JP4798882B2 - Powder and particle feeder - Google Patents

Powder and particle feeder Download PDF

Info

Publication number
JP4798882B2
JP4798882B2 JP2001184156A JP2001184156A JP4798882B2 JP 4798882 B2 JP4798882 B2 JP 4798882B2 JP 2001184156 A JP2001184156 A JP 2001184156A JP 2001184156 A JP2001184156 A JP 2001184156A JP 4798882 B2 JP4798882 B2 JP 4798882B2
Authority
JP
Japan
Prior art keywords
granular material
supply pipe
material supply
gas
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001184156A
Other languages
Japanese (ja)
Other versions
JP2003001093A (en
Inventor
浩司 上田
裕之 安吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Corp filed Critical Shibuya Corp
Priority to JP2001184156A priority Critical patent/JP4798882B2/en
Publication of JP2003001093A publication Critical patent/JP2003001093A/en
Application granted granted Critical
Publication of JP4798882B2 publication Critical patent/JP4798882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、貯留部から目的装置へ粉粒体を供給する粉粒体供給装置に関する。より詳しくは、種々の粉粒体を貯留部から噴射ノズルへ供給するブラスト装置などにおいて、安定した供給が可能であり、供給量の幅広いコントロールも可能な粉粒体供給装置を提供するものである。
【0002】
【従来の技術】
貯留部からの粉粒体供給装置として、従来からロータリバルブやスクリュコンベヤを用いたものや、接触した二つのローラ間を経て供給するものなど、種々の方式のものが知られており、それぞれ長所短所を有している。本出願人もスクリュネジ式を提案している(特開平11−254329号公報)。この方式は、比較的細かい粉粒体向きで、きめ細かな流量調整が可能な反面、粉粒体の供給量に関してはあまり大きくできないという限界があった。また、粉粒体供給管と送気管との間隙から粉粒体を回収して循環使用するものも開示されている(特開平6−79630号公報)。この方式の場合は、粗い粉粒体向きで多量の粉粒体を回収することができるが、細かい粉粒体の場合には脈動による供給量の変動が大きくなり不向きであった。すなわち、この方式の場合には可動部がないことから、湿気等により前記間隙部近傍で粉粒体どうしが密接して流動性が低下したり流量が変動して脈動を生じたり閉塞することにより、安定した定量供給が阻害されるといった技術的な難点があった。この問題は、ホッパや貯留タンク内に撹拌翼を設置したり振動を与えたりしてラットホールを防止しても解決できなかった。特に、湿気等により粉粒体中に固まりができたり管の外面に粉粒体が付着したりして間隙部分が一旦詰まると、駆動部がないため粉粒体をすべて排出して固まりを崩すという面倒な作業が必要とされた。
【0003】
【発明が解決しようとする課題】
以上のように、従来の粉粒体供給装置はそれぞれ長所短所を有しており、細かい粉粒体に対しても粗い粉粒体に対しても、安定した広い幅の供給量が得られる、使い勝手の良好な粉粒体供給装置を見出すことは困難であった。本発明は、このような従来技術の状況に鑑みて開発したもので、粉粒体の固まり等による支障を確実に解消することができ、しかも粒子径の大小に関わらず、安定した幅広い定量供給が可能な粉粒体供給装置を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明は、前記課題を解決するため、粉粒体貯留部内に開口する粉粒体供給管と、該粉粒体供給管との間に適宜な間隙を介して配置した気体供給管とを備え、前記気体供給管から粉粒体供給管へ流通する気体流により前記間隙から流入する粉粒体を前記粉粒体供給管内に送込むように構成した粉粒体供給装置において、前記粉粒体供給管と気体供給管との間隙又はその近傍を撹拌するように撹拌部材を前記気体供給管又は粉粒体供給管の外周部に回転可能に設けるという技術手段を採用した。この技術手段により、前記間隙の近傍の粉粒体の固まりは回転する前記撹拌部材により粉砕崩壊されるとともに撹拌されるので、その部分の粉粒体の流動性が向上され安定した供給状態が可能になることから、変動の少ない安定した幅広い定量供給が可能となる。また、前記間隙の近傍の低下した粉粒体の流動性が向上されることから、固まりやすいものにおいても安定した定量供給が可能となる。なお、前記撹拌部材をそれ自体が回転可能に構成された前記気体供給管又は粉粒体供給管に一体的に取付けてもよい。さらに、前記気体供給管及び粉粒体供給管の少なくとも一方を回転可能に構成するとともに、その回転可能に構成された管の端部に凹凸部を設けるという技術手段を採用することも可能である。この技術手段により、回転する管に粉粒体が付着することなく、前記間隙近傍を含むその管の周囲の粉粒体を徐々に流動化できる。そして、端部の凹凸部により粒子径の大小に関わらず少量ずつ安定的に供給することも可能である。前記凹凸部は、例えば平行溝やスパイラル状の溝から構成されるものでもよい。なお、以上の粉粒体供給管と気体供給管との間隙を調節可能に構成してもよいことはいうまでもない。
【0005】
【発明の実施の形態】
本発明は、大量の研掃材の供給が必要な比較的低圧のブラスト装置や、研掃材の種類や粒子径の変更を伴うブラスト装置などに好適であるが、これに限らず粉粒体の供給装置として広く適用することができる。前記気体としては、空気が一般的であるが、粉粒体の搬送気体として機能し得るものであればよい。また、粉粒体の乾燥機能を向上すべく加熱したものでもよい。撹拌部材の回転手段に関しては、それ自体が回転可能に構成された気体供給管又は粉粒体供給管に取付けて回転するように構成してもよいし、それらの気体供給管又は粉粒体供給管の外周部に軸受を介して設け、別に設けた駆動源により回転するように構成してもよい。なお、以下の実施例のように気体供給管側を回転するように構成してもよいし、あるいは粉粒体供給管側を回転するように構成してもよいし、それらの気体供給管及び粉粒体供給管の双方を逆方向ないし速度差をもって回転するように構成してもよい。また、請求項1に係る形態と請求項3に係る形態を組合わせ、回転可能に構成した気体供給管あるいは粉粒体供給管の端部に凹凸部を設けるとともに、その管に両管の間隙部分又はその近傍を撹拌するように撹拌部材を設けてもよい。さらに、気体供給管及び粉粒体供給管の双方を回転可能に構成し、一方の管の端部に凹凸部を設け、他方の管に撹拌部材を取付けることも可能である。また、気体供給管と粉粒体供給管との管径を同じにする必要はなく、細い方の管を太い方の管に入り込ませてもよい。
【0006】
【実施例】
以下、図面を用いて本発明の実施例に関して説明する。図1は本発明の第1実施例を示した全体構成図であり、図2はその要部拡大図、図3は図2の右側面図である。図示のように、本実施例では、ホッパ1の下部に形成された粉粒体貯留部2内に開口する粉粒体供給管3と、該粉粒体供給管3との間に数mm〜10mm程度の適宜な間隙Gを介して配置した気体供給管4とを備え、気体供給管4側を回転させるように構成した場合に関して示した。そして、気体供給管4側に前記間隙Gを囲むように撹拌部材5を取付けることにより回転可能に構成した点で特徴を有する。本実施例では、気体供給管4は、ベアリング等の軸受6により回転自在に支持され、プーリ7等を介して図示しない駆動モータにより回転駆動されるように構成されている。プーリ7には一体的にスプロケット8が形成されており、チェーン9を介して並設される適宜数の気体供給管4を同時に回転駆動するように構成することも可能である。また、駆動モータの回転制御等により気体供給管4の回転数を調整し得るように構成することも可能である。さらに、気体供給管4は、ロータリジョイント10等を挟んで、気体導入管11に接続されており、その導入量をバルブ12により調整できるように構成されている。なお、図中、13はホッパ1内に配設した撹拌翼、14はホッパ1の外面に付設した加熱用ヒータ、15はホッパ1の下部に設けた粉粒体貯留部2への連通部である。本実施例では、図3に示したように、3本の粉粒体供給管3a〜3cを備えた場合を示した。この3本の粉粒体供給管3a〜3cに応じて、ホッパ1の撹拌翼13の下方に配設される粉粒体貯留部2も、3個の独立した貯留空間に分割形成されており、それぞれの貯留空間内に、粉粒体供給管3a〜3cに対応して3組の気体供給管4及び撹拌部材5が配設されている。そして、3本の粉粒体供給管3a〜3cは、それぞれ前記チェーン9により連係されており、スプロケット8を介して同時に回転駆動されるように構成されている。
【0007】
前記粉粒体供給管3は、粉粒体貯留部2の壁部16に設置された固定部17の締付ネジ18により固定するように構成されており、その締付ネジ18を緩めてスライドさせることにより、気体供給管4との間隙Gを調整可能に構成されている。その粉粒体供給管3の下流側は噴射ノズル19に接続されている。噴射ノズル19では、加圧気体供給管20を介して供給される加圧気体の噴射時の吸引作用も相俟って、粉粒体供給管3からの粉粒体が噴射されることになる。本実施例では、粉粒体供給管3の途中に更に気体導入管21を接続し、バルブ22により気体の導入量を調整できるように構成している。すなわち、粉粒体を少量供給する場合には、バルブ12を絞れば供給量を少なくすることはできるが、あまり絞りすぎると、粉粒体供給管3内の気体流通量も少なくなり、粉粒体が噴射ノズル19まで搬送されずに管内で詰ることになるので、バルブ22により粉粒体供給管3内の気体流通量を調整できるように構成している。なお、必要に応じて、前記気体導入管11の他端部に圧縮機等を接続して加圧気体を供給するように構成し得ることはいうまでもない。
【0008】
しかして、本実施例では、ホッパ1内に貯留された粉粒体は、撹拌翼13により撹拌されながら加熱用ヒータ14により乾燥され、順次連通部15を経て下方の粉粒体貯留部2内へ流下する。粉粒体貯留部2内に貯留された粉粒体は、粉粒体供給管3と気体供給管4との間に形成された間隙Gを介して粉粒体供給管3内へ流入することになるが、その際には、前記気体供給管4から粉粒体供給管3へ流通する気体流が粉粒体を粉粒体供給管3内に引込むように作用し、粉粒体の粉粒体供給管3内への流入が促進される。また、その気体供給管4から粉粒体供給管3へ流通する気体流が搬送気体として機能し、粉粒体供給管3内における粉粒体の噴射ノズル19等の目的装置への搬送が促進される。この粉粒体供給管3からの目的装置への粉粒体の供給量に関する設定は、基本的には、粉粒体貯留部2の壁部16に設置された固定部17の締付ネジ18を緩め、粉粒体供給管3をスライドして気体供給管4との間隙Gの大きさを調整することにより行われる。また、バルブ12により気体供給管4の流量を調整したり、バルブ22により気体導入管21の流量を調整することによっても、粉粒体の供給量の調整が可能である。すなわち、粉粒体供給管3と気体供給管4との間隙Gの大きさや、気体供給管4の流量、気体導入管21の流量を調整することにより粉粒体の供給量を設定することができる。なお、図3に示したように多連式に構成した場合には、各間隙Gや、各バルブ12及び各バルブ22により、それぞれの噴射ノズル19への粉粒体供給量を独立して調整できる。これにより、加圧気体供給源が同じ場合でも他の噴射ノズル19への影響を回避できる。また、駆動モータを各気体供給管4に対してそれぞれ設けることにより、各気体供給管4の回転数をそれぞれ独立して調整し得るように構成することも可能である。さらに、バルブ12を全閉して粉粒体の供給を停止し、噴射ノズル19から気体のみ噴射することにより、ワークに対してエアー洗浄を行うことも可能である。
【0009】
図示のように、本実施例では、粉粒体供給管3の端部内面をテーパ状に面取りするとともに気体供給管4の端部外面をテーパ状に面取りして、その間に形成される間隙Gを粉粒体供給管3の内方へ向うテーパ状に形成したので、前記間隙Gを介して流入する粉粒体は、粉粒体供給管3内へスムーズに誘導される。また、気体供給管4には、前述のように前記間隙Gを囲むように撹拌部材5が取付けられているので、プーリ7を介して連続的あるいは間欠的ないし必要時に気体供給管4を回転させることにより撹拌部材5が回転する。この撹拌部材5の回転により、間隙Gの近傍にある粉粒体の固まりや粉粒体供給管3の外面に付着した粉粒体などは粉砕崩壊されるとともにその近傍が撹拌される。したがって、間隙Gが粉粒体の固まりや粉粒体供給管3の外面に付着した粉粒体などにより塞がれるトラブルは的確に解消されるとともに、間隙Gの近傍の粉粒体の流動性が向上されるので、安定した供給状態が維持され、変動の少ない安定した幅の広い定量供給が可能になる。また、固まりの生じやすい湿気を帯びやすいものにおいても安定した供給状態が可能なことから、粒子径に対する適応範囲が拡大される。なお、撹拌部材5は、図4に示したように、複数の平行溝23を形成した櫛歯状の円筒体などから構成される。
【0010】
図5は本発明の第2実施例の要部を示した断面図である。本実施例は、前記第1実施例の変形例であり、図示のように前記撹拌部材5に替えてコイル状の撹拌部材24を採用した点で特徴を有し、他の構成においては第1実施例と同様である。この撹拌部材24は、前記撹拌部材5と同様に、粉粒体供給管3と気体供給管4との間隙Gの近傍の粉粒体の固まりや粉粒体供給管3の外面に付着した粉粒体などは粉砕崩壊するとともに、その近傍を撹拌して低下した粉粒体の流動性を向上する作用を奏する。
【0011】
図6は本発明の第3実施例の要部を示した断面図であり、図7は同実施例のA−A矢視図である。図示のように、本実施例は、前記実施例と同様に回転駆動されるように構成された気体供給管25自体の端部に凹凸部26を設けたことを特徴とするものである。この凹凸部26は、図7に示したように螺旋状に形成した螺旋溝27からなり、粉粒体供給管28との間隙Gを流入する粉粒体は、螺旋溝27に沿って誘導されるとともに、その近傍の粉粒体が撹拌されることになる。したがって、前記間隙G近傍の粉粒体の固まりや付着部が粉砕崩壊されるとともに粉粒体の流動性が向上される。しかも、本実施例の場合には、凹凸部26を螺旋溝27から構成したので、図7に示した正回転方向に回転した場合には、螺旋溝27の回転作用により粉粒体は粉粒体供給管28内へ積極的に送込まれる。逆に、逆回転方向に螺旋溝27を回転した場合には、粉粒体を外側へ排除する方向に作用する。すなわち、螺旋溝27を逆回転方向に回転した場合には、粉粒体は外側へ排除されながら撹拌作用を受け、螺旋溝27から離れた粉粒体供給管28の近くの間隙部を介して流入することになる。以上から、本実施例の場合には、気体供給管25を介して凹凸部26すなわち螺旋溝27の回転数や回転方向を制御することにより、間隙Gからの粉粒体の流入量を調整することも可能である。なお、前記凹凸部26を平行溝から構成することも可能である。さらに、他の変形例として、気体供給管25又は粉粒体供給管28の一方あるいは双方の端部外周面に突起部を一体的に設けたものでもよい。
【0012】
図8は本発明の第4実施例の要部を示した断面図である。本実施例は、上記第3実施例に前記第1実施例の撹拌部材5を組合わせたものである。すなわち、前記気体供給管25自体の端部に設けた螺旋溝27からなる凹凸部26のほかに、その気体供給管25の外周部に前記撹拌部材5を取付けた点を特徴とするものである。本実施例の場合には、前述の凹凸部26の作用と撹拌部材5の撹拌作用とが相俟って、前記間隙G近傍の粉粒体の固まりや付着部をより確実に粉砕崩壊できるとともに、より広い範囲の粉粒体の流動性がより確実に向上されることになる。なお、以上で説明した気体供給管25の正回転あるいは逆回転方向における回転速度は、粉粒体供給管28内を流れる粉粒体の供給量を検出し、その検出値を設定供給量と比較して、その結果を気体供給管25を回転駆動する駆動モータの回転制御にフードバックすることにより、クローズドループ制御を行うことができる。また、予め気体供給管25の回転速度と供給量との関係を測定しておき、必要とされる供給量に応じて回転数制御するように構成することも可能である。さらに、前述のように、バルブ12による気体導入管11からの流量調整やバルブ22による気体導入管21からの流量調整を加えて粉粒体の供給量を調整することも可能である。
【0013】
【発明の効果】
本発明によれば、粉粒体が流入するための気体供給管と粉粒体供給管との間隙部又はその近傍に付着した粉粒体や粉粒体の固まりは回転する前記撹拌部材あるいは凹凸部によって的確に粉砕崩壊されるので、それらの粉粒体の付着部分や粉粒体の固まりによる詰りが的確に解消されるとともに、前記間隙部又はその近傍の粉粒体の流動性が向上される。したがって、従来困難であった細かい粉粒体の場合においても安定した定量供給が可能となり、粉粒体の粒子径の大小及び供給量の多少に関わらず、安定した幅広い定量供給が可能なことから、その適応範囲を拡大することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例を示した全体構成図である。
【図2】 同第1実施例の要部を断面して示した部分拡大図である。
【図3】 図2の右側面図である。
【図4】 撹拌部材を示した片側断面図である。
【図5】 本発明の第2実施例の要部を示した断面図である。
【図6】 本発明の第3実施例の要部を示した断面図である。
【図7】 同第3実施例のA−A矢視図である。
【図8】 本発明の第4実施例の要部を示した断面図である。
【符号の説明】
1…ホッパ、2…粉粒体貯留部、3…粉粒体供給管、4…気体供給管、5…撹拌部材、6…軸受、7…プーリ、8…スプロケット、9…チェーン、10…ロータリジョイント、11…気体導入管、12…バルブ、13…撹拌翼、14…加熱用ヒータ、15…連通部、16…壁部、17…固定部、18…締付ネジ、19…噴射ノズル、20…加圧気体供給管、21…気体導入管、22…バルブ、23…平行溝、24…撹拌部材、25…気体供給管、26…凹凸部、27…螺旋溝、28…粉粒体供給管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a granular material supply device that supplies granular material from a storage unit to a target device. More specifically, the present invention provides a granular material supply device capable of stable supply and a wide control of the supply amount in a blasting device that supplies various granular materials from a reservoir to an injection nozzle. .
[0002]
[Prior art]
Various types of powder and particle supply devices from the storage unit have been known, such as those using a rotary valve or screw conveyor, and those supplied through two rollers in contact with each other. Has disadvantages. The present applicant has also proposed a screw screw type (Japanese Patent Laid-Open No. 11-254329). This method is suitable for relatively fine particles and allows fine adjustment of the flow rate, but has a limit that the supply amount of particles cannot be increased so much. Further, there is also disclosed one that collects and circulates a granular material from the gap between the granular material supply tube and the air supply tube (Japanese Patent Laid-Open No. 6-79630). In the case of this method, a large amount of powder particles can be recovered in the direction of coarse particles, but in the case of fine particles, the supply amount fluctuation due to pulsation becomes large, which is not suitable. In other words, since there is no moving part in this method, due to moisture or the like, the powder particles are in close contact with each other in the vicinity of the gap, resulting in a decrease in fluidity or fluctuation in flow rate, causing pulsation or blockage However, there was a technical problem that stable quantitative supply was hindered. This problem could not be solved by preventing a rathole by installing a stirring blade in the hopper or storage tank or applying vibration. In particular, once the gaps are clogged due to the formation of particles in the particles due to moisture, etc., or the particles adhering to the outer surface of the tube, since there is no drive unit, all the particles are discharged to break up the particles. The troublesome work that was required.
[0003]
[Problems to be solved by the invention]
As described above, the conventional powder supply devices each have advantages and disadvantages, and a stable and wide supply amount can be obtained for both fine and coarse particles. It has been difficult to find an easy-to-use powder supply apparatus. The present invention has been developed in view of such a state of the art, and can reliably eliminate problems caused by agglomeration of particles and the like, and can stably supply a wide range of quantitative quantities regardless of the particle size. An object of the present invention is to provide a powder and granular material supply device capable of performing the above.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a powder supply pipe that opens into the powder storage section, and a gas supply pipe that is disposed between the powder supply pipe and an appropriate gap. In the granular material supply apparatus configured to send the granular material flowing from the gap into the granular material supply tube by a gas flow flowing from the gas supply tube to the granular material supply tube, the granular material Technical means was adopted in which a stirring member is rotatably provided on the outer periphery of the gas supply pipe or the granular material supply pipe so as to stir the gap between the supply pipe and the gas supply pipe or the vicinity thereof. By this technical means, the mass of the granular material in the vicinity of the gap is crushed and disintegrated and stirred by the rotating stirring member, so that the fluidity of the granular material in that portion is improved and a stable supply state is possible. Therefore, a stable and wide-ranging quantitative supply with little fluctuation is possible. Further, since the fluidity of the reduced granular material in the vicinity of the gap is improved, stable quantitative supply is possible even for those that are likely to be hardened. It is also integrally attached to the front Symbol stirring member the gas supply pipe or granular material supply pipe itself is configured to be rotatable. Furthermore, it is also possible to adopt a technical means in which at least one of the gas supply pipe and the granular material supply pipe is configured to be rotatable and an uneven portion is provided at an end of the rotatable tube. . By this technical means, the granular material around the tube including the vicinity of the gap can be gradually fluidized without adhering the granular material to the rotating tube. And it is also possible to supply stably little by little by the uneven | corrugated | grooved part of an edge part irrespective of the size of a particle diameter. The concavo-convex portion may be constituted by, for example, a parallel groove or a spiral groove. In addition, it cannot be overemphasized that you may comprise so that the clearance gap between the above granular material supply pipe | tube and a gas supply pipe | tube can be adjusted.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is suitable for a relatively low-pressure blasting apparatus that requires supply of a large amount of abrasive, and a blasting apparatus that involves changing the type and particle diameter of the abrasive, but is not limited thereto. It can be widely applied as a feeding device. The gas is generally air, but may be any gas that can function as a carrier gas for the granular material. Moreover, what was heated in order to improve the drying function of a granular material may be used. Regarding the rotating means of the agitating member, it may be configured to rotate by being attached to a gas supply pipe or a granular material supply pipe that is configured to be rotatable, or to supply the gas supply pipe or the granular material. You may comprise so that it may provide in the outer peripheral part of a pipe | tube via a bearing and it may rotate with the drive source provided separately. In addition, you may comprise so that a gas supply pipe | tube side may be rotated like the following examples, or you may comprise so that a granular material supply pipe | tube side may be rotated, those gas supply pipes and You may comprise so that both of a granular material supply pipe may rotate with a reverse direction or a speed difference. Further, the embodiment according to claim 1 and the embodiment according to claim 3 are combined, and an uneven portion is provided at an end of a gas supply tube or a granular material supply tube configured to be rotatable, and a gap between both tubes is provided in the tube. You may provide a stirring member so that a part or its vicinity may be stirred. Furthermore, both the gas supply pipe and the powder supply pipe can be configured to be rotatable, an uneven portion is provided at the end of one pipe, and a stirring member can be attached to the other pipe. Moreover, it is not necessary to make the pipe diameter of a gas supply pipe and a granular material supply pipe the same, and a narrower pipe | tube may be inserted in a thicker pipe | tube.
[0006]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram showing a first embodiment of the present invention, FIG. 2 is an enlarged view of a main part thereof, and FIG. 3 is a right side view of FIG. As shown in the figure, in this embodiment, several mm to between the granular material supply pipe 3 opened in the granular material storage part 2 formed in the lower part of the hopper 1 and the granular material supply pipe 3. The gas supply pipe 4 arranged through an appropriate gap G of about 10 mm is provided, and the gas supply pipe 4 side is configured to rotate. And it has the characteristics at the point comprised so that it could rotate by attaching the stirring member 5 so that the said gap | interval G might be enclosed by the gas supply pipe | tube 4 side. In this embodiment, the gas supply pipe 4 is rotatably supported by a bearing 6 such as a bearing, and is configured to be rotationally driven by a drive motor (not shown) via a pulley 7 and the like. A sprocket 8 is integrally formed on the pulley 7, and an appropriate number of gas supply pipes 4 arranged side by side via the chain 9 can also be configured to rotate at the same time. Moreover, it is also possible to comprise so that the rotation speed of the gas supply pipe | tube 4 can be adjusted by rotation control etc. of a drive motor. Further, the gas supply pipe 4 is connected to the gas introduction pipe 11 with the rotary joint 10 or the like interposed therebetween, and the introduction amount thereof can be adjusted by the valve 12. In the figure, 13 is a stirring blade disposed in the hopper 1, 14 is a heater for heating attached to the outer surface of the hopper 1, and 15 is a communication portion to the granular material storage unit 2 provided in the lower part of the hopper 1. is there. In the present embodiment, as shown in FIG. 3, the case where three powder body supply pipes 3 a to 3 c are provided is shown. In accordance with the three powder supply pipes 3a to 3c, the powder storage unit 2 disposed below the stirring blade 13 of the hopper 1 is also divided into three independent storage spaces. In each storage space, three sets of gas supply pipes 4 and stirring members 5 are arranged corresponding to the powder and granular material supply pipes 3a to 3c. The three granular material supply pipes 3 a to 3 c are linked to each other by the chain 9 and are configured to be driven to rotate simultaneously through the sprocket 8.
[0007]
The granular material supply pipe 3 is configured to be fixed by a tightening screw 18 of a fixing portion 17 installed on the wall portion 16 of the granular material storage unit 2, and the slide is made by loosening the tightening screw 18. By doing so, the gap G with the gas supply pipe 4 can be adjusted. The downstream side of the granular material supply pipe 3 is connected to an injection nozzle 19. In the injection nozzle 19, the granular material from the granular material supply tube 3 is injected together with the suction action when the pressurized gas supplied through the pressurized gas supply tube 20 is injected. . In this embodiment, a gas introduction pipe 21 is further connected in the middle of the granular material supply pipe 3 so that the amount of gas introduced can be adjusted by the valve 22. That is, when supplying a small amount of granular material, the supply amount can be reduced if the valve 12 is throttled, but if the amount is excessively reduced, the gas flow rate in the granular material supply pipe 3 is also reduced. Since the body is not transported to the injection nozzle 19 and is clogged in the tube, the gas flow rate in the granular material supply tube 3 can be adjusted by the valve 22. Needless to say, a pressurized gas can be supplied by connecting a compressor or the like to the other end of the gas introduction tube 11 as necessary.
[0008]
Thus, in this embodiment, the granular material stored in the hopper 1 is dried by the heater 14 while being stirred by the stirring blade 13, and sequentially passes through the communicating portion 15 to be in the lower granular material storing portion 2. Flow down. The granular material stored in the granular material storage part 2 flows into the granular material supply pipe 3 through a gap G formed between the granular material supply pipe 3 and the gas supply pipe 4. However, in that case, the gas flow flowing from the gas supply pipe 4 to the granular material supply pipe 3 acts so as to draw the granular material into the granular material supply pipe 3, and the granular particles of the granular material. Inflow into the body supply pipe 3 is promoted. Further, the gas flow flowing from the gas supply pipe 4 to the granular material supply pipe 3 functions as a carrier gas, and the conveyance of the granular material in the granular material supply pipe 3 to the target device such as the injection nozzle 19 is promoted. Is done. Basically, the setting relating to the supply amount of the granular material from the granular material supply pipe 3 to the target device is the tightening screw 18 of the fixing portion 17 installed on the wall portion 16 of the granular material storage unit 2. Is performed by sliding the granular material supply pipe 3 and adjusting the size of the gap G with the gas supply pipe 4. Further, the supply amount of the granular material can also be adjusted by adjusting the flow rate of the gas supply pipe 4 with the valve 12 or adjusting the flow rate of the gas introduction pipe 21 with the valve 22. That is, the supply amount of the granular material can be set by adjusting the size of the gap G between the granular material supply tube 3 and the gas supply tube 4, the flow rate of the gas supply tube 4, and the flow rate of the gas introduction tube 21. it can. In the case of a multiple configuration as shown in FIG. 3, the amount of powder supplied to each injection nozzle 19 is independently adjusted by each gap G, each valve 12, and each valve 22. it can. Thereby, even when a pressurized gas supply source is the same, the influence on the other injection nozzle 19 can be avoided. Moreover, it is also possible to comprise so that the rotation speed of each gas supply pipe | tube 4 can be adjusted independently by providing a drive motor with respect to each gas supply pipe | tube 4, respectively. Furthermore, it is also possible to perform air cleaning on the workpiece by fully closing the valve 12 to stop the supply of powder and injecting only the gas from the injection nozzle 19.
[0009]
As shown in the figure, in this embodiment, the inner surface of the end of the powder supply pipe 3 is chamfered in a tapered shape, and the outer surface of the end of the gas supply pipe 4 is chamfered in a tapered shape, and a gap G formed therebetween. Is formed in a tapered shape toward the inside of the powder supply pipe 3, the powder flowing in through the gap G is smoothly guided into the powder supply pipe 3. Further, since the stirring member 5 is attached to the gas supply pipe 4 so as to surround the gap G as described above, the gas supply pipe 4 is rotated via the pulley 7 continuously or intermittently or when necessary. As a result, the stirring member 5 rotates. By the rotation of the stirring member 5, the lump of the granular material in the vicinity of the gap G, the granular material attached to the outer surface of the granular material supply pipe 3 is crushed and broken, and the vicinity thereof is stirred. Therefore, troubles in which the gap G is blocked by a lump of the granular material or a granular material adhering to the outer surface of the granular material supply pipe 3 can be accurately solved, and the fluidity of the granular material in the vicinity of the gap G can be eliminated. Therefore, a stable supply state is maintained, and a stable and wide quantitative supply with little fluctuation is possible. In addition, since a stable supply state is possible even for those that are likely to be wet and easily lumpy, the range of application to the particle diameter is expanded. As shown in FIG. 4, the stirring member 5 is composed of a comb-like cylindrical body in which a plurality of parallel grooves 23 are formed.
[0010]
FIG. 5 is a sectional view showing the main part of the second embodiment of the present invention. This embodiment is a modification of the first embodiment, and is characterized in that a coil-like stirring member 24 is used instead of the stirring member 5 as shown in the figure. It is the same as that of an Example. This agitating member 24 is similar to the agitating member 5 in that the agglomerates in the vicinity of the gap G between the granular material supply pipe 3 and the gas supply pipe 4 and the powder adhered to the outer surface of the granular material supply pipe 3. Granules and the like are crushed and disintegrated, and have an effect of improving the fluidity of the granular material that has been lowered by stirring in the vicinity thereof.
[0011]
FIG. 6 is a cross-sectional view showing the main part of the third embodiment of the present invention, and FIG. 7 is a view taken along the line AA of the same embodiment. As shown in the figure, the present embodiment is characterized in that an uneven portion 26 is provided at the end of the gas supply pipe 25 itself configured to be rotationally driven in the same manner as in the above-described embodiment. As shown in FIG. 7, the concavo-convex portion 26 includes a spiral groove 27 formed in a spiral shape, and the granular material flowing into the gap G with the granular material supply pipe 28 is guided along the spiral groove 27. At the same time, the powder particles in the vicinity thereof are agitated. Therefore, the mass and adhering portion of the granular material in the vicinity of the gap G are crushed and broken, and the fluidity of the granular material is improved. In addition, in the case of the present embodiment, since the concavo-convex portion 26 is constituted by the spiral groove 27, when rotating in the normal rotation direction shown in FIG. It is actively sent into the body supply pipe 28. On the other hand, when the spiral groove 27 is rotated in the reverse rotation direction, it acts in a direction to exclude the powder particles to the outside. That is, when the spiral groove 27 is rotated in the reverse rotation direction, the granular material is subjected to an agitation action while being excluded to the outside, and through a gap near the granular material supply pipe 28 away from the spiral groove 27. Will flow in. From the above, in the case of the present embodiment, the inflow amount of the granular material from the gap G is adjusted by controlling the rotation speed and the rotation direction of the concavo-convex portion 26, that is, the spiral groove 27 via the gas supply pipe 25. It is also possible. In addition, it is also possible to comprise the said uneven | corrugated | grooved part 26 from a parallel groove. Furthermore, as another modification, a protrusion may be provided integrally on the outer peripheral surface of one or both ends of the gas supply pipe 25 or the powder supply pipe 28.
[0012]
FIG. 8 is a sectional view showing an essential part of a fourth embodiment of the present invention. In this embodiment, the stirring member 5 of the first embodiment is combined with the third embodiment. That is, the stirring member 5 is attached to the outer peripheral portion of the gas supply pipe 25 in addition to the concavo-convex portion 26 formed by the spiral groove 27 provided at the end of the gas supply pipe 25 itself. . In the case of the present embodiment, the action of the uneven portion 26 described above and the stirring action of the stirring member 5 can be combined to more reliably pulverize and disintegrate the lump or adhering portion of the granular material near the gap G. Thus, the fluidity of a wider range of powder particles is more reliably improved. Note that the rotational speed of the gas supply pipe 25 described above in the forward rotation or reverse rotation direction detects the supply amount of the powder flowing in the powder supply pipe 28 and compares the detected value with the set supply amount. Then, by closing the result to the rotation control of the drive motor that rotationally drives the gas supply pipe 25, closed loop control can be performed. It is also possible to measure the relationship between the rotation speed of the gas supply pipe 25 and the supply amount in advance and control the rotation speed according to the required supply amount. Furthermore, as described above, it is also possible to adjust the flow rate from the gas introduction tube 11 by the valve 12 and the flow rate adjustment from the gas introduction tube 21 by the valve 22 to adjust the supply amount of the granular material.
[0013]
【The invention's effect】
According to the present invention, the agitation member or unevenness of the rotating granular material or the mass of the granular material adhering to or near the gap portion between the gas supply tube and the granular material supply tube for flowing the granular material rotate Since crushing and disintegration is accurately performed by the part, clogging due to the adhering part of the granular material and the aggregation of the granular material is accurately eliminated, and the fluidity of the granular material in the gap or in the vicinity thereof is improved. The Therefore, stable quantitative supply is possible even in the case of fine particles that were difficult in the past, and stable and wide-ranging quantitative supply is possible regardless of the size of the particle size and the amount of supply. , Its applicable range can be expanded.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a first embodiment of the present invention.
FIG. 2 is a partially enlarged view showing a cross section of the main part of the first embodiment.
FIG. 3 is a right side view of FIG. 2;
FIG. 4 is a half sectional view showing a stirring member.
FIG. 5 is a cross-sectional view showing a main part of a second embodiment of the present invention.
FIG. 6 is a sectional view showing a main part of a third embodiment of the present invention.
FIG. 7 is an AA arrow view of the third embodiment.
FIG. 8 is a cross-sectional view showing a main part of a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hopper, 2 ... Granule body storage part, 3 ... Powder body supply pipe, 4 ... Gas supply pipe, 5 ... Stirring member, 6 ... Bearing, 7 ... Pulley, 8 ... Sprocket, 9 ... Chain, 10 ... Rotary Joint, 11 ... Gas introduction pipe, 12 ... Valve, 13 ... Stirrer blade, 14 ... Heater, 15 ... Communication part, 16 ... Wall part, 17 ... Fixing part, 18 ... Fastening screw, 19 ... Injection nozzle, 20 DESCRIPTION OF SYMBOLS ... Pressurized gas supply pipe, 21 ... Gas introduction pipe, 22 ... Valve, 23 ... Parallel groove, 24 ... Stirring member, 25 ... Gas supply pipe, 26 ... Irregularity part, 27 ... Spiral groove, 28 ... Granule supply pipe

Claims (6)

粉粒体貯留部内に開口する粉粒体供給管と、該粉粒体供給管との間に適宜な間隙を介して配置した気体供給管とを備え、前記気体供給管から粉粒体供給管へ流通する気体流により前記間隙から流入する粉粒体を前記粉粒体供給管内に送込むように構成した粉粒体供給装置において、前記間隙又はその近傍を撹拌するように撹拌部材を前記気体供給管又は粉粒体供給管の外周部に回転可能に設けたことを特徴とする粉粒体供給装置。A granular material supply pipe that opens into the granular material storage unit, and a gas supply pipe that is disposed between the granular material supply pipe with an appropriate gap between the granular material supply pipe and the granular material supply pipe. the gas in the powder or granular material feeding apparatus of the granular material flowing from the gap and configured so as to go sent to the powder or granular material supplied pipe by the gas stream flowing, the stirring member to stir the gap or the vicinity thereof to A granular material supply device, wherein the granular material supply device is rotatably provided on the outer periphery of the supply tube or granular material supply tube . 前記撹拌部材をそれ自体が回転可能に構成された前記気体供給管又は粉粒体供給管に一体的に取付けた請求項1に記載の粉粒体供給装置。The granular material supply apparatus according to claim 1, wherein the stirring member is integrally attached to the gas supply pipe or the granular material supply pipe configured to be rotatable by itself. 粉粒体貯留部内に開口する粉粒体供給管と、該粉粒体供給管との間に適宜な間隙を介して配置した気体供給管とを備え、前記気体供給管から粉粒体供給管へ流通する気体流により前記間隙から流入する粉粒体を前記粉粒体供給管内に送込むように構成した粉粒体供給装置において、前記気体供給管及び粉粒体供給管の少なくとも一方を回転可能に構成するとともに、その回転可能に構成された管の端部に凹凸部を設けたことを特徴とする粉粒体供給装置。  A granular material supply pipe that opens into the granular material storage unit, and a gas supply pipe that is disposed between the granular material supply pipe with an appropriate gap between the granular material supply pipe and the granular material supply pipe. In the granular material supply device configured to send the granular material flowing from the gap into the granular material supply pipe by the gas flow flowing to the at least one of the gas supply pipe and the granular material supply pipe A powder and particle supply device characterized in that an uneven portion is provided at an end of a tube that is configured to be rotatable and configured to be rotatable. 前記凹凸部がスパイラル状の溝からなる請求項に記載の粉粒体供給装置。The granular material supply apparatus according to claim 3 , wherein the uneven portion is formed of a spiral groove. 回転可能に構成した管の回転数を調整可能に構成した請求項2〜4のいずれか一項に記載の粉粒体供給装置。The granular material supply apparatus as described in any one of Claims 2-4 comprised so that adjustment of the rotation speed of the pipe | tube comprised so that rotation was possible was possible. 前記間隙を調節可能に構成した請求項1〜のいずれか一項に記載の粉粒体供給装置。The granular material supply apparatus according to any one of claims 1 to 5 , wherein the gap is configured to be adjustable.
JP2001184156A 2001-06-18 2001-06-18 Powder and particle feeder Expired - Fee Related JP4798882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184156A JP4798882B2 (en) 2001-06-18 2001-06-18 Powder and particle feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184156A JP4798882B2 (en) 2001-06-18 2001-06-18 Powder and particle feeder

Publications (2)

Publication Number Publication Date
JP2003001093A JP2003001093A (en) 2003-01-07
JP4798882B2 true JP4798882B2 (en) 2011-10-19

Family

ID=19023966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184156A Expired - Fee Related JP4798882B2 (en) 2001-06-18 2001-06-18 Powder and particle feeder

Country Status (1)

Country Link
JP (1) JP4798882B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403566B1 (en) 2012-10-23 2014-06-03 주식회사 동현씨스텍 Apparatus for supplying abrasives

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631628A (en) * 1986-06-18 1988-01-06 Takeshi Hayashi Solid liquid transfer device
JP2902234B2 (en) * 1992-11-30 1999-06-07 住友化学工業株式会社 Powder supply device
JPH1028857A (en) * 1996-07-15 1998-02-03 Daiyamondo Eng Kk Apparatus for quantitatively taking out powder-grain
JPH11254329A (en) * 1998-03-10 1999-09-21 Shibuya Kogyo Co Ltd Flow control device of powder and granular material
JP2000280173A (en) * 1999-03-29 2000-10-10 Sinto Brator Co Ltd Method and device for supplying polishing material for blasting device, and blasting device provided with the same
JP4347459B2 (en) * 1999-08-02 2009-10-21 株式会社日清製粉グループ本社 Vibrating mechanism of stirring blade in powder feeder

Also Published As

Publication number Publication date
JP2003001093A (en) 2003-01-07

Similar Documents

Publication Publication Date Title
US4344580A (en) Fibrous material apparatus
US8671647B2 (en) Continuous pelletizing, drying and bagging systems with improved throughput
US6346035B1 (en) Generation of an airstream with subliminable solid particles
JPH09108585A (en) Device for disintegrating and granulating granular material and annular space type screen
JPS63162048A (en) Method for supplying roll mill and granular material
JP4798882B2 (en) Powder and particle feeder
US20070257394A1 (en) Feeder for Agglomerating Particles
KR20080084361A (en) Determinate quantity feeding system of solid material by screw feeder
JP3063163B2 (en) Ventilated tumble dryer
CN109127083A (en) The broken system of processing of building concrete
CN114273224B (en) Wet soft viscidity granule material letter sorting equipment
JP4064190B2 (en) Powder processing equipment
JPH01254263A (en) Vertical shaft and frictional cutting type grain polishing machine
JP4357713B2 (en) Powder filling device
JPH10236647A (en) Powder exhaust hole of tank for powder fluidization
JP4566442B2 (en) Continuous powder dryer
US7128284B2 (en) Sprinkling appliance
JPH09142633A (en) Screw conveyer
JP5061789B2 (en) Coating equipment
US6149080A (en) Hopper spreader for a truck box
JP2002080127A (en) Particulate quantitative feeding device
JPH09173876A (en) Grain polishing roll and grain polishing machine
JP2002102675A (en) Apparatus for supplying powder
JPH0534202B2 (en)
JPH10114433A (en) Fine powder discharge device and fine powder supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4798882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees