JP4799425B2 - Optical analyzer including two-dimensional analysis of sewing or weaving yarn - Google Patents

Optical analyzer including two-dimensional analysis of sewing or weaving yarn Download PDF

Info

Publication number
JP4799425B2
JP4799425B2 JP2006552593A JP2006552593A JP4799425B2 JP 4799425 B2 JP4799425 B2 JP 4799425B2 JP 2006552593 A JP2006552593 A JP 2006552593A JP 2006552593 A JP2006552593 A JP 2006552593A JP 4799425 B2 JP4799425 B2 JP 4799425B2
Authority
JP
Japan
Prior art keywords
light
yarn
light emitting
receiving element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006552593A
Other languages
Japanese (ja)
Other versions
JP2007522463A (en
Inventor
ティツィアノ バレア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2007522463A publication Critical patent/JP2007522463A/en
Application granted granted Critical
Publication of JP4799425B2 publication Critical patent/JP4799425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • B65H63/02Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material
    • B65H63/024Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material responsive to breakage of materials
    • B65H63/028Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material responsive to breakage of materials characterised by the detecting or sensing element
    • B65H63/032Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material responsive to breakage of materials characterised by the detecting or sensing element electrical or pneumatic
    • B65H63/0321Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material responsive to breakage of materials characterised by the detecting or sensing element electrical or pneumatic using electronic actuators
    • B65H63/0324Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material responsive to breakage of materials characterised by the detecting or sensing element electrical or pneumatic using electronic actuators using photo-electric sensing means, i.e. the defect signal is a variation of light energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • B65H63/06Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to presence of irregularities in running material, e.g. for severing the material at irregularities ; Control of the correct working of the yarn cleaner
    • B65H63/062Electronic slub detector
    • B65H63/065Electronic slub detector using photo-electric sensing means, i.e. the defect signal is a variation of light energy
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G31/00Warning or safety devices, e.g. automatic fault detectors, stop motions
    • D01G31/006On-line measurement and recording of process and product parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N21/8915Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined non-woven textile material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • G01N33/365Filiform textiles, e.g. yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Looms (AREA)

Description

本発明は、独立形式の請求項の公知要件事項部に記載した、縫い糸又は織り糸の光学式分析装置に関する。特に、本発明は、糸の番手及び異物の存否をモニターし、糸の形状を分析する装置に関する。   The present invention relates to an optical analysis device for a sewing thread or a weaving thread described in the publicly known requirement section of an independent claim. In particular, the present invention relates to an apparatus for monitoring the yarn count and the presence or absence of foreign matter and analyzing the shape of the yarn.

縫い糸又は織り糸をモニターする方法及び装置は、公知のものがあり、例えば、容量式又は光学式圧電センサ等、種々の技術を用いている。   There are known methods and apparatuses for monitoring a sewing thread or a weaving thread. For example, various techniques such as a capacitive type or an optical piezoelectric sensor are used.

例えば、欧州特許公開公報第011751号に記載されているように、圧電センサ装置は、縫い糸又は織り糸と接触する繊維状セラミック又はその他の部材と組み合わせた、圧電セラミックを例えば用いて、こうした部材上を滑るように移動する糸の粗さにより生ずる変化を、圧電セラミックに伝える。この技術の主な利点は、繊維状セラミックと接触する埃又は糸の残留物が存在していても、ほとんど全くと言っていいほど影響受けず、糸自体で、繊維状セラミックの接触箇所を自動的に清掃することになるからである。   For example, as described in European Patent Publication No. 017551, a piezoelectric sensor device may be formed on such a member using, for example, a piezoelectric ceramic in combination with a fibrous ceramic or other member that contacts a sewing or weaving thread. The change caused by the roughness of the thread moving in a sliding manner is transmitted to the piezoelectric ceramic. The main advantage of this technology is that the presence of dust or yarn residues in contact with the fibrous ceramic is almost completely unaffected and the yarn itself automates the contact of the fibrous ceramic. It is because it will be cleaned.

しかしながら、この技術では、圧電セラミックと組み合わせた繊維状セラミックと、縫い糸又は織り糸との間での物理的接触が必ず必要となる点が、大きな欠点である。この技術では、例えば、張力等の制御対象特性に変化が生じ、又は糸の破断を招く、好ましくない摩擦又は擦りを防止するためにモニター中に接触することが許されない、糸のモニターを行うことができない。   However, this technique has a major drawback in that a physical contact between the fibrous ceramic combined with the piezoelectric ceramic and the sewing thread or the weaving thread is necessarily required. In this technique, for example, to monitor a thread that is not allowed to touch during monitoring to prevent undesirable friction or rubbing, which causes changes in controlled object properties such as tension, or breaks the thread. I can't.

もう一つの欠点は、糸の状態を滑るような移動状態に誤認させることによって、糸が破断した場合でも、装置が、繊維機械を一時停止させる信号を発生させなくする、極めて激しい振動又はノイズの存在に対する圧電セラミックの感度である。   Another disadvantage is that by causing the yarn to misrecognize a sliding movement, even if the yarn breaks, the device does not generate a signal to pause the textile machine, causing extremely severe vibration or noise. The sensitivity of the piezoelectric ceramic to its presence.

これに対して、容量式センサ装置は、モニター対象の実際の糸を含む、誘電体中の変化により生ずる容量センサの容量変化を測定する。誘電体中の容量変化を測定することにより、糸の移動状態、その番手の変化等が、測定できる。この技術の利点は、糸と直接接触しなくても、糸をモニターでき、埃又は糸の残留物が存在しても、容量センサの測定能力にわずかな影響を与えるに過ぎないことである。   In contrast, a capacitive sensor device measures the capacitance change of a capacitive sensor caused by a change in the dielectric, including the actual thread to be monitored. By measuring the capacitance change in the dielectric, the moving state of the yarn, the change in the count, etc. can be measured. The advantage of this technique is that the yarn can be monitored without direct contact with the yarn, and the presence of dust or yarn residue has only a minor effect on the measuring capability of the capacitive sensor.

しかしながら、これら公知の装置の重大な欠点は、例えば、銅製若しくは鋼製糸、又は炭素繊維が入っている糸等の、導電性縫い糸又は織り糸をモニターできないことである。また、湿った糸、及び水で濡れた又は静電防止若しくは導電性オイルで処理された糸もモニターできない。これは、導電性縫い糸又は織り糸の場合、及び水がある場合、誘電体を短絡させて、糸を測定してモニターすることができなくなるからである。   However, a significant drawback of these known devices is that they cannot monitor conductive sewing or weaving yarns, such as, for example, copper or steel yarns or yarns containing carbon fibers. Also, wet threads and threads wet with water or treated with antistatic or conductive oils cannot be monitored. This is because in the case of conductive sewing or weaving yarn and in the presence of water, the dielectric cannot be shorted and the yarn cannot be measured and monitored.

さらに、容量式のシステムは、電界及び静電放電に対して感度が極めて高く、電界又は静電放電が存在すると、移動する位置の状態を誤認することがあり、正確な動作が妨げられることがしばしばある。   In addition, capacitive systems are extremely sensitive to electric fields and electrostatic discharges, and in the presence of electric fields or electrostatic discharges, the state of the moving position may be misidentified, preventing accurate operation. Often there is.

これに対して、例えば、欧州特許公開公報第0519281号に記載されている、光学式センサ装置は、モニターすべき縫い糸又は織り糸を間に位置付ける、発光器と受光器とを通常用いる。   On the other hand, for example, the optical sensor device described in European Patent Publication No. 0519281 typically uses a light emitter and a light receiver that have a sewing thread or a weaving thread to be monitored in between.

この技術の主な利点は、あらゆる種類の縫い糸又は織り糸を、導電性であるか否かとは関係なく、こうした糸と接触することなく、モニターできることである。   The main advantage of this technique is that any type of sewing or weaving yarn can be monitored without contact with such yarns, whether or not they are conductive.

この技術の欠点は、主として、モニター対象の糸により受光器及び/又は発光器に残された埃又は残留物が形成される場合の感度である。   The drawback of this technique is mainly the sensitivity when the thread to be monitored forms dust or residue left on the light receiver and / or light emitter.

本発明の目的は、上述した3個の異なる技術の主要な利点を持ち、すなわち、あらゆる種類の縫い糸又は織り糸を、導電性であるか否かとは関係なく、必要に応じて縫い糸又は織り糸と接触することなくモニターでき、埃又は糸の残留物が形成されても問題を生ぜず、導電性オイル又はもっと単純には水が存在しても問題を生ぜず、振動、ノイズ源及び電界等に対しても問題を生じない、光学式センサ装置を提供することにある。   The object of the present invention has the major advantages of the three different technologies mentioned above, i.e. making any kind of sewing or weaving thread contact the sewing or weaving thread as required, regardless of whether it is conductive or not. Can be monitored without dust, no problem with dust or thread residue formed, no problem with conductive oil or more simply water, no vibration, noise source and electric field etc. However, an object of the present invention is to provide an optical sensor device that does not cause a problem.

もう一つの目的は、構造が簡便で安価な、光学式センサ装置を提供することにある。   Another object is to provide an optical sensor device that has a simple structure and is inexpensive.

もう一つの目的は、形状的に及びエルゴノミクス(人間工学)的に、繊維機械業界、その他、例えば、銅製コイル、モータの巻き線、油入変圧器等の分野で使用可能な、上述したタイプの装置を提供することにある。   Another object is of the type described above, which can be used geometrically and ergonomically, in the textile machinery industry and other fields such as copper coils, motor windings, oil-filled transformers, etc. To provide an apparatus.

もう一つの目的は、糸をガイドするのに必要な糸ガイド機能をも組み込んだ、上述したタイプの装置を提供することにある。   Another object is to provide a device of the type described above which also incorporates the yarn guide function necessary to guide the yarn.

もう一つの目的は、糸の形状及び/又は位置の像における変化に対して感応する範囲が、使用する受光素子の検知範囲よりもかなり大となるように、できるだけ大きくされ、どんな縫い糸又は織り糸のモニターでも、大きな融通性で要求を満たす、上述したタイプの光学式装置を提供することにある。   Another purpose is to make it as large as possible so that the range sensitive to changes in the image of the yarn shape and / or position is much larger than the detection range of the light receiving element used, It is also an object of the present invention to provide an optical device of the type described above that meets the requirements with great flexibility.

さらにもう一つの目的は、シールされ、使用条件がかなり厳しくても、問題なく作動できる、上述したタイプの装置を提供することにある。   Yet another object is to provide a device of the type described above that is sealed and can operate without problems even under very severe conditions of use.

さらにもう一つの目的は、モニター対象の糸の2次元分析を行うことができる装置を提供することにある。   Yet another object is to provide an apparatus capable of performing a two-dimensional analysis of a yarn to be monitored.

これらの目的、及び当業者には明らかな他の目的は、請求の範囲に記載した装置によって達成される。   These objects, and others that will be apparent to those skilled in the art, are achieved by the apparatus described in the claims.

本発明については、非限定的な実施の形態を示した添付図面からさらに明らかになる。   The present invention will become more apparent from the accompanying drawings showing non-limiting embodiments.

添付図面を参照すると、本発明に従って構成された装置は、全体を符号1で示してあり、互いに対してある角度で位置付けられた2個の赤外線発光素子3及び4と、フォトダイオード、フォトトランジスタ又はPSD等からなる、受光素子5とを備える。発光素子3及び4は、受光素子の中心を向くように方向付けることが好ましい。   Referring to the accompanying drawings, an apparatus constructed in accordance with the present invention is generally designated 1 and includes two infrared light emitting elements 3 and 4 positioned at an angle with respect to each other, a photodiode, a phototransistor or And a light receiving element 5 made of PSD or the like. The light emitting elements 3 and 4 are preferably oriented so as to face the center of the light receiving element.

また、この装置1は、赤外光を透過し、糸ガイドとしても機能する手段6であって、ジルコニウム等からなる、たとえば繊維状セラミックをも備える。繊維機械(図示せず)に供給され、動きをモニターすべき糸Fが、この手段6内を移動する。糸が切れた場合には、繊維機械を一時停止し、最終的に不良品となり廃棄する必要がある製品(繊維機械に供給される複数本の糸から構成されるもの)を、繊維機械が製造し続けるのを防ぐ。   The device 1 is also a means 6 that transmits infrared light and functions as a yarn guide, and also includes, for example, a fibrous ceramic made of zirconium or the like. A yarn F, which is fed to a textile machine (not shown) and whose movement is to be monitored, moves in this means 6. If the yarn breaks, the textile machine will suspend the textile machine and produce a product (consisting of multiple threads supplied to the textile machine) that will eventually become a defective product and must be discarded. To keep going.

こうした光透過手段は、糸ガイドとして機能するとともに、埃又は粉末が、受光素子5に堆積してその動作性能が変わるのを防止する。光透過手段は、光透過手段に当たる光線を制御可能に増加して、発光素子3及び4から出る光線が当たる糸Fにより作り出される照射円錐状影を大きくすることによって受光素子5の動作性能も向上させる。   Such light transmission means functions as a yarn guide and prevents dust or powder from being deposited on the light receiving element 5 and changing its operating performance. The light transmitting means can controllably increase the light beam hitting the light transmitting means and increase the operation cone of the light receiving element 5 by increasing the irradiation cone shadow created by the thread F hit by the light rays emitted from the light emitting elements 3 and 4. Let

これらの素子3、4及び5は、マイクロプロセッサユニット101を有する電子回路100(図3)と組み合わされる。電子回路100は、公知のタイプのものである。   These elements 3, 4 and 5 are combined with an electronic circuit 100 (FIG. 3) having a microprocessor unit 101. The electronic circuit 100 is of a known type.

ここで、発光素子3及び4が、同時に作動するものとする。この結果、糸Fの断面に応じて、2個の別個の円錐状影10及び11が形成され、これらの円錐状影は、受光素子5に当たる。このため、周知のように、糸の断面に比例した電気信号を発生する。   Here, it is assumed that the light emitting elements 3 and 4 operate simultaneously. As a result, two separate conical shadows 10 and 11 are formed according to the cross section of the yarn F, and these conical shadows strike the light receiving element 5. For this reason, as is well known, an electric signal proportional to the cross section of the yarn is generated.

ここで、糸Fが、光透過手段6内を移動し、受光素子5の感知範囲内を滑らかに動く、すなわち、その位置を維持しながら、その断面を変化させる(縫い糸又は織り糸が、どんなに完全度高くても、その断面は、部分ごとに変わるのが通常である)とする。この滑らかな移動、すなわち、断面の変化により、受光素子5に当たる円錐状影10及び11の位置及び/又は形状の変化が、公知のように生じて、その結果生ずる電気信号に変化をもたらす。この信号は、モニターされる糸の像及び/又は位置変化の関数となることが知られている。
Here, the thread F moves in the light transmitting means 6 and smoothly moves within the sensing range of the light receiving element 5, that is, changes its cross section while maintaining its position (however the sewing thread or the weaving thread is completely Even if the degree is high, the cross section usually changes from part to part). Due to this smooth movement, i.e. a change in cross section, a change in the position and / or shape of the conical shadows 10 and 11 impinging on the light receiving element 5 occurs in a known manner, resulting in a change in the resulting electrical signal. This signal is known to be a function of the monitored thread image and / or position change.

1個以上の発光素子3及び4を設けるため、受光素子5面上には、極めて大きな像検知範囲が、もたらされるので、糸Fの位置の関係なく、この検知範囲内での縫い糸又は織り糸の容易で信頼性のあるモニタリングを行える。これは、糸Fが、光透過手段6内で、どんな位置にあっても、糸は、発光素子3及び4の少なくとも一つから照射される光に、必ず当たることになり、受光素子5は、糸の存在を(糸の影又は受光素子5により検知される光反射を通じて)継続的に検知する。   Since one or more light-emitting elements 3 and 4 are provided, an extremely large image detection range is provided on the surface of the light-receiving element 5, so that the sewing thread or the woven yarn within this detection range can be obtained regardless of the position of the thread F. Easy and reliable monitoring. This means that the yarn F always strikes the light emitted from at least one of the light emitting elements 3 and 4 regardless of the position of the yarn F in the light transmitting means 6. The presence of the yarn is continuously detected (through the shadow of the yarn or the light reflection detected by the light receiving element 5).

光透過手段6は、また、その検知範囲内に糸を収容し、必要に応じて、その検知範囲内に案内することを可能にする。光透過手段は、赤外光に対して透過性であるとともに、耐摩耗性材料からなるため、糸に損傷を与えることなく糸と接触したままの状態にも適する。光透過手段は、適当な支持体(ボビン)から巻き戻すことによって繊維機械に糸を供給するとき、糸Fと絶えず接触しても、又、糸から大抵離れていてもよいことに留意すべきである。ここに、「大抵」とは、単なる過渡的な的な接触が、糸の供給中に光透過手段6との間では時々起こることを意味する。   The light transmitting means 6 also allows the yarn to be accommodated within the detection range and guided within the detection range as required. Since the light transmitting means is transmissive to infrared light and is made of an abrasion-resistant material, the light transmitting means is also suitable for a state in which the light remains in contact with the yarn without damaging the yarn. It should be noted that the light-transmitting means may be in constant contact with the yarn F or mostly away from the yarn when feeding the yarn to the textile machine by unwinding from a suitable support (bobbin). It is. Here, “mostly” means that a mere transient contact sometimes occurs with the light transmission means 6 during the supply of the yarn.

糸と光透過手段6とが接触すると、当然ながら光透過手段6が自動的に清掃されることにもなる。上述したように、埃又は糸残留物が形成されると、本装置1は検知ができなくなる。光透過手段は、糸が滑走するときには、糸により清掃されるので、埃又は糸残留物が溜まることはない。   When the yarn and the light transmitting means 6 come into contact with each other, naturally, the light transmitting means 6 is automatically cleaned. As described above, when dust or yarn residue is formed, the device 1 cannot detect. The light transmitting means is cleaned by the thread when the thread slides, so that dust or thread residue does not accumulate.

変形態様として、発光素子3及び4を、同時に作動させる代わりに、交互に作動させて、円錐状影(例えば、発光素子4により作り出される円錐状影10)が、非作動中の発光素子(この場合、発光素子3)によりもたらされる照射によって減少しない場合には、読み取り信号を出すようにしてもよい。こうすると、特に、本装置1が、糸Fの移動状態を分析するのに用いられるだけでなく、糸の番手又は断面の分析及び測定等、他の目的にも使用する場合に、装置の性能を一層向上させることができる。   As a variant, the light-emitting elements 3 and 4 can be operated alternately instead of simultaneously, so that a conical shadow (for example the conical shadow 10 created by the light-emitting element 4) becomes a non-actuated light-emitting element (this In this case, a read signal may be output if it is not reduced by the irradiation provided by the light emitting element 3). In this way, the performance of the apparatus 1 is particularly good when the apparatus 1 is used not only for analyzing the movement state of the yarn F but also for other purposes such as analysis and measurement of the yarn count or cross section. Can be further improved.

あるいは又、図2(ここには、図1に示す部材に対応する部材が、同じ参照符号で示されている)を参照すれば分かるように、本装置1は、2個の光素子3及び4を用い、これらの放出光は、糸を収容し案内する光透過手段6を透過した後、縫い糸又は織り糸Fに当たって、受光素子5に向かって反射される(矢印13及び14で示す)ようにしてもよい。受光素子は、光が当たると、反射された光量に比例した電気信号を発生する。 Alternatively, FIG. 2 (here, the parts corresponding to the parts shown in FIG. 1 are designated by the same reference numerals) as seen by reference to, the device 1 has two light emission elements 3 And 4, the emitted light passes through the light transmitting means 6 that receives and guides the yarn, then hits the sewing thread or the weaving yarn F, and is reflected toward the light receiving element 5 (indicated by arrows 13 and 14). It may be. When receiving light, the light receiving element generates an electrical signal proportional to the amount of reflected light.

この場合でも、発光素子3及び4は、同時に作動されても又は交互に作動されてもよい。 Even in this case, the light emitting elements 3 and 4 may be operated simultaneously or alternately.

簡易化した態様では、本装置1は、1個の発光素子3若しくは4だけを用い、又は、図2に示す発光素子3及び4とは反対側の位置に、反射部材(鏡のようなもの)を用いて、図1及び図2に示す各解決手段を混合させた構造を得るようにしてもよい。   In a simplified form, the device 1 uses only one light emitting element 3 or 4 or a reflection member (such as a mirror) at a position opposite to the light emitting elements 3 and 4 shown in FIG. ) May be used to obtain a structure in which the solving means shown in FIGS. 1 and 2 are mixed.

複雑化した態様では、発光素子は、数が3個以上、例えば4個以上とし、受光素子5の検知範囲を増大させてもよい。   In a complicated mode, the number of light emitting elements may be three or more, for example, four or more, and the detection range of the light receiving element 5 may be increased.

図3、4及び5は、本発明の思想に従った、本装置1の他の実施形態を示すものである。これらの図では、すでに説明した図面に示した部材に対応する部材には、同じ参照符号を付してある。   3, 4 and 5 show another embodiment of the device 1 according to the idea of the invention. In these drawings, members corresponding to those shown in the already described drawings are given the same reference numerals.

これらの図では、赤外線発光素子3及び4、例えば、KINGBRIGHT型コード番号K3010F3Cのものと、光透過手段6であって。例えば、アルミナ、ジルコニウム、サファイア又は合成セラミック等の部材からなり、糸ガイドとしても機能するものとが、示してある。経済的な態様では、光透過手段は、ナイロン、ポリカーボネート等の材料からなる、単なるプラスチック又はガラス製であってもよい。   In these figures, infrared light emitting elements 3 and 4, for example, KINGBRIGHT type code number K3010F3C and light transmitting means 6 are shown. For example, it is shown that it is made of a member such as alumina, zirconium, sapphire or synthetic ceramic and also functions as a yarn guide. In an economical manner, the light transmission means may be made of a simple plastic or glass made of a material such as nylon or polycarbonate.

光透過手段6は、例えば、口が開いたリング状をした本体部を備える。この本体部は、両側縁21及び22を備え、これら両側縁内に、凹部24を設けて、本装置1のケース30の部品28及び29を支持する部分27から突出する段部26を収容する。これら両部品は、互いに重ね合わせて閉じる(図4及び5参照)ことにより、両部品間に、これらの素子3、4及び5と、これらと接続される電子回路40とを、保持する。   The light transmitting means 6 includes, for example, a ring-shaped main body having an open mouth. The main body portion includes both side edges 21 and 22, and a recess 24 is provided in both side edges to accommodate the stepped portion 26 protruding from the portion 27 that supports the parts 28 and 29 of the case 30 of the apparatus 1. . These two parts are overlapped with each other and closed (see FIGS. 4 and 5), thereby holding these elements 3, 4 and 5 and the electronic circuit 40 connected to them between the two parts.

両部品28及び29は、向かい合う縁31及び32に沿って互いに整合される。向かい合う縁は、嵌り合って両部品を互いに固定できる形状をしている(公知のように、突起と対応する凹部とを形成する)ことが好ましい。ねじ等の固定手段(図示せず)を設けてもよいし、向かい合う縁31及び32に沿って接着剤を塗布することにより、又は超音波接合により、両部品の結合を永久化してもよい。   Both parts 28 and 29 are aligned with each other along opposing edges 31 and 32. The facing edges are preferably shaped so that they can fit together and secure the two parts together (to form a protrusion and a corresponding recess, as is well known). Fixing means (not shown) such as screws may be provided, or the bonding of both parts may be made permanent by applying an adhesive along the facing edges 31 and 32, or by ultrasonic bonding.

これらの素子3、4及び5と、電子回路40とを載せた、実質的に平坦な支持体33は、両部品28及び29間に設けられる。この支持体は、両部品を互いに固定すると、両部品により保持される。   A substantially flat support 33 on which these elements 3, 4 and 5 and the electronic circuit 40 are mounted is provided between the parts 28 and 29. When both parts are fixed to each other, the support is held by both parts.

両部品28及び29と、支持体33とは、光透過手段6の本体部20内の穴35に対応して開口部(それぞれ、28A、29A及び33Aで示す)を備える。これらの図では、これら開口部28A、29A及び33Aと、穴35とが、1辺が開いた、実質的に円形な形状をしていて、これらにより、糸Fを穴35に入れてそのモニターを行うための挿入路37を形成する。   Both parts 28 and 29 and the support 33 have openings (indicated by 28A, 29A and 33A, respectively) corresponding to the holes 35 in the main body 20 of the light transmitting means 6. In these drawings, the openings 28A, 29A and 33A and the hole 35 have a substantially circular shape with one side opened, and thus the thread F is put into the hole 35 and the monitor is opened. An insertion path 37 for performing the above is formed.

しかしながら、本体部20は、異なった形状又は寸法であってもよく、図3に示す態様のように、糸Fの挿入を容易化するオープンリング形状にする代わりに、ボビンから巻き戻される糸の回転移動(バルーニング)を許す必要がある場合に、又は、糸を、撚り合せ又はスパイラル処理中にモニターすべき場合には、閉じたリング形状にしてもよい。   However, the main body portion 20 may have a different shape or size, and instead of an open ring shape that facilitates insertion of the yarn F as in the embodiment shown in FIG. If it is necessary to allow rotational movement (ballooning) or if the yarn is to be monitored during twisting or spiraling, it may be in a closed ring shape.

図3に示す受光素子5は、有名な会社であるHAMAMATSUのコード番号7105−05として製造される位置センサPSDとすることができる。2個のLED43及び44(例えば、赤色のものと緑色のもの)が、それぞれ欠陥又は問題なしを表示するものとして図示されている。これらLEDは、支持体33のアーム45及び46上に位置付けられ、支持体の主体部33Aから、ケース30の部品28の窓部47及び48に対応する位置に突出している。この部品は、部品29と同様、アームに関しては、支持体33のように形成されることが好ましい。   The light receiving element 5 shown in FIG. 3 can be a position sensor PSD manufactured as code number 7105-05 of HAMAMATSU which is a famous company. Two LEDs 43 and 44 (e.g., red and green) are shown as indicating a defect or no problem, respectively. These LEDs are positioned on the arms 45 and 46 of the support 33 and protrude from the main body 33A of the support to positions corresponding to the windows 47 and 48 of the component 28 of the case 30. Like the component 29, this component is preferably formed like the support 33 with respect to the arm.

LED43に対応する位置に、例えば、SUNLEDのコード番号ZTN154Wからなる赤外線光放出素子44を設け、例えば、SUNLEDのコード番号ZRM154Wからなるフォトトランジスタ型光感応素子51を、LED44に対応する位置に設ける。これらトランスミッタとレシーバとにより、例えば、作業者の人差し指が入ることにより遮られる場合等、一時的に、本装置をOFFさせる、光学キー又はバリアを構成する。このバリアが、再度遮られると、本装置はONにされる。この光学キーは、アラーム信号、又は通信アドレスコード用のアクセプタンス信号をリセットするのに好適に用いることができる。 For example, an infrared light emitting element 44 having a SUNLED code number ZTN154W is provided at a position corresponding to the LED 43. For example, a phototransistor type photosensitive element 51 having a SUNLED code number ZRM154W is provided at a position corresponding to the LED 44 . These transmitter and receiver constitute an optical key or barrier that temporarily turns off the apparatus, for example, when the operator's index finger is interrupted. When this barrier is blocked again, the device is turned on. This optical key can be suitably used to reset an alarm signal or an acceptance signal for a communication address code.

さらに、図3には、本装置1に対する入出力信号用のフィードコネクタ55が図示されている。例えば、こうした信号は、糸Fが供給される繊維機械の電子制御回路と、本装置1との間のシリアル通信に使用されて、糸の破断等の異常が生じたり、番手の変化等(例えば、結び目、もつれ、繊維状異物によるもの)の異常が生じたり、つまり、撚り合せ中、若しくは、一方の糸の周りに他方の糸を巻き付けることにより、2本の糸を組み合わせる場合(スパイラル処理)に、測定で得た撚りの本数が、設定したパラメータと異なる、2本以上の糸により引き起こされる番手の変化が、発生している場合に、繊維機械の停止信号を出すようしてもよい。   Further, FIG. 3 shows an input / output signal feed connector 55 for the apparatus 1. For example, such a signal is used for serial communication between the electronic control circuit of the textile machine to which the yarn F is supplied and the apparatus 1, and an abnormality such as breakage of the yarn occurs or a change in the number (for example, , Knots, tangles, or fibrous foreign matter), or when two yarns are combined during twisting or by winding the other yarn around one yarn (spiral treatment) In addition, when a change in the count caused by two or more yarns, in which the number of twists obtained by measurement is different from the set parameters, a stop signal for the textile machine may be issued.

これらの機能は、電子回路100及びマイクロプロセッサユニット101を介して本装置1によりもたらされ、これら電子回路及びマイクロプロセッサユニットは、繊維機械の電子制御回路にコネクタ55を介して接続できる。   These functions are provided by the present apparatus 1 via an electronic circuit 100 and a microprocessor unit 101, which can be connected to an electronic control circuit of the textile machine via a connector 55.

電子回路100は、次のように構成され機能する。   The electronic circuit 100 is configured and functions as follows.

図6を参照すると、本発明に従って構成される装置の電気的概略構成は、この例示では、公知のPSD回路からなる光学位置センサ110を備える。光学位置センサは、直接像(図1)又は反射像(図2)を捕らえるのに使用される。こうした像は、フォトダイオードからなる発光素子3及び4により照射される赤外光が変調されたものである。フォトダイオードは、バイアス抵抗器111及び112からなるバイアス回路によりバイアスされる。   Referring to FIG. 6, the electrical schematic configuration of a device constructed in accordance with the present invention comprises an optical position sensor 110 comprising a known PSD circuit in this illustration. Optical position sensors are used to capture direct images (FIG. 1) or reflected images (FIG. 2). Such an image is obtained by modulating infrared light irradiated by the light emitting elements 3 and 4 made of photodiodes. The photodiode is biased by a bias circuit composed of bias resistors 111 and 112.

マイクロプロセッサユニット(又は単なるマイクロコントローラ)120が、ゲート113を介して抵抗器111に接続されるように設けられる。マイクロプロセッサユニット又はマイクロコントローラ120は、システムが、待機状態又は低消費状態にある場合、フォトダイオード3を流れる電流値を低下させることができる。   A microprocessor unit (or simply a microcontroller) 120 is provided to be connected to the resistor 111 via the gate 113. The microprocessor unit or microcontroller 120 can reduce the value of the current flowing through the photodiode 3 when the system is in a standby state or a low consumption state.

PSDセンサ110では、モニター対象の縫い糸又は織り糸の像に基づいて、赤外光が照射されると、赤外光像(糸の形状)が、PSD光学センサを照射する位置に応じて、二つの電流を、出力端子(フォトダイオードのアノード)に生じる。   In the PSD sensor 110, when infrared light is irradiated based on an image of a sewing thread or a weaving thread to be monitored, two infrared light images (yarn shapes) are generated depending on the position where the PSD optical sensor is irradiated. A current is generated at the output terminal (anode of the photodiode).

これらの電流は、抵抗器124及び125を極性化し、電位差が、抵抗器の両端間に発生されて、電圧信号VA及びVBが、PSDセンサ110の出力122及び123に現れる。   These currents polarize resistors 124 and 125, a potential difference is generated across the resistors, and voltage signals VA and VB appear at outputs 122 and 123 of PSD sensor 110.

演算増幅器127及び128、並びに抵抗器及びコンデンサ130、131,132、133、134、135、136及び137とからなる、2段増幅回路126に、電圧信号VA及びVBが入力される。2段増幅回路126は、抵抗器140及び141、並びにフィルタコンデンサ142から基準信号を得る。こうした回路構成により、差動増幅器が、上述した抵抗器124及び125に加わっている電位差、すなわち、PSDセンサ110から出る電圧信号VA及びVBを増幅できるように構成される。   Voltage signals VA and VB are input to a two-stage amplifier circuit 126 including operational amplifiers 127 and 128 and resistors and capacitors 130, 131, 132, 133, 134, 135, 136, and 137. The two-stage amplifier circuit 126 obtains a reference signal from the resistors 140 and 141 and the filter capacitor 142. With such a circuit configuration, the differential amplifier is configured to amplify the potential difference applied to the resistors 124 and 125 described above, that is, the voltage signals VA and VB output from the PSD sensor 110.

2段増幅回路126は、2段増幅器を出て、マイクロプロセッサユニット又はマイクロコントローラ120のゲート150及び151に向かう、適切に増幅された信号を発生する。これら増幅信号は、例えば、2段差動増幅器の入力で検出される像変化レベルの1000及び100倍に等しく、装置では、二倍の制御スケールとなる。   The two-stage amplifier circuit 126 generates a suitably amplified signal that exits the two-stage amplifier and is directed to the gates 150 and 151 of the microprocessor unit or microcontroller 120. These amplified signals are, for example, equal to 1000 and 100 times the image change level detected at the input of the two-stage differential amplifier, resulting in a double control scale in the device.

マイクロプロセッサユニット又はマイクロコントローラ120のゲート150及び151に生ずる増幅信号は、マイクロプロセッサユニット又はマイクロコントローラ120の一部をなすADCユニットにより、公知のようにして、アナログ信号から、デジタル信号に変換される。   The amplified signals generated at the gates 150 and 151 of the microprocessor unit or microcontroller 120 are converted from analog signals to digital signals in a known manner by the ADC unit forming part of the microprocessor unit or microcontroller 120. .

この変換により、上述した増幅信号は、モニター対象の糸に関する像の関数となる数値に変換される。処理アルゴリズムに従って、変換された数値により、像変化が、プログラムされた最低基準値に等しい又はこれよりも大である、レベル値及び周波数値であるか否かを判断できる。   By this conversion, the above-described amplified signal is converted into a numerical value that is a function of an image related to the yarn to be monitored. According to the processing algorithm, the converted numerical value can determine whether the image change is a level value and a frequency value that are equal to or greater than the programmed minimum reference value.

像変化のレベル値及び周波数値が、プログラム可能な「アラーム回数」値を越えるアラーム回数を示すプログラムされた基準値よりも小である場合には、アラーム信号を出して、マイクロプロセッサユニット又はマイクロコントローラ120のゲート150に生じさせる。この信号は、保護・アラームブロック149に入力される。   If the image change level and frequency values are less than a programmed reference value indicating the number of alarms that exceeds the programmable "number of alarms" value, an alarm signal is issued and the microprocessor unit or microcontroller 120 gates 150 are generated. This signal is input to the protection / alarm block 149.

バイアス抵抗器160及び161を介して、ゲート153からの信号は、出力トランジスタ162を駆動して、コネクタの(ストップ)入力163に生ずる(電流)アラーム信号を出す。   Via bias resistors 160 and 161, the signal from gate 153 drives output transistor 162 to provide a (current) alarm signal that occurs at the (stop) input 163 of the connector.

抵抗器165を分流器として使用して、出力トランジスタ162により生じた電流を、測定できるようにする。この抵抗器における電圧降下は、出力トランジスタにより生じた電流の関数である。   Resistor 165 is used as a shunt to allow the current generated by output transistor 162 to be measured. The voltage drop across this resistor is a function of the current produced by the output transistor.

この電圧降下は、抵抗器165にデカップリング抵抗器170を介して接続されたゲート168を介して、マイクロプロセッサユニット又はマイクロコントローラ120により測定される。これにより、本装置1のストップ出力は、短絡から保護される。この点、所定の最大値を越える高電流の場合、マイクロプロセッサユニット又はマイクロコントローラ120は、出力トランジスタ162を非導通状態にして出力トランジスタを保護する。   This voltage drop is measured by the microprocessor unit or microcontroller 120 via a gate 168 connected to a resistor 165 via a decoupling resistor 170. Thereby, the stop output of this apparatus 1 is protected from a short circuit. In this regard, in the case of a high current exceeding a predetermined maximum value, the microprocessor unit or microcontroller 120 protects the output transistor by turning off the output transistor 162.

出力トランジスタ162と平行に接続されたダイオード170も、出力トランジスタ162のコレクタとエミッタ間の電圧反転に対する保護として機能する。   The diode 170 connected in parallel with the output transistor 162 also functions as a protection against voltage inversion between the collector and emitter of the output transistor 162.

マイクロプロセッサユニット又はマイクロコントローラ120の出力175及び176の各々に接続されたバイアストランジスタ171及び172を介して、LED43及び44は、本装置1の異常状態を検知でき、導通状態になった緑色LED43は、全てOKを表示し、一方、導通状態になった赤色LED44は、検知した糸の異常発生を表示する。これらLED43及び44、並びにこれらに付属する抵抗器により、本装置1用の異常検知ブロック180を構成する。   Through bias transistors 171 and 172 connected to the outputs 175 and 176 of the microprocessor unit or microcontroller 120, the LEDs 43 and 44 can detect an abnormal state of the apparatus 1, and the green LED 43 that is in a conductive state is , All are displayed OK, and the red LED 44 in the conductive state displays the detected abnormality of the yarn. These LEDs 43 and 44 and the resistors attached to them constitute an abnormality detection block 180 for the apparatus 1.

本装置1は、像変化レベル限界値と関連するアラーム回数に関するパラメータをプログラムするプログラミング・通信ユニットに接続して、限界を越えたら、本装置にストップ出力と赤色のアラームLEDをONにさせる。   The device 1 is connected to a programming / communication unit that programs parameters relating to the number of alarms associated with the image change level limit value and, when the limit is exceeded, causes the device to turn on a stop output and a red alarm LED.

こうした通信は、マイクロプロセッサユニット又はマイクロコントローラ120の適当な入力と適切な出力とを介して、行われ、マイクロプロセッサユニット又はマイクロコントローラは、入力デカップリング抵抗器185と出力バッファ186のそれぞれを介してコネクタ55によりインターフェースされる。   Such communication takes place via the appropriate input and appropriate output of the microprocessor unit or microcontroller 120, which is connected via the input decoupling resistor 185 and the output buffer 186, respectively. Interfaced by a connector 55.

電源回路190も設けられており、公知のLCローパスフィルタ191及び192と、転極防止保護ダイオード193と、安定化回路196及び197とで構成される。第1安定化回路は、バイアス部品200及び201並びにフィルタ202を付属品として備え、これらの値により、VCC5で表示された5Vに固定された、安定化回路196の安定化出力電圧が定まる。第2安定化回路197は、3.3Vの第2電源ユニットに属し、コンデンサ206及び207からなる、擾乱防止フィルタを備える。   A power supply circuit 190 is also provided, and includes a known LC low-pass filter 191 and 192, an anti-polarization protection diode 193, and stabilization circuits 196 and 197. The first stabilizing circuit includes the bias components 200 and 201 and the filter 202 as accessories, and the stabilized output voltage of the stabilizing circuit 196 fixed to 5 V indicated by VCC5 is determined by these values. The second stabilization circuit 197 includes a disturbance prevention filter that belongs to the second power supply unit of 3.3 V and includes the capacitors 206 and 207.

電源リセット回路209も設けられ、マイクロプロセッサユニット又はマイクロコントローラ120のゲート213に接続された抵抗器211に接続された安定化回路210で構成され、マイクロプロセッサユニット又はマイクロコントローラが、ネットワークに異常又は欠陥が生じた場合、正しいデータの制御及び保存を行う。   A power reset circuit 209 is also provided and consists of a stabilization circuit 210 connected to a resistor 211 connected to the gate 213 of the microprocessor unit or microcontroller 120, and the microprocessor unit or microcontroller is faulty or defective in the network. If this happens, control and store the correct data.

さらに、電子回路100は、フォトダイオード型光放出素子49(抵抗器210によりバイアスされ、ゲート231を介してマイクロプロセッサユニット又はマイクロコントローラ120により制御されるもの)と、付属バイアス抵抗器232を備えたフォトトランジスタからなる光感応素子51とを備える。上述したように、これらにより、光学キー式の停止バリアを構成し、その作動状態を、ゲート113における対応する入力を検知して、マイクロプロセッサユニット又はマイクロコントローラ120により読み取られる。この光学キーは、例えば、本発明による糸モニター装置用のリセット用キーとして利用できる。   The electronic circuit 100 further includes a photodiode-type light emitting element 49 (biased by the resistor 210 and controlled by the microprocessor unit or the microcontroller 120 via the gate 231) and an attached bias resistor 232. And a photosensitive element 51 made of a phototransistor. As described above, these constitute an optical key stop barrier, and its operating state is read by the microprocessor unit or microcontroller 120 by detecting the corresponding input at the gate 113. This optical key can be used, for example, as a reset key for the yarn monitoring device according to the present invention.

位置及び/又は像における変化を直接検知するための照射を行うときにおける、発光素子と受光素子の空間位置を示す、本発明による装置の実施の形態の一つを示す概略図である。FIG. 6 is a schematic diagram showing one embodiment of the apparatus according to the present invention showing the spatial position of the light emitting element and the light receiving element when performing irradiation for directly detecting changes in position and / or image. 位置及び/又は像における変化を反射により検知するための照射を行うときにおける、発光素子と受光素子の空間位置を示す、本発明による装置の他の実施の形態を示す概略図である。FIG. 6 is a schematic diagram showing another embodiment of the apparatus according to the present invention showing the spatial position of the light emitting element and the light receiving element when performing irradiation for detecting changes in position and / or image by reflection. 本発明に係る装置の実施の形態の一つを示す分解斜視図である。It is an exploded perspective view showing one of the embodiments of the device concerning the present invention. 図3に示した装置を組み立てた場合の正面側斜視図である。It is a front side perspective view at the time of assembling the apparatus shown in FIG. 図3に示した装置を組み立てた場合の背面側斜視図である。It is a back side perspective view at the time of assembling the apparatus shown in FIG. 図1に示した装置の概略回路図である。It is a schematic circuit diagram of the apparatus shown in FIG.

Claims (9)

少なくとも1個の発光素子(3、4)と、少なくとも1個の受光素子(5)とを備え、発光素子(3、4)は、受光素子(5)により検知される前に、糸(F)に当たる光信号を発生し、受光素子の検知に基づいて、発光素子(3、4)と受光素子(5)間での、移動、停止、寸法的な欠陥又はその他の寸法的な特徴等の、糸(F)の特徴を明らかにし、光信号が、糸(F)に当たった後で、光信号により照射を受け、糸ガイドとして機能する、光透過手段(6)が、発光素子(3、4)と受光素子(5)との間に介在する、繊維機械に供給される縫い糸又は織り糸(F)を光学的に分析する装置において、前記光透過手段(6)は、セラミック材料製であり、前記セラミック材料は、アルミナ、ジルコニウム、サファイア及びガラスのうちの少なくとも1種を含み、こうしたセラミック材料は、透明な繊維状セラミックであり、前記光透過手段(6)は、前記糸(F)と絶えず又は過渡的に接触するように構成され、前記光透過手段(6)は、少なくとも部分的に環状な本体部(20)を備え、前記糸(F)は、この本体部の穴(35)内に位置付けられることを特徴とする装置。At least one light emitting element (3, 4) and at least one light receiving element (5) are provided, and the light emitting element (3, 4) is detected by the yarn (F) before being detected by the light receiving element (5). ), And based on the detection of the light receiving element, such as movement, stop, dimensional defect or other dimensional feature between the light emitting element (3, 4) and the light receiving element (5), etc. The light transmission means (6), which clarifies the characteristics of the yarn (F) and is irradiated with the optical signal after the light signal hits the yarn (F) and functions as a yarn guide, is a light emitting element (3). 4) In the device for optically analyzing the sewing thread or weaving thread (F) supplied to the textile machine, which is interposed between the light receiving element (5), the light transmitting means (6) is made of a ceramic material. And the ceramic material is alumina, zirconium, sapphire and glass It comprises at least one, such a ceramic material is a transparent fibrous ceramic, the light transmitting means (6) is configured to constantly or transiently in contact with the yarn (F), the light transmitting means (6) comprises an at least partially annular body (20), the thread (F) being positioned in a hole (35) in the body . 前記光透過手段(6)の環状な本体部(20)は,ケース(30)により支持され、ケースは、前記光透過手段(6)の本体部(20)の穴(35)の周囲の少なくとも一部を占める形状を有することを特徴とする、請求項1に記載の装置。 The annular main body (20) of the light transmitting means (6) is supported by a case (30), and the case is at least around the hole (35) of the main body (20) of the light transmitting means (6). Device according to claim 1, characterized in that it has a shape that occupies a part. 前記ケース(30)は、2個の結合部品(28、29)からなり、両者間に、前記光透過手段(6)を保持することを特徴とする、請求項2に記載の装置。  Device according to claim 2, characterized in that the case (30) consists of two coupling parts (28, 29) and holds the light transmission means (6) between them. 前記ケース(30)の結合部品(28、29)は、両者を組み合わせることができる向かい合う縁(31、32)を備え、両結合部品(28、29)間に、前記少なくとも1個の発光素子(3、4)と、前記受光素子(5)とを備える電子回路(100)を位置付け、前記受光素子は、マイクロプロセッサユニット(120)に接続されて、前記受光素子(5)により受信された前記光信号に基づいて、予め設定したアルゴリズムに従って、前記糸(F)のモニターすべき特徴のそれぞれを評価することを特徴とする、請求項3に記載の装置。  The coupling parts (28, 29) of the case (30) have opposing edges (31, 32) that can be combined with each other, and the at least one light emitting element (28, 29) is interposed between the coupling parts (28, 29). 3, 4) and an electronic circuit (100) comprising the light receiving element (5), the light receiving element being connected to a microprocessor unit (120) and received by the light receiving element (5) 4. The apparatus according to claim 3, characterized in that each of the characteristics to be monitored of the yarn (F) is evaluated according to a preset algorithm based on an optical signal. 前記ケース(30)の結合部品(28、29)と、支持体(33)とが、主体部から突出する複数個のアームであって、前記光透過手段(6)の前記ケース(30)を少なくとも部分的に構成するアームを備えることを特徴とする、請求項4に記載の装置。  The coupling parts (28, 29) of the case (30) and the support (33) are a plurality of arms protruding from the main part, and the case (30) of the light transmission means (6) is Device according to claim 4, characterized in that it comprises at least partly configured arms. 前記アームは、装置(1)のケース(30)内で、互いに向かい合って挿入路(37)を構成することを特徴とする、請求項5に記載の装置。  Device according to claim 5, characterized in that the arms constitute an insertion path (37) facing each other in a case (30) of the device (1). 向かい合うアームには、光放出素子(49)と光感応素子(51)とが位置付けられて、遮られると、これらの素子は、装置(1)の作動状態を修正する光学バリアとして機能することを特徴とする、請求項6に記載の装置。  The light emitting element (49) and the light sensitive element (51) are positioned on the opposing arms, and when blocked, these elements function as an optical barrier that modifies the operating state of the device (1). Device according to claim 6, characterized. 前記向かい合うアームの少なくとも一方に、前記受光素子(5)の方を向くように、前記発光素子(3、4)を位置付けることを特徴とする、請求項7に記載の装置。  The device according to claim 7, characterized in that the light emitting element (3, 4) is positioned on at least one of the facing arms so as to face the light receiving element (5). 前記発光素子(3、4)の数は、少なくとも2個であり、前記発光素子は、前記糸(F)が、これら発光素子の少なくとも1個から発光される光に必ず照射されるように、方向付けられることを特徴とする、請求項1に記載の装置。  The number of the light emitting elements (3, 4) is at least two, and the light emitting element ensures that the yarn (F) is irradiated with light emitted from at least one of the light emitting elements. Device according to claim 1, characterized in that it is oriented.
JP2006552593A 2004-02-16 2005-01-27 Optical analyzer including two-dimensional analysis of sewing or weaving yarn Active JP4799425B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2004A000252 2004-02-16
IT000252A ITMI20040252A1 (en) 2004-02-16 2004-02-16 DEVICE FOR THE OPTICAL ANALYSIS EVEN TWO DIMENSIONAL OF A THREAD OR YARN
PCT/EP2005/050351 WO2005078384A1 (en) 2004-02-16 2005-01-27 Device for the optical analysis, including two-dimensional, of a thread or yarn

Publications (2)

Publication Number Publication Date
JP2007522463A JP2007522463A (en) 2007-08-09
JP4799425B2 true JP4799425B2 (en) 2011-10-26

Family

ID=34856913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006552593A Active JP4799425B2 (en) 2004-02-16 2005-01-27 Optical analyzer including two-dimensional analysis of sewing or weaving yarn

Country Status (7)

Country Link
US (1) US7773225B2 (en)
EP (1) EP1716390B1 (en)
JP (1) JP4799425B2 (en)
CN (1) CN100434860C (en)
IT (1) ITMI20040252A1 (en)
TW (1) TWI316575B (en)
WO (1) WO2005078384A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008059176A1 (en) * 2008-11-25 2010-05-27 Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh Capacitive sensor unit for monitoring the quality of fiber material and thus equipped machine for the production of knitwear
IT1393094B1 (en) * 2009-02-19 2012-04-11 Btsr Int Spa PROGRAMMABLE SENSOR TO CHECK THE POWER OF THE WIRE TO A TEXTILE MACHINE AND METHOD FOR ITS PROGRAMMING
WO2010130474A1 (en) * 2009-05-13 2010-11-18 Siemens Aktiengesellschaft Device for determining a property of a cylindrical test specimen
ITMI20111252A1 (en) * 2011-07-06 2013-01-07 Btsr Int Spa DEVICE AND METHOD OF DETECTION OF A YARN SUPPLY CHANGE
CN103645190B (en) * 2013-11-27 2016-04-06 上海工程技术大学 Mirror case and device thereof is turned round for the adjustable two of yarn appearance parameter measurement
CN103981607B (en) * 2014-05-23 2016-08-17 汪建建 A kind of spiral photoelectricity yarn clearer
JP2017088325A (en) * 2015-11-11 2017-05-25 村田機械株式会社 Yarn drawer device and yarn winding device
ITUB20160775A1 (en) * 2016-02-16 2017-08-16 Redaelli Tecna Spa DEVICE FOR THE CONTINUOUS AND AUTOMATIC MEASUREMENT OF GEOMETRIC PARAMETERS OF A ROPE
TWI628428B (en) * 2016-12-16 2018-07-01 由田新技股份有限公司 A multi-angled defect capturing device and a multi-angled defect inspecting apparatus having the same
US10634481B2 (en) * 2017-07-31 2020-04-28 Justin Scott Thomason Tower guy wire maintenance apparatus
DE102018111648A1 (en) * 2018-05-15 2019-11-21 Saurer Spinning Solutions Gmbh & Co. Kg Yarn sensor for optically detecting a yarn moved in its longitudinal direction
EP3594613B1 (en) * 2019-11-18 2022-06-29 KARL MAYER STOLL R&D GmbH Sensor for surface wear measurement
CN112301481A (en) * 2020-10-29 2021-02-02 浙江凯成智能设备股份有限公司 Broken wire detector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155262A (en) * 1976-06-17 1977-12-23 Nissan Motor Woof detector
JPS5327055A (en) * 1976-08-26 1978-03-13 Asahi Glass Co Ltd Method of measuring thickness of transparent board
JPS5633260U (en) * 1979-08-21 1981-04-01
JPH06508593A (en) * 1991-12-12 1994-09-29 リーター、インゴルシュタット、シュピナライ マシーネンバウ、アクチェンゲゼルシャフト Method and apparatus for cleaning the sensor surface of a yarn monitoring device
WO1999035075A1 (en) * 1998-01-02 1999-07-15 Iteco S.R.L. Method and apparatus for detecting yarn defects during production, in particular chenille yarns
US6201602B1 (en) * 1997-01-28 2001-03-13 Barco B.V. Detection of foreign fibres and foreign materials based on an absorption measurement of light and corresponding detection method
JP2002228051A (en) * 2001-01-30 2002-08-14 Kawasaki Heavy Ind Ltd Powdery and granular material transport pipe
EP1359108A1 (en) * 2002-04-30 2003-11-05 Seltec srl Method and compact device for detection of defects of yarns during production, in particular chenille yarns

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341958A (en) * 1979-08-21 1982-07-27 Ohsawa Shiujia Yarn-break/yarn-stop detecting device
NO159201C (en) 1980-09-08 1988-12-07 Atlas Copco Ab PROCEDURE FOR BOLTING IN MOUNTAIN AND COMBINED EXPANSION BOLT AND INSTALLATION DEVICE FOR SAME.
IT1169113B (en) 1983-02-24 1987-05-27 Tiziano Barea DEVICE FOR CHECKING THE ADVANCE STATE OF A THREAD FEEDING TO A WEAVING MACHINE
EP0197763B1 (en) * 1985-04-04 1991-09-18 Commonwealth Scientific And Industrial Research Organisation Monitoring for contaminants in textile product
JPS63185900A (en) 1987-01-29 1988-08-01 Sumitomo Electric Ind Ltd Heat-treating method of single crystal of composite oxide ferroelectrics
JPH0414000Y2 (en) 1987-09-11 1992-03-30
DE4024846C1 (en) * 1990-08-04 1992-01-02 G.M. Pfaff Ag, 6750 Kaiserslautern, De
SE469448B (en) * 1991-09-27 1993-07-05 Rydborn S A O OPTICAL MONITORING DEVICE TO DETECT A TRADE
CH683378A5 (en) * 1992-03-17 1994-02-28 Zellweger Uster Ag Method and apparatus for detecting impurities in a textile test material and using the apparatus.
JP3028174B2 (en) 1993-12-27 2000-04-04 株式会社ケー・エフ・シー Rock bolt construction method
JP4109073B2 (en) 2001-10-05 2008-06-25 日新製鋼株式会社 Plated steel pipe lock bolt
JP4035001B2 (en) 2002-06-13 2008-01-16 日新製鋼株式会社 Lock bolt pressurization / expansion seal head and multiple lockbolt simultaneous pressurization / expansion method
JP4203566B2 (en) 2003-09-01 2009-01-07 日新製鋼株式会社 Lock bolt pull-out resistance test apparatus and lock bolt pull-out resistance test method
JP4680491B2 (en) 2003-11-17 2011-05-11 日新製鋼株式会社 Steel pipe expansion lock bolt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155262A (en) * 1976-06-17 1977-12-23 Nissan Motor Woof detector
JPS5327055A (en) * 1976-08-26 1978-03-13 Asahi Glass Co Ltd Method of measuring thickness of transparent board
JPS5633260U (en) * 1979-08-21 1981-04-01
JPH06508593A (en) * 1991-12-12 1994-09-29 リーター、インゴルシュタット、シュピナライ マシーネンバウ、アクチェンゲゼルシャフト Method and apparatus for cleaning the sensor surface of a yarn monitoring device
US6201602B1 (en) * 1997-01-28 2001-03-13 Barco B.V. Detection of foreign fibres and foreign materials based on an absorption measurement of light and corresponding detection method
WO1999035075A1 (en) * 1998-01-02 1999-07-15 Iteco S.R.L. Method and apparatus for detecting yarn defects during production, in particular chenille yarns
JP2002228051A (en) * 2001-01-30 2002-08-14 Kawasaki Heavy Ind Ltd Powdery and granular material transport pipe
EP1359108A1 (en) * 2002-04-30 2003-11-05 Seltec srl Method and compact device for detection of defects of yarns during production, in particular chenille yarns

Also Published As

Publication number Publication date
WO2005078384A1 (en) 2005-08-25
TWI316575B (en) 2009-11-01
CN1918449A (en) 2007-02-21
ITMI20040252A1 (en) 2004-05-16
CN100434860C (en) 2008-11-19
JP2007522463A (en) 2007-08-09
EP1716390A1 (en) 2006-11-02
EP1716390B1 (en) 2011-12-07
US7773225B2 (en) 2010-08-10
TW200535299A (en) 2005-11-01
US20080225305A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4799425B2 (en) Optical analyzer including two-dimensional analysis of sewing or weaving yarn
KR102448715B1 (en) Sensor combining dust sensor and gas sensor
JP2013545089A (en) Yarn clearer and method for removing yarn defects
US7324201B2 (en) Yarn sensor
JP7337540B2 (en) Yarn sensor for optically detecting a yarn displaced in the longitudinal direction
JP5820810B2 (en) Optical scanning apparatus and method for moving fiber material
JPH07325049A (en) Detector of foreign matter material
JP2019506623A (en) Yarn imaging device
US10280032B2 (en) Thread feeder of rotary drum type with detection of the density of thread present thereon
JP2016500438A (en) Equipment for optical inspection of moving fiber materials
JP6241087B2 (en) Yarn state detection method and yarn state detection device
KR100205690B1 (en) Thread feeder
US9083946B2 (en) System to detect failed pixels in a sensor array
ITTO970351A1 (en) OPTICAL PROBE PERFECTED FOR THE SURVEILLANCE OF THE WIRE RESERVE IN WEFT FEEDING DEVICES AND FEEDING DEVICES
WO2002037056A1 (en) Device for optical yarn measurement
US4814633A (en) Yarn storing device
CN109853163B (en) Dirt detection method based on excess line detection technology
US8115929B2 (en) Thread lateral movement sensor
JPS5968606A (en) Detector for thickness variance of fiber thready material
JPH063367A (en) Method and apparatus for judging state of thread, which is sent into fiber machine,by detecting movement of thread before optical sensor
JPS59111004A (en) Delivery length measuring apparatus for filamentous body and the like
CN110023547A (en) Optical control apparatus for spinning frame
JPH04250310A (en) Replacement detecting sensor for bobbin winder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100621

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100721

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250