は、実施例1と同一条件で電池を作成し、I−V特性を測定した。実施例1と異なる第一の条件は、12MImIに代えて12MImIと下記構造式のイオン性液体6MImTFSIとの等モル混合物を用いたことである。第二の異なる条件は、色素Z907に代えて実施例2と同じく色素N719を用いたことである。第三の異なる条件は、測定温度を25℃としたことである。比較のために、上記等モル混合物において12MImIに代えて6MImIを用いた以外は、上記等モル混合物と同一条件で測定した。
-Example 3-
In the dye-sensitized solar cell of Example 1, a battery was prepared under the same conditions as in Example 1 except for the following three conditions, and the IV characteristics were measured. The first condition different from that of Example 1 is that an equimolar mixture of 12MImI and ionic liquid 6MImTFSI having the following structural formula was used instead of 12MImI. The second different condition is that the dye N719 was used in the same manner as in Example 2 instead of the dye Z907. The third different condition is that the measurement temperature is 25 ° C. For comparison, measurement was performed under the same conditions as the above equimolar mixture except that 6 MImI was used instead of 12 MImI in the above equimolar mixture.
I−V特性より求めた光電変換効率(EFF)、短絡電流密度(Jsc)、開放電圧(Voc)及び形状因子(FF)を表3に示す。
−実施例4−
実施例1の色素増感太陽電池において、次の5条件以外は、実施例1と同一条件で電池を作成し、I−V特性を測定した。実施例1と異なる第一の条件は、12MImIに代えて48−187℃で液晶相を示す1−ヘキサデシル−3−メチルイミダゾリウムアイオダイド(以下、「16MImI」と称する。)又は69−215℃で液晶相を示す1−オクタデシル−3−メチルイミダゾリウムアイオダイド(以下、「18MImI」と称する。)を用いたことである。第二の異なる条件は、色素Z907に代えて上記色素N719を用いたことである。第三の異なる条件は、イオン性液晶電解質を塗布した後、80℃に加熱したことである。第四の異なる条件は、AM1.5フィルターを通過した強度100mW/cm2の擬似太陽光(JIS C 8933 1.0sun)を、さらにNDフィルターを通過して,強度 70 mW/cm2に強度を低下させた光を照射したことである。第五の異なる条件は、測定温度を70℃又は80℃としたことである。
I−V特性より求めた光電変換効率(EFF)、短絡電流密度(Jsc)、開放電圧(Voc)及び形状因子(FF)を表4に示す。
Example 4
In the dye-sensitized solar cell of Example 1, a battery was prepared under the same conditions as in Example 1 except for the following five conditions, and the IV characteristics were measured. The first condition different from that of Example 1 is that 1-hexadecyl-3-methylimidazolium iodide (hereinafter referred to as “16MImI”) or 69-215 ° C. which exhibits a liquid crystal phase at 48-187 ° C. instead of 12 MImI. 1-octadecyl-3-methylimidazolium iodide (hereinafter referred to as “18MImI”) which exhibits a liquid crystal phase. The second different condition is that the above dye N719 was used instead of the dye Z907. The third different condition is that the ionic liquid crystal electrolyte was applied and then heated to 80 ° C. The fourth different condition is that pseudo-sunlight (JIS C 8933 1.0 sun) having an intensity of 100 mW / cm 2 that has passed through an AM1.5 filter, and further passing through an ND filter to have an intensity of 70 mW / cm 2. This is the irradiation of reduced light. The fifth different condition is that the measurement temperature is 70 ° C or 80 ° C.
Table 4 shows the photoelectric conversion efficiency (EFF), short-circuit current density (Jsc), open circuit voltage (Voc), and form factor (FF) obtained from the IV characteristics.
―実施例5―
実施例1で合成した12MImI及び0.65Mヨウ素の混合物に下記化学式で示されるゲル化剤をゲル化剤濃度が5g/L、10g/L、20g/L、40g/L、80g/Lとなるように添加した。
A gelling agent concentration of 5 g / L, 10 g / L, 20 g / L, 40 g / L, and 80 g / L is obtained by adding a gelling agent represented by the following chemical formula to the mixture of 12MImI and 0.65M iodine synthesized in Example 1. Was added as follows.
