JP4801404B2 - High-speed liquid flow penetrating device and various fiber processing devices equipped with the penetrating device - Google Patents

High-speed liquid flow penetrating device and various fiber processing devices equipped with the penetrating device Download PDF

Info

Publication number
JP4801404B2
JP4801404B2 JP2005274518A JP2005274518A JP4801404B2 JP 4801404 B2 JP4801404 B2 JP 4801404B2 JP 2005274518 A JP2005274518 A JP 2005274518A JP 2005274518 A JP2005274518 A JP 2005274518A JP 4801404 B2 JP4801404 B2 JP 4801404B2
Authority
JP
Japan
Prior art keywords
main pipe
nozzle
liquid
fiber
liquid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005274518A
Other languages
Japanese (ja)
Other versions
JP2007084950A (en
Inventor
輝男 中村
良浩 西原
秀典 竹内
義孝 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2005274518A priority Critical patent/JP4801404B2/en
Publication of JP2007084950A publication Critical patent/JP2007084950A/en
Application granted granted Critical
Publication of JP4801404B2 publication Critical patent/JP4801404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、一端から高圧流体が導入される主管から分岐した複数のノズルを有するノズルヘッダーを備えた繊維トウ、織編物、不織布などの繊維構造体に対する高速液流貫通装置と、同液流貫通装置が適用される各種の繊維処理装置に関する。   The present invention relates to a high-speed liquid flow penetrating device for a fiber structure such as a fiber tow, woven or knitted fabric, and nonwoven fabric having a nozzle header having a plurality of nozzles branched from a main pipe into which a high-pressure fluid is introduced from one end, and the same liquid flow penetrating The present invention relates to various fiber processing apparatuses to which the apparatus is applied.

従来から、特に長尺の繊維構造体、例えば連続長を有する長尺な繊維トウや織編物、不織布などに対する液体処理を連続処理する場合、走行する繊維構造体を液体に浸漬させたり、液体付与ローラに接触させ、或いは噴射スプレーなどにより噴霧し、又は繊維構造体に高圧液体を噴射して高速液流を貫通させたりして各種の処理を行っている。   Conventionally, when continuous liquid treatment is applied to long fiber structures, for example, long fiber tows, woven or knitted fabrics, and nonwoven fabrics having a continuous length, the traveling fiber structure is immersed in liquid or liquid is applied. Various treatments are performed by contacting with a roller, spraying by spraying or the like, or spraying a high-pressure liquid on a fiber structure and penetrating a high-speed liquid flow.

例えば、特公昭45−35803号公報(米国特許第3,343,383号明細書、特許文献1)や特公昭46−17288号公報(特許文献2)では、特に合成繊維の湿式紡糸法における繊維トウの洗浄に適した上述の液流貫通方法及び装置が提案されている。なお、この液流貫通方法及び装置は繊維トウの洗浄に限らず、上述のような繊維構造体に対する染色、各種仕上げ処理、薬剤付与などにも適用が可能であるとしている。   For example, in Japanese Patent Publication No. 45-35803 (U.S. Pat. No. 3,343,383, Patent Document 1) and Japanese Patent Publication No. 46-17288 (Patent Document 2), fibers in the wet spinning method of synthetic fibers are used. The above-described liquid flow penetration method and apparatus suitable for tow cleaning have been proposed. This liquid flow penetration method and apparatus are not limited to the cleaning of fiber tows, but can be applied to the dyeing, various finishing treatments, and drug application for the fiber structure as described above.

一般に、アクリル繊維などの合成繊維を湿式紡糸法により製造する場合、重合体或いは共重合体と溶剤とからなる紡糸原液が、紡糸ノズルを経て凝固浴中に押し出されて、凝固液により多数の連続繊維からなる繊維トウが形成される。高品質の繊維トウを製造するには、繊維に含まれる溶剤を完全に除去されることが要求される。この溶剤を除去するため、通常、凝固浴を出た繊維トウは洗浄工程に導入されて繊維トウに含まれる残留溶剤が除去される。洗浄工程を経た繊維トウは、引き続き延伸工程に送られて、重合体の二次転移点以上の温度で加熱延伸される。この加熱延伸と前記洗浄とが同時に行われることもある。   In general, when a synthetic fiber such as an acrylic fiber is produced by a wet spinning method, a spinning stock solution composed of a polymer or copolymer and a solvent is extruded into a coagulation bath through a spinning nozzle, and a large number of continuous solutions are produced by the coagulation liquid. A fiber tow made of fibers is formed. In order to produce a high-quality fiber tow, it is required that the solvent contained in the fiber be completely removed. In order to remove this solvent, the fiber tow that has exited the coagulation bath is usually introduced into a washing step to remove the residual solvent contained in the fiber tow. The fiber tow that has passed through the washing step is subsequently sent to the stretching step, where it is heated and stretched at a temperature equal to or higher than the secondary transition point of the polymer. This heating and stretching may be performed at the same time.

前記洗浄工程では、繊維トウの走行方向の下流側から上流側に向けて洗浄液を流してトウから溶媒を除去する、いわゆるカスケードを使って洗浄を行う方法が一般的である。例えば、上記特許文献2によれば、このカスケードを使った洗浄方法では、洗浄液の一部が、繊維トウを構成する各繊維のまわりに境界層を形成し、繊維に含まれる溶媒がトウ自体と共に運ばれて、前記境界層がすすぎ工程を妨害するとしている。その理由として、洗浄液に対して繊維が親和性を有するがために、洗浄液がトウの内部に効果的に出入できず、繊維にも接触できないことがあるとしている。一方、単にカスケードを使った洗浄方法では、高温の洗浄液を使う必要があるとしている。   In the washing step, the washing is generally performed using a so-called cascade in which a washing liquid is flowed from the downstream side to the upstream side in the traveling direction of the fiber tow to remove the solvent from the tow. For example, according to Patent Document 2, in the cleaning method using this cascade, a part of the cleaning liquid forms a boundary layer around each fiber constituting the fiber tow, and the solvent contained in the fiber together with the tow itself. Carried, the boundary layer interferes with the rinsing process. The reason is that the fibers have affinity for the cleaning liquid, so that the cleaning liquid cannot effectively enter and exit the tow and cannot contact the fibers. On the other hand, it is said that it is necessary to use a high-temperature cleaning solution in a cleaning method using simply a cascade.

また、前記特許文献2によれば、前述の境界層を取り除こうとして、カスケード内で繊維トウを強く折り曲げたり、或いは押しつけて絞る方法などの試みがなされている。しかしながら、カスケード内で強く折り曲げることは不可能であり、また押しつけて絞るためにストリッパーバーやロ一ラを用いようとすると、相当に大きな押圧力を加えないかぎり難しく、大デニールのトウを洗浄する場合には特に大きな圧力が必要となって、外側繊維と押圧部材との間の摩擦の増加を引き起し、破断その他の損害を招くこととなるため好ましくないとしている。   Further, according to Patent Document 2, an attempt has been made to remove the above-mentioned boundary layer by strongly bending or pressing the fiber tow in a cascade. However, it is impossible to bend it strongly in the cascade, and it is difficult to use a stripper bar or roller to press and squeeze it, and it is difficult unless a large amount of pressing force is applied, and a large denier tow is washed. In such a case, a particularly large pressure is required, which causes an increase in friction between the outer fiber and the pressing member, leading to breakage and other damage.

そこで、例えば上記特許文献1によれば、洗浄室は繊維トウが通過するに十分な上下左右の間隔をあけた上下壁部と左右壁部とを有し、下壁部の前後端部に排液路を形成するとともに、同下壁部の中央に左右に延在する給液路を有している。前記給液路が開口する下壁面は平坦面とされ、その開口の直上の上壁部内壁面は前後に連続して2つの円弧状内壁面に形成して、給液路から噴出する洗浄液を前後に振り分けるようにしている。更に、前記上壁部は前記円弧状内壁面に続いて平面状の内壁面と円弧状内壁面とが交互に配されている。下壁部の内壁面も、繊維トウの移動方向に複数の円弧状内壁面と平面状内壁面とが交互に形成されており、この円弧状内壁面と平面状内壁面とは、上壁部の平面状内壁面と円弧状内壁面とにそれぞれ対向して配している。また、前記給液路は洗浄室の繊維トウの移動方向を横断する方向に延びる矩形断面を有する主管路と、同主管路の上部に断面が逆三角形状の副管路を連通させている。   Therefore, for example, according to Patent Document 1, the cleaning chamber has upper and lower wall portions and left and right wall portions that are spaced apart from each other enough to allow the fiber tow to pass through, and is disposed at the front and rear end portions of the lower wall portion. A liquid passage is formed, and a liquid supply passage extending left and right is provided at the center of the lower wall portion. The lower wall surface where the liquid supply passage opens is a flat surface, and the inner wall surface of the upper wall portion directly above the opening is formed in two arcuate inner wall surfaces in the front-rear direction so that the cleaning liquid ejected from the liquid supply passage is I try to distribute it. Further, the upper wall portion is formed by alternately arranging a planar inner wall surface and an arc-shaped inner wall surface following the arc-shaped inner wall surface. The inner wall surface of the lower wall portion is also formed with a plurality of arc-shaped inner wall surfaces and planar inner wall surfaces alternately in the moving direction of the fiber tow, and the arc-shaped inner wall surface and the planar inner wall surface are the upper wall portion. The flat inner wall surface and the arc-shaped inner wall surface are arranged to face each other. The liquid supply path communicates with a main pipe line having a rectangular cross section extending in a direction transverse to the moving direction of the fiber tow in the cleaning chamber, and a sub pipe line having an inverted triangular cross section at the upper part of the main pipe line.

洗浄は、繊維トウを上記室内を移動する間に、高圧洗浄液を前記給液路に導入して、副管路から細長い矩形開口を経て直上に噴出し、高圧流体は更に上壁部の2つの円弧状内壁面により前後に分割されて圧入され、その流れは洗浄室の前後端部に形成された排液路を経て外部へと排出される。この中央給液路から前後の排液路へと洗浄液が流れる間に、各流れは上下壁部の円弧状内壁面により上方から下方へと、下方から上方へと交互に向けられ、リボン状の繊維トウの走行面に対して上下に蛇行を繰り返して複数回貫通する。洗浄液が繊維トウを貫通するとき、繊維トウの構成繊維間の隙間が狭いため、洗浄液は完全な乱流となり、洗浄効果が上がるとしている。   In the cleaning, the high-pressure cleaning liquid is introduced into the liquid supply path while the fiber tow is moved through the chamber, and is ejected from the sub-pipe through the elongated rectangular opening. The arc-shaped inner wall surface is divided into the front and the rear and is press-fitted, and the flow is discharged to the outside through a drainage passage formed at the front and rear ends of the cleaning chamber. While the cleaning liquid flows from the central liquid supply path to the front and rear drain paths, each flow is alternately directed from the upper side to the lower side and from the lower side to the upper side by the arc-shaped inner wall surfaces of the upper and lower wall portions, thereby forming a ribbon-like shape. It penetrates several times by repeating meandering up and down with respect to the running surface of the fiber tow. When the cleaning liquid penetrates the fiber tow, the gap between the constituent fibers of the fiber tow is narrow, so that the cleaning liquid becomes a complete turbulent flow and the cleaning effect is improved.

更には、例えば米国特許第3,791,788号明細書(特許文献3)によれば、走行する繊維トウの走行面に対して処理液(洗浄液)を下方から所定の流速をもって繊維トウに1回かぎり貫通させ、貫通した処理液をトウの上面で走行方向に対して前後方向に流動させて、処理室の前後から排出させており、この繊維トウを貫通させるときの処理液の流速を、ある所定の式を満足する速度に設定することが開示され、特にその3倍の速度であることが好ましいと記載している。更に、そこに挙げられたアクリル系繊維トウの洗浄例によれば、洗浄液を循環させながら前記処理を4段行うことが例示されている。このとき、洗浄液はトウの走行方向下流側から上流側へと溢流させて循環させており、最も下流側の洗浄室には清浄液を補充させる場合のあることを開示している。
特公昭45−35803号公報 特公昭46−17288号公報 米国特許第3,791,788号明細書
Further, for example, according to U.S. Pat. No. 3,791,788 (Patent Document 3), a treatment liquid (cleaning liquid) is applied to the fiber tow 1 at a predetermined flow rate from below with respect to the traveling surface of the traveling fiber tow. The treatment liquid penetrated as many times as possible is caused to flow in the front-rear direction with respect to the traveling direction on the upper surface of the tow and discharged from the front and rear of the treatment chamber, and the flow rate of the treatment liquid when penetrating this fiber tow, It is disclosed that a speed satisfying a predetermined formula is disclosed, and it is described that a speed that is three times the speed is particularly preferable. Furthermore, according to the example of cleaning the acrylic fiber tow listed therein, it is exemplified that the treatment is performed in four stages while circulating the cleaning liquid. At this time, it is disclosed that the cleaning liquid is overflowed and circulated from the downstream side in the traveling direction of the tow to the upstream side, and the cleaning liquid may be replenished in the most downstream cleaning chamber.
Japanese Examined Patent Publication No. 45-35803 Japanese Patent Publication No.46-17288 US Pat. No. 3,791,788

ところで、上述の各特許文献1〜3などに開示されている液体処理装置にあっては、洗浄室内の上下内壁面構造や、或いは洗浄室内に対する洗浄液の圧入時の流速について説明するに止まり、その洗浄液などの給液部の構造については上記特許文献1で簡単に説明しているに過ぎず、他の特許文献2,3などでは単なる矩形断面通路を開示しているに過ぎない。一方、リボン状の繊維構造体、例えば繊維トウの洗浄について言えば、通常は1本の繊維トウを洗浄することはなく、複数本の繊維トウを並列して走行させながら洗浄が行われる。   By the way, in the liquid processing apparatus disclosed in each of the above-mentioned Patent Documents 1 to 3, the upper and lower inner wall surface structure in the cleaning chamber or the flow rate at the time of pressing the cleaning liquid into the cleaning chamber will be described. The structure of the liquid supply part such as the cleaning liquid is simply described in Patent Document 1 described above, and other Patent Documents 2 and 3 disclose only a rectangular cross-section passage. On the other hand, in the case of cleaning a ribbon-like fiber structure, for example, a fiber tow, normally, one fiber tow is not cleaned, and cleaning is performed while a plurality of fiber tows are run in parallel.

上記特許文献1のような特殊な断面形状をもつ枝管路を採用する理由は、同文献1による洗浄が繊維トウに対して洗浄液を乱流状態として付与しようとするがためであると考えられる。その結果、同文献1では洗浄液を繊維トウに高圧で付与するとき、末広がりの流路を通るため開口からは多方向に向いて噴出させており、繊維トウに対する噴射領域は開口形状とならないばかりか、その流速も低下しやすい。そのため、却って洗浄能力も低下する。これを保障しようとすれば、更に液体の供給圧を上げなければならず、そのための動力源であるポンプの大型化が要求されることになる。   The reason why the branch pipe having a special cross-sectional shape as in Patent Document 1 is adopted is considered that the cleaning according to Patent Document 1 tries to apply the cleaning liquid to the fiber tow as a turbulent state. . As a result, when the cleaning liquid is applied to the fiber tow at a high pressure in the same document 1, it is ejected in multiple directions from the opening because it passes through the diverging flow path, and the injection region for the fiber tow does not have an opening shape. The flow rate is also likely to decrease. For this reason, the cleaning ability is also reduced. In order to guarantee this, the supply pressure of the liquid must be further increased, and the pump as the power source for that purpose must be enlarged.

更に、上記特許文献1及び特許文献2に開示された洗浄室の上下壁面を液流が上下方向に蛇行する形状に形成する場合には、高速流体の圧力損失が極めて大きく、その流速も下流側では極めて遅くなる。その結果、副管路の上記構成と相まって、並列して走行する各繊維トウに対して均一な液体処理をすることが困難となる。   Furthermore, when the upper and lower wall surfaces of the cleaning chamber disclosed in Patent Document 1 and Patent Document 2 are formed in a shape in which the liquid flow meanders in the vertical direction, the pressure loss of the high-speed fluid is extremely large, and the flow velocity is also on the downstream side. Then it will be extremely slow. As a result, it becomes difficult to perform uniform liquid treatment on each fiber tow traveling in parallel with the above-described configuration of the sub-pipe.

本発明は、こうした従来の課題を解決すべくなされたものであり、具体的には連続長を有する繊維構造体に対してその幅方向に均一な液体処理が行えるノズルヘッダーを備え、低い動力エネルギーで高い性能が実現できる高速液流貫通装置と、同高速液流貫通装置が適用された各種の液体処理装置を提供することを目的としている。   The present invention has been made to solve these conventional problems. Specifically, the present invention includes a nozzle header capable of performing uniform liquid treatment in the width direction on a fiber structure having a continuous length, and has low motive energy. It is an object of the present invention to provide a high-speed liquid flow penetrating apparatus capable of realizing high performance and various liquid processing apparatuses to which the high-speed liquid flow penetrating apparatus is applied.

本発明の最も基本とする構成は、一端に給液源との接続部を有し、他端が閉塞された内径が一律の主管と、同主管から略直角に分岐する複数のノズルとを有し、前記ノズルの内径dと前記主管の内径Dとの比の値が0.6以下にある液体噴射ノズルヘッダーを備えてなり、各ノズルは、その基端開口部分が円形断面を有し、その先端開口部分が矩形断面を有し、前記基端開口部分から先端開口部分にかけて漸次偏平化された形態を備え、その全ての開口断面の面積が同一であることを特徴とする繊維トウ、織編物、不織布などの繊維構造体に対する高速液流貫通装置にある。好ましくは、前記ノズルの内径dと前記主管の内径Dとの比の値が0.2〜0.4の範囲がよい。 The most basic configuration of the present invention includes a main pipe having a connection portion with a liquid supply source at one end and a closed inner diameter closed at the other end, and a plurality of nozzles branched from the main pipe at a substantially right angle. and, Ri Na includes a liquid jet nozzle header value of the ratio of the inner diameter D of the main pipe and the internal diameter d of the nozzle is 0.6 or less, the nozzles, proximal end opening portion thereof has a circular cross-section The fiber tow, characterized in that the tip opening portion has a rectangular cross section, has a form gradually flattened from the base end opening portion to the tip opening portion, the area of all the opening cross sections are the same , It exists in the high-speed liquid flow penetration apparatus with respect to fiber structures, such as a knitted fabric and a nonwoven fabric. Preferably, the value of the ratio between the inner diameter d of the nozzle and the inner diameter D of the main pipe is in the range of 0.2 to 0.4.

前記ノズルの好ましい態様は、その基端開口部分が円形断面を有し、その先端開口部分がスリット状の矩形断面を有している。また前記主管は、一端が上記給液源との接続部を有し、他端が閉塞された第2主管を内部に挿入した二重管構造を備えるように構成することもでき、この場合、第2主管には軸線方向に列設された多数の小孔が貫通して形成されていることが望ましい。 In a preferred aspect of the nozzle, the base end opening portion has a circular cross section, and the tip opening portion has a slit-like rectangular cross section. The main pipe can also be configured to have a double pipe structure in which a second main pipe having one end connected to the liquid supply source and the other end closed is inserted therein. It is desirable that a large number of small holes arranged in the axial direction pass through the second main pipe.

或いは、前記主管の内部空間を多数の小孔が形成された仕切り板をもって上下に仕切り、ヘッダーへの液体の供給を、仕切り板のノズルが突設されている側とは反対側の内部空間内になすようにすることもできる。   Alternatively, the internal space of the main pipe is divided up and down with a partition plate in which a large number of small holes are formed, and the supply of liquid to the header is performed in the internal space on the side opposite to the side where the nozzle of the partition plate protrudes. It can also be made to.

本発明の高速液流貫通装置から噴射される高速流体を、各繊維構造体の幅方向に均一に噴射するには、各ノズルの先端開口の長辺方向を前記主管の軸線に平行となるように向けることが重要である。 In order to uniformly inject the high-speed fluid injected from the high-speed liquid flow penetrating apparatus of the present invention in the width direction of each fiber structure, the long side direction of the tip opening of each nozzle is made parallel to the axis of the main pipe. It is important to turn to

本発明の高速液流貫通装置にあって、好適な態様によれば前記液体噴射ノズルヘッダーのノズル先端開口部分に対向して少なくとも1つの樋状プレート部材が配され、同樋状プレート部材の幅方向に延びて開口し、その底部を貫通するスリットを有しており、同スリットに前記液体噴射ノズルヘッダーの各ノズル先端開口部分が対設するとよい。   In the high-speed liquid flow penetrating apparatus according to the present invention, according to a preferred aspect, at least one bowl-shaped plate member is disposed facing the nozzle tip opening portion of the liquid jet nozzle header, and the width of the bowl-shaped plate member is It has a slit extending in the direction and penetrating through the bottom, and each nozzle tip opening portion of the liquid jet nozzle header is preferably provided in the slit.

また、前記樋状プレート部材が2以上並列して配され、前記液体噴射ノズルヘッダーは、前記主管の軸線が各樋状プレート部材と直交するように同樋状プレート部材の下方に配されており、前記樋状プレート部材の底部に形成された各スリットと前記液体噴射ノズルヘッダーのノズル先端の各開口とが密着結合されることが好ましい。   Further, two or more bowl-shaped plate members are arranged in parallel, and the liquid jet nozzle header is arranged below the bowl-shaped plate members so that the axis of the main pipe is orthogonal to each bowl-shaped plate member. It is preferable that each slit formed in the bottom of the bowl-shaped plate member and each opening at the nozzle tip of the liquid jet nozzle header are tightly coupled.

作用効果Effect

前記主管の内径Dとの比の値が0.60を越えると、主管の内部流路において、その閉塞端側の圧力が圧力流体の導入側の圧力よりも2次関数的に高くなり、繊維構造体に対する均一な液体処理が難しい。また、0.2より小さい場合はノズルに対して主管の管径が相対的に大きくなり過ぎて、所望の流体圧を得ようとすると動力源であるポンプの容量を大きくしなければならず、同時に主管の設置空間の増大にもつながる場合がある。前記比の値を0.2以上とすることで、主管の内径Dを極端に大きくしないで済み、同時に液体導入側と閉塞端側との間における流体圧の差を許容範囲内に抑えることができ、繊維構造体に対する均一な液体処理が可能となる。   When the value of the ratio with the inner diameter D of the main pipe exceeds 0.60, the pressure on the closed end side in the internal flow path of the main pipe becomes higher than the pressure on the pressure fluid introduction side in a quadratic function, and the fiber Uniform liquid treatment for structures is difficult. On the other hand, if it is smaller than 0.2, the diameter of the main pipe is relatively large with respect to the nozzle, and if a desired fluid pressure is to be obtained, the capacity of the pump as the power source must be increased. At the same time, the installation space for the main pipe may increase. By setting the ratio to 0.2 or more, it is not necessary to extremely increase the inner diameter D of the main pipe, and at the same time, the difference in fluid pressure between the liquid introduction side and the closed end side can be suppressed within an allowable range. It is possible to perform uniform liquid processing on the fiber structure.

前記主管が上述のごとく二重管構造を備えている場合は、第2主管に一旦導入された圧力流体は第2主管の小孔から噴出して、同第2主管の周囲に沿って回流して上方の分岐ノズルへと導入される。その結果、各ノズルの基端部における液体圧が平均化されて、二重管構造を採らない時と較べて、主管の液体導入端側のノズルに導入される液体圧と閉塞端側のノズルに導入される液体圧との間の圧力差を殆ど無くすことができ、更には連続長を有する繊維構造体などの連続液体処理にあたっても、液体の貫通むらがなくなり、洗浄処理に限らず、特に油剤付与や染色などに好適に適用できる。   When the main pipe has a double pipe structure as described above, the pressure fluid once introduced into the second main pipe is ejected from a small hole of the second main pipe and circulated along the periphery of the second main pipe. Are introduced into the upper branch nozzle. As a result, the liquid pressure at the base end of each nozzle is averaged, and the liquid pressure introduced into the nozzle on the liquid introduction end side of the main pipe and the nozzle on the closed end side are compared with the case where the double pipe structure is not taken. The pressure difference between the liquid pressure introduced to the liquid can be almost eliminated, and even in continuous liquid processing such as a fiber structure having a continuous length, there is no unevenness in penetration of the liquid, not limited to cleaning processing, It can be suitably applied to oil agent application and dyeing.

前記ノズルは、その基端開口部分が円形断面を有し、その先端開口部分が矩形断面又はスリット状の断面を有しており、前記基端開口部分から先端開口部分にかけて漸次偏平化された形態を有し、更にその全ての開口断面の面積を同一にするときは、圧力流体はノズル内で整流化され、ノズル先端の開口から噴射される液体の断面がノズル先端の開口形状(細長いスリット状矩形断面)に近い形状で噴射されるようになり、繊維構造体に対する液体噴射むらがなくなる。   The nozzle has a shape in which the base end opening portion has a circular cross section, the tip opening portion has a rectangular cross section or a slit-like cross section, and is gradually flattened from the base end opening portion to the tip opening portion. In addition, the pressure fluid is rectified in the nozzle, and the cross-section of the liquid ejected from the nozzle tip opening is the shape of the nozzle tip (elongated slit shape). A shape close to (rectangular cross section) is ejected, and liquid ejection unevenness to the fiber structure is eliminated.

本発明の高速液流貫通装置から噴射される高速流体を、各繊維構造体の幅方向に均一に噴射するには、各ノズルの先端開口の長辺方向を前記主管の軸線に平行となるように向けると、前述のように繊維トウ、織編物、不織布などの上記繊維構造体に対する液流貫通装置として好適なものとなる。   In order to uniformly inject the high-speed fluid injected from the high-speed liquid flow penetrating apparatus of the present invention in the width direction of each fiber structure, the long side direction of the tip opening of each nozzle is made parallel to the axis of the main pipe. If it is directed to, as mentioned above, it will be suitable as a liquid flow penetration device for the above-mentioned fiber structure such as fiber tow, woven or knitted fabric, and non-woven fabric.

更に、各ノズルの開口側に、同先端開口部分と所定の間隙をおいてスリット付きの樋状プレート部材を配したときは、ノズルの先端開口部分から噴射される液体は、前記樋状プレート部材に強く吹き付けられて拡散し、前記樋状プレート部材のスリットから上方を走行する繊維構造体に向けて噴射されるようになるため、同繊維構造体を効率的に貫通することになり、ノズルから直接噴射させる場合と比較して繊維構造体に対する処理能力が増加する。   Further, when a saddle-shaped plate member with a slit is provided on the opening side of each nozzle with a predetermined gap, the liquid ejected from the tip-opening portion of the nozzle Since it is sprayed strongly and diffused and sprayed toward the fiber structure traveling upward from the slit of the bowl-shaped plate member, the fiber structure will be efficiently penetrated, and from the nozzle Compared with the case of direct injection, the processing capacity for the fiber structure is increased.

本発明の高速液流貫通装置にあって、上述のごとく樋状プレート部材が配される場合、特に樋状プレート部材が2以上並列して配されており、樋状プレート部材の底部に形成された各スリットと前記液体噴射ノズルヘッダーのノズル先端の各開口とが密着結合する場合には、例えば走行する繊維トウを連続して洗浄するときは、前記ノズルヘッダーの一端から高圧洗浄液を導入し、並列して走行する各繊維トウに各ノズルを介して高速で洗浄液を上方に噴射する。このときの洗浄液はノズル内で整流され、前記スリットの断面形状をもつ噴射流となって下方から繊維トウに向けて貫通することになる。このとき同時に、各構成繊維に激しくぶつかり、繊維トウに残留する溶剤などを排除する。また、このときの高速液体の流速を調整すれば、同液体を構成繊維の全てに付与することが可能となる。   In the high-speed liquid flow penetrating apparatus of the present invention, when the bowl-shaped plate members are arranged as described above, two or more bowl-shaped plate members are arranged in parallel, and are formed at the bottom of the bowl-shaped plate member. If each slit and each opening at the tip of the nozzle of the liquid jet nozzle header are tightly coupled, for example, when continuously cleaning the fiber tow traveling, a high-pressure cleaning liquid is introduced from one end of the nozzle header, The cleaning liquid is jetted upward at high speed through the nozzles on the fiber tows traveling in parallel. At this time, the cleaning liquid is rectified in the nozzle and becomes a jet flow having a cross-sectional shape of the slit and penetrates from below toward the fiber tow. At the same time, each component fiber is struck violently and the solvent remaining in the fiber tow is eliminated. Moreover, if the flow rate of the high-speed liquid at this time is adjusted, the liquid can be applied to all the constituent fibers.

以下、本発明に係る繊維処理液体用のノズルヘッダーを備えた高速液流貫通装置の好適な実施形態を図面に基づいて具体的に説明する。
図1は、前記ノズルヘッダーの第1実施形態を示す斜視図である。同図に示すノズルヘッダー1は、一端が給液源に接続され、他端が閉塞された円筒状の主管2と、同主管2の長さ方向に所要の間隔をおいて、多数のノズル3が主管2の軸線に直交させて分岐している。この実施形態によれば、主管2も各ノズル3も円筒形をなしている。
DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a high-speed liquid flow penetrating apparatus provided with a nozzle header for fiber treatment liquid according to the present invention will be specifically described with reference to the drawings.
FIG. 1 is a perspective view showing a first embodiment of the nozzle header. A nozzle header 1 shown in the figure has a cylindrical main pipe 2 having one end connected to a liquid supply source and the other end closed, and a number of nozzles 3 at a predetermined interval in the length direction of the main pipe 2. Is branched perpendicularly to the axis of the main pipe 2. According to this embodiment, both the main pipe 2 and each nozzle 3 are cylindrical.

本実施形態にあって重要な点は、主管2の内径Dとノズル3の内径dとの関係である。この内径Dと内径dとを同じ寸法に設定すると、主管2の高圧液体導入側からその閉塞端にかけて内圧が二次関数的に150%も増加する。本発明では、前記ノズル3の内径dと主管2の内径Dとの比の値を0.60以下に設定する。通常、マルチフィラメントからなるトウを偏平化して液体処理する場合、前記主管2の高圧液体導入側とその閉塞端との間の許容圧力差は10%以内である。ノズル3の内径dと主管2の内径Dとの比の値が0.60以下にあれば、その圧力差は20%以内に納まる。   An important point in the present embodiment is the relationship between the inner diameter D of the main pipe 2 and the inner diameter d of the nozzle 3. If the inner diameter D and the inner diameter d are set to the same size, the internal pressure increases by 150% as a quadratic function from the high-pressure liquid introduction side of the main pipe 2 to its closed end. In the present invention, the ratio value between the inner diameter d of the nozzle 3 and the inner diameter D of the main pipe 2 is set to 0.60 or less. Usually, when flattening a tow made of multifilaments for liquid treatment, the allowable pressure difference between the high pressure liquid introduction side of the main pipe 2 and its closed end is within 10%. If the value of the ratio between the inner diameter d of the nozzle 3 and the inner diameter D of the main pipe 2 is 0.60 or less, the pressure difference falls within 20%.

因みに、内径Dを200mmとした主管2の長手方向に隣接するトウの間隔に応じたピッチとし、ノズル3の内径dを100mm(内径比0.5)とした8本のノズル3を分岐させたときの、主管2の液体導入端側と閉塞端側とでは略9%強の圧力差であった。このとき、1トンの繊維製品を処理するために使用する処理液の供給量5トンとした。また、ノズル3の内径dと主管2の内径Dとの比の値を0.38とした以外は、同じ条件で主管2の処理液導入端側と閉塞端側との圧力差を測定したところ、3%以内であった。   Incidentally, the eight nozzles 3 were branched with an inner diameter D of 200 mm and a pitch according to the distance between adjacent tows in the longitudinal direction of the main pipe 2 and with an inner diameter d of the nozzle 3 of 100 mm (inner diameter ratio 0.5). The pressure difference between the liquid introduction end side and the closed end side of the main pipe 2 was slightly over 9%. At this time, the supply amount of the processing liquid used for processing 1 ton of textile products was set to 5 tons. The pressure difference between the treatment liquid introduction end side and the closed end side of the main pipe 2 was measured under the same conditions except that the ratio value of the inner diameter d of the nozzle 3 and the inner diameter D of the main pipe 2 was set to 0.38. It was within 3%.

なお、ノズル3の内径dと主管2の内径Dとの比の値が0.20より小さいと、主管2の内径に対するノズル3の内径が相対的に小さくなりすぎるため、ノズル3として要求される最小径を考慮すると、主管2の内径が実質的に大きくなり、設置空間の増大を招くばかりか、処理液体の上記供給量やエネルギーの使用量も増えるため、コストアップにつながる。また、ノズル3の内径dと主管2の内径Dとの比の値が0.60を越えると、前記圧力差を許容範囲内に納めることができなくなる。因みに、ノズル3の内径dと主管2の内径Dとを一致させたときの圧力差は150%であった。   If the ratio of the inner diameter d of the nozzle 3 to the inner diameter D of the main pipe 2 is smaller than 0.20, the inner diameter of the nozzle 3 with respect to the inner diameter of the main pipe 2 becomes too small, so that the nozzle 3 is required. Considering the minimum diameter, the inner diameter of the main pipe 2 is substantially increased, which not only increases the installation space, but also increases the supply amount of the processing liquid and the amount of energy used, leading to an increase in cost. If the ratio between the inner diameter d of the nozzle 3 and the inner diameter D of the main pipe 2 exceeds 0.60, the pressure difference cannot be kept within an allowable range. Incidentally, the pressure difference when the inner diameter “d” of the nozzle 3 and the inner diameter “D” of the main pipe 2 were matched was 150%.

図2は、本発明におけるノズルヘッダーの第2実施形態を模式的に示している。
この実施形態によるノズルヘッダー10と上記第1実施形態との間で実質的に異なるところはノズル13の形態にある。本実施形態によるノズルの形態は、図2及び図3に示すように、主管12から分岐する基端部13aは円筒形を呈しており、その先端開口13bは矩形断面を有している。そして、前記基端部13aから先端開口13bまでの間の全ての断面積を同一面積として、前記基端部13aから先端開口13bまでを連続して漸次偏平化している。
FIG. 2 schematically shows a second embodiment of the nozzle header in the present invention.
The difference between the nozzle header 10 according to this embodiment and the first embodiment lies in the form of the nozzle 13. As shown in FIGS. 2 and 3, the nozzle according to the present embodiment has a base end portion 13 a branched from the main pipe 12 having a cylindrical shape, and a distal end opening 13 b having a rectangular cross section. Then, all cross-sectional areas from the base end portion 13a to the tip opening 13b are made the same area, and the base end portion 13a to the tip opening 13b are continuously flattened.

かかるノズル形態により、圧力液体が主管12から各ノズル13に導入されるとき渦流状態にある液体が、先端開口13bに流れるに従って整流化され、矩形スリット状の先端開口13bからはその開口形状の断面をもつ高速流体となって噴出する。このため、その噴出流体は無駄に拡散することがなく、効率的に繊維構造体を貫通する。その結果、ノズル13の内径dと主管12の内径Dとの比の値を0.60以下に設定することとが相まって、後述するように、液体処理効率を一段と向上させることができる。   With such a nozzle configuration, when the pressure liquid is introduced from the main pipe 12 to each nozzle 13, the liquid in a vortex state is rectified as it flows into the tip opening 13 b, and the opening-shaped cross-section from the rectangular slit-like tip opening 13 b. Ejected as a high-speed fluid with For this reason, the ejected fluid does not diffuse wastefully and efficiently penetrates the fiber structure. As a result, the ratio of the inner diameter d of the nozzle 13 and the inner diameter D of the main pipe 12 is set to 0.60 or less, and the liquid processing efficiency can be further improved as will be described later.

図3は、前記第2実施形態に係る液体処理用のノズルヘッダー10の変形例を示している。この変形例によると、ノズル13の先端開口13bが、上記第2実施形態のようにスリット状の矩形ではなく、同開口13bの長辺を上記実施形態と同じ長さとして、繊維トウの走行方向の一辺が上記実施形態における一辺の長さよりも長く設定している。この場合には、繊維トウに対する液体貫通時の貫通面積が大きくなり、それだけ一回の貫通量が増加する。   FIG. 3 shows a modification of the nozzle header 10 for liquid processing according to the second embodiment. According to this modification, the tip opening 13b of the nozzle 13 is not a slit-like rectangle as in the second embodiment, but the long side of the opening 13b has the same length as that in the above embodiment, and the fiber tow traveling direction. Is set longer than the length of one side in the above embodiment. In this case, the penetration area at the time of liquid penetration with respect to the fiber tow becomes large, and the penetration amount per time increases accordingly.

図4は上記第2実施形態を更に改良した第3実施形態に係るノズルヘッダー20の斜視図であり、図5は同ノズルヘッダー20の内部構造を模式的に示す縦断面図である。この実施形態によれば、上記第2実施形態における主管12の構造を二重管構造に変更している。すなわち、本実施形態における主管22は、その内部に第2主管21を同一軸線上に収納している。この第2主管21の一端は図示せぬ液体供給源に接続する接続部を有しており、その他端は第1主管22と同様に閉塞されている。勿論、第1主管22と第2主管21の液体導入側端部は前記接続部を除いて閉塞されている。   FIG. 4 is a perspective view of a nozzle header 20 according to a third embodiment obtained by further improving the second embodiment, and FIG. 5 is a longitudinal sectional view schematically showing the internal structure of the nozzle header 20. According to this embodiment, the structure of the main pipe 12 in the second embodiment is changed to a double pipe structure. That is, the main pipe 22 in the present embodiment houses the second main pipe 21 on the same axis. One end of the second main pipe 21 has a connecting portion connected to a liquid supply source (not shown), and the other end is closed in the same manner as the first main pipe 22. Of course, the liquid introduction side end portions of the first main tube 22 and the second main tube 21 are closed except for the connection portion.

前記第2主管21のノズル分岐側とは反対側には、その軸線方向にわたって2列の小孔21aが並列して多数形成されている。本実施形態にあっては、上記第1主管22の内径D1と第2主管21の外径D2との比の値を3/1に設定しているが、この比の値は4/1〜5/4の範囲内であれば任意に決めることができる。かかる構成を採用することにより、第2主管21の液体導入側端部から導入される高圧液体は、同第2主管21の前記小孔21aから下方に噴出したのち、第2主管21の外周面に沿って回流し、第1主管22の各ノズル23に導入されるため、各ノズル23における流入圧力が液体導入側と閉塞側との間で更に均整化されるようになり、各ノズル23に対応して走行するトウに対して吐出斑のない均一な吐出がなされて、更に均一な液体処理を行うことが可能となった。   On the opposite side of the second main pipe 21 from the nozzle branch side, two rows of small holes 21a are formed in parallel along the axial direction. In the present embodiment, the value of the ratio between the inner diameter D1 of the first main pipe 22 and the outer diameter D2 of the second main pipe 21 is set to 3/1. Any value within a range of 5/4 can be determined. By adopting such a configuration, the high-pressure liquid introduced from the liquid introduction side end of the second main pipe 21 is ejected downward from the small hole 21a of the second main pipe 21, and then the outer peripheral surface of the second main pipe 21. The inflow pressure in each nozzle 23 is further leveled between the liquid introduction side and the closing side, and is introduced into each nozzle 23. A uniform discharge without discharge spots was made on the tow traveling correspondingly, and it became possible to perform a more uniform liquid treatment.

図6は、前記第3実施形態の変形例を示している。図6に示す液体処理用のノズルヘッダー20は、図4に示した第3実施形態と同様に、主管22が第2主管21をもつ二重管構造を備えている。ただし、この変形例では第2主管21の全周面にわたって多数の小孔21aが形成されている。この変形例にあっても、各ノズル23における流入圧力が液体導入側と閉塞側との間で均整化され、各ノズル23に対応して走行するトウに対して均一な液体処理ができる。   FIG. 6 shows a modification of the third embodiment. The liquid processing nozzle header 20 shown in FIG. 6 has a double pipe structure in which the main pipe 22 has the second main pipe 21 as in the third embodiment shown in FIG. However, in this modification, a large number of small holes 21 a are formed over the entire peripheral surface of the second main pipe 21. Even in this modification, the inflow pressure in each nozzle 23 is leveled between the liquid introduction side and the closing side, and a uniform liquid treatment can be performed on the tow that runs corresponding to each nozzle 23.

図7は、本発明に適用されるノズルヘッダーの第4実施形態を示している。この実施形態によれば、主管22の内部空間を多数の小孔25aが形成された仕切り板25をもって上下に仕切っており、ヘッダー20への液体の供給は、仕切り板25のノズル23が突設されている側とは反対側の内部空間内になされる。この実施形態にあっても、上記第3実施形態と同様に、各ノズル23における流入圧力が液体導入側と閉塞側との間で均整化され、各ノズル23に対応して走行するトウに対して均一な液体処理を行うことを可能にする。   FIG. 7 shows a fourth embodiment of a nozzle header applied to the present invention. According to this embodiment, the internal space of the main pipe 22 is divided up and down by the partition plate 25 in which a large number of small holes 25 a are formed, and the nozzle 23 of the partition plate 25 projects to supply the liquid to the header 20. It is made in the internal space on the opposite side to the side where it is done. Even in this embodiment, as in the third embodiment, the inflow pressure in each nozzle 23 is leveled between the liquid introduction side and the closing side, and the tow traveling corresponding to each nozzle 23 is used. And uniform liquid treatment.

図8は、前記ノズルヘッダー20の第5実施形態によるノズルヘッダー30の構成を模式的に示している。本実施形態のノズルヘッダー30にあっても、上記第3実施形態と同様の、主管22、同主管22から分岐するノズル23、及び主管22の内部に収納された第2主管21を有している。本実施形態では、前記構成に加えて、図8に示すように、更に前記各ノズル23の開口に対峙させてスリット付きの樋状プレート部材31を設けている。   FIG. 8 schematically shows the configuration of the nozzle header 30 according to the fifth embodiment of the nozzle header 20. The nozzle header 30 of the present embodiment also has the main pipe 22, the nozzle 23 branched from the main pipe 22, and the second main pipe 21 housed inside the main pipe 22, similar to the third embodiment. Yes. In the present embodiment, in addition to the above-described configuration, as shown in FIG. 8, a flange-shaped plate member 31 with a slit is further provided so as to face the opening of each nozzle 23.

このスリット付きの樋状プレート部材31は、図8に示すように、繊維構造体の流れ方向に向かって背の低いH字断面を有しており、その中央のプレート部本体31aの左右端縁に沿って上下に垂直に延びる左右壁部31bを有している。前記左右壁部31bの下側半分は、そのプレート部本体31aの前後端面と下端面とが閉塞されており、同プレート部本体31aの下面側は上記ノズル23の開口と前記プレート部本体31aに形成されたスリット31cを除く密閉箱状に形成されている。   As shown in FIG. 8, the saddle-shaped plate member 31 with slits has an H-shaped cross section that is short in the flow direction of the fiber structure, and the left and right edges of the central plate portion body 31a. Left and right wall portions 31b extending vertically up and down. The lower half of the left and right wall portions 31b is closed at the front and rear end surfaces and the lower end surface of the plate body 31a, and the lower surface of the plate body 31a is connected to the opening of the nozzle 23 and the plate body 31a. It is formed in a sealed box shape excluding the formed slit 31c.

前記プレート部31aの繊維構造体の流れ方向に対して横断する方向の寸法は、処理しようとする繊維構造体の幅寸法にほぼ等しい。   The dimension of the plate portion 31a in the direction transverse to the flow direction of the fiber structure is substantially equal to the width of the fiber structure to be processed.

図9は、上記第5実施形態の前記スリット付きの樋状プレート部材31の更なる改良がなされた変形例を示している。その長さ方向の中央線Lを挟んで所要の距離をおいた前後対称位置には、それぞれ繊維構造体の流れ方向を横断して平行に延びる2本以上の前記スリット31cが表裏面を貫通して形成されている。これらのスリット31cの数は任意に設定できる。   FIG. 9 shows a modification in which the slit-like plate member 31 with slits of the fifth embodiment is further improved. Two or more slits 31c extending parallel to each other across the flow direction of the fiber structure penetrate the front and back surfaces at a longitudinally symmetrical position with a predetermined distance across the longitudinal center line L. Is formed. The number of these slits 31c can be set arbitrarily.

図9に示す変形例のごとく、各ノズル23の開口に前述の構成を備えたスリット付きの樋状プレート部材31を取り付けると、各ノズル23から整流されて噴出する処理液が上方のスリット付きの樋状プレート部材31にぶつかり左右に形成された2以上のスリット31cに分配され、スリット付きの樋状プレート部材31が取り付けられていない場合と較べると、各スリット31cから噴出する高速処理液はスリット31cの全開口にわたって、噴出圧力がより均一化される。すなわち、処理される繊維構造体の走行方向の2箇所以上で同時に均一な圧力をもつ高速液流を噴出して繊維構造体を貫通するようになり、均質で且つ効果的な処理がなされる。   As shown in FIG. 9, when the slit-like plate member 31 having the above-described configuration is attached to the opening of each nozzle 23, the processing liquid rectified and ejected from each nozzle 23 has an upper slit. Compared with the case where the bowl-shaped plate member 31 with slits is not attached to the two or more slits 31c formed on the left and right sides of the bowl-shaped plate member 31, the high-speed processing liquid ejected from each slit 31c is slit. The ejection pressure is made more uniform over the entire opening of 31c. That is, a high-speed liquid flow having a uniform pressure is ejected simultaneously at two or more locations in the traveling direction of the fiber structure to be treated so as to penetrate the fiber structure, and a homogeneous and effective treatment is performed.

因みに、この2以上のスリット付きの樋状プレート部材を用いると、同樋状プレート部材が存在しないときと較べて、その処理結果を50%程度向上させることができる。こうすれば、例えば上述の特許文献1のごとく、単一の高速液流貫通装置において高速噴射した洗浄液の向きを変えて複数回の貫通洗浄を繰り返して行わなくとも十分な洗浄効果が得られることが判明している。その結果、特許文献1にある高速液流貫通装置の構造を、上述のごとく極めて簡略化することが可能となる。   By the way, when the bowl-shaped plate member with two or more slits is used, the processing result can be improved by about 50% compared to the case where the bowl-shaped plate member does not exist. By doing so, for example, as described in Patent Document 1 described above, a sufficient cleaning effect can be obtained without changing the direction of the cleaning liquid sprayed at a high speed in a single high-speed liquid flow penetrating apparatus and repeating a plurality of through cleanings. Is known. As a result, the structure of the high-speed liquid flow penetrating device disclosed in Patent Document 1 can be greatly simplified as described above.

樋状プレート部材を2以上並列して配す場合には、前記主管の軸線が各樋状プレート部材と直交するように同樋状プレート部材の下方にノズルヘッダーを配し、樋状プレート部材の底部に形成された各スリットと前記液体噴射ノズルヘッダーのノズル先端の各開口とを密着結合させることが好ましい。例えば走行する繊維トウを連続して洗浄するときは、前記ノズルヘッダーの一端から高圧洗浄液を導入し、並列して走行する各繊維トウに各ノズルを介して高速で洗浄液を上方に噴射できる。このときの洗浄液はノズル内で整流され、前記スリットの断面形状をもつ噴射流となって下方から繊維トウに向けて貫通することになる。このとき同時に、各構成繊維に激しくぶつかり、繊維トウに残留する溶剤などを排除する。また、このときの高速液体の流速を調整すれば、同液体を構成繊維の全てに付与することが可能となる。   When two or more bowl-shaped plate members are arranged in parallel, a nozzle header is arranged below the bowl-shaped plate member so that the axis of the main pipe is orthogonal to each bowl-shaped plate member, It is preferable that the slits formed in the bottom portion and the openings at the nozzle tip of the liquid jet nozzle header are tightly coupled. For example, when a traveling fiber tow is continuously washed, a high-pressure cleaning liquid can be introduced from one end of the nozzle header, and the cleaning liquid can be sprayed upward through the nozzles on each fiber tow that travels in parallel. At this time, the cleaning liquid is rectified in the nozzle and becomes a jet flow having a cross-sectional shape of the slit and penetrates from below toward the fiber tow. At the same time, each component fiber is struck violently and the solvent remaining in the fiber tow is eliminated. Moreover, if the flow rate of the high-speed liquid at this time is adjusted, the liquid can be applied to all the constituent fibers.

樋状プレート部材を2以上並列して配す場合、複数の樋状プレート部材を一体化することもできる。図10は、複数の樋状プレート部材を一体化した本発明に係る高速液流貫通装置の外観を概略的に示している。この高速液流貫通装置40は、繊維構造体であるそれぞれ複数の繊維トウを収容するように、複数の樋部42が列設された本体41と、図示を省略したが前記本体41の裏面中央部に配される上記ノズルヘッダー20とを備えている。前記高速液流貫通装置40の本体41は天板41a及び図示せぬ底板と四方を囲む側壁とを有する矩形箱体からなり、その天板41aの上面を底面とする樋部42の側壁を構成する複数枚の縦壁42aが、それぞれ一本の繊維トウの幅間隔をおいて立設されている。更に前記樋部42の全体を、図示せぬ断熱カバーにより密閉状に覆っている。
即ち、図10における樋部42は図8、9における樋状プレート部材に相当し、本体41は樋状プレート部材が複数一体化されたものである。
When two or more bowl-shaped plate members are arranged in parallel, a plurality of bowl-shaped plate members can be integrated. FIG. 10 schematically shows the appearance of a high-speed liquid flow penetrating apparatus according to the present invention in which a plurality of bowl-shaped plate members are integrated. The high-speed liquid flow penetrating device 40 includes a main body 41 in which a plurality of flanges 42 are arranged so as to accommodate a plurality of fiber tows, each of which is a fiber structure, and a center of the back surface of the main body 41 (not shown). The nozzle header 20 disposed in the section is provided. The main body 41 of the high-speed liquid flow penetrating device 40 is composed of a top plate 41a and a rectangular box having a bottom plate (not shown) and a side wall surrounding the four sides, and constitutes a side wall of the flange portion 42 with the top surface of the top plate 41a as the bottom surface. A plurality of vertical walls 42a are erected with a width interval of one fiber tow. Further, the entire collar portion 42 is covered in a sealed manner by a heat insulating cover (not shown).
That is, the collar portion 42 in FIG. 10 corresponds to the collar-shaped plate member in FIGS. 8 and 9, and the main body 41 is formed by integrating a plurality of collar-shaped plate members.

前記各樋部42の底面を構成する天板41aには、そのトウ走行方向に直交して、それぞれ幅方向に長い長孔41bが本体41の内部まで貫通して形成されている。図示例では、前記長孔41bは1本だけであるが、図9に示すスリット31cのごとく、所要の間隔をおいて複数本の長孔41bを形成することもできる。長孔41bの形状は、その下面に取り付けられるノズルヘッダーの先端開口の形状と同一である。各樋部42の底部に形成された前記長孔41bには上記ノズルヘッダー20のノズル開口部が密嵌して接続される。   In the top plate 41a that constitutes the bottom surface of each collar portion 42, a long hole 41b that is perpendicular to the toe traveling direction and that is long in the width direction is formed so as to penetrate to the inside of the main body 41. In the illustrated example, the number of the long holes 41b is only one, but a plurality of the long holes 41b can be formed at a required interval as in the slit 31c shown in FIG. The shape of the long hole 41b is the same as the shape of the tip opening of the nozzle header attached to the lower surface thereof. The nozzle openings of the nozzle header 20 are tightly connected to the elongated holes 41b formed in the bottoms of the flanges 42.

このように、本発明の高速液流貫通装置40によれば、例えば上述の特公昭45−35803号公報のごとく、単一の高速液流貫通装置において高速噴射した洗浄液の向きを変えて複数回の貫通洗浄を繰り返して行わなくとも、上記実施形態のごとく単一の高速液流貫通装置40で高速噴射による一回の貫通洗浄を行うだけでも、十分な洗浄効果が得られることが判明している。その結果、高速液流貫通装置40の構造を、上述のごとく極めて簡略化することが可能となる。   Thus, according to the high-speed liquid flow penetrating device 40 of the present invention, for example, as described in Japanese Patent Publication No. 45-35803, the direction of the cleaning liquid sprayed at a high speed in a single high-speed liquid flow penetrating device is changed a plurality of times. Even if the through cleaning is not repeated, it has been found that a sufficient cleaning effect can be obtained only by performing a single through cleaning by high-speed jetting with the single high-speed liquid flow penetrating device 40 as in the above embodiment. Yes. As a result, the structure of the high-speed liquid flow penetrating device 40 can be greatly simplified as described above.

図11は、上述の高速液流貫通装置40が適用された本発明に係る各種の繊維処理装置の代表的な実施形態である湿式紡糸によるアクリル系繊維の紡糸・洗浄延伸・乾燥の各工程を概略的に示している。なお、本実施形態はアクリル系繊維に限らず、例えばセルロース系繊維やビニール系繊維、或いは炭素繊維前駆体としてのアクリル繊維にも適用が可能である。   FIG. 11 shows the steps of spinning, washing, drawing and drying acrylic fiber by wet spinning, which is a typical embodiment of various fiber processing apparatuses according to the present invention to which the high-speed liquid flow penetrating apparatus 40 is applied. Shown schematically. In addition, this embodiment is applicable not only to an acrylic fiber but also to an acrylic fiber as, for example, a cellulose fiber, a vinyl fiber, or a carbon fiber precursor.

同図において、50は紡浴、60は洗浄(第1洗浄)工程、70は延伸(第2洗浄工程)、80は油剤付与工程、90は乾燥工程を示している。更に、同図には、紡浴50と油剤付与工程80との間に、洗浄工程60と延伸工程70とを分けずに洗浄と延伸を同時に行う洗浄・延伸工程100を配する場合、或いは洗浄工程60及び延伸工程70に代わる洗浄/染色工程110を配する場合も示されている。   In the figure, 50 indicates a spinning bath, 60 indicates a cleaning (first cleaning) step, 70 indicates stretching (second cleaning step), 80 indicates an oil agent application step, and 90 indicates a drying step. Furthermore, in the same figure, a cleaning / stretching process 100 for performing cleaning and stretching simultaneously without separating the cleaning process 60 and the stretching process 70 between the spinning bath 50 and the oil agent application process 80 is arranged, or cleaning is performed. The case where a cleaning / dyeing step 110 instead of the step 60 and the stretching step 70 is provided is also shown.

すなわち、紡浴で紡出された繊維トウに対して洗浄液、染液、油剤などの液体を付与するとき、その洗浄、染色、油剤付与のいずれの工程にあっても本発明の上記高速液流貫通装置40が適用できることを示している。   That is, when a liquid such as a cleaning liquid, a dyeing liquid, or an oil agent is applied to the fiber tow spun in the spinning bath, the high-speed liquid flow of the present invention is used in any of the cleaning, dyeing, and oiling processes. It shows that the penetrating device 40 can be applied.

ここでは、前記紡浴50と油剤付与工程80との間で洗浄と延伸とを同時に行う場合について、洗浄・延伸工程及び油剤付与工程に適用する本発明の高速液流貫通装置40の液体付与機構を簡単に説明する。   Here, the liquid application mechanism of the high-speed liquid flow penetrating device 40 of the present invention applied to the cleaning / stretching process and the oil agent application process in the case where cleaning and stretching are performed simultaneously between the spinning bath 50 and the oil agent application process 80. Is briefly explained.

紡浴50では、例えばポリアクリロニトリルをジメチルアセトセアドの溶剤に溶解した紡糸原液を紡糸ノズルを通して溶剤−水系の凝固浴中に押出し、アクリル繊維からなる多数の長繊維状に凝固させる。この凝固した繊維トウは次工程である洗浄・延伸工程100に導入される。本実施形態における洗浄延伸工程100には、その前後に図示せぬ延伸ロールを備えており、繊維トウは前後の延伸ロールの間で所要の延伸がなされる。   In the spinning bath 50, for example, a spinning stock solution in which polyacrylonitrile is dissolved in a solvent of dimethyl acetoad is extruded through a spinning nozzle into a solvent-water coagulation bath and coagulated into a number of long fibers made of acrylic fibers. This solidified fiber tow is introduced into a washing / stretching process 100 which is the next process. The washing and stretching step 100 in the present embodiment is provided with stretching rolls (not shown) before and after that, and the fiber tow is stretched between the front and rear stretching rolls.

前後に配された延伸ロールの間には、上記高速液流貫通装置40を備えた図示せぬ洗浴が多段に配されている。洗浴には高温の洗浄水が使用される。本実施形態にあっては、例えば上述の特許文献1のごとく、単一の洗浴において同じ高速噴射液流を使って繊維トウに複数回貫通を繰り返して行うよりは、単一の高速液流貫通装置40をもって、高温の洗浄水を高速噴射により繊維トウに一回かぎり貫通させるだけで十分な洗浄効果が得られることが判明している。   Washing baths (not shown) provided with the high-speed liquid flow penetrating device 40 are arranged in multiple stages between the stretching rolls arranged at the front and rear. Hot washing water is used for the washing bath. In the present embodiment, for example, as described in Patent Document 1 described above, a single high-speed liquid flow penetration is used rather than repeatedly performing multiple penetrations in the fiber tow using the same high-speed jet liquid flow in a single washing bath. It has been found that a sufficient cleaning effect can be obtained by using the apparatus 40 by passing hot cleaning water through the fiber tow only once by high-speed jetting.

紡浴50から出た複数本の繊維トウは、洗浄・延伸工程100において、前後の延伸ロール間で延伸がなされると同時に、全ての繊維トウごとに、その全幅にわたり下方から高速洗浄水がノズルヘッダー1,10,20,30の各ノズル3,13,23を介して高速液流貫通装置40に形成された長孔41bを介して噴射され、繊維トウの上方へと貫通して飛散する。この貫通時に繊維トウは所要の延伸倍率で延伸されている。そのため、各繊維トウの構成繊維ごとに洗浄水が強い力で吹き付けられるとともに、各構成繊維間を容易に高速で吹き抜けることができ、効率的に溶剤が除去される。   In the washing / stretching step 100, a plurality of fiber tows exiting from the spinning bath 50 are stretched between the front and rear stretching rolls, and at the same time, high-speed washing water is sprayed from the bottom over the entire width of every fiber tow. It sprays through the long hole 41b formed in the high-speed liquid flow penetration apparatus 40 through each nozzle 3,13,23 of the header 1,10,20,30, and penetrates and scatters above a fiber tow. During this penetration, the fiber tow is drawn at a required draw ratio. Therefore, washing water is sprayed with a strong force for each constituent fiber of each fiber tow, and the constituent fibers can be easily blown through at high speed, and the solvent is efficiently removed.

アクリル系繊維の最適な延伸温度は、90〜100℃であるため、この高温下にある延伸によって繊維トウに対する所要の延伸が一気に行われる。このように、高温洗浄と同時に延伸を行うときは、繊維に延伸むらなどが発生せず、均等な延伸が可能となり高品質の製品が得られる。こうして洗浄・延伸工程100を経た繊維トウは、油剤付与工程80へと移る。この油剤付与工程にあっても、上記高速液流貫通装置40が使われる。このとき、高速液流貫通装置40から高速噴射される油剤は、繊維トウを貫通して水分と油剤とを効率的に置換し、繊維トウの構成繊維に均一に油剤を付与することができる。油剤が付与されたのち、乾燥工程90にて乾燥されて、次工程以降の後処理工程へと回される。   Since the optimal drawing temperature of the acrylic fiber is 90 to 100 ° C., the required drawing of the fiber tow is performed at a stretch by drawing under this high temperature. As described above, when stretching is performed simultaneously with the high temperature washing, the fibers are not unevenly stretched, and uniform stretching is possible, so that a high-quality product can be obtained. The fiber tow thus subjected to the washing / stretching process 100 moves to the oil application process 80. Even in the oil agent application step, the high-speed liquid flow penetrating device 40 is used. At this time, the oil agent sprayed at a high speed from the high-speed liquid flow penetrating device 40 penetrates the fiber tow efficiently to replace moisture and the oil agent, and can uniformly apply the oil agent to the constituent fibers of the fiber tow. After the oil agent is applied, it is dried in the drying step 90 and sent to the post-processing step after the next step.

図11にも示すように、前記洗浄・延伸工程100に代えて、洗浄工程と染色工程とを備えた洗浄/染色工程110を採用するにあたっても、本発明による上記高速液流貫通装置40が使われる。この洗浄/染色工程110にあっては、上記高速液流貫通装置40を使って紡出される繊維トウを洗浄水で効率的に洗浄したのち、同じく高速液流貫通装置40を使って染液を繊維トウに対して高速に噴射すれば、繊維トウ中の残存溶媒や、その構成繊維に付着する水分と染料とを強制的に置換させることができ、効率的な染色を行うことが可能となる。   As shown in FIG. 11, the high-speed liquid flow penetrating device 40 according to the present invention is also used when a cleaning / dyeing process 110 including a cleaning process and a dyeing process is employed instead of the cleaning / stretching process 100. Is called. In this washing / dyeing step 110, after the fiber tow spun using the high-speed liquid flow penetrating device 40 is efficiently washed with washing water, the dye solution is similarly washed using the high-speed liquid flow penetrating device 40. If the fiber tow is sprayed at a high speed, the residual solvent in the fiber tow and the moisture and dye adhering to the constituent fibers can be forcibly replaced, and efficient dyeing can be performed. .

本発明の第1実施形態であるノズルヘッダーを模式的に示す構造説明図である。It is structure explanatory drawing which shows typically the nozzle header which is 1st Embodiment of this invention. 本発明の第2実施形態であるノズルヘッダーの斜視図である。It is a perspective view of the nozzle header which is 2nd Embodiment of this invention. 同第2実施形態のノズルヘッダーの変形例を示す斜視図である。It is a perspective view which shows the modification of the nozzle header of the 2nd Embodiment. 本発明の第3実施形態であるノズルヘッダーの斜視図である。It is a perspective view of the nozzle header which is 3rd Embodiment of this invention. 同第3実施形態を模式的に内部構造を示す縦断面図である。It is a longitudinal section showing the internal structure typically in the third embodiment. 前記第3実施形態の変形例を示すノズルヘッダーの構造説明図である。It is structure explanatory drawing of the nozzle header which shows the modification of the said 3rd Embodiment. 本発明の第4実施形態を示すノズルヘッダーの構造説明図である。It is structure explanatory drawing of the nozzle header which shows 4th Embodiment of this invention. 本発明の第5実施形態であるノズルヘッダーを部分的に示す斜視図である。It is a perspective view which shows partially the nozzle header which is 5th Embodiment of this invention. 第5実施形態に適用されるスリット付きプレートの他の構造例を示す斜視図である。It is a perspective view which shows the other structural example of the plate with a slit applied to 5th Embodiment. 上記ノズルヘッダーを適用した本発明の高速液流貫通装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the high-speed liquid flow penetration apparatus of this invention to which the said nozzle header is applied. 本発明の高速液流貫通装置が適用された繊維処理装置の工程例を示す説明図である。It is explanatory drawing which shows the process example of the fiber processing apparatus to which the high-speed liquid flow penetration apparatus of this invention was applied.

符号の説明Explanation of symbols

1,10,20,30 ノズルヘッダー
2,12,22 主管
3,13,23 ノズル
13a 基端部
13b 先端部
21 第2主管
21a 小孔
25 (多孔の)仕切り板
25a 小孔
31 スリット付きの樋状プレート部材
31a プレート部本体
31b 左右壁部
31c スリット
40 高速液流貫通装置
41 貫通装置本体
41a 天板
41b 長孔
42 樋部
42a 縦壁
50 紡糸浴
60 第1洗浄工程(洗浄工程)
70 第2洗浄工程(延伸工程)
80 油剤付与工程
90 乾燥工程
100 洗浄・延伸工程
110 洗浄/染色工程
1,10,20,30 Nozzle header 2,12,22 Main pipe 3,13,23 Nozzle 13a Base end 13b Tip 21 Second main pipe 21a Small hole 25 (porous) partition plate 25a Small hole 31 Saddle with slit Plate member 31a plate part main body 31b right and left wall part 31c slit 40 high-speed liquid flow penetrating device 41 penetrating device main body 41a top plate 41b long hole 42 rib 42a vertical wall 50 spinning bath 60 first washing step (washing step)
70 Second cleaning step (stretching step)
80 Oil agent application process 90 Drying process 100 Cleaning / stretching process 110 Cleaning / dyeing process

Claims (11)

一端に給液源との接続部を有し、他端が閉塞された内径が一律の主管と、同主管から略直角に分岐する複数のノズルとを有し、前記ノズルの内径dと前記主管の内径Dとの比の値が0.6以下にある液体噴射ノズルヘッダーを備えてなり、各ノズルは、その基端開口部分が円形断面を有し、その先端開口部分が矩形断面を有し、前記基端開口部分から先端開口部分にかけて漸次偏平化された形態を備え、その全ての開口断面の面積が同一であることを特徴とする繊維トウ、織編物、不織布などの繊維構造体に対する高速液流貫通装置。 A main pipe having a connection portion with a liquid supply source at one end and a closed inner diameter at the other end, and a plurality of nozzles branching from the main pipe at a substantially right angle, the inner diameter d of the nozzle and the main pipe the value of the ratio of the inner diameter D of Ri the name includes a liquid jet nozzle header in the 0.6, each nozzle has proximal end opening portion thereof a circular cross-section, closed distal end opening portion thereof a rectangular cross-section And a structure that is gradually flattened from the base end opening portion to the tip opening portion, and the area of all opening cross sections thereof is the same, for fiber structures such as fiber tows, woven and knitted fabrics, and nonwoven fabrics High-speed liquid flow penetration device. 前記先端開口部分の矩形断面がスリット状の矩形断面である、請求項1記載の高速液流貫通装置。The high-speed liquid flow penetrating apparatus according to claim 1, wherein a rectangular cross section of the tip opening portion is a slit-shaped rectangular cross section. 前記主管は、一端が上記給液源との接続部を有し、他端が閉塞された第2主管を内部に挿入した二重管構造を備え、第2主管には軸線方向に列設された多数の小孔が貫通して形成されてなる請求項1又は2に記載の高速液流貫通装置。 The main pipe has a double pipe structure in which a second main pipe having one end connected to the liquid supply source and the other end closed is inserted therein, and the second main pipe is arranged in an axial direction. The high-speed liquid flow penetrating apparatus according to claim 1 or 2, wherein a large number of small holes are formed therethrough. 前記主管の内部空間が多数の小孔が形成された仕切り板をもって上下に仕切られ、ヘッダーへの液体の供給が、仕切り板のノズルが突設されている側とは反対側の内部空間内になされる請求項1〜3のいずかに記載の高速液流貫通装置。 The internal space of the main pipe is divided up and down with a partition plate in which a large number of small holes are formed, and the supply of liquid to the header is in the internal space on the side opposite to the side where the nozzle of the partition plate protrudes. The high-speed liquid flow penetration apparatus in any one of Claims 1-3 made | formed . 前記ノズルの先端開口の長辺方向が前記主管の軸線に平行に向けられてなる請求項1〜4のいずれかに記載の高速液流貫通装置。 The high-speed liquid flow penetrating apparatus according to any one of claims 1 to 4, wherein a long side direction of a tip opening of the nozzle is directed parallel to an axis of the main pipe. 前記液体噴射ノズルヘッダーのノズル先端開口部分に対向して少なくとも1つの樋状プレート部材が配されてなり、
同樋状プレート部材の幅方向に延びて開口し、その底部を貫通するスリットを有してなり、
同スリットに前記液体噴射ノズルヘッダーの各ノズル先端開口部分が対設されてなる請求項1〜5のいずれかに記載の高速液流貫通装置。
At least one bowl-shaped plate member is arranged facing the nozzle tip opening portion of the liquid jet nozzle header,
Opening extending in the width direction of the bowl-shaped plate member, and having a slit that penetrates the bottom,
The high-speed liquid flow penetrating device according to any one of claims 1 to 5 , wherein each nozzle tip opening portion of the liquid jet nozzle header is opposed to the slit.
前記樋状プレート部材が2以上並列して配されてなり、
前記液体噴射ノズルヘッダーは、前記主管の軸線が各樋状プレート部材と直交するように同樋状プレート部材の下方に配されてなり、
前記樋状プレート部材の底部に形成された各スリットと前記液体噴射ノズルヘッダーのノズル先端の各開口とが密着結合されてなる請求項6記載の高速液流貫通装置。
Two or more bowl-shaped plate members are arranged in parallel,
The liquid jet nozzle header is arranged below the bowl-shaped plate member so that the axis of the main pipe is orthogonal to each bowl-shaped plate member,
7. The high-speed liquid flow penetrating apparatus according to claim 6 , wherein each slit formed in the bottom portion of the bowl-shaped plate member and each opening at the nozzle tip of the liquid jet nozzle header are tightly coupled.
請求項6又は7に記載の高速液流貫通装置を備えてなることを特徴とする各種の繊維処理装置。 A variety of fiber processing apparatuses comprising the high-speed liquid flow penetrating apparatus according to claim 6 or 7 . 前記繊維処理装置が湿式紡糸における洗浄装置である請求項8記載の繊維処理装置。 The fiber processing apparatus according to claim 8 , wherein the fiber processing apparatus is a cleaning apparatus in wet spinning. 前記繊維処理装置が染色装置である請求項8記載の繊維処理装置。 The fiber processing apparatus according to claim 8 , wherein the fiber processing apparatus is a dyeing apparatus. 前記繊維処理装置が油剤付与装置である請求項8記載の繊維処理装置。 The fiber processing apparatus according to claim 8 , wherein the fiber processing apparatus is an oil agent applying apparatus.
JP2005274518A 2005-09-21 2005-09-21 High-speed liquid flow penetrating device and various fiber processing devices equipped with the penetrating device Active JP4801404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274518A JP4801404B2 (en) 2005-09-21 2005-09-21 High-speed liquid flow penetrating device and various fiber processing devices equipped with the penetrating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274518A JP4801404B2 (en) 2005-09-21 2005-09-21 High-speed liquid flow penetrating device and various fiber processing devices equipped with the penetrating device

Publications (2)

Publication Number Publication Date
JP2007084950A JP2007084950A (en) 2007-04-05
JP4801404B2 true JP4801404B2 (en) 2011-10-26

Family

ID=37972214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274518A Active JP4801404B2 (en) 2005-09-21 2005-09-21 High-speed liquid flow penetrating device and various fiber processing devices equipped with the penetrating device

Country Status (1)

Country Link
JP (1) JP4801404B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696223A (en) * 2016-04-26 2016-06-22 山东岱银纺织集团股份有限公司 Oiling agent spraying device for hemp fibers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547784B2 (en) * 2000-09-13 2010-09-22 東レ株式会社 Air jet nozzle and sheet width widening method using the same
KR101189208B1 (en) 2010-11-11 2012-10-09 삼성전기주식회사 Apparatus for jetting fluid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960630A (en) * 1988-04-14 1990-10-02 International Paper Company Apparatus for producing symmetrical fluid entangled non-woven fabrics and related method
JPH02175985A (en) * 1988-12-26 1990-07-09 Mitsubishi Paper Mills Ltd Washing shower for filter
JP2812134B2 (en) * 1993-04-04 1998-10-22 王子製紙株式会社 Manufacturing method and manufacturing apparatus for wiping cloth
JP4547784B2 (en) * 2000-09-13 2010-09-22 東レ株式会社 Air jet nozzle and sheet width widening method using the same
JP3564122B2 (en) * 2003-02-03 2004-09-08 東海理研株式会社 Storage case management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696223A (en) * 2016-04-26 2016-06-22 山东岱银纺织集团股份有限公司 Oiling agent spraying device for hemp fibers
CN105696223B (en) * 2016-04-26 2017-12-26 山东岱银纺织集团股份有限公司 Finish spray equipment for china-hemp fibers

Also Published As

Publication number Publication date
JP2007084950A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
KR100420575B1 (en) Continuously and combiningly operable breadth expansion and vibration enhanced spray dyeing machine
JP5485395B2 (en) Yarn pressure steam treatment apparatus and carbon fiber precursor yarn manufacturing method
WO2005106085A1 (en) Apparatus , product and process forming micro-fiber cellulosic nonwoven webs
JP4801404B2 (en) High-speed liquid flow penetrating device and various fiber processing devices equipped with the penetrating device
JP4338729B2 (en) Liquid flow treatment device and fiber treatment device
JP2011521119A (en) Method and apparatus for producing a spinning fleece comprising filaments
KR101557597B1 (en) Steam drawing device
JP5621848B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
KR100550686B1 (en) Method and device for producing continuous moulded bodies
KR100792622B1 (en) Cleaner and dryer for fabricating lyocell filament yarn and method using the same
JP5900031B2 (en) Acrylic fiber manufacturing method and manufacturing apparatus thereof
EP0725177A1 (en) Apparatus for treating cloth
KR100669439B1 (en) Textile dyeing and finishing machine
JP2005076162A5 (en)
JP4673095B2 (en) Pressurized steam drawing apparatus and method for producing acrylic fiber
US3353380A (en) Washing apparatus
DE60035886T2 (en) METHOD AND DEVICE FOR CONTINUOUS RINSING WOVEN
KR100768125B1 (en) Chamber for dying machine having double pipes arranged repeatedly on the lower part
US10883195B2 (en) Method of producing acrylic fiber bundle and method of producing carbon fiber bundle
US4686123A (en) Turbulent flow liquid application apparatus and a method of turbulently applying a liquid onto a substrate
KR830000315B1 (en) A continuous dyeing method for acrylic tow and its dyeing apparatus
JP5509257B2 (en) Liquid-flow textile processing equipment
JP4500088B2 (en) Method and apparatus for removing fine powder adhering to thermoplastic yarn
KR200394612Y1 (en) Textile dyeing and finishing machine
US3772903A (en) Apparatus for continuous wet treatment of a textile web

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4801404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250