JP4799086B2 - Electronic flow meter for high temperature - Google Patents

Electronic flow meter for high temperature Download PDF

Info

Publication number
JP4799086B2
JP4799086B2 JP2005256200A JP2005256200A JP4799086B2 JP 4799086 B2 JP4799086 B2 JP 4799086B2 JP 2005256200 A JP2005256200 A JP 2005256200A JP 2005256200 A JP2005256200 A JP 2005256200A JP 4799086 B2 JP4799086 B2 JP 4799086B2
Authority
JP
Japan
Prior art keywords
water
temperature
case
magnetic sensor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005256200A
Other languages
Japanese (ja)
Other versions
JP2007071571A (en
Inventor
鉄平 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2005256200A priority Critical patent/JP4799086B2/en
Publication of JP2007071571A publication Critical patent/JP2007071571A/en
Application granted granted Critical
Publication of JP4799086B2 publication Critical patent/JP4799086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、高温用電子式流量計に関するものである。   The present invention relates to a high-temperature electronic flow meter.

実公平8−4572号公報No. 8-4572 特開平10−54742号公報JP-A-10-54742

従来から、高温水の流量を測定する電子式流量計が知られている。これは、図6の従来例を用いて説明すると、高温水の通過によって回転する羽根車104に磁石105を取り付け、その磁石の回転数を磁気センサ106で検出し、その回転数から高温水の流量を電子ユニット110にて算出するとともに、表示部(図示しない)に当該流量を表示するものである。このような高温用電子式流量計は、遮水板107が高温水により加熱されるため、この影響を受けて磁気センサ106の温度も上昇しやすくなる。しかしながら、磁気センサ106が高温になると磁気の検出感度が低下する問題がある。そのため従来から、磁気センサ106の温度上昇を防止することが課題の一つとされてきた。この課題を解決するためには、熱源である遮水板107から離れた位置に磁気センサ106を配置すればよいが、あまり離すと磁気センサ106が磁気を検出できなくなってしまう。そのため、例えば熱源と磁気センサの間に真空部を形成したり(特許文献1)、断熱材や放熱フィンを設けたり(特許文献2)することにより、磁気センサ106の加熱を防止する方法が採用されていた。   Conventionally, an electronic flow meter that measures the flow rate of high-temperature water is known. This will be described with reference to the conventional example of FIG. 6. A magnet 105 is attached to an impeller 104 that rotates by passage of high-temperature water, the rotation speed of the magnet is detected by a magnetic sensor 106, and high-temperature water is detected from the rotation speed. The flow rate is calculated by the electronic unit 110 and the flow rate is displayed on a display unit (not shown). In such a high-temperature electronic flow meter, since the water shielding plate 107 is heated by high-temperature water, the temperature of the magnetic sensor 106 is likely to rise due to this influence. However, when the magnetic sensor 106 becomes high temperature, there is a problem that the magnetic detection sensitivity is lowered. Therefore, conventionally, one of the problems has been to prevent the temperature of the magnetic sensor 106 from increasing. In order to solve this problem, the magnetic sensor 106 may be disposed at a position away from the water shielding plate 107 as a heat source. However, if the magnetic sensor 106 is separated too much, the magnetic sensor 106 cannot detect magnetism. Therefore, for example, a method of preventing the heating of the magnetic sensor 106 by forming a vacuum part between the heat source and the magnetic sensor (Patent Document 1) or providing a heat insulating material or a radiation fin (Patent Document 2) is adopted. It had been.

しかしながら従来の高温用電子式流量計では、真空部を形成したり、断熱材等を設けたりすることで製造コストが上昇するという問題が生じていた。特に、断熱材としては熱伝導率の高い銅を用いることが多いため、材料コストおよび製造コストの上昇の原因となっていた。一方、図6に示すように、放熱板100として円筒形状のものを用いると熱がこもりやすく、磁気センサ106を高温から十分に保護できない問題もあった。そのため、磁気センサの温度上昇を効果的に防止でき、かつ製造コストが安価な高温用電子式流量計が望まれていた。   However, in the conventional high-temperature electronic flow meter, there has been a problem that the manufacturing cost is increased by forming a vacuum part or providing a heat insulating material or the like. In particular, copper having a high thermal conductivity is often used as the heat insulating material, which causes an increase in material cost and manufacturing cost. On the other hand, as shown in FIG. 6, when a cylindrical heat sink 100 is used, heat is easily trapped, and the magnetic sensor 106 cannot be sufficiently protected from high temperatures. Therefore, there has been a demand for a high-temperature electronic flow meter that can effectively prevent the temperature increase of the magnetic sensor and that is inexpensive to manufacture.

本発明は上述のような事情を背景になされたもので、特に、磁気センサの温度上昇を効果的に防止でき、かつ製造コストが安価な高温用電子式流量計を提供することを課題とする。   The present invention has been made in the background as described above. In particular, it is an object of the present invention to provide a high-temperature electronic flow meter that can effectively prevent a temperature increase of a magnetic sensor and that is inexpensive to manufacture. .

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

この発明は、
高温水の入口および出口と、その入口および出口に連通した空間であって一端が開口した計量室とを備える高温水流通ケースと、
前記計量室の開口部に嵌合し、前記計量室内の前記高温水が外部に漏れないように遮断する遮水板と、
前記計量室内に回転自在に保持され、前記高温水流通ケースを流れる前記高温水の流量に応じて回転する羽根車と、
その羽根車のうち前記遮水板に近接する位置に設けられ、前記羽根車の回転に伴って回転する磁石と、
前記遮水板から所定間隔をおいて上方に配置され、前記磁石の回転による磁界の変化を検出する磁気センサと、
その磁気センサが検出した磁界の変化によって前記高温水流通ケースを流通する前記高温水の流量を算出する電子回路と、
前記高温水によって加熱された前記遮水板からの放射熱を遮断するとともに、自身と前記遮水板との間に介在する空気であって該遮水板によって加熱された加熱空気の対流が、前記遮水板に向けて凸状にされた外面形状に沿って中心部から外周縁部へ向かうように、前記磁気センサと前記遮水板との間に配置され、下方の前記遮水板に向けて凸状で、その凸状の少なくとも一部の側面は上方に向かって拡径し、その凸状の底部の上方に前記磁気センサが位置するように形成され遮熱ケースと、
を備えることを特徴とする高温用電子式流量計である。
This invention
A high-temperature water distribution case comprising an inlet and an outlet for high-temperature water, and a measuring chamber that is a space communicating with the inlet and the outlet and that is open at one end;
A water shielding plate that fits into the opening of the measuring chamber and blocks the hot water in the measuring chamber from leaking outside;
An impeller that is rotatably held in the measurement chamber and rotates according to the flow rate of the high-temperature water flowing through the high-temperature water distribution case;
A magnet which is provided at a position close to the water shielding plate in the impeller, and rotates with the rotation of the impeller;
A magnetic sensor disposed above the water shielding plate at a predetermined interval and detecting a change in a magnetic field due to rotation of the magnet;
An electronic circuit for calculating a flow rate of the high-temperature water flowing through the high-temperature water distribution case according to a change in the magnetic field detected by the magnetic sensor;
Blocking radiant heat from the water shielding plate heated by the high-temperature water, and convection of heated air heated between the water shielding plate and the air interposed between itself and the water shielding plate, said barrier so as to be directed to the outer peripheral portion from the central portion along the outer surface shape that is convex toward the water plate, disposed between the magnetic sensor and the water shield plates, the water shield plate lower convex toward the heat insulating case its convex at least a portion of the side surface is expanded upward, said magnetic sensor above the convex bottom formed so that to position,
A high-temperature electronic flow meter comprising:

上記本発明によると、高温水によって加熱された遮水板と磁気センサとの間に、下向きに凸の遮熱ケースが配置されている。このような構造にすると、遮水板によって加熱された空気が外面形状に沿って中心部から外周縁部へ向かって移動し、排出されやすくなる。これにより、加熱空気がこもりにくくなり、磁気センサの温度上昇を効果的に防止できるようになる。   According to the present invention, the downward heat-projecting case is disposed between the water shielding plate heated by the high temperature water and the magnetic sensor. With such a structure, the air heated by the water shielding plate moves from the central portion toward the outer peripheral edge along the outer surface shape, and is easily discharged. As a result, the heated air is less likely to be trapped, and the temperature increase of the magnetic sensor can be effectively prevented.

また、本発明は、以下のようにしてもよい。
前記遮熱ケースの前記遮水板側の主表面は、その少なくとも一部に、前記遮水板に対して斜面が5〜60°の角度をなす円錐形状部または円錐台形状部が形成されている高温用電子式流量計。
上記構成にすると、スムーズに加熱空気を外周縁へ移動させることができ、外部へ放出しやすくなる。また、遮熱ケースの設計および製造が比較的容易になる。角度を5〜60°に設定することにより、熱せられた空気を放出する効果が最適になる。この角度が5〜60°から外れると、加熱空気が移動しにくくなるため、磁気センサの温度が上昇しやすくなる。より好ましい角度は10〜50°であり、更に好ましくは20〜40°である。
Further, the present invention may be as follows.
The main surface of the heat shielding case on the side of the water shielding plate is formed on at least a part thereof with a cone-shaped portion or a truncated cone-shaped portion having a slope of 5 to 60 ° with respect to the water shielding plate. Electronic flow meter for high temperature.
With the above configuration, the heated air can be smoothly moved to the outer peripheral edge, and is easily released to the outside. Also, the design and manufacture of the heat shield case is relatively easy. By setting the angle to 5 to 60 °, the effect of releasing heated air is optimized. If this angle deviates from 5 to 60 °, the heated air becomes difficult to move, and the temperature of the magnetic sensor easily rises. A more preferable angle is 10 to 50 °, and further preferably 20 to 40 °.

さらに、
前記遮熱ケースは熱伝導率が3×10−2W/(m・K)以下の材料で形成されている高温用電子式流量計
としてもよい。これにより、遮水板に熱せられた空気が上昇して遮熱ケースに当たった場合でも、遮熱ケースが熱せられにくくなる。つまり、加熱空気の熱が遮熱ケースに移動する前に、当該加熱空気が遮熱ケースの外周縁へ向かって排出されるのである。設計上可能な値で、コストに見合うものであれば、熱伝導率は小さければ小さいほどよい。遮熱ケースの材質として、例えば樹脂を用いることができる。この場合、遮熱ケースを射出成型にて製造できる。合成樹脂を用いて製造すると、製造上のコストを低く抑えることが可能となる。
further,
The heat shielding case may be a high-temperature electronic flow meter formed of a material having a thermal conductivity of 3 × 10 −2 W / (m · K) or less. Thereby, even when the air heated by the water shielding plate rises and hits the heat shielding case, the heat shielding case is hardly heated. That is, before the heat of the heated air moves to the heat shield case, the heated air is discharged toward the outer peripheral edge of the heat shield case. As long as it is a design possible value and is suitable for cost, the smaller the thermal conductivity, the better. As the material of the heat shielding case, for example, a resin can be used. In this case, the heat shield case can be manufactured by injection molding. Manufacturing using a synthetic resin makes it possible to keep manufacturing costs low.

一方、
前記遮熱ケースの前記遮水板側の主表面には少なくとも一部に、前記遮水板から放射される赤外線を反射するための金属薄膜層が形成されている高温用電子式流量計
としてもよい。すなわち、遮水板が高温になっているため、そこから発生する電磁波(赤外線)によっても熱伝達が生じる。その放射による熱伝達を防ぐために、遮熱ケースの遮水板側の主表面に金属薄膜層を貼付し、電磁波を反射させることにより、さらに温度上昇を抑制することができる。金属薄膜層としては、具体的にはアルミ箔を好適に用いることができる。また、ニッケルメッキを施してもよい。薄膜形成方法としては、接着剤や、耐熱性のある物質を介在させて貼付する方法がある。
on the other hand,
As a high-temperature electronic flow meter in which a metal thin film layer for reflecting infrared rays radiated from the water shielding plate is formed on at least a part of the main surface of the heat shielding case on the water shielding plate side. Good. That is, since the water shielding plate is at a high temperature, heat transfer is also caused by electromagnetic waves (infrared rays) generated therefrom. In order to prevent heat transfer due to the radiation, a temperature increase can be further suppressed by attaching a metal thin film layer to the main surface of the heat shielding case on the side of the water shielding plate and reflecting electromagnetic waves. Specifically, an aluminum foil can be suitably used as the metal thin film layer. Nickel plating may be applied. As a method for forming a thin film, there is a method of attaching with an adhesive or a heat-resistant substance interposed.

また、本発明は、以下の構成を採用してもよい。
前記遮熱ケースは、
前記遮水板を挟んで前記磁石に対向する位置に配置された、前記遮水板に平行な底部と、その底部に連なり上方に向かって拡径し、前記遮水板に対して5〜60°の角度をなす側部とを備える下側円錐筒部と、
その下側円錐筒部より大きな横断面形状を有して上方に開口するとともに、上方に向かって側面が拡径し、その側面が前記遮水板に対して5〜60°の角度をなす上側円錐筒部と、
それら上側円錐筒部と下側円錐筒部とをつなぐ段形状をなす肩部とを備え、
前記下側円錐筒部の内側に前記磁気センサが配置されている高温用電子式流量計。
The present invention may employ the following configuration.
The heat shielding case is
A bottom portion parallel to the water shielding plate, which is disposed at a position facing the magnet with the water shielding plate sandwiched therebetween, and is connected to the bottom portion to expand upward, and is 5-60 with respect to the water shielding plate. A lower conical cylinder having a side with an angle of °,
An upper side having a larger cross-sectional shape than the lower conical cylinder part and opening upward, with a side surface expanding in diameter upward, and the side surface forming an angle of 5 to 60 ° with respect to the water shielding plate A conical cylinder,
A shoulder portion having a step shape connecting the upper conical tube portion and the lower conical tube portion;
A high-temperature electronic flow meter in which the magnetic sensor is disposed inside the lower conical cylinder.

上記構造にすると、下側円錐筒部の内側に磁気センサを配置した際に、下側円錐筒部の底部のすぐ上に磁気センサを位置させることができ、その結果、磁石と磁気センサの距離を狭くすることができる。そのため、磁気センサのセンシング効率を高めることができる。さらに、下側円錐筒部と上側円錐筒部の斜面を使って加熱空気を効果的に外部へ排出することが可能となる。   With the above structure, when the magnetic sensor is arranged inside the lower conical cylinder portion, the magnetic sensor can be positioned immediately above the bottom of the lower conical cylinder portion, and as a result, the distance between the magnet and the magnetic sensor Can be narrowed. Therefore, the sensing efficiency of the magnetic sensor can be increased. Furthermore, it becomes possible to effectively discharge the heated air to the outside using the slopes of the lower cone portion and the upper cone portion.

本発明の実施形態を、図面を参照しつつ以下に説明する。
図1は本発明に係る高温用電子式流量計の一実施形態を示す縦断面図であり、図2は外観図である。このように高温用電子式流量計1は、計量室3が形成された高温水流通ケース2,高温水の通過によって回転する羽根車4,高温水を遮断する遮水板7,羽根車4に設けられた磁石5,磁界の変化を検出する磁気センサ6,遮水板7と磁気センサ6との間に配置された遮熱ケース8を含む構成とされている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an embodiment of a high-temperature electronic flow meter according to the present invention, and FIG. 2 is an external view. As described above, the high-temperature electronic flow meter 1 includes a high-temperature water distribution case 2 in which the measuring chamber 3 is formed, an impeller that rotates when the high-temperature water passes, a water shielding plate 7 that blocks high-temperature water, and an impeller 4. It is configured to include a provided magnet 5, a magnetic sensor 6 for detecting a change in magnetic field, and a heat shielding case 8 disposed between the water shielding plate 7 and the magnetic sensor 6.

各構成要素について、より詳細に説明する。高温水流通ケース2は高温水の入口2aおよび出口2bを備え、図1の矢印方向方向に高温水が流れる。計量室3は、これら入口2a,出口2bと連通し上端が開口した構造を有している。この計量室3の開口部に遮水板7が内嵌され、計量室3内の高温水が外部に漏れないようになっている。遮水板7は、高温水の温度の影響を受けることにより高温にされる。また、羽根車4は羽根4aおよび回転軸4bからなり、高温水流通ケース2の底部2dおよび遮水板7にそれぞれ設けられた軸受19,20によって回転自在に保持されている。さらに、羽根車4には、遮水板7に近接する位置に磁石5が取り付けられている。高温水が通過することにより、羽根車4および磁石5が回転し、磁石5周辺の磁界が周期的に変化する。一方、磁石5の上方には、遮水板7から所定間隔をおいた位置に磁気センサ6が設けられ、この磁気センサ6は、羽根車4の回転に伴う磁界の周期的な変化を検出する。磁石5の真上部分では、遮水板7の肉厚が薄くされており、磁石5からの磁気を磁気センサ6が検知しやすくなっている。また、磁気センサ6の上方には電子回路を備えた電子ユニット10が配置されており、この電子回路は、磁気センサ6が検出した磁界の変化に基づいて高温水の通過流量を算出する。   Each component will be described in more detail. The hot water distribution case 2 includes an inlet 2a and an outlet 2b for hot water, and the hot water flows in the direction of the arrow in FIG. The measuring chamber 3 has a structure in which the upper end is opened in communication with the inlet 2a and the outlet 2b. A water shielding plate 7 is fitted into the opening of the measuring chamber 3 so that high-temperature water in the measuring chamber 3 does not leak to the outside. The water shielding plate 7 is heated to a high temperature by being affected by the temperature of the high temperature water. The impeller 4 includes a blade 4a and a rotary shaft 4b, and is rotatably supported by bearings 19 and 20 provided on the bottom 2d of the high-temperature water circulation case 2 and the water shielding plate 7, respectively. Furthermore, a magnet 5 is attached to the impeller 4 at a position close to the water shielding plate 7. By passing the high-temperature water, the impeller 4 and the magnet 5 rotate, and the magnetic field around the magnet 5 changes periodically. On the other hand, a magnetic sensor 6 is provided above the magnet 5 at a predetermined distance from the water shielding plate 7, and this magnetic sensor 6 detects a periodic change of the magnetic field accompanying the rotation of the impeller 4. . The thickness of the water shielding plate 7 is made thin immediately above the magnet 5 so that the magnetic sensor 6 can easily detect the magnetism from the magnet 5. An electronic unit 10 having an electronic circuit is disposed above the magnetic sensor 6, and the electronic circuit calculates the flow rate of high-temperature water based on the change in the magnetic field detected by the magnetic sensor 6.

一方、遮水板7と磁気センサ6の間には、遮水板7からの熱を遮断するための遮熱ケース8が配置され、磁気センサ6の温度上昇を防止している。遮熱ケース8は図1および図3に示すように、遮水板7に向けて(下向きに)凸状となっている。そのため、遮熱ケース8付近の空気が加熱され、対流によって遮熱ケース8へ向かって移動したとしても、その加熱空気は、下向きに凸状となっている遮熱ケースの外面形状に沿って移動するようになる。すなわち、加熱された空気は遮熱ケース8の中心部から外周縁へ向けて移動し、遮熱ケース8と遮水板7の隙間Sから外部へ排出される。これにより、遮熱ケース8と遮水板7の間に加熱空気がこもらなくなり、磁気センサ6の温度上昇を効果的に防止できる。   On the other hand, a heat shielding case 8 for blocking heat from the water shielding plate 7 is disposed between the water shielding plate 7 and the magnetic sensor 6 to prevent the temperature of the magnetic sensor 6 from rising. As shown in FIGS. 1 and 3, the heat shielding case 8 is convex toward the water shielding plate 7 (downward). Therefore, even if the air in the vicinity of the heat shield case 8 is heated and moves toward the heat shield case 8 by convection, the heated air moves along the outer surface shape of the heat shield case that is convex downward. To come. That is, the heated air moves from the center of the heat shield case 8 toward the outer peripheral edge, and is discharged to the outside through the gap S between the heat shield case 8 and the water shield plate 7. As a result, heated air is not trapped between the heat shielding case 8 and the water shielding plate 7, and the temperature increase of the magnetic sensor 6 can be effectively prevented.

図4Aに遮熱ケース8の斜視図を示し、図4Bに側面図を示す。また、図1の要部拡大図を図3に示す。このように遮熱ケース8は、少なくとも一部が円錐台形状にされている。この円錐台の斜面と、遮水板(水平面)とのなす角度θ1,θ2(図3)は5〜60°とされている。角度θ1,θ2が5°〜60°から外れると、加熱空気が移動しにくくなる。なお、図示しないが、遮熱ケース8の形状を円錐台とせず、円錐にしてもよい。   FIG. 4A shows a perspective view of the heat shield case 8, and FIG. 4B shows a side view. Moreover, the principal part enlarged view of FIG. 1 is shown in FIG. As described above, at least a part of the heat shielding case 8 has a truncated cone shape. Angles θ1 and θ2 (FIG. 3) formed by the inclined surface of the truncated cone and the water shielding plate (horizontal plane) are 5 to 60 °. When the angles θ1 and θ2 deviate from 5 ° to 60 °, the heated air becomes difficult to move. Although not shown, the shape of the heat shield case 8 may be a cone instead of a truncated cone.

一方、遮熱ケース8は、低熱伝導率の材料で構成されていることが望ましい。具体的には、熱伝導率が3×10−2W/(m・K)以下の材料を用いるとよい。このように低熱伝導率の材料を用いることにより、遮水板7により熱せられた空気が上昇して遮熱ケース7に当たった時、熱が遮熱ケース7へ移動しにくくなる。つまり、熱が移動する前に加熱空気は隙間Sから排出されるため、磁気センサ6の温度上昇を効率的に抑制できる。 On the other hand, the heat shielding case 8 is preferably made of a material having a low thermal conductivity. Specifically, a material having a thermal conductivity of 3 × 10 −2 W / (m · K) or less may be used. By using a material with low thermal conductivity in this way, when the air heated by the water shielding plate 7 rises and hits the heat shielding case 7, it becomes difficult for heat to move to the heat shielding case 7. That is, since the heated air is discharged from the gap S before the heat moves, the temperature increase of the magnetic sensor 6 can be efficiently suppressed.

また、遮熱ケース8の、遮水板7側の主表面に、アルミ箔等の金属薄膜層を形成するとよい。すなわち、遮水板7は高温水によって加熱されているため、電磁波(赤外線)による熱伝達が生じる。遮熱ケース8の表面に金属薄膜層を形成しておくと赤外線を反射させることができるので、温度上昇をさらに抑制することができる。金属薄膜層としてはアルミ箔の他にニッケルメッキを用いることができる。金属薄膜層の形成方法は上記方法の他に、薄膜を接着材で接着したり、耐熱性のある物質を介在させて貼付したり、蒸着したりする方法を採用できる。また、遮熱ケース8の遮水板7側主表面のうち一部分のみ(例えば磁気センサ6の真下付近のみ)に金属薄膜層を形成しても効果はあるが、効率を高めるためには金属薄膜層を全面に形成することが望ましい。   Moreover, it is good to form metal thin film layers, such as aluminum foil, in the main surface at the side of the water-insulating board 7 of the heat-insulating case 8. That is, since the water shielding plate 7 is heated by high-temperature water, heat transfer by electromagnetic waves (infrared rays) occurs. If a metal thin film layer is formed on the surface of the heat shielding case 8, infrared rays can be reflected, so that the temperature rise can be further suppressed. As the metal thin film layer, nickel plating can be used in addition to the aluminum foil. In addition to the above method, the method for forming the metal thin film layer may employ a method of adhering the thin film with an adhesive, attaching a thin film with a heat-resistant substance, or depositing it. In addition, it is effective to form a metal thin film layer on only a part of the main surface of the heat shielding case 8 on the water shielding plate 7 side (for example, only near the magnetic sensor 6). It is desirable to form the layer over the entire surface.

次に、遮熱ケース8の形状についてさらに詳細に説明する。図3の断面図および図4Bの側面図に示すように、遮熱ケース8は下側円錐筒部23と、上側円錐筒部25と、これら下側円錐筒部23と上側円錐筒部25を繋ぐ段形状をなす肩部24とを備えている。また、下側円錐筒部23は、磁石5の真上位置に配置され、遮水板7に平行な底部21と、その底部に連なり上方に向かって拡径し、遮水板7との角度θ1が5〜60°である側部22とを含む。さらに、上側円錐筒部25は下側円錐筒部23よりも大きな横断面形状を有して上方に開口するとともに、上方に向かって側面が拡径し、遮水板7との角度θ2が5〜60°とされている。そして、図1および図3に示すように、下側円錐筒部23の内側に磁気センサ6が収納されている。より詳しくは、図4Aに示すように、上側円錐筒部25の内側には放射状のケース固定部19が形成されており、このケース固定部19に対して円筒形状の磁気センサ収納ケース13が内嵌している(図3)。磁気センサ収納ケース13の内側には、下方が開口した内側壁部17が設けられ、この内側壁部17の開口を塞ぐ形でセンサ載置板18が取り付けられている。そして、このセンサ収納板18の上に磁気センサ6が載置されている。   Next, the shape of the heat shield case 8 will be described in more detail. As shown in the cross-sectional view of FIG. 3 and the side view of FIG. 4B, the heat shield case 8 includes a lower conical tube portion 23, an upper conical tube portion 25, and the lower conical tube portion 23 and the upper conical tube portion 25. And a shoulder portion 24 having a connecting step shape. In addition, the lower conical cylinder portion 23 is disposed at a position directly above the magnet 5, and has a bottom portion 21 parallel to the water shielding plate 7, and is connected to the bottom portion so as to increase in diameter upward, and an angle with the water shielding plate 7. and side portion 22 having θ1 of 5 to 60 °. Further, the upper conical tube portion 25 has a larger cross-sectional shape than the lower conical tube portion 23 and opens upward, and the side surface diameter increases upward, and the angle θ2 with the water shielding plate 7 is 5. It is set to ˜60 °. As shown in FIGS. 1 and 3, the magnetic sensor 6 is housed inside the lower conical cylinder portion 23. More specifically, as shown in FIG. 4A, a radial case fixing portion 19 is formed inside the upper conical cylinder portion 25, and the cylindrical magnetic sensor storage case 13 is disposed inside the case fixing portion 19. It is fitted (Fig. 3). Inside the magnetic sensor storage case 13, an inner wall part 17 having an opening at the bottom is provided, and a sensor placement plate 18 is attached so as to close the opening of the inner wall part 17. The magnetic sensor 6 is placed on the sensor storage plate 18.

このような構造を採用することにより、磁石5と磁気センサ6との間隔を狭く保ちつつ、遮水板7から放射される赤外線や加熱空気から磁気センサ6を効率的に保護することができる。すなわち、底部21と遮水板7は平行なので、底部21と遮水板7の間隔を非常に狭くできる。また、磁気センサ収納ケース13の内側壁部17は下側円錐筒部23の側部22よりも僅かに縮径されているため、下側円錐筒部23のすぐ内側に内側壁部17の先端部およびセンサ収納板18を位置させることができる。従って、内側壁部17の先端部およびセンサ収納板18と、遮熱ケース8とを非接触の状態で互いに近接した位置に配置することができ、これにより、磁気センサ6を遮水板7に近い位置に配置できるようになる。そのため、高温によって磁石5の磁力が低下した場合でも、磁界の変化を磁気センサ6が十分に検出することができる。一方、側部22が斜めを向いて形成されているため、上述したように、加熱空気が中心付近から外面形状に沿って外周縁部へ移動する効果が生じる。また、上側円錐筒部25が形成されていることにより、後述する遮水板固定ケース9と遮熱ケース8との間に十分な隙間Sを確保でき、従って、加熱空気が排出されやすくなる。さらに、上側円錐筒部25の内側に形成されたケース固定部19は放射状をしているため、放熱しやすい。   By adopting such a structure, it is possible to efficiently protect the magnetic sensor 6 from infrared rays or heated air radiated from the water shielding plate 7 while keeping the gap between the magnet 5 and the magnetic sensor 6 narrow. That is, since the bottom part 21 and the water shielding board 7 are parallel, the space | interval of the bottom part 21 and the water shielding board 7 can be made very narrow. Further, since the inner wall portion 17 of the magnetic sensor storage case 13 is slightly reduced in diameter than the side portion 22 of the lower conical cylinder portion 23, the tip of the inner wall portion 17 is located just inside the lower conical cylinder portion 23. And the sensor storage plate 18 can be positioned. Accordingly, the front end portion of the inner wall portion 17 and the sensor storage plate 18 and the heat shield case 8 can be arranged in a close proximity to each other in a non-contact state, whereby the magnetic sensor 6 is attached to the water shield plate 7. It becomes possible to arrange in the near position. Therefore, even when the magnetic force of the magnet 5 decreases due to high temperature, the magnetic sensor 6 can sufficiently detect the change in the magnetic field. On the other hand, since the side portion 22 is formed to face obliquely, as described above, there is an effect that the heated air moves from the vicinity of the center to the outer peripheral edge portion along the outer surface shape. Further, since the upper conical cylinder portion 25 is formed, a sufficient gap S can be secured between the water shielding plate fixing case 9 and the heat shielding case 8 which will be described later, and thus the heated air is easily discharged. Furthermore, since the case fixing | fixed part 19 formed inside the upper side cone cylinder part 25 is radial, it is easy to radiate heat.

一方、図1に示すように、高温水流通ケース2の計量室3には、底壁16cと、その底壁16cから立設する内側壁部16a,外側壁部16bと、その外側壁部16bから半径方向外側へ突出する鍔部16dとを含む区画部材16が配置されている。計量室3の内周面には段部2cが形成されており、この段部2cに鍔部16dが係合している。また、外側壁部16bの外周面と計量室3の内周面の間には僅かに隙間(図示しない)が形成されており、その隙間と、中空空間M(内側壁部16aと外側壁部16bの間の空間)とを連通する切り欠き(図示しない)が外側壁部16bに形成されている。このような構造にする理由は以下のとおりである。すなわち、高温用電子式流量計1を稼動していると、回転軸4bと内側壁部16aの間の空間N(回転軸4bと内側壁部16aとの間の空間)に空気が溜まり、軸受20が摩擦熱で損傷してしまうことがある。そこで上記構造にすると、羽根車4を回転した時に高温水が上方に押し上げられ、隙間および切り欠きを通って中空空間Mへ送られるようになる。その後、内側壁部16aの上端と遮熱板7との間の隙間を通って高温水が空間Nへ送られ、これによって空気が排除される。   On the other hand, as shown in FIG. 1, the measuring chamber 3 of the high-temperature water distribution case 2 includes a bottom wall 16c, an inner wall portion 16a and an outer wall portion 16b that are erected from the bottom wall 16c, and an outer wall portion 16b. A partition member 16 including a flange portion 16d protruding outward in the radial direction is disposed. A step portion 2c is formed on the inner peripheral surface of the measuring chamber 3, and a flange portion 16d is engaged with the step portion 2c. Further, a slight gap (not shown) is formed between the outer peripheral surface of the outer wall portion 16b and the inner peripheral surface of the measuring chamber 3, and the gap and the hollow space M (the inner wall portion 16a and the outer wall portion). A notch (not shown) that communicates with the space between the outer wall portions 16b is formed in the outer wall portion 16b. The reason for this structure is as follows. That is, when the high-temperature electronic flow meter 1 is in operation, air accumulates in the space N between the rotating shaft 4b and the inner wall portion 16a (the space between the rotating shaft 4b and the inner wall portion 16a). 20 may be damaged by frictional heat. Therefore, with the above structure, when the impeller 4 is rotated, the high-temperature water is pushed upward and is sent to the hollow space M through the gap and the notch. Thereafter, high-temperature water is sent to the space N through the gap between the upper end of the inner wall portion 16a and the heat shield plate 7, thereby eliminating air.

なお、図1に示すように、遮水板7は、外周縁部から軸線方向下側に突出したインロー部7aと、外周縁部から半径方向外側に突出したフランジ部7bとを含む構成とされている。そして、計量室3の開口部に対してインロー部7aが内嵌し、フランジ部7bが高温水流通ケース2の端部に当接する。さらに、フランジ部7bを覆うようにリング状の遮水板固定ケース9が外嵌され、これにより遮水板7が固定される。このようにすることで、計量室内の高温水の漏水を十全に防ぐことができる。また、遮水板固定ケース9には螺子孔が複数箇所に形成されており、遮熱ケース8側から螺子14を螺合することにより、遮熱ケース8が遮水板固定ケース9に対して固定される。より詳しくは、図4に示すように、遮熱ケース8には三箇所の螺子孔8aが形成されており、この三箇所の螺子孔8aだけを使って、遮熱ケース8を固定している。つまり、遮水板7の周縁部において遮熱ケース8と間の隙間を塞ぐものが螺子孔8a以外に殆ど無く、これにより、遮水板7によって加熱された空気が逃げる隙間S(図1)を十分に確保することができる。   As shown in FIG. 1, the water shielding plate 7 includes an inlay portion 7 a that protrudes downward in the axial direction from the outer peripheral edge portion, and a flange portion 7 b that protrudes radially outward from the outer peripheral edge portion. ing. And the inlay part 7a fits into the opening part of the measurement chamber 3, and the flange part 7b contact | abuts the edge part of the high temperature water distribution | circulation case 2. FIG. Further, a ring-shaped water shielding plate fixing case 9 is fitted over the flange portion 7b so that the water shielding plate 7 is fixed. By doing in this way, the leakage of the high temperature water in a measurement chamber can fully be prevented. The water shielding plate fixing case 9 is formed with screw holes at a plurality of locations, and the heat shielding case 8 is attached to the water shielding plate fixing case 9 by screwing the screws 14 from the heat shielding case 8 side. Fixed. More specifically, as shown in FIG. 4, the heat shield case 8 is formed with three screw holes 8a, and the heat shield case 8 is fixed using only the three screw holes 8a. . In other words, there is almost nothing other than the screw hole 8a at the peripheral edge of the water shielding plate 7 to block the gap between the heat shielding case 8 and thereby the clearance S through which the air heated by the water shielding plate 7 escapes (FIG. 1). Can be secured sufficiently.

また、以上説明した実施形態では、遮熱ケース8として、下側円錐筒部23,上側円錐筒部25,肩部25を含む構成にしたが、図5に示すように流線型にしたり、球状にしたりしてもよい。このような形状にしても、加熱空気を遮熱ケース8の外面形状に沿わせて外部へ逃がすという本発明の効果は同様に発揮される。   In the embodiment described above, the heat shielding case 8 is configured to include the lower conical cylinder portion 23, the upper conical cylinder portion 25, and the shoulder portion 25. However, as shown in FIG. Or you may. Even in such a shape, the effect of the present invention in which the heated air is allowed to escape to the outside along the shape of the outer surface of the heat shield case 8 is also exhibited.

なお、高温水の流量を算出するための電子回路は電子ユニット10に収納されている。この電子ユニット10は磁気センサ収納ケース13の上端部に外嵌されており、さらにリング状部材11が外嵌されることにより、固定されている。また、遮熱ケース8には複数本の支柱12が形成され、この支柱12に対してリング状部材11が螺子15により固定される。   An electronic circuit for calculating the flow rate of the high-temperature water is housed in the electronic unit 10. The electronic unit 10 is externally fitted to the upper end portion of the magnetic sensor storage case 13, and is fixed by further fitting the ring-shaped member 11. In addition, a plurality of support columns 12 are formed in the heat shielding case 8, and the ring-shaped member 11 is fixed to the support columns 12 with screws 15.

以上説明したように本発明は、従来例のように真空部や断熱材を用いる必要がなくなるので、製造コストを下げることができる。また、磁気センサ6を高熱から保護することにより、磁気センサ6のセンシング機能の低下を防止することができる。   As described above, according to the present invention, it is not necessary to use a vacuum part or a heat insulating material as in the conventional example, so that the manufacturing cost can be reduced. Further, by protecting the magnetic sensor 6 from high heat, it is possible to prevent the sensing function of the magnetic sensor 6 from being lowered.

本発明に係る高温用電子式流量計1の縦断面図。1 is a longitudinal sectional view of a high-temperature electronic flow meter 1 according to the present invention. 高温用電子式流量計1の外観図。1 is an external view of a high-temperature electronic flow meter 1. 図1の要部拡大図。The principal part enlarged view of FIG. 遮熱ケース8の(A)斜視図(B)側面図(A) perspective view (B) side view of heat shield case 8 高温用電子式流量計1の別の実施形態。Another embodiment of the high-temperature electronic flow meter 1. 従来例。Conventional example.

符号の説明Explanation of symbols

1 高温用電子式流量計
2 高温水流通ケース
3 計量室
4 羽根車
5 磁石
6 磁気センサ
7 遮水板
8 遮熱ケース
9 遮水板固定ケース
10 電子ユニット
11 リング状部材
12 支柱
13 磁気センサ収納ケース
14,15 螺子
DESCRIPTION OF SYMBOLS 1 High temperature electronic flow meter 2 High temperature water distribution case 3 Weighing chamber 4 Impeller 5 Magnet 6 Magnetic sensor 7 Water shield plate 8 Heat shield case 9 Water shield plate fixing case 10 Electronic unit 11 Ring-shaped member 12 Strut 13 Magnetic sensor storage Case 14, 15 Screw

Claims (5)

高温水の入口および出口と、その入口および出口に連通した空間であって一端が開口した計量室とを備える高温水流通ケースと、
前記計量室の開口部に嵌合し、前記計量室内の前記高温水が外部に漏れないように遮断する遮水板と、
前記計量室内に回転自在に保持され、前記高温水流通ケースを流れる前記高温水の流量に応じて回転する羽根車と、
その羽根車のうち前記遮水板に近接する位置に設けられ、前記羽根車の回転に伴って回転する磁石と、
前記遮水板から所定間隔をおいて上方に配置され、前記磁石の回転による磁界の変化を検出する磁気センサと、
その磁気センサが検出した磁界の変化によって前記高温水流通ケースを流通する前記高温水の流量を算出する電子回路と、
前記高温水によって加熱された前記遮水板からの放射熱を遮断するとともに、自身と前記遮水板との間に介在する空気であって該遮水板によって加熱された加熱空気の対流が、前記遮水板に向けて凸状にされた外面形状に沿って中心部から外周縁部へ向かうように、前記磁気センサと前記遮水板との間に配置され、下方の前記遮水板に向けて凸状で、その凸状の少なくとも一部の側面は上方に向かって拡径し、その凸状の底部の上方に前記磁気センサが位置するように形成され遮熱ケースと、
を備えることを特徴とする高温用電子式流量計。
A high-temperature water distribution case comprising an inlet and an outlet for high-temperature water, and a measuring chamber that is a space communicating with the inlet and the outlet and that is open at one end;
A water shielding plate that fits into the opening of the measuring chamber and blocks the hot water in the measuring chamber from leaking outside;
An impeller that is rotatably held in the measurement chamber and rotates according to the flow rate of the high-temperature water flowing through the high-temperature water distribution case;
A magnet which is provided at a position close to the water shielding plate in the impeller, and rotates with the rotation of the impeller;
A magnetic sensor disposed above the water shielding plate at a predetermined interval and detecting a change in a magnetic field due to rotation of the magnet;
An electronic circuit for calculating a flow rate of the high-temperature water flowing through the high-temperature water distribution case according to a change in the magnetic field detected by the magnetic sensor;
Blocking radiant heat from the water shielding plate heated by the high-temperature water, and convection of heated air heated between the water shielding plate and the air interposed between itself and the water shielding plate, said barrier so as to be directed to the outer peripheral portion from the central portion along the outer surface shape that is convex toward the water plate, disposed between the magnetic sensor and the water shield plates, the water shield plate lower convex toward the heat insulating case its convex at least a portion of the side surface is expanded upward, said magnetic sensor above the convex bottom formed so that to position,
A high-temperature electronic flow meter comprising:
前記遮熱ケースの前記遮水板側の主表面は、その少なくとも一部に、前記遮水板に対して斜面が5〜60°の角度をなすように上方に向かって拡径した前記側面に含まれる第1側面を備えた円錐形状部または円錐台形状部が形成されている請求項1記載の高温用電子式流量計。 The main surface of the heat shield case on the water shield plate side is at least partially on the side surface whose diameter is increased upward so that the inclined surface forms an angle of 5 to 60 ° with respect to the water shield plate. The high-temperature electronic flow meter according to claim 1, wherein a cone-shaped portion or a truncated cone-shaped portion having a first side surface is formed. 前記遮熱ケースは熱伝導率が3×10−2W/(m・K)以下の材料で形成されている請求項1または2記載の高温用電子式流量計。 3. The high-temperature electronic flow meter according to claim 1, wherein the heat shielding case is made of a material having a thermal conductivity of 3 × 10 −2 W / (m · K) or less. 前記遮熱ケースの前記遮水板側の主表面には少なくとも一部に、前記遮水板から放射される赤外線を反射するための金属薄膜層が形成されている請求項1ないし3のいずれか1項に記載の高温用電子式流量計。   The metal thin film layer for reflecting the infrared rays radiated | emitted from the said water shielding board is formed in the main surface at the side of the said water shielding board of the said heat shielding case at least in part. The electronic flow meter for high temperature according to item 1. 前記遮熱ケースは、
前記遮水板を挟んで前記磁石に対向する位置に配置された、前記遮水板に平行な底部と、その底部に連なり、前記遮水板に対して5〜60°の角度をなすように上方に向かって拡径した前記側面に含まれる第2側面とを備える下側円錐筒部と、
その下側円錐筒部より大きな横断面形状を有して上方に開口するとともに、前記遮水板に対して5〜60°の角度をなすように上方に向かって拡径した前記側面に含まれる第3側面を備えた上側円錐筒部と、
それら上側円錐筒部と下側円錐筒部とをつなぐ段形状をなす肩部とを備え、
前記下側円錐筒部の内側に前記磁気センサが配置されている請求項1ないし4のいずれか1項に記載の高温用電子式流量計。
The heat shielding case is
Across the water shield plate disposed at a position opposed to the magnet, and the shielding parallel bottom water plate, Ri Tsurana at its bottom, an angle of 5 to 60 ° with respect to the water shield plate A lower conical cylinder portion comprising a second side surface included in the side surface, the diameter of which is expanded upward as described above ,
With opening upward has a larger cross-sectional shape than the lower tapered tubular portion, included in the side that is enlarged upward at an angle of 5 to 60 ° to the front Kisaegi water plate An upper conical cylinder having a third side surface ;
A shoulder portion having a step shape connecting the upper conical tube portion and the lower conical tube portion;
The high-temperature electronic flow meter according to any one of claims 1 to 4, wherein the magnetic sensor is disposed inside the lower conical cylinder portion.
JP2005256200A 2005-09-05 2005-09-05 Electronic flow meter for high temperature Active JP4799086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256200A JP4799086B2 (en) 2005-09-05 2005-09-05 Electronic flow meter for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256200A JP4799086B2 (en) 2005-09-05 2005-09-05 Electronic flow meter for high temperature

Publications (2)

Publication Number Publication Date
JP2007071571A JP2007071571A (en) 2007-03-22
JP4799086B2 true JP4799086B2 (en) 2011-10-19

Family

ID=37933151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256200A Active JP4799086B2 (en) 2005-09-05 2005-09-05 Electronic flow meter for high temperature

Country Status (1)

Country Link
JP (1) JP4799086B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106500788A (en) * 2016-12-21 2017-03-15 真诺测量仪表(上海)有限公司 A kind of water meter movement structure for realizing accurate measurement at high temperature
CN112197823A (en) * 2020-08-21 2021-01-08 蚌埠恒远传感器科技有限公司 Intelligent electromagnetic flow sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698668B2 (en) * 1989-08-18 1998-01-19 トキコ株式会社 Flowmeter
JPH084572Y2 (en) * 1990-05-08 1996-02-07 リコーエレメックス株式会社 High temperature electronic flow meter
JPH04160320A (en) * 1990-10-24 1992-06-03 Osaka Kiko Co Ltd Liquid amount detector
JP3100683B2 (en) * 1991-07-09 2000-10-16 リコーエレメックス株式会社 High-temperature water meter

Also Published As

Publication number Publication date
JP2007071571A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP5541576B2 (en) Wind direction anemometer and wind direction wind speed device
TWI641816B (en) Heat flux meter and abnormality diagnostic device
JP4940938B2 (en) Thermal mass flow meter
JP2012137456A5 (en)
JPH0545886B2 (en)
JP4799086B2 (en) Electronic flow meter for high temperature
US6915069B2 (en) Temperature sensor assembly, water heater including the temperature sensor assembly, and method of sensing a temperature
TWI495990B (en) Method for detecting heat dissipating air flow and electronic device using the same
US20090129435A1 (en) Probe structure
JP2019164679A (en) Thermal alarm
JP2003287463A (en) Radiation-temperature measuring apparatus and turbo- molecular pump with the same mounted
JP5191355B2 (en) Fire detector
JP2011192244A (en) Heat sensor
JP6128370B2 (en) Temperature sensor
JP2014199632A (en) Heat sensor
JP2004511764A (en) Cooling device with temperature sensor
JP5856534B2 (en) Heat flux measuring device and heat flux measuring method
CN104101618A (en) Device for accelerating heat conductivity coefficient detecting speed
JP4025308B2 (en) Mirror surface cooling type sensor
JP6945028B2 (en) Heat detector
JP2010262329A (en) Alarm
JPH1054742A (en) Flow meter
JP2017211879A (en) Heat detector
JP3999758B2 (en) Cooling device and mirror cooled sensor
TWI761108B (en) Temperature control method of liquid cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250