JP2004511764A - Cooling device with temperature sensor - Google Patents

Cooling device with temperature sensor Download PDF

Info

Publication number
JP2004511764A
JP2004511764A JP2002534789A JP2002534789A JP2004511764A JP 2004511764 A JP2004511764 A JP 2004511764A JP 2002534789 A JP2002534789 A JP 2002534789A JP 2002534789 A JP2002534789 A JP 2002534789A JP 2004511764 A JP2004511764 A JP 2004511764A
Authority
JP
Japan
Prior art keywords
cooling device
temperature
infrared sensor
sensor
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002534789A
Other languages
Japanese (ja)
Inventor
アレクサンダー ヴァルター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH, BSH Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of JP2004511764A publication Critical patent/JP2004511764A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

冷却装置が、装置の運転温度を検出するための温度センサとして赤外線センサ(7)を備えている。赤外線センサ(7)は冷却装置の冷却されていない領域に制御回路と共に基板(5)上に配置されている。The cooling device includes an infrared sensor (7) as a temperature sensor for detecting an operation temperature of the device. The infrared sensor (7) is arranged on the substrate (5) together with the control circuit in an uncooled area of the cooling device.

Description

【0001】
本発明は、冷却装置の運転温度を検出するための温度センサを備えた冷却装置に関する。
【0002】
内室−温度、または蒸発器の温度のような運転温度の検出のためには、冷蔵庫、冷凍庫、又はコンビネーション装置のような冷却装置では、従来では温度依存性の抵抗器が使用されており、抵抗器はケーブルハーネスを介して冷却運転を調節するための制御回路に接続されている。
【0003】
以前から一般的なこの技術には一連の欠点がある。一方では、感温式の抵抗器を、温度を検出したい該当部に直接的に取付ける必要がある。これに対して、温度センサにより検出された温度に基づいて冷却機械の運転を調節する制御回路は、しかしながら一般的には冷却装置の冷却されていない外側領域に設けられており、これにより、制御回路における復水形成による機能妨害が防止されるようになっている。その結果、制御回路と温度センサとの不可避な位置的隔離が、温度センサの取付けを手間のかかるものにし、ひいてはこれに応じてコストも高くなる。
【0004】
感温式の抵抗器の測定信号を制御回路に供給するためには、配線が必要である。この配線は、電磁的な拡散による妨害に対して敏感である。さらに検出された温度が必然的に、監視したい場所の温度であるわけではなく、むしろ感温式の抵抗器で生じた温度である。そこで温度測定の歪みを防止するために、抵抗器を冷却されていない外側領域に対して十分に断熱する必要がある。
【0005】
特に蒸発器の温度を監視するためのこのような従来の温度センサが使用される場合、このような温度センサが、通常の冷却運転時の−40℃から霜取運転時の+8℃まで達することのある強い温度変動にさらされ、感温式の抵抗器の断熱材の極度な機械的負荷につながり、ひいては故障を招きかねない。
【0006】
そこで本発明の課題は、温度センサを備えた冷却装置であって、この場合に温度センサの取付けが簡単であり、電磁的な拡散に対する温度センサの測定信号の感度が低減されており、熱的な負荷による故障が排除されるものを提供することである。
【0007】
本発明の課題は請求項1に記載の冷却装置により解決される。
【0008】
この冷却装置の赤外線センサにより検出したい運転温度は、冷却装置の内室温度であってよい。この場合、冷却装置の内室に黒体が設けられていて、赤外線センサはこの黒体と視野コンタクト(blickkontakt)している。
【0009】
測定したい運転温度として、冷却装置の蒸発器の温度も考えられる。この場合、赤外線センサは有利には、蒸発器の、冷却装置の内室に向いている方の表面と視野コンタクトしている。これにより、感温式の抵抗器による測定時ではより簡単に得ることができるが、場合によっては外部からの熱流入によって測定歪みが生じる後壁の温度の代わりに、蒸発器の内室冷却に関連する表面の温度を直接的に測定することが可能となる。赤外線センサは温度を測定したい物体と直接的に接触して配置されている必要がないため、赤外線センサを制御回路に対して直接的に隣接して、特に制御回路と共通の基板上に配置することが可能である。従って、制御回路と温度センサとは1つの構成ユニットとして前もって製造され、組立時に本発明による装置内に共に組み付けられてよい。
【0010】
赤外線センサの温度は測定結果にとって決定的なものではないため、冷却装置の冷却されていない外側領域に取り付けられていてよい。この場合、赤外線センサは監視したい測定面から赤外線透過性の窓により隔離されていることが望ましい。この窓は、冷却装置の内室への妨げられない熱流入を遮断する。
【0011】
赤外線センサと、赤外線センサによって監視したい測定面との間の距離が大きい場合、両者の間に、センサの放射感応性の表面に測定面を映し出すためのレンズを設けることが望ましい。このレンズは特に、既に述べた窓を同時に形成している。
【0012】
次に、本発明の別の特徴及び利点を図示の実施例に基づき説明する。
【0013】
図1は、本発明による冷却装置のケーシングの上方前部角隅の概略断面図を示している。冷却装置は熱絶縁されたケーシングを有しており、図1にはこのケーシングの上側1及びフロント側2の一部が、フロント側に取り付けられたドア3と共に示されている。
【0014】
ドア3の上方のフロント側2にはカバー4が取り付けられており、このカバー4は、重要な特有の熱絶縁作用を有していない単純なプラスチック−成形部品であってよい。
【0015】
カバー4及びフロント側2により取り囲まれている室内の基板5上には、制御回路が設けられており、この制御回路の、冷却装置の内室6に向いている方の表面には、赤外線センサ7が取り付けられている。このような赤外線センサは、赤外線放射の強度を種々様々なスペクトル範囲において検出し、強度分布に基づいて放射源の温度を推測することができる。このような赤外線センサは、例えば体温測定のためのいわゆる「耳体温計」に使用されるものと類似型のものであってよい。確かに冷却装置の内部からの赤外線放射は、人体の赤外線放射よりも明らかに弱く、概して単調であるが、冷却装置を調節する際の測定精度の要求は、体温測定の場合よりも明らかに低いため、この形の赤外線センサは冷却装置の調節のためにも適していると判断される。
【0016】
制御回路を備えた基板5を冷却装置のフロント領域に取り付けることは、次のような利点をもたらす。すなわち、カバー4の窓9を介して使用者に見えるようになっている、発光ダイオード8のような表示エレメントを基板5に取り付けることが可能であり、これにより使用者は、冷却装置が規則通りに機能していることを随時簡単に確認することができる。例えば内室の目標温度を調節するための調節器も、同じように基板5に直接的に取り付けることができ、しかも使用者にとって良好にアクセス可能である。
【0017】
赤外線センサ7は、フロント側2に嵌め込まれた、赤外線透過性の材料からなる窓10に向かい合って位置しており、この窓を介して、内室6に取り付けられた黒体11の特徴的な熱放射は、ほぼ妨害されずに赤外線センサ7の放射感応性の表面に当たることができる。
【0018】
この黒体11によって、内室6の臨界領域の温度を意図的に測定することが可能である。図において黒体11が示されている、内室6のちょうど上方前部の領域がそのような領域である。なぜなら、ドア3の縁部に沿って最も強くなる内室6への熱流入によって、一般に内室の最高温度が生ぜしめられるからである。
【0019】
しかしながら、黒体11を省略することもことも可能であり、これにより、赤外線センサ7は窓10を介して、ある程度、内室6への「自由な視野」を得る。この内室6は熱のバランスにおいて、同様に黒体の放射特性を有している。従って、黒体11を取り除いた場合にも、赤外線センサ7によって赤外線センサ7の全視野にわたって平均化された温度が測定できる。このような構成では、赤外線センサの視野に、直前にはじめて冷却装置内に載せられた冷却物が存在し、そしてこの冷却物の内部温度がまだ検出されていない場合、赤外線センサ7により検出される測定値が「歪む」ことがあり得るという特殊性が生じる。物体の赤外線放射出力は、すなわち温度に伴って線形よりも著しく速く上昇する。それ故、このような「熱い」冷却物は、冷たい周囲よりもある程度「強く放射」し得る。赤外線センサにより検出された温度はこのような場合、「熱い」冷却物を考慮して形成された、計算による温度平均値よりも高い。このような測定歪みは、しかしここでは全く望ましいものである。なぜならこのような測定歪みは、新たな冷却物によってもたらされた熱が内室に広がる前に、冷却装置の冷却出力を高く調節することを可能にするからである。このようにして内室の温度上昇は、新たに持ち込まれた比較的熱い冷却物によって確実に妨げられ、このために何らかの費用のかかる回路技術的な手段を必要とせずに済む。
【0020】
図2は、本発明による冷却装置の別の実施態様の、図1に類似した断面図である。冷却装置の既に図1に示し説明したエレメントに対して付加的に、図2には冷却装置のケーシングの後壁13の一部、及びこれに配置された蒸発器プレート14も示されている。この実施態様では窓10が、窓10と同じ材料から成るレンズ15によって代用されている。このレンズ15は同じようにケーシングのフロント側2に嵌め込まれていてよい。
【0021】
レンズ15は、図2において破線により限定されたレンズの視野16が、図1の構成と比較して制限されており、蒸発器プレート14の限定された領域のみを検出するという効果をもたらす。このような構成により、内室6を横切って蒸発器プレート14の温度を精確に監視することが可能となる。
【0022】
赤外線センサ7自体は蒸発器プレート14で温度変動にさらされるわけではないので、赤外線センサ7の耐用寿命が温度変動によって損なわれることはなく、冷却装置の運転時の故障が妨げられる。
【0023】
既に述べた実施例の種々様々な別の実施態様が本発明の枠内で可能である。例えば複数の赤外線センサを基板5に取付け、これらの赤外線センサがそれぞれ1つの専用の窓を介して、冷却装置の内室6内の1つの視野を監視するということも考えられる。このような異なる温度監視は、制御回路が、例えば局所的にのみ上昇させられた温度測定値を生ぜしめる新たに持ち込まれた冷却物と、冷却の停止により全内室6の温度が上昇するという一般的な機能故障とを区別することを可能にする。
【図面の簡単な説明】
【図1】
本発明の第1実施形態による、本発明による冷却装置ケーシングの一部の概略断面図である。
【図2】
本発明の第2実施形態による、図1に類似の概略断面図である。
[0001]
The present invention relates to a cooling device provided with a temperature sensor for detecting an operating temperature of the cooling device.
[0002]
For the detection of the operating temperature, such as the interior chamber temperature, or the temperature of the evaporator, temperature-dependent resistors are conventionally used in refrigerators, freezers, or cooling devices such as combination devices, The resistor is connected via a cable harness to a control circuit for regulating the cooling operation.
[0003]
This technique, which has long been common, has a series of disadvantages. On the one hand, it is necessary to mount a temperature-sensitive resistor directly on the part where the temperature is to be detected. In contrast, a control circuit that regulates the operation of the cooling machine based on the temperature detected by the temperature sensor, however, is typically provided in the uncooled outer region of the cooling device, thereby providing control. Functional disturbance due to condensate formation in the circuit is prevented. As a result, the unavoidable positional separation between the control circuit and the temperature sensor makes the mounting of the temperature sensor cumbersome and therefore correspondingly expensive.
[0004]
Wiring is necessary to supply the measurement signal of the temperature-sensitive resistor to the control circuit. This wiring is sensitive to disturbances due to electromagnetic diffusion. Furthermore, the detected temperature is not necessarily the temperature of the location to be monitored, but rather the temperature generated by the temperature-sensitive resistor. Thus, in order to prevent distortion in the temperature measurement, the resistor must be sufficiently insulated from the uncooled outer region.
[0005]
Especially when such a conventional temperature sensor for monitoring the temperature of the evaporator is used, such a temperature sensor can reach from -40 ° C during normal cooling operation to + 8 ° C during defrosting operation. Exposure to extreme temperature fluctuations can lead to extreme mechanical loading of the thermal insulation of the temperature sensitive resistor, which can lead to failure.
[0006]
Therefore, an object of the present invention is to provide a cooling device having a temperature sensor, in which the temperature sensor is easily mounted, the sensitivity of the measurement signal of the temperature sensor to electromagnetic diffusion is reduced, It is to provide a system in which a failure due to a heavy load is eliminated.
[0007]
The object of the invention is achieved by a cooling device according to claim 1.
[0008]
The operating temperature desired to be detected by the infrared sensor of the cooling device may be the inner room temperature of the cooling device. In this case, a black body is provided in the inner chamber of the cooling device, and the infrared sensor is in visual contact with the black body.
[0009]
As the operating temperature to be measured, the temperature of the evaporator of the cooling device can be considered. In this case, the infrared sensor is advantageously in field contact with the surface of the evaporator facing the interior of the cooling device. This can be obtained more easily when measuring with a temperature-sensitive resistor, but in some cases, instead of using the temperature of the rear wall, which causes measurement distortion due to heat inflow from the outside, it can be used to cool the inner chamber of the evaporator. The temperature of the relevant surface can be measured directly. Since the infrared sensor does not need to be placed in direct contact with the object whose temperature is to be measured, the infrared sensor is placed directly adjacent to the control circuit, particularly on a common substrate with the control circuit. It is possible. Thus, the control circuit and the temperature sensor may be manufactured in advance as one component unit and assembled together in the device according to the invention during assembly.
[0010]
Since the temperature of the infrared sensor is not critical for the measurement result, it may be mounted in the uncooled outer region of the cooling device. In this case, it is desirable that the infrared sensor be separated from the measurement surface to be monitored by a window that transmits infrared light. This window blocks unobstructed heat flow into the interior of the cooling device.
[0011]
If the distance between the infrared sensor and the measuring surface to be monitored by the infrared sensor is large, it is desirable to provide a lens between them to project the measuring surface on the radiation-sensitive surface of the sensor. In particular, this lens simultaneously forms the window already described.
[0012]
Next, other features and advantages of the present invention will be described based on the illustrated embodiment.
[0013]
FIG. 1 shows a schematic sectional view of the upper front corner of the casing of the cooling device according to the invention. The cooling device has a heat-insulated casing, and FIG. 1 shows the upper part 1 and part of the front side 2 of the casing with a door 3 mounted on the front side.
[0014]
Mounted on the front side 2 above the door 3 is a cover 4, which may be a simple plastic-molded part without any significant specific thermal insulation.
[0015]
A control circuit is provided on a substrate 5 in a room surrounded by the cover 4 and the front side 2, and an infrared sensor is provided on a surface of the control circuit facing the inner room 6 of the cooling device. 7 is attached. Such infrared sensors can detect the intensity of infrared radiation in a variety of different spectral ranges and can estimate the temperature of the radiation source based on the intensity distribution. Such an infrared sensor may for example be of a type similar to that used in so-called "ear thermometers" for measuring body temperature. Certainly, infrared radiation from the inside of the cooling device is clearly weaker than the human body's infrared radiation and is generally monotonous, but the requirements for measurement accuracy when adjusting the cooling device are clearly lower than in the case of body temperature measurement Therefore, it is determined that this type of infrared sensor is also suitable for adjusting the cooling device.
[0016]
Mounting the substrate 5 with the control circuit in the front area of the cooling device has the following advantages. That is, it is possible to attach a display element, such as a light-emitting diode 8, which is visible to the user via the window 9 of the cover 4, to the substrate 5, so that the cooling device can be arranged in a regular manner. Can be easily checked at any time. For example, an adjuster for adjusting the target temperature of the inner chamber can likewise be mounted directly on the substrate 5 and is well accessible to the user.
[0017]
The infrared sensor 7 is located opposite a window 10 made of an infrared-transmissive material and fitted on the front side 2, through which the characteristic of the black body 11 attached to the inner chamber 6. Thermal radiation can impinge on the radiation-sensitive surface of the infrared sensor 7 almost undisturbed.
[0018]
The black body 11 allows the temperature in the critical region of the inner chamber 6 to be measured intentionally. The region just above the front of the inner chamber 6, in which the black body 11 is shown in the figure, is such a region. This is because the heat flow into the inner chamber 6, which is strongest along the edge of the door 3, generally produces the highest temperature in the inner chamber.
[0019]
However, it is also possible to omit the black body 11, whereby the infrared sensor 7 obtains a certain “free view” of the interior 6 through the window 10. This inner chamber 6 also has the radiation characteristics of a black body in terms of heat balance. Therefore, even when the black body 11 is removed, the temperature averaged over the entire field of view of the infrared sensor 7 can be measured by the infrared sensor 7. In such a configuration, a cooling object placed in the cooling device for the first time immediately before exists in the field of view of the infrared sensor, and if the internal temperature of the cooling object has not been detected yet, the cooling object is detected by the infrared sensor 7. A specialty arises in that the measurements can be "distorted". The infrared radiation output of an object increases with temperature, i.e. significantly faster than linearly. Thus, such "hot" coolant may radiate to some extent "stronger" than its cold surroundings. The temperature detected by the infrared sensor is in such a case higher than the calculated temperature average, which takes into account the "hot" coolant. Such measurement distortions, however, are quite desirable here. This is because such measurement distortions allow the cooling output of the cooling device to be adjusted higher before the heat provided by the new coolant spreads into the interior chamber. In this way, an increase in the temperature of the interior chamber is reliably prevented by the newly brought in relatively hot coolant, so that no expensive circuit engineering measures are required.
[0020]
FIG. 2 is a sectional view similar to FIG. 1 of another embodiment of the cooling device according to the invention. In addition to the elements already shown and described in FIG. 1 of the cooling device, FIG. 2 also shows a part of the rear wall 13 of the housing of the cooling device and the evaporator plate 14 arranged thereon. In this embodiment, the window 10 is replaced by a lens 15 made of the same material as the window 10. This lens 15 can likewise be fitted on the front side 2 of the casing.
[0021]
Lens 15 has the effect that the field of view 16 of the lens defined by the dashed line in FIG. 2 is limited compared to the configuration of FIG. 1 and only the limited area of evaporator plate 14 is detected. With such a configuration, it is possible to accurately monitor the temperature of the evaporator plate 14 across the inner chamber 6.
[0022]
Since the infrared sensor 7 itself is not exposed to temperature fluctuations at the evaporator plate 14, the useful life of the infrared sensor 7 is not impaired by the temperature fluctuations, and a failure during operation of the cooling device is prevented.
[0023]
A variety of alternative embodiments of the embodiments already described are possible within the framework of the invention. For example, it is conceivable that a plurality of infrared sensors are mounted on the substrate 5 and each of these infrared sensors monitors one field of view in the inner chamber 6 of the cooling device via one dedicated window. Such a different temperature monitoring is such that the control circuit may, for example, increase the temperature of the entire inner chamber 6 due to the newly introduced coolant, which results in a temperature measurement that is only increased locally, and the cessation of cooling. It is possible to distinguish from general functional failures.
[Brief description of the drawings]
FIG.
1 is a schematic sectional view of a part of a cooling device casing according to the invention, according to a first embodiment of the invention;
FIG. 2
FIG. 2 is a schematic sectional view similar to FIG. 1 according to a second embodiment of the present invention.

Claims (10)

冷却装置であって、装置の運転温度を検出するための温度センサを備えている形式のものにおいて、
温度センサが赤外線センサ(7)であることを特徴とする、温度センサを備えた冷却装置。
A cooling device having a temperature sensor for detecting an operating temperature of the device,
A cooling device provided with a temperature sensor, wherein the temperature sensor is an infrared sensor (7).
運転温度が冷却装置の内室(6)の温度である、請求項1記載の冷却装置。2. The cooling device according to claim 1, wherein the operating temperature is the temperature of the inner chamber of the cooling device. 赤外線センサ(7)が内室(6)内に配置された黒体(11)と視野コンタクトしている、請求項2記載の冷却装置。3. The cooling device according to claim 2, wherein the infrared sensor (7) is in field contact with the black body (11) arranged in the inner chamber (6). 運転温度が冷却装置の蒸発器(14)の温度である、請求項1記載の冷却装置。The cooling device according to claim 1, wherein the operating temperature is the temperature of the evaporator (14) of the cooling device. 赤外線センサ(7)が、蒸発器(14)の、冷却装置の内室(6)に向いている方の表面と視野コンタクトしている、請求項4記載の冷却装置。5. The cooling device according to claim 4, wherein the infrared sensor is in field contact with the surface of the evaporator facing the interior of the cooling device. 赤外線センサ(7)が運転温度のための制御回路と接続されており、かつ該制御回路に対して直接的に隣接して配置されている、請求項1から5までのいずれか1記載の冷却装置。6. The cooling system according to claim 1, wherein the infrared sensor is connected to a control circuit for the operating temperature and is arranged directly adjacent to the control circuit. apparatus. 赤外線センサ(7)が制御回路と共通の基板(5)上に配置されている、請求項6記載の冷却装置。The cooling device according to claim 6, wherein the infrared sensor (7) is arranged on a common substrate (5) with the control circuit. 温度センサが、冷却装置の冷却されていない外側領域に取付けらており、かつ赤外線透過性の窓(10,15)によって監視したい測定面から隔離されている、請求項1から7までのいずれか1項記載の冷却装置。8. The temperature sensor according to claim 1, wherein the temperature sensor is mounted on an uncooled outer area of the cooling device and is isolated from the measuring surface to be monitored by an infrared-transparent window. 2. The cooling device according to claim 1. 温度センサが冷却装置のフロントカバー(4)下に設置されている、請求項8記載の冷却装置。9. Cooling device according to claim 8, wherein the temperature sensor is located under the front cover (4) of the cooling device. 温度センサの放射感応性の面に、測定面(17)を映し出すためのレンズ(15)が設けられている、請求項1から9までのいずれか1項記載の冷却装置。10. The cooling device according to claim 1, wherein a lens (15) for projecting the measurement surface (17) is provided on the radiation-sensitive surface of the temperature sensor.
JP2002534789A 2000-10-10 2001-10-01 Cooling device with temperature sensor Pending JP2004511764A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10050074A DE10050074A1 (en) 2000-10-10 2000-10-10 Refrigeration device with temperature sensor has infrared sensor for detecting operating temperature of refrigeration device, namely operating temperature of inner volume of device
PCT/EP2001/011350 WO2002031453A1 (en) 2000-10-10 2001-10-01 Refrigerating device with a temperature sensor

Publications (1)

Publication Number Publication Date
JP2004511764A true JP2004511764A (en) 2004-04-15

Family

ID=7659229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002534789A Pending JP2004511764A (en) 2000-10-10 2001-10-01 Cooling device with temperature sensor

Country Status (10)

Country Link
US (1) US20040003611A1 (en)
EP (1) EP1327127A1 (en)
JP (1) JP2004511764A (en)
KR (1) KR20030040487A (en)
CN (1) CN1220036C (en)
AU (1) AU2001293859A1 (en)
BR (1) BR0114244A (en)
DE (1) DE10050074A1 (en)
PL (1) PL360730A1 (en)
WO (1) WO2002031453A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20030343A1 (en) * 2003-05-09 2004-11-10 Fiat Ricerche REFRIGERATOR WITH PERFECTED TEMPERATURE CONTROL
CL2008000704A1 (en) * 2007-03-12 2008-09-12 Lma Medical Innovations Ltd PROCEDURE FOR HEATING AN INTRAVENOUS FLUID THAT INCLUDES THE CONNECTION OF A HEATING ELEMENT, ELECTRICALLY RESISTANT, TO A FLUID SUPPLY LINE, ELECTRICALLY COUPLING A POWER SOURCE TO THE HEATING ELEMENT, ELECTRICALLY RESISTOR;
DE102009036089A1 (en) * 2009-08-04 2011-02-17 Wmf Württembergische Metallwarenfabrik Ag Device for storing milk
EP2503322B1 (en) * 2011-03-25 2016-03-09 Detlev Gertitschke Device for inspecting small pharmaceutical products
CN103673495A (en) * 2012-09-25 2014-03-26 海尔集团公司 Refrigerating illumination device and method
US9408939B2 (en) 2013-03-15 2016-08-09 Medline Industries, Inc. Anti-microbial air processor for a personal patient warming apparatus
CN106642977B (en) * 2016-12-27 2019-12-13 Tcl集团股份有限公司 frequency conversion method and device
DE102017113246A1 (en) * 2017-06-16 2018-12-20 Liebherr-Hausgeräte Ochsenhausen GmbH Fridge and / or freezer
CN110031111A (en) * 2019-04-24 2019-07-19 中国科学院云南天文台 It is a kind of for atmospheric radiation detection system infrared in Astronomical Site Testing
CN112984947B (en) * 2021-03-08 2021-11-02 上海绿联智能科技股份有限公司 Temperature control method and device for refrigerator and intelligent control storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD228060A1 (en) * 1984-05-28 1985-10-02 Dkk Scharfenstein Veb TEMPERATURE SENSOR SYSTEM FOR HOUSEHOLD CHAIN UNITS
US4671458A (en) * 1985-02-25 1987-06-09 Kabushiki Kaisha Toshiba Air conditioning apparatus
US4891952A (en) * 1987-07-22 1990-01-09 Sharp Kabushiki Kaisha Freezer-refrigerator
US5772326A (en) * 1996-08-30 1998-06-30 Hubbell Incorporated Temperature and passive infrared sensor module
US6279832B1 (en) * 1999-03-31 2001-08-28 Melexis Nv Temperature control system
JP3800900B2 (en) * 1999-09-09 2006-07-26 三菱電機株式会社 Refrigerating refrigerator, operation method of freezing refrigerator
US6625997B1 (en) * 2001-10-26 2003-09-30 Delphi Technologies, Inc. Automotive air conditioning system
US6694758B1 (en) * 2002-08-14 2004-02-24 Lg Electronics Inc. Apparatus and method for controlling concentrated cooling of refrigerator

Also Published As

Publication number Publication date
US20040003611A1 (en) 2004-01-08
CN1469992A (en) 2004-01-21
WO2002031453A1 (en) 2002-04-18
BR0114244A (en) 2003-10-07
PL360730A1 (en) 2004-09-20
CN1220036C (en) 2005-09-21
AU2001293859A1 (en) 2002-04-22
KR20030040487A (en) 2003-05-22
DE10050074A1 (en) 2002-04-18
EP1327127A1 (en) 2003-07-16

Similar Documents

Publication Publication Date Title
KR100628283B1 (en) Infrared sensor stabilisable in temperature, and infrared thermometer with a sensor of this type
US8302527B2 (en) Method for determining the variation with time of the amount of steam released from a food product during a cooking process in a cooking chamber of a baking oven
US7005642B2 (en) Infrared sensor and electronic device using the same
JP5793679B2 (en) Infrared sensor module
JP2013531248A (en) Infrared temperature measurement and stabilization
US7525092B2 (en) Infrared sensor having thermo couple
JP2004511764A (en) Cooling device with temperature sensor
US7276697B2 (en) Infrared apparatus
JP2011216323A (en) Induction heating cooker
JP2008066315A (en) Induction heating cooker
JP2022100256A (en) Pyranometer and method of assembling pyranometer
JP2009259608A (en) Induction cooker
KR20070004659A (en) Temperature sensor and arrangement for regulating the climate in the interior of a motor vehicle
JP3843922B2 (en) Air conditioner
US6265712B1 (en) IR sensor with reflective calibration
JP3813057B2 (en) Temperature detector and air conditioner using the same
JP2011128066A (en) Infrared sensor module
US10024722B2 (en) Temperature detection device for a vehicle heater
JP3376634B2 (en) Temperature detector
US20170131729A1 (en) Thermostat with thermal radiation detector
JPS6330890Y2 (en)
US20230296443A1 (en) Electromagnetic wave sensor and manufacturing method thereof
JP2010266115A (en) Cooker
JP3192309B2 (en) Pyroelectric infrared sensor
JP2004028523A (en) Heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070105