添加後、80℃で撹拌することにより、液晶ゲルを得た。そして、それぞれのゲル化剤濃度で調製した液晶ゲルについて、測定温度を40℃一定とした以外は実施例1と同一条件で伝導度を測定した。比較のために、上記混合物に代えて11MImI及び0.65Mヨウ素の混合物にゲル化剤を5g/L又は80g/Lの濃度で添加してゲル化し、伝導度を測定した。それぞれの測定結果を図7に示す。
図7に示されるように、12MImIではゲル化剤濃度5−20g/Lで無添加のものよりも伝導度が向上したのに対して、11MImIではゲル化剤濃度に係わらず伝導度が無添加のものと同程度であった。
次に、ゲル化剤濃度5g/L及び20g/Lの液晶ゲルについてDSCを測定したところ、ゲル化剤無添加のものに比べて5℃近く液体→液晶転移温度が低下し、しかも濃度5g/Lの液晶ゲル(以下、「12MImI−5g/L」という。)ではゲル化剤無添加の液晶よりも転移ピークがシャープになることが明らかに確認できた。
また、ゲル化剤を添加しない12MImIと12MImI−5g/Lのコノスコープを40℃で比較観察したところ、12MImI−5g/Lの方が12MImI単独に比べて十字形が鮮明であることが認められた。
After the addition, liquid crystal gel was obtained by stirring at 80 ° C. And about the liquid crystal gel prepared by each gelatinizer density | concentration, conductivity was measured on the same conditions as Example 1 except having made measurement temperature constant 40 degreeC. For comparison, a gelling agent was added at a concentration of 5 g / L or 80 g / L to a mixture of 11 MImI and 0.65 M iodine instead of the above mixture, and the conductivity was measured. Each measurement result is shown in FIG.
As shown in FIG. 7, the conductivity was improved at 12 MImI at 5-20 g / L with no gelling agent, whereas the conductivity was not added at 11 MImI regardless of the gelling agent concentration. It was the same level as the one.
Next, DSC was measured for liquid crystal gels having gelling agent concentrations of 5 g / L and 20 g / L. As a result, the liquid-to-liquid crystal transition temperature decreased by about 5 ° C. compared to the gelling agent-free liquid crystal gel and the concentration was 5 g / L. It was clearly confirmed that the liquid crystal gel of L (hereinafter referred to as “12MImI-5 g / L”) has a sharper transition peak than the liquid crystal without the addition of a gelling agent.
Further, when a conoscope of 12 MImI and 12 MImI-5 g / L without adding a gelling agent was compared and observed at 40 ° C., it was found that the cross shape of 12 MImI-5 g / L was clearer than that of 12 MImI alone. It was.
次に、色素増感太陽電池を製造した。製造条件は実施例1において、12MImI及び0.65Mヨウ素の混合物を塗布することに代えて12MImI−10g/L及び0.65Mヨウ素の混合物を二酸化チタンに塗布したことと、塗布後に80℃で10分間加熱したこと以外は実施例1と同一にした。そして、実施例1と同一条件で擬似太陽光を照射し、電流電圧を測定した。比較のために、11MImI−10g/Lについても同様に電池を製造し、電流電圧を測定した。測定結果を実施例1における12MImI及び11MImIの測定結果と併せて各々図9及び図8に示す。
図8に示されるように液体電解質である11MImIの場合はゲル化剤を添加しても特性は変化しなかったが、図9に示されるように液晶電解質である12MImIの場合はゲル化剤を添加することによって電流値が高くなった。
Next, a dye-sensitized solar cell was manufactured. The manufacturing conditions in Example 1 were that instead of applying a mixture of 12 MImI and 0.65 M iodine, a mixture of 12 MImI-10 g / L and 0.65 M iodine was applied to titanium dioxide, and 10 ° C. at 80 ° C. after the application. The same as Example 1 except that it was heated for a minute. And the artificial sunlight was irradiated on the same conditions as Example 1, and the current voltage was measured. For comparison, a battery was similarly manufactured for 11 MImI-10 g / L, and the current voltage was measured. The measurement results are shown in FIGS. 9 and 8 together with the measurement results of 12 MImI and 11 MImI in Example 1, respectively.
In the case of 11MImI which is a liquid electrolyte as shown in FIG. 8, the characteristics did not change even when the gelling agent was added, but in the case of 12MImI which is a liquid crystal electrolyte as shown in FIG. By adding, the current value increased.
Claims (3)
前記電極間に配置された一種又は二種以上の下記一般式(1)で表わされるイミダゾリウムアイオダイド液晶を含むイオン性電解質からなる少なくとも一つの層を備え、
前記イオン性電解質の層は、その主面が前記一対の電極の間隔方向に対して平行乃至45度以下になるように配向していることを特徴とする色素増感太陽電池。
Comprising at least one layer composed of an ionic electrolyte including one or two or more imidazolium iodide liquid crystals represented by the following general formula (1) disposed between the electrodes;
The dye-sensitized solar cell, wherein the ionic electrolyte layer is oriented so that a main surface thereof is parallel to or less than 45 degrees with respect to a distance direction of the pair of electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004317943A JP4802478B2 (en) | 2004-11-01 | 2004-11-01 | Dye-sensitized solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004317943A JP4802478B2 (en) | 2004-11-01 | 2004-11-01 | Dye-sensitized solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006128031A JP2006128031A (en) | 2006-05-18 |
JP4802478B2 true JP4802478B2 (en) | 2011-10-26 |
Family
ID=36722518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004317943A Expired - Fee Related JP4802478B2 (en) | 2004-11-01 | 2004-11-01 | Dye-sensitized solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4802478B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5528766B2 (en) * | 2009-10-22 | 2014-06-25 | 日本化学工業株式会社 | Charge transport method, charge transport material, charge transport element, and photoelectric conversion element |
US9758726B2 (en) * | 2013-07-12 | 2017-09-12 | Lg Chem, Ltd. | Liquid crystal cell |
JP2015130433A (en) * | 2014-01-08 | 2015-07-16 | 積水化学工業株式会社 | Photoelectric conversion element |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4636644B2 (en) * | 2000-01-17 | 2011-02-23 | 富士フイルム株式会社 | Electrolyte composition, electrochemical cell and ionic liquid crystal monomer |
JP2001351683A (en) * | 2000-06-07 | 2001-12-21 | Canon Inc | Liquid crystal electrolyte and secondary cell |
JP4926325B2 (en) * | 2001-02-15 | 2012-05-09 | 富士フイルム株式会社 | Electrolyte composition, electrochemical cell, photoelectrochemical cell, and non-aqueous secondary battery |
JP4033678B2 (en) * | 2001-03-30 | 2008-01-16 | 独立行政法人科学技術振興機構 | Liquid crystalline ion conductor and method for producing the same |
JP2006514073A (en) * | 2003-01-24 | 2006-04-27 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング | Ionic mesogenic compounds |
JP4664626B2 (en) * | 2004-07-05 | 2011-04-06 | ポリマテック株式会社 | Ion conductive polymer electrolyte membrane and method for producing the same |
-
2004
- 2004-11-01 JP JP2004317943A patent/JP4802478B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006128031A (en) | 2006-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hwang et al. | Highly efficient plastic crystal ionic conductors for solid-state dye-sensitized solar cells | |
Gorlov et al. | Ionic liquid electrolytes for dye-sensitized solar cells | |
JP5404058B2 (en) | Ionic liquid electrolyte | |
Zakeeruddin et al. | Solvent‐free ionic liquid electrolytes for mesoscopic dye‐sensitized solar cells | |
Lee et al. | Ni3Se4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells | |
KR100702859B1 (en) | Solid-State Electrolyte Composition Containing Liquid Crystal Materials and Dye-Sensitized Solar Cells Using Thereof | |
Hsu et al. | Dye-sensitized solar cells based on agarose gel electrolytes using allylimidazolium iodides and environmentally benign solvents | |
Arof et al. | Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing I^-/I _ 3^-I-/I 3-redox couple | |
WO2011158922A1 (en) | Photoelectric conversion element and method for producing same, and electronic device | |
Lennert et al. | Efficient and stable solid-state dye-sensitized solar cells by the combination of phosphonium organic ionic plastic crystals with silica | |
EP2925768A1 (en) | Cobaltcomplex salts | |
Sonigara et al. | Anisotropic one-dimensional aqueous polymer gel electrolyte for photoelectrochemical devices: improvement in hydrophobic TiO2–dye/electrolyte interface | |
Bandara et al. | Quasi solid state polymer electrolyte with binary iodide salts for photo-electrochemical solar cells | |
Huang et al. | Improved exchange reaction in an ionic liquid electrolyte of a quasi-solid-state dye-sensitized solar cell by using 15-crown-5-functionalized MWCNT | |
Wanninayake et al. | Use of lithium iodide and tetrapropylammonium iodide in gel electrolytes for improved performance of quasi-solid-state dye-sensitized solar cells: recording an efficiency of 6.40% | |
JP2008277268A (en) | Photoelectric conversion element | |
TWI285437B (en) | Photoelectric conversion element and manufacturing method therefor | |
US8287753B2 (en) | Gel electrolyte composition, method of fabricating thereof and dye-sensitized solar cell using the same | |
Pengfei et al. | Multi-component eutectic salts to enhance the conductivity of solvent-free ionic liquid electrolytes for dye-sensitized solar cells | |
JP3462115B2 (en) | Non-aqueous electrolyte for dye-sensitized solar cell and solar cell using the same | |
Pavithra et al. | Poly (ethylene oxide) polymer matrix coupled with urea as gel electrolyte for dye sensitized solar cell applications | |
JP4420645B2 (en) | Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell | |
Han et al. | Effective solid electrolyte based on benzothiazolium for dye-sensitized solar cells | |
Huang et al. | The potential of eutectic mixtures as environmentally friendly, solvent-free electrolytes for dye-sensitized solar cells | |
Apostolopoulou et al. | Functional quasi-solid-state electrolytes for dye sensitized solar cells prepared by amine alkylation reactions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071101 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20071219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110506 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110712 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110725 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |