JP4798685B2 - Demetalization method for heavy petroleum oil - Google Patents

Demetalization method for heavy petroleum oil Download PDF

Info

Publication number
JP4798685B2
JP4798685B2 JP2002277423A JP2002277423A JP4798685B2 JP 4798685 B2 JP4798685 B2 JP 4798685B2 JP 2002277423 A JP2002277423 A JP 2002277423A JP 2002277423 A JP2002277423 A JP 2002277423A JP 4798685 B2 JP4798685 B2 JP 4798685B2
Authority
JP
Japan
Prior art keywords
catalyst
range
metal
peak
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002277423A
Other languages
Japanese (ja)
Other versions
JP2004115581A (en
Inventor
英 壱岐
信也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp, Japan Petroleum Energy Center JPEC filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2002277423A priority Critical patent/JP4798685B2/en
Publication of JP2004115581A publication Critical patent/JP2004115581A/en
Application granted granted Critical
Publication of JP4798685B2 publication Critical patent/JP4798685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、金属分としてバナジウムおよびニッケルを多く含有する石油系重質油の脱金属方法に関する。
【0002】
【従来の技術】
原油の蒸留などによって得られる残さ油などの重質油は、通常、硫黄分やニッケルやバナジウムといった金属分を含んでいる。このような重質油を燃料油あるいは分解装置の原料油として用いるためには、脱硫工程と同時に脱金属工程が必要である。このうち脱硫触媒は通常耐金属性に乏しく、通常の重質油水素化脱硫プロセスでは脱硫触媒が充填された脱硫部の前段に脱金属触媒が充填された脱金属部が組み合わされている。
【0003】
重質原油からの残さ油を処理する場合、軽質原油残さ油に比べて含まれる金属分の量は多くなっており、重質油水素化処理プロセスに用いる触媒への負荷は大きくなっている。このような重質油の水素化処理では、触媒上への金属析出に起因した触媒細孔の閉塞が活性低下を招く大きな要因の一つとなっており、水素化処理装置の長期安定運転のためにはこれらの金属分の析出に対して耐性の高い触媒およびその使用方法が望まれている。また、前段の脱金属触媒が充分な脱金属活性を有していない場合、除去しきれない金属分が後段の脱硫触媒に流入し、脱硫触媒の細孔閉塞を誘発し、急激な活性低下を招くことになる。
【0004】
重質油中の金属分は、高い分子量を持つ重質な成分の中でポルフィリン様の構造をとって含有されていることが知られている。脱金属反応のためには、これらの重質分子が充分拡散しうる細孔径を提供する必要がある。また、析出する金属に対する耐性を持たせるためにも細孔を大きくすることが望ましい。このような観点から、脱金属用の触媒は大きな細孔を持つものが適していることがこれまでにも知られている。しかしながら、細孔径、あるいは細孔容積を大きくした触媒では、表面積が低下し、脱金属反応の活性点が減少することにより脱金属性能が不十分となり、また触媒強度の低下により実用性に問題が生じる。さらに、これらの問題を克服するために、小細孔と大細孔を付与し細孔分布にニ峰性を持たせたバイモーダル触媒も開発されている。二峰性の細孔構造をもつバイモーダルアルミナ担体の製造方法としては、特開昭58−216740号公報や特開昭57−123820号公報に記載の方法が提案されている。しかしながら、本発明者らが検討したところ、一種類のバイモーダル触媒を用いる限り大細孔に由来する析出金属への耐性と、主たる反応場である小細孔に由来する脱金属活性を両立させることは難しく、従来の単峰性の細孔構造を持つ触媒と比較して充分な活性を持っていないことが分かった。
【0005】
このように従来の技術には問題点が多く、重質油の水素化脱金属において脱金属性能が高く、装置の長期安定運転を可能にする方法が求められていた。
【0006】
【発明が解決しようとする課題】
本発明は、前記の問題点を解決し、重質油水素化処理のための、主としてニッケル、バナジウムなどの金属分を除去する脱金属工程において、充分な脱金属活性を示すとともに、脱金属触媒の活性低下を抑えることを可能にし、ひいては重質油の水素化脱硫工程を長期間にわたり安定に運転する方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは様々な方法について鋭意研究した結果、金属が含まれる油中の重質成分からの脱金属反応機構に着目し、以下の知見を得て本発明を完成するに至った。まず、ゲル浸透クロマトグラフ(GPC)と呼ばれる、分子サイズに応じて成分を分画することができる装置で分析すると、金属分を含む重質分子の分子量は102〜105に達することを把握した。これは、分子のサイズとして、3nm〜15nmに相当する。原料油から金属分を除去する脱金属反応部において、アルミナを主成分とする担体に周期律表第6族金属および第8族金属を担持し、水銀圧入法により測定した触媒細孔分布において、第一のピークが直径12nm〜20nmの範囲にあり、かつ第二のピークが直径100nm〜900nmの範囲にある水素化脱金属触媒(触媒A)を用いて重質油を処理した場合、第二のピークに相当する細孔によって金属分を含む高分子量化合物の触媒細孔内への拡散が促進され、かつ、第一のピークに相当する細孔によって金属を含む分子サイズの大きな化合物の脱金属反応および小分子化が進むことをGPC分析によって確認した。
【0008】
一方、触媒Aによって小分子化された重質分子のサイズは、GPCによって2nm〜10nm程度の大きさになっていると推察した。従って、水銀圧入法により測定した触媒細孔分布において第一のピークが直径5nm以上12nm未満の範囲にあり、かつ第二のピークが直径100nm〜900nmの範囲にある水素化脱金属触媒(触媒B)の、第二のピークに相当する細孔による細孔内への拡散促進機能はこの分子サイズにとって引き続き有効に働き、かつ、触媒Aより小さな第一のピークに相当する細孔によって比較的分子サイズの小さな含金属分子の脱金属反応が促進されることを確認した。このように、触媒Aの後段に触媒Bを配置することによって、含金属化合物からの脱金属反応を効果的に引き起こすことができることを見出した。加えて、触媒AおよびBに細孔径の大きな第二のピークに相当する細孔を付与することにより、堆積する金属を収蔵する空間を持たせ、脱金属活性が長期間に渡って持続されることを見出した。
【0009】
すなわち本発明は、金属分としてバナジウムおよびニッケルを含有する石油系重質油から金属分を除去する方法において、アルミナ単独またはアルミナと担体重量に対して30%以下のシリカ、シリカアルミナ、ボリア、マグネシア又はこれらの複合酸化物及びリンからなる群より選ばれる少なくとも一種とからなる担体に周期律表第6族金属および第8族金属を担持してなる水素化脱金属触媒であって、以下の特性を有する触媒Aおよび触媒Bを、触媒Aの後段に触媒Bを配置することにより脱金属処理を行うことを特徴とする石油系重質油の脱金属方法に関する。
(1)触媒A:水銀圧入法により測定した触媒細孔分布において二つのピークを有し、第一のピークが直径16nm〜20nmの範囲にあり、第二のピークが直径100nm〜900nmの範囲にあり、かつ直径100nm〜900nmの範囲の細孔容積の触媒の全細孔容積に占める割合が20%〜50%の範囲にある水素化脱金属触媒
(2)触媒B:水銀圧入法により測定した触媒細孔分布において二つのピークを有し、第一のピークが直径5nm以上12nm未満の範囲にあり、第二のピークが直径100nm〜900nmの範囲にあり、かつ直径100nm〜900nmの範囲の細孔容積の触媒の全細孔容積に占める割合が20%〜50%の範囲にある水素化脱金属触媒
【0010】
また、本発明は原料重質油に含まれるバナジウムおよびニッケルの含有量の合計が140質量ppm以上であることを特徴とする前記記載の石油系重質油の脱金属方法に関する。
【0011】
【発明の実施の形態】
以下に本発明を詳述する。
本発明において使用される水素化脱金属触媒は、アルミナを主成分とする担体に周期律表第6族金属および第8族金属を担持してなる触媒である。アルミナを主成分とする担体は、アルミナ単独の他、アルミナにシリカ、シリカアルミナ、ボリア、マグネシアまたはこれらの複合酸化物を含むことができる。また、リンを担体構成成分として含有することもできる。これらのアルミナ以外の酸化物の含有量は担体重量の30質量%以下であることが好ましい。アルミナ以外の酸化物の含有量が30質量%より多くなると、担体としての酸性質が大きく変化し、コーク生成による活性低下が顕著になるため好ましくない。
【0012】
本発明に使用する水素化脱金属触媒の担体の主成分として用いられるアルミナについてはその製造方法には特に制限はない。例えば、アルミニウム塩とアルミン酸塩を中和または加水分解する方法、あるいはアルミニウムアマルガム、アルミニウムアルコレートを加水分解する方法などから得られるアルミナ中間体を経由することにより得ることができる。また、市販のアルミナ中間体、ベーマイトパウダーを使用しても良い。
【0013】
本発明において、使用される二種類の水素化脱金属触媒のうち、触媒Aについて水銀圧入法により測定した触媒細孔分布は二つのピークを示し、第一のピークが直径12nm〜20nm、好ましくは15nm〜20nmの範囲にあり、かつ第二のピークが直径100nm〜900nmの範囲にある。また、第二のピークの細孔が占める細孔容積が触媒全体の細孔容積に占める割合は、20%〜50%の範囲である。
【0014】
本発明において、使用される二種類の水素化脱金属触媒のうち、触媒Bについて水銀圧入法により測定した触媒細孔分布は二つのピークを示し、第一のピークが直径5nm以上12nm未満、好ましくは7nm〜10nmの範囲にあり、かつ第二のピークが直径100nm〜900nmの範囲にある。また、第二のピークの細孔が占める細孔容積が触媒全体の細孔容積に占める割合は、20%〜50%の範囲である。
なお、いずれの触媒についても、第二のピークに相当する大口径の細孔は、含金属化合物の拡散に有効に作用する。
【0015】
ここで、水銀圧入法とは、水銀圧入式細孔分布測定器を用いて細孔分布を測定する方法である。水銀に浸した試料に対して、加えられた圧力とその圧力で水銀が侵入可能な細孔径の関係は下記Washburnの式で導かれる。
D=−4γcosθ/P
式中、Pは加える圧力、Dは細孔直径、γは水銀の表面張力(480dyne/cm)、θは水銀と細孔壁面の接触角(130°)である。
Washburnの式から、加えた圧力とPと細孔径Dの関係が求められ、その時の侵入容積を測定することにより、細孔径とその容積分布が導かれる。
【0016】
本発明において、使用される二種類の水素化脱金属触媒の表面積は、いずれも100m2/g〜380m2/g、好ましくは150m2/g〜350m2/gである。表面積が小さい場合、活性点が減少し、脱金属活性を発揮することができない。表面積が大きい場合、脱金属反応へ寄与しにくい、直径の細い細孔が多くなり活性が低い、あるいは細孔入口の閉塞による触媒活性低下の速度が大きい。
【0017】
本発明に使用する水素化脱金属触媒の活性成分としては、第6族金属および第8族金属が用いられる。第6族金属としては、具体的にモリブデン、タングステン、クロムが挙げられ、第8族金属としては、具体的にコバルト、ニッケルが挙げられる。金属種およびその組み合わせは特に限定されないが、一般的にはコバルトとモリブデン、あるいはニッケルとモリブデンの組み合わせが好ましく用いられる。
【0018】
本発明に使用する水素化脱金属触媒に担持する活性金属量は、担体の重量を100質量%として、第8族金属を金属元素換算で1質量%〜10質量%、好ましくは1.5質量%〜6質量%、より好ましくは1.5質量%〜4質量%含有し、また第6族金属を金属元素換算で2質量%〜30質量%、好ましくは3質量%〜15質量%、より好ましくは5質量%〜10質量%含有する。なお、第6族金属と第8族金属の担持量およびその比率は、水素分圧、LHSVといった運転条件や、活性、失活速度からみて最適な範囲が存在し、適宜設定することができる。
【0019】
本発明において、水素化脱金属部の条件としては、通常、平均反応温度330℃〜420℃、好ましくは330℃〜400℃の間で運転される。水素分圧は8MPa〜22MPa,好ましくは10MPa〜20MPaの範囲で運転される。LHSVは0.3h-1〜1.2h-1、好ましくは0.3h-1〜0.8h-1であり、水素/油比は500NL/L〜1500NL/L、好ましくは800NL/L〜1200NL/Lで運転される。原料油はトリクルフローでもアップフローでもよいが、トリクルフローが好ましい。
【0020】
本発明において好適に適用できる原料重質油は、原油の蒸留によって得られる常圧残さ油、減圧残さ油などの沸点330℃以上の留分である。一般的にこれらの重質油に含まれる金属分のうち、バナジウムおよびニッケルの含有量の合計は通常10質量ppm〜1000質量ppmであるが、本発明が最も効果を発揮するのは140質量ppm以上である。本発明においては、このほかの原料油性状は特に限定されないが、原料油の硫黄分濃度、動粘度は、原油からの常圧蒸留装置残さ油の場合は、硫黄分1質量%〜10質量%、動粘度100mm2/s〜3000mm2/s程度である。
【0021】
本発明においては、触媒Aの後段に触媒Bを配置する。触媒Bの後段に触媒Aを配置させた場合には、含金属分子からの脱金属反応が有効に進まない。また、触媒Aと触媒Bを物理混合した場合には、上記の積層ケースの中間の効果しか得られない。
【0022】
触媒AとBの充填比率は、原料重質油あるいは運転条件に応じて最適な範囲が存在するが、触媒Aおよび触媒Bの使用割合は、全脱金属反応部の容積に対し、それぞれ30容量%〜70容量%が好ましく、より好ましくは40容量%〜60容量%である。これより少ない場合、両者を組み合わせる効果が充分発揮できない。
【0023】
【実施例】
以下に、実施例および比較例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0024】
[調製例1]
イオン交換水800mlに、Na2Oを11.3質量%とAl23を22質量%含有するアルミン酸ナトリウム水溶液1.930kgを加え、60℃に加温した。この液に8.5質量%硫酸アルミニウム水溶液をpH7.2になるまで撹拌しながら添加した。その所要量は3.62kgであった。中和後1時間放置してから、濾過機へ投入し、減圧濾過し、0.2質量%アンモニア水で掛水洗浄した。洗浄後、Na2OおよびSO4 2-の大部分が除去されたアルミナケーキ(A)1.232kgを得た。調製したアルミナケーキ(A)に等量のイオン交換水を加え、アルミナゲルのスラリーを作り、スプレードライヤーを用いて噴霧温度250℃〜270℃、出口温度100℃〜115℃で噴霧乾燥し、ベーマイト粉末(B)を得た。この粉末(B)200gに1質量%硝酸水溶液200mlを加え30分混練後、0.7質量%アンモニア水50mlを加えた。その後、バッチ式ニーダーで80℃〜94℃に加熱しながら3時間混練し、押出し機で直径1/16インチ(1.6mm)シリンダー状に押出し成型した。成型物を一晩風乾後110℃で4時間乾燥した後、空気流通下の焼成炉で550℃、3時間焼成し担体を得た。得られた担体にモリブデン酸アンモニウムおよび硝酸ニッケルを含む水溶液により金属を担持して、金属担持量が酸化モリブデンとして7.0質量%、酸化ニッケルとして2.5質量%の水素化脱金属触媒を得た。この触媒の細孔分布を水銀圧入式細孔分布測定装置によって測定した結果、細孔分布のピークが16nmおよび250nmに存在し、表面積は199m2/gであった。また、直径100nm〜900nmの範囲の細孔容積の、触媒の全細孔容積に占める割合は26%であった。
【0025】
[調製例2]
調製例1で得られたベーマイト粉末(B)200gに、イオン交換水400mlを加え、バッチ式ニーダーで80℃〜93℃に加熱しながら3時間混練し、押出し機で直径1mmに押出し成型した。得られた担体に、調製例1と同様に金属を担持して、金属担持量が酸化モリブデンとして7.1質量%、酸化ニッケルとして2.4質量%の水素化脱金属触媒を得た。この触媒の細孔分布を水銀圧入式細孔分布測定装置によって測定した結果、細孔分布のピークが9.5nmおよび600nmに存在し、表面積は295m2/gであった。また、直径100nm〜900nmの範囲の細孔容積の、触媒の全細孔容積に占める割合は39%であった。
【0026】
[実施例1]
脱金属部として、内径1インチの第一反応管に調製例1で調製した水素化脱金属触媒(触媒▲1▼)100cm3と、調製例2で調製した水素化脱金属触媒(触媒▲2▼)100cm3を反応管入口より触媒▲1▼、触媒▲2▼の順に充填した。脱硫部として、内径1インチ(2.5cm)の第二反応管にγ―アルミナ担体100質量%に対して酸化ニッケル4質量%と酸化モリブデン11質量%、細孔径が10nmの1/20インチ(1.2cm)柱状水素化脱硫用触媒を200cm3充填した。これらの二本の反応管を連結し、ジブチルジスルフィドを含む直留軽油(硫黄分3質量%)を用いて300℃、16MPa、LHSV(全触媒容量に対して)=0.3h-1(脱金属部に対しては0.6h-1)、水素/油比1100NL/Lの条件下で、24時間、予備硫化した。予備硫化終了後、中東系の常圧残さ油および減圧残さ油の混合物(常圧残さ油:減圧残さ油=30:70容量%、硫黄分=4.26質量%、バナジウム+ニッケル=163質量ppm)を原料油とし、第一反応管入口温度から第二反応管出口温度の差(ΔT)=40℃、水素圧力=16MPa、LHSV(全触媒容量に対して)=0.3h-1(脱金属部に対しては0.6h-1)、水素/油比=1100NL/Lの条件でトリクルフローで通油した。ΔT=40℃を維持したまま、生成油硫黄分が0.33質量%となるよう反応管全体の反応温度を調整した。
【0027】
脱硫率は《{[原料油の硫黄量(g)]−[生成油中の硫黄量(g)]}/[原料油中の硫黄量(g)]》×100(%)、脱金属率は《{[原料油のバナジウム+ニッケル量(g)]−[生成油中のバナジウム+ニッケル量(g)]}/[原料油中のバナジウム+ニッケル量(g)]》×100(%)とそれぞれ定義し、活性低下の度合いは通油100〜500時間までの一日(24時間)当たりの脱硫率の低下割合で示した。通油100時間目の脱金属率は91%、活性低下の度合いは0.16%/日であった。結果を表1および表2に示した。
【0028】
[比較例1]
脱金属部として調製例1で調製した触媒▲1▼のみ200cm3を第一反応管に充填し、実施例1と同様の条件で水素化処理を実施した。通油100時間目の脱金属率は77%、活性低下の度合いは0.20%/日であった。
【0029】
[比較例2]
脱金属部として調製例2で調製した触媒▲2▼のみ200cm3を第一反応管に充填し、実施例1と同様の条件で水素化処理を実施した。通油100時間目の脱金属率は81%、活性低下の度合いは0.18%/日であった。
【0030】
[比較例3]
脱金属部として調製例1および調製例2でそれぞれ調製した触媒▲1▼100cm3および触媒▲2▼100cm3を、反応管入口から触媒▲2▼、触媒▲1▼の順に第一反応管に充填し、実施例1と同様の条件で水素化処理を実施した。通油100時間目の脱金属率は74%、活性低下の度合いは0.21%/日であった。
【0031】
[比較例4]
脱金属部として調製例1で調製した触媒▲1▼100cm3と調製例2で調製した触媒▲2▼100cm3を予め混合したものを第一反応管に充填し、実施例1と同様の条件で水素化処理を実施した。通油100時間目の脱金属率は85%、活性低下の度合いは0.17%/日であった。
【0032】
【表1】

Figure 0004798685
【0033】
【表2】
Figure 0004798685
【0034】
【発明の効果】
以上の結果から明らかなように、金属含有量の多い重質油の水素化脱硫プロセスにおいて、本発明の脱金属方法を採用することにより、高い脱金属活性が長期に渡って持続され、プロセスの安定的な長期運転が可能となる。[0001]
[Industrial application fields]
The present invention relates to a method for demetalizing petroleum heavy oil containing a large amount of vanadium and nickel as metals.
[0002]
[Prior art]
Heavy oil such as residual oil obtained by distillation of crude oil usually contains a sulfur content, a metal content such as nickel or vanadium. In order to use such heavy oil as a fuel oil or a raw material oil for a cracking apparatus, a demetallation step is required simultaneously with a desulfurization step. Of these, the desulfurization catalyst is usually poor in metal resistance, and in a normal heavy oil hydrodesulfurization process, a demetallization part filled with a demetallization catalyst is combined in a preceding stage of the desulfurization part filled with the desulfurization catalyst.
[0003]
When processing the residual oil from heavy crude oil, the amount of metal contained is larger than that of light crude oil residual oil, and the load on the catalyst used in the heavy oil hydroprocessing process is increased. In such heavy oil hydrotreating, clogging of catalyst pores due to metal deposition on the catalyst is one of the major factors leading to a decrease in activity, and for long-term stable operation of the hydrotreating equipment. Therefore, a catalyst having high resistance to precipitation of these metal components and a method for using the same are desired. In addition, when the preceding stage demetallation catalyst does not have sufficient demetallation activity, the metal component that cannot be removed flows into the subsequent stage desulfurization catalyst, induces pore blockage of the desulfurization catalyst, and suddenly decreases the activity. Will be invited.
[0004]
It is known that the metal content in heavy oil is contained in a porphyrin-like structure among heavy components having a high molecular weight. For the demetallation reaction, it is necessary to provide a pore size that allows these heavy molecules to diffuse sufficiently. It is also desirable to enlarge the pores in order to provide resistance to the deposited metal. From this point of view, it has been known that a catalyst having a large pore is suitable for demetalization. However, a catalyst with a large pore diameter or pore volume has a reduced surface area, a decrease in the active point of the demetallation reaction, resulting in insufficient metal removal performance, and a problem in practicality due to a decrease in catalyst strength. Arise. Furthermore, in order to overcome these problems, a bimodal catalyst has been developed in which small pores and large pores are provided and the pore distribution is bimodal. As a method for producing a bimodal alumina carrier having a bimodal pore structure, methods described in JP-A Nos. 58-216740 and 57-123820 have been proposed. However, as a result of the study by the present inventors, as long as one type of bimodal catalyst is used, both resistance to the deposited metal derived from the large pores and demetalization activity derived from the small pores as the main reaction field are achieved. It was difficult to do so, and it was found that the catalyst did not have sufficient activity as compared with the conventional catalyst having a unimodal pore structure.
[0005]
As described above, there are many problems in the conventional technology, and there has been a demand for a method that has high metal removal performance in hydrodemetallation of heavy oil and enables long-term stable operation of the apparatus.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems and exhibits a sufficient metal removal activity and a metal removal catalyst in a metal removal step mainly for removing metals such as nickel and vanadium for heavy oil hydroprocessing. The purpose of the present invention is to provide a method for stably operating the hydrodesulfurization step of heavy oil over a long period of time.
[0007]
[Means for Solving the Problems]
As a result of intensive studies on various methods, the present inventors have focused on the mechanism of demetallation from heavy components in oils containing metals, and have obtained the following findings to complete the present invention. First, analysis using a device called gel permeation chromatograph (GPC) that can fractionate components according to molecular size reveals that the molecular weight of heavy molecules containing metals reaches 10 2 to 10 5. did. This corresponds to a molecular size of 3 nm to 15 nm. In the demetallization reaction part for removing metal from the raw material oil, the catalyst pore distribution measured by mercury porosimetry is carried by supporting a group 6 metal and a group 8 metal on the carrier with alumina as a main component, When treating heavy oil with a hydrodemetallation catalyst (catalyst A) having a first peak in the range of 12 nm to 20 nm in diameter and a second peak in the range of 100 nm to 900 nm, Diffusion of a high molecular weight compound containing a metal component into the catalyst pores is promoted by the pores corresponding to the peak of, and demetalization of the compound having a large molecular size including the metal by the pores corresponding to the first peak The progress of reaction and small molecule formation was confirmed by GPC analysis.
[0008]
On the other hand, it was guessed that the size of the heavy molecule that was made small by the catalyst A was about 2 nm to 10 nm by GPC. Accordingly, a hydrodemetallation catalyst (catalyst B) in which the first peak is in the range of 5 nm to less than 12 nm and the second peak is in the range of 100 nm to 900 nm in the catalyst pore distribution measured by mercury porosimetry. ), The function of promoting diffusion into the pores by the pores corresponding to the second peak continues to work effectively for this molecular size, and the pores corresponding to the first peak smaller than the catalyst A are relatively molecules. It was confirmed that the metal removal reaction of small metal-containing molecules was promoted. Thus, it has been found that by arranging the catalyst B in the subsequent stage of the catalyst A, the demetallation reaction from the metal-containing compound can be effectively caused. In addition, by providing pores corresponding to the second peak having a large pore diameter to the catalysts A and B, a space for storing the deposited metal is provided, and the demetalization activity is sustained over a long period of time. I found out.
[0009]
That is, the present invention relates to a method for removing a metal component from petroleum heavy oil containing vanadium and nickel as a metal component, in which alumina, silica, silica alumina, boria, magnesia is 30% or less based on alumina and the carrier weight. Or a hydrodemetallation catalyst comprising a group 6 metal and a group 8 metal supported on a carrier comprising at least one selected from the group consisting of these complex oxides and phosphorus, having the following characteristics: The present invention relates to a method for demetalizing petroleum heavy oil, characterized in that the catalyst A and the catalyst B having the above are demetallized by disposing the catalyst B in the subsequent stage of the catalyst A.
(1) Catalyst A: has two peaks in the catalyst pore distribution measured by mercury porosimetry, the first peak is in the range of 16 nm to 20 nm in diameter, and the second peak is in the range of 100 nm to 900 nm in diameter The hydrodemetallation catalyst (2) catalyst B having a pore volume in the range of 100 nm to 900 nm in diameter in the range of 20% to 50% of the total pore volume of the catalyst was measured by a mercury intrusion method. The catalyst pore distribution has two peaks, the first peak is in the range of 5 nm or more and less than 12 nm, the second peak is in the range of 100 nm to 900 nm in diameter, and the fine peak is in the range of 100 nm to 900 nm in diameter. Hydrodemetallation catalyst in which the ratio of the pore volume to the total pore volume of the catalyst is in the range of 20% to 50%.
The present invention also relates to the above-described method for demetalizing petroleum heavy oil, wherein the total content of vanadium and nickel contained in the raw material heavy oil is 140 ppm by mass or more.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The hydrodemetallation catalyst used in the present invention is a catalyst in which a group 6 metal and a group 8 metal on the periodic table are supported on a support mainly composed of alumina. The support containing alumina as a main component can contain alumina, silica, silica alumina, boria, magnesia or a composite oxide thereof in addition to alumina alone. Phosphorus can also be contained as a carrier constituent. The content of these oxides other than alumina is preferably 30% by mass or less of the carrier weight. When the content of oxides other than alumina is more than 30% by mass, the acid properties as a carrier are greatly changed, and the decrease in activity due to the formation of coke is not preferable.
[0012]
There is no particular limitation on the production method of alumina used as the main component of the hydrodemetallation catalyst support used in the present invention. For example, it can be obtained via an alumina intermediate obtained from a method of neutralizing or hydrolyzing aluminum salt and aluminate, or a method of hydrolyzing aluminum amalgam or aluminum alcoholate. Moreover, you may use a commercially available alumina intermediate body and boehmite powder.
[0013]
In the present invention, among the two types of hydrodemetallation catalysts used, the catalyst pore distribution measured by the mercury intrusion method for catalyst A shows two peaks, the first peak having a diameter of 12 nm to 20 nm, preferably The second peak is in the range of 100 nm to 900 nm in the range of 15 nm to 20 nm. The ratio of the pore volume occupied by the pores of the second peak to the pore volume of the entire catalyst is in the range of 20% to 50%.
[0014]
In the present invention, among the two types of hydrodemetallation catalysts used, the catalyst pore distribution measured by the mercury intrusion method for catalyst B shows two peaks, and the first peak is 5 nm or more and less than 12 nm in diameter, preferably Is in the range of 7 nm to 10 nm and the second peak is in the range of 100 nm to 900 nm in diameter. The ratio of the pore volume occupied by the pores of the second peak to the pore volume of the entire catalyst is in the range of 20% to 50%.
In any catalyst, the large-diameter pore corresponding to the second peak effectively acts on the diffusion of the metal-containing compound.
[0015]
Here, the mercury intrusion method is a method of measuring the pore distribution using a mercury intrusion type pore distribution measuring device. For a sample immersed in mercury, the relationship between the applied pressure and the pore diameter at which mercury can enter at that pressure is derived by the following Washburn equation.
D = −4γcos θ / P
In the formula, P is the applied pressure, D is the pore diameter, γ is the surface tension of mercury (480 dyne / cm), and θ is the contact angle between mercury and the pore wall surface (130 °).
The relationship between the applied pressure, P, and the pore diameter D is determined from the Washburn equation, and the pore size and the volume distribution are derived by measuring the intrusion volume at that time.
[0016]
In the present invention, the surface area of the two types of hydrodemetallization catalysts used are all 100m 2 / g~380m 2 / g, preferably from 150m 2 / g~350m 2 / g. When the surface area is small, the active sites are decreased and the metal removal activity cannot be exhibited. When the surface area is large, there is an increase in the number of fine pores with a small diameter that are difficult to contribute to the demetallation reaction, and the activity is low, or the rate of decrease in catalytic activity due to blockage of the pore inlet is large.
[0017]
Group 6 metal and Group 8 metal are used as the active component of the hydrodemetallation catalyst used in the present invention. Specific examples of the Group 6 metal include molybdenum, tungsten, and chromium, and specific examples of the Group 8 metal include cobalt and nickel. The metal species and the combination thereof are not particularly limited, but generally a combination of cobalt and molybdenum or nickel and molybdenum is preferably used.
[0018]
The amount of active metal supported on the hydrodemetallation catalyst used in the present invention is 1% by mass to 10% by mass, preferably 1.5% by mass in terms of metal element, with the weight of the support being 100% by mass. % To 6% by mass, more preferably 1.5% to 4% by mass, and the Group 6 metal in terms of metal element is 2% to 30% by mass, preferably 3% to 15% by mass, and more. Preferably it contains 5 mass%-10 mass%. In addition, the carrying amount and ratio of the Group 6 metal and the Group 8 metal have optimum ranges in view of operating conditions such as hydrogen partial pressure and LHSV, activity, and deactivation rate, and can be set as appropriate.
[0019]
In the present invention, the condition of the hydrodemetallation part is usually operated at an average reaction temperature of 330 ° C to 420 ° C, preferably 330 ° C to 400 ° C. The hydrogen partial pressure is operated in the range of 8 MPa to 22 MPa, preferably 10 MPa to 20 MPa. LHSV is 0.3 h −1 to 1.2 h −1 , preferably 0.3 h −1 to 0.8 h −1 , and the hydrogen / oil ratio is 500 NL / L to 1500 NL / L, preferably 800 NL / L to 1200 NL. Driving at / L. The feedstock oil may be trickle flow or upflow, but trickle flow is preferred.
[0020]
The raw material heavy oil that can be suitably applied in the present invention is a fraction having a boiling point of 330 ° C. or higher, such as an atmospheric residue or an oil residue obtained by distillation of crude oil. Generally, among the metal components contained in these heavy oils, the total content of vanadium and nickel is usually 10 ppm by mass to 1000 ppm by mass, but the present invention is most effective at 140 ppm by mass. That's it. In the present invention, the other raw material oil properties are not particularly limited, but the sulfur content concentration and kinematic viscosity of the raw material oil are 1 mass% to 10 mass% of sulfur content in the case of residual oil from atmospheric distillation equipment. a kinematic viscosity 100mm 2 / s~3000mm about 2 / s.
[0021]
In the present invention, the catalyst B is disposed after the catalyst A. When the catalyst A is arranged at the subsequent stage of the catalyst B, the demetallation reaction from the metal-containing molecule does not proceed effectively. Further, when the catalyst A and the catalyst B are physically mixed, only an intermediate effect of the above laminated case can be obtained.
[0022]
The filling ratio of the catalysts A and B has an optimum range depending on the raw material heavy oil or the operating conditions, but the usage ratios of the catalyst A and the catalyst B are 30 volumes each with respect to the volume of the total demetallation reaction section. % To 70% by volume is preferable, and 40% to 60% by volume is more preferable. When the amount is less than this, the effect of combining the two cannot be sufficiently exhibited.
[0023]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.
[0024]
[Preparation Example 1]
1.800 kg of sodium aluminate aqueous solution containing 11.3% by mass of Na 2 O and 22% by mass of Al 2 O 3 was added to 800 ml of ion-exchanged water, and heated to 60 ° C. An 8.5% by mass aqueous solution of aluminum sulfate was added to this solution with stirring until pH 7.2. The required amount was 3.62 kg. After neutralization, the mixture was allowed to stand for 1 hour, then charged into a filter, filtered under reduced pressure, and washed with 0.2% by mass ammonia water. After washing, 1.232 kg of alumina cake (A) from which most of Na 2 O and SO 4 2− were removed was obtained. An equal amount of ion-exchanged water is added to the prepared alumina cake (A) to make an alumina gel slurry, which is spray-dried at a spray temperature of 250 ° C. to 270 ° C. and an outlet temperature of 100 ° C. to 115 ° C. using a spray dryer, and boehmite A powder (B) was obtained. To 200 g of this powder (B), 200 ml of a 1% by mass nitric acid aqueous solution was added and kneaded for 30 minutes, and then 50 ml of 0.7% by mass ammonia water was added. Then, it knead | mixed for 3 hours, heating at 80 degreeC-94 degreeC with a batch-type kneader, and extrusion-molded to 1/16 inch (1.6 mm) diameter cylinder shape with the extruder. The molded product was air-dried overnight, dried at 110 ° C. for 4 hours, and then fired at 550 ° C. for 3 hours in a firing furnace under air flow to obtain a carrier. A metal was supported on the obtained support by an aqueous solution containing ammonium molybdate and nickel nitrate to obtain a hydrodemetallation catalyst having a metal loading of 7.0% by mass as molybdenum oxide and 2.5% by mass as nickel oxide. It was. As a result of measuring the pore distribution of this catalyst with a mercury intrusion pore distribution measuring apparatus, the peaks of the pore distribution existed at 16 nm and 250 nm, and the surface area was 199 m 2 / g. Further, the ratio of the pore volume in the range of 100 nm to 900 nm in the total pore volume of the catalyst was 26%.
[0025]
[Preparation Example 2]
To 200 g of the boehmite powder (B) obtained in Preparation Example 1, 400 ml of ion-exchanged water was added, kneaded for 3 hours while heating at 80 to 93 ° C. with a batch kneader, and extruded to a diameter of 1 mm with an extruder. A metal was supported on the obtained carrier in the same manner as in Preparation Example 1 to obtain a hydrodemetallation catalyst having a metal loading of 7.1% by mass as molybdenum oxide and 2.4% by mass as nickel oxide. As a result of measuring the pore distribution of this catalyst with a mercury intrusion pore distribution measuring device, the peaks of the pore distribution were present at 9.5 nm and 600 nm, and the surface area was 295 m 2 / g. Further, the proportion of the pore volume in the range of 100 nm to 900 nm in the total pore volume of the catalyst was 39%.
[0026]
[Example 1]
As a demetallization part, 100 cm 3 of the hydrodemetallation catalyst (catalyst (1)) prepared in Preparation Example 1 in a first reaction tube having an inner diameter of 1 inch, and the hydrodemetallation catalyst (catalyst (2)) prepared in Preparation Example 2 were used. ▼) 100 cm 3 was charged in the order of catalyst (1) and catalyst (2) from the inlet of the reaction tube. As a desulfurization part, in a second reaction tube having an inner diameter of 1 inch (2.5 cm), 4% by mass of nickel oxide and 11% by mass of molybdenum oxide with respect to 100% by mass of the γ-alumina carrier, 1/20 inch with a pore diameter of 10 nm ( 1.2 cm) columnar hydrodesulfurization catalyst was packed in 200 cm 3 . These two reaction tubes are connected, and using straight-run gas oil containing dibutyl disulfide (sulfur content: 3% by mass), 300 ° C., 16 MPa, LHSV (relative to the total catalyst capacity) = 0.3 h −1 (desorption) The metal portion was presulfided for 24 hours under conditions of 0.6 h −1 ) and a hydrogen / oil ratio of 1100 NL / L. After completion of preliminary sulfidation, a mixture of Middle Eastern normal pressure residue oil and reduced pressure residue oil (normal pressure residue oil: reduced pressure residue oil = 30: 70 vol%, sulfur content = 4.26 mass%, vanadium + nickel = 163 mass ppm ) As the feedstock oil, the difference between the first reaction tube inlet temperature and the second reaction tube outlet temperature (ΔT) = 40 ° C., hydrogen pressure = 16 MPa, LHSV (relative to the total catalyst capacity) = 0.3 h −1 (desorption) The metal part was passed through trickle flow under the conditions of 0.6 h −1 ) and hydrogen / oil ratio = 1100 NL / L. While maintaining ΔT = 40 ° C., the reaction temperature of the entire reaction tube was adjusted so that the sulfur content of the produced oil was 0.33% by mass.
[0027]
Desulfurization rate is << {[Sulfur amount of raw material oil (g)]-[Sulfur amount in product oil (g)]} / [Sulfur amount in raw material oil (g)] >> 100 (%), demetalization rate Is {{Vanadium in feedstock + nickel amount (g)]-[Vanadium in feed oil + nickel amount (g)]} / [Vanadium in feedstock + nickel amount (g)] >> 100 (%) The degree of decrease in activity was expressed as a rate of decrease in the desulfurization rate per day (24 hours) from 100 to 500 hours of oil passage. The metal removal rate at 100 hours after oil passage was 91%, and the degree of decrease in activity was 0.16% / day. The results are shown in Tables 1 and 2.
[0028]
[Comparative Example 1]
Only the catalyst (1) prepared in Preparation Example 1 as a metal removal part was filled in 200 cm 3 in the first reaction tube, and the hydrogenation treatment was carried out under the same conditions as in Example 1. The metal removal rate at 100 hours after oil passage was 77%, and the degree of activity reduction was 0.20% / day.
[0029]
[Comparative Example 2]
Only the catalyst (2) prepared in Preparation Example 2 as a metal removal part was filled in 200 cm 3 of the first reaction tube, and the hydrogenation treatment was performed under the same conditions as in Example 1. The metal removal rate at 100 hours after oil passage was 81%, and the degree of decrease in activity was 0.18% / day.
[0030]
[Comparative Example 3]
The catalyst ▲ 1 ▼ 100 cm 3 and a catalyst ▲ 2 ▼ 100 cm 3 were prepared in Preparative Examples 1 and 2 as demetallization unit, catalyst ▲ 2 ▼ from the reaction tube inlet, the first reaction tube in the order of catalyst ▲ 1 ▼ The hydrogenation treatment was performed under the same conditions as in Example 1. The metal removal rate at 100 hours after oil passing was 74%, and the degree of decrease in activity was 0.21% / day.
[0031]
[Comparative Example 4]
The catalyst prepared in Preparation Example 1 as a metal removal part (1) 100 cm 3 and the catalyst prepared in Preparation Example (2) 100 cm 3 were mixed in advance in the first reaction tube, and the same conditions as in Example 1 The hydrogenation process was carried out. The metal removal rate at 100 hours after oil passing was 85%, and the degree of activity reduction was 0.17% / day.
[0032]
[Table 1]
Figure 0004798685
[0033]
[Table 2]
Figure 0004798685
[0034]
【The invention's effect】
As is clear from the above results, in the hydrodesulfurization process of heavy oil with a high metal content, by adopting the demetallization method of the present invention, high demetallization activity is sustained over a long period of time. Stable long-term operation is possible.

Claims (2)

金属分としてバナジウムおよびニッケルを含有する石油系重質油から金属分を除去する方法において、アルミナ単独またはアルミナと担体重量に対して30%以下のシリカ、シリカアルミナ、ボリア、マグネシア又はこれらの複合酸化物及びリンからなる群より選ばれる少なくとも一種とからなる担体に周期律表第6族金属および第8族金属を担持してなる水素化脱金属触媒であって、以下の特性を有する触媒Aおよび触媒Bを、触媒Aの後段に触媒Bを配置することにより脱金属処理を行うことを特徴とする石油系重質油の脱金属方法。
(1)触媒A:水銀圧入法により測定した触媒細孔分布において二つのピークを有し、第一のピークが直径16nm〜20nmの範囲にあり、第二のピークが直径100nm〜900nmの範囲にあり、かつ直径100nm〜900nmの範囲の細孔容積の触媒の全細孔容積に占める割合が20%〜50%の範囲にある水素化脱金属触媒
(2)触媒B:水銀圧入法により測定した触媒細孔分布において二つのピークを有し、第一のピークが直径5nm以上12nm未満の範囲にあり、第二のピークが直径100nm〜900nmの範囲にあり、かつ直径100nm〜900nmの範囲の細孔容積の触媒の全細孔容積に占める割合が20%〜50%の範囲にある水素化脱金属触媒
In a method for removing metal components from petroleum heavy oils containing vanadium and nickel as metal components, alumina alone, or silica, silica alumina, boria, magnesia or complex oxidation of 30% or less based on alumina and carrier weight A hydrodemetallation catalyst comprising a group 6 metal and a group 8 metal supported on a carrier consisting of at least one selected from the group consisting of a product and phosphorus, the catalyst A having the following characteristics: A method for demetalizing petroleum heavy oil, wherein the catalyst B is demetallized by disposing the catalyst B downstream of the catalyst A.
(1) Catalyst A: has two peaks in the catalyst pore distribution measured by mercury porosimetry, the first peak is in the range of 16 nm to 20 nm in diameter, and the second peak is in the range of 100 nm to 900 nm in diameter The hydrodemetallation catalyst (2) catalyst B having a pore volume in the range of 100 nm to 900 nm in diameter in the range of 20% to 50% of the total pore volume of the catalyst was measured by a mercury intrusion method. The catalyst pore distribution has two peaks, the first peak is in the range of 5 nm or more and less than 12 nm, the second peak is in the range of 100 nm to 900 nm in diameter, and the fine peak is in the range of 100 nm to 900 nm in diameter. Hydrodemetallation catalyst in which the ratio of the pore volume to the total pore volume of the catalyst is in the range of 20% to 50%
原料重質油に含まれるバナジウムおよびニッケルの含有量の合計が140質量ppm以上であることを特徴とする請求項1に記載の石油系重質油の脱金属方法。  The method for demetalizing petroleum heavy oil according to claim 1, wherein the total content of vanadium and nickel contained in the raw heavy oil is 140 ppm by mass or more.
JP2002277423A 2002-09-24 2002-09-24 Demetalization method for heavy petroleum oil Expired - Fee Related JP4798685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277423A JP4798685B2 (en) 2002-09-24 2002-09-24 Demetalization method for heavy petroleum oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277423A JP4798685B2 (en) 2002-09-24 2002-09-24 Demetalization method for heavy petroleum oil

Publications (2)

Publication Number Publication Date
JP2004115581A JP2004115581A (en) 2004-04-15
JP4798685B2 true JP4798685B2 (en) 2011-10-19

Family

ID=32273024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277423A Expired - Fee Related JP4798685B2 (en) 2002-09-24 2002-09-24 Demetalization method for heavy petroleum oil

Country Status (1)

Country Link
JP (1) JP4798685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096572A (en) * 2013-04-03 2014-10-15 中国石油天然气股份有限公司 Selective hydrogenation catalyst with improved coking resistance

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578182B2 (en) * 2004-08-27 2010-11-10 Jx日鉱日石エネルギー株式会社 Method for hydrotreating heavy hydrocarbon oil
JP4822705B2 (en) * 2004-12-24 2011-11-24 日揮触媒化成株式会社 Heavy hydrocarbon oil hydrotreating catalyst composition and method for producing the same
US8372268B2 (en) 2009-03-24 2013-02-12 Shell Oil Company High surface area composition for use in the catalytic hydroconversion of a heavy hydrocarbon feedstock, a method making such composition and its use
CN103861604B (en) * 2012-12-12 2016-05-25 中国石油化工股份有限公司 A kind of hydrogenation activity guard catalyst and preparation and application thereof
CN104437542B (en) * 2013-09-24 2017-03-22 中国石油化工股份有限公司 Catalyst for preparing distillate oil from synthesis gas and preparation and application thereof
US10202553B2 (en) * 2013-10-11 2019-02-12 Cosmo Oil Co., Ltd. Hydroprocessing catalyst for heavy hydrocarbon oil, method for manufacturing hydroprocessing catalyst for heavy hydrocarbon oil, and hydroprocessing method for heavy hydrocarbon oil

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435278A (en) * 1980-06-09 1984-03-06 Chezon Research Co. Hydroprocessing with a catalyst having bimodal pore distribution
US4306964A (en) * 1980-09-16 1981-12-22 Mobil Oil Corporation Multi-stage process for demetalation and desulfurization of petroleum oils
JPS60219295A (en) * 1984-04-16 1985-11-01 Res Assoc Residual Oil Process<Rarop> Hydrogenation of heavy hydrocarbon oil
US5827421A (en) * 1992-04-20 1998-10-27 Texaco Inc Hydroconversion process employing catalyst with specified pore size distribution and no added silica
US5968348A (en) * 1994-05-16 1999-10-19 Texaco Inc. Hydroconversion process employing a phosphorus loaded NiMo catalyst with specified pore size distribution
US5744025A (en) * 1997-02-28 1998-04-28 Shell Oil Company Process for hydrotreating metal-contaminated hydrocarbonaceous feedstock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096572A (en) * 2013-04-03 2014-10-15 中国石油天然气股份有限公司 Selective hydrogenation catalyst with improved coking resistance
CN104096572B (en) * 2013-04-03 2016-05-11 中国石油天然气股份有限公司 Selective hydrogenation catalyst with improved coking resistance

Also Published As

Publication number Publication date
JP2004115581A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4638610B2 (en) Hydrotreating catalyst and hydrotreating method
EP1773969B1 (en) Two-step hydroprocessing method for heavy hydrocarbon oil
EP2750792B1 (en) Catalyst support and catalysts prepared therefrom
JP3439790B2 (en) Hydroconversion method
JP4303820B2 (en) Hydrotreating catalyst and hydrotreating method
JP5922372B2 (en) Hydrotreating catalyst and method for producing the same
US7922894B2 (en) HPC process using a mixture of catalysts
EP1567617B1 (en) Hydroprocessing of hydrocarbon using a mixture of catalysts
WO2006036609A1 (en) Bulk bi-metallic catalysts made from precursors containing an organic agent
JP2018521837A (en) High HDN selective hydrotreating catalyst
JP4773634B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
JP4773633B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
JP4612229B2 (en) Catalyst for hydrotreating heavy hydrocarbon oil and hydrotreating method
JP4369871B2 (en) Heavy material HPC process using a mixture of catalysts
JPH0122817B2 (en)
TW201427769A (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
JP4798685B2 (en) Demetalization method for heavy petroleum oil
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
CN102051219B (en) Diesel distillate hydrogenation method
JP2023539755A (en) Heavy hydrocarbon hydrotreating catalyst and its manufacturing and usage methods
JP3978064B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
JP4938178B2 (en) Hydrocarbon hydrotreating method
JPH07228875A (en) Method for hydrogenation treatment of heavy hydrocarbon oil
JPS58210993A (en) Method for treating heavy hydrocarbon oil
JP3782893B2 (en) Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080919

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081211

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4798685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees