JP4798600B2 - Method for stabilizing fructosyl peptide oxidase - Google Patents

Method for stabilizing fructosyl peptide oxidase Download PDF

Info

Publication number
JP4798600B2
JP4798600B2 JP2005157446A JP2005157446A JP4798600B2 JP 4798600 B2 JP4798600 B2 JP 4798600B2 JP 2005157446 A JP2005157446 A JP 2005157446A JP 2005157446 A JP2005157446 A JP 2005157446A JP 4798600 B2 JP4798600 B2 JP 4798600B2
Authority
JP
Japan
Prior art keywords
fpox
reagent
acid
present
reagents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005157446A
Other languages
Japanese (ja)
Other versions
JP2006325547A (en
Inventor
和雄 中村
郁子 増田
直樹 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP2005157446A priority Critical patent/JP4798600B2/en
Publication of JP2006325547A publication Critical patent/JP2006325547A/en
Application granted granted Critical
Publication of JP4798600B2 publication Critical patent/JP4798600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、臨床診断に用いるフルクトシルペプチドオキシダ−ゼ(以下「FPOX」と言う)の液状状態での安定化方法に関する。   The present invention relates to a method for stabilizing fructosyl peptide oxidase (hereinafter referred to as “FPOX”) used in clinical diagnosis in a liquid state.

糖化蛋白質は、蛋白質が非酵素的に糖化された蛋白質であり、糖、すなわちアルドース(アルデヒド基を潜在的に有する単糖およびその誘導体)側のアルデヒド基と、蛋白質側のアミノ基が非酵素的に共有結合した結果、生成したものである。蛋白質のアミノ基としては、N末端アミノ酸のαアミノ基、内部リジン残基側鎖のεアミノ基があげられる。これらの糖化蛋白質は、反応中間体として生じたシッフ塩基がアマドリ転移を受けて形成されることから、いわゆるアマドリ化合物とも呼ばれる。   A glycated protein is a protein in which the protein is non-enzymatically glycated, and the aldehyde group on the sugar, that is, aldose (monosaccharide and derivate having a potential aldehyde group) side, and the amino group on the protein side are non-enzymatic. It is generated as a result of covalent bonding to. Examples of the amino group of the protein include the α-amino group of the N-terminal amino acid and the ε-amino group of the internal lysine residue side chain. These glycated proteins are also called so-called Amadori compounds because the Schiff base generated as a reaction intermediate undergoes Amadori transfer.

糖化蛋白質は、生体内の血液などの体液や、毛髪などの生体試料中に含有されている。血液中に存在する糖化蛋白質の濃度は、血清中に溶解しているグルコースなどの糖類の濃度に強く依存している。糖尿病状態では糖化蛋白質の生成が亢進しており、赤血球に含まれる糖化ヘモグロビンや血清中の糖化アルブミンの濃度は、過去の一定期間の平均血糖値を反映していることから、それらの糖化蛋白質を測定することは、糖尿病の症状の診断や症状管理に重要となっている。   Glycated proteins are contained in body fluids such as blood in living bodies and biological samples such as hair. The concentration of glycated protein present in blood strongly depends on the concentration of saccharides such as glucose dissolved in serum. In diabetic state, the production of glycated proteins is enhanced, and the concentration of glycated hemoglobin in serum and glycated albumin in serum reflects the average blood glucose level over a certain period of time. Measuring is important for diagnosis and management of symptoms of diabetes.

従来糖化蛋白質を定量する方法として、例えば、高速液体クロマトグラフィーを用いる方法(例えば、非特許文献1参照)、硼酸を結合させた固体を詰めたカラムを用いる方法(例えば、非特許文献2参照)、電気泳動を用いる方法(例えば、非特許文献3参照)、抗原抗体反応を利用する方法(例えば、非特許文献4参照)、還元能をテトラゾリウム塩を用いて比色定量する方法(例えば、非特許文献5参照)、チオバルビツール酸を用いて酸化後比色定量する方法(例えば、非特許文献6参照)、糖化アミノ酸オキシダーゼ等の酵素を用いる方法(例えば、特許文献1〜16参照)等が知られている。また最近、上記方法より精度良く糖化蛋白質を測定する方法として、新しい糖化蛋白質の測定法が開示された(例えば、特許文献17参照)。この測定方法は、糖化蛋白質を含む試料をプロテアーゼで処理し、糖化蛋白質からフルクトシルペプチドを遊離させ、遊離したフルクトシルペプチドにFPOXを作用させ、生成物を測定することにより糖化蛋白質を測定する方法であり、短時間かつ簡単な操作で、精度の良い測定方法として注目されている。 Conventional methods for quantifying glycated proteins include, for example, a method using high performance liquid chromatography (see, for example, Non-Patent Document 1), and a method using a column packed with a solid to which boric acid is bound (see, for example, Non-Patent Document 2). , A method using electrophoresis (for example, see Non-patent Document 3), a method using an antigen-antibody reaction (for example, refer to Non-Patent Document 4), and a method for colorimetric determination of reducing ability using a tetrazolium salt (for example, non-Patent Document 4) Patent Document 5), a method for colorimetric determination after oxidation using thiobarbituric acid (for example, see Non-Patent Document 6), a method using an enzyme such as glycated amino acid oxidase (for example, see Patent Documents 1 to 16), etc. It has been known. Recently, a new method for measuring glycated protein has been disclosed as a method for measuring glycated protein more accurately than the above method (see, for example, Patent Document 17). In this measurement method, a sample containing a glycated protein is treated with a protease, the fructosyl peptide is released from the glycated protein, FPOX is allowed to act on the released fructosyl peptide, and the product is measured to measure the glycated protein. Therefore, it is attracting attention as a highly accurate measurement method with a short time and simple operation.

FPOXを用いた測定法は上記のとおり大変優れた方法であるが、使用するFPOXが不安定であるという問題があった。FPOXの安定化に関しては、キレート試薬、糖アルコール類、アミノ酸類、金属塩類から選ばれる1種以上の試薬を、FPOXと共存させることを特徴とするフルクトシルペプチドオキシダーゼ凍結乾燥製剤の安定化方法(特願2004−060645)がある。   Although the measurement method using FPOX is a very excellent method as described above, there is a problem that the FPOX used is unstable. Regarding the stabilization of FPOX, a method for stabilizing a fructosyl peptide oxidase lyophilized preparation characterized in that one or more reagents selected from chelating reagents, sugar alcohols, amino acids, and metal salts are allowed to coexist with FPOX ( Japanese Patent Application No. 2004-060645).

一般的な臨床検査用試薬は、凍結乾燥状態や溶液状態で製造、流通される場合が多いが、近年、操作の簡便性、溶解時の調整ミスなどを防ぐため、溶液状態の需要が高まってきている。しかしながら、FPOXの溶液状態での安定化方法はこれまで知られていなかった。   Common clinical laboratory reagents are often manufactured and distributed in a lyophilized state or in a solution state. Recently, however, the demand for a solution state has been increasing in order to prevent easy operation and adjustment errors during dissolution. ing. However, a method for stabilizing FPOX in a solution state has not been known so far.

特公平05−33997号公報Japanese Patent Publication No. 05-33997 特開平11−127895号公報JP-A-11-127895 国際公開第97/13872号パンフレットWO 97/13872 pamphlet 特公平06−65300号公報Japanese Patent Publication No. 06-65300 特開平02−195900号公報Japanese Patent Laid-Open No. 02-195900 特開平03−155780号公報Japanese Patent Laid-Open No. 03-155780 特開平04−4874号公報Japanese Patent Laid-Open No. 04-4874 特開平05-192193号公報JP 05-192193 A 特開平06−46846号公報Japanese Patent Laid-Open No. 06-46846 特開平11−155596号公報JP-A-11-155596 特開平10−313893号公報JP 10-313893 A 特開平11−504808号公報Japanese Patent Laid-Open No. 11-504808 特開2000−333696号公報JP 2000-333696 A 特開2001−54398号公報JP 2001-54398 A 特開2001−204495号公報JP 2001-204495 A 特開2001−204494号公報JP 2001-204494 A 特開2001−95598号公報JP 2001-95598 A コール(Cole RA)、外3名,「高速液体クロマトグラフィーを用いた糖化ヘモグロビンの迅速測定法 (A rapid method for the determination of glycosylated hemoglobins using high pressure liquid chromatography)」,メタボリズム(Metabolism) ,1978年5月,第27巻,第3号,p.289−301Cole RA, 3 others, “A rapid method for the determination of glycosylated hemoglobins using high pressure liquid chromatography”, Metabolism, 1978 5 Moon, Vol. 27, No. 3, p.289-301 クレンク(Klenk DC)、外9名, 「アフィニティークロマトグラフィーによる糖化ヘモグロビンの定量法:比色分析法とイオン交換法の比較、共通の阻害物質の影響(Determination of glycosylated hemoglobin by affinity chromatography: comparison with colorimetric and ion-exchange methods, and effects of common interferences)」,クリニカル・ケミストリー(Clin Chem),1982年10月,第28巻,第10号,p.2088−2094Klenk DC, 9 others, “Determination of glycosylated hemoglobin by affinity chromatography: comparison with colorimetric: Quantification of glycosylated hemoglobin by affinity chromatography: Comparison of colorimetric and ion exchange methods, influence of common inhibitors and ion-exchange methods, and effects of common interferences) ", Clin Chem, October 1982, Vol. 28, No. 10, p. 2088-2094. メナード(Menard L)、外5名,「寒天ゲル電気泳動によるヘモグロビンA1の量的測定法(Quantitiative determination of glycosylated hemoglobin A1 by agar gel electrophoresis)」,クリニカル・ケミストリー(Clin Chem),1980年10月,第28巻,第11号,p.1598−1602Menard L, 5 others, “Quantitative determination of glycosylated hemoglobin A1 by agar gel electrophoresis”, Clinical Chemistry (Clin Chem), October 1980, Vol. 28, No. 11, pp. 1598-1602 日本臨床検査自動化学会会誌,1993年,第18巻,p.620Journal of the Japan Society for Clinical Laboratory Automation, 1993, Vol. 18, p.620 ジョンソン(Johnson RN)、外2名,「フルクトサミン:血清糖化タンパク質定量のための新たな手がかり、糖尿病コントロール指標(Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control)」,クリニカ・ケミカ・アクタ(Clin Chim Acta),1983年1月7日,第127巻,第1号,p.87−95Johnson (RN), two others, “Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control”, Clinica Clin Chim Acta, January 7, 1983, Vol. 127, No. 1, p. 87-95 ドルホファー(Dolhofer R) 、外1名,「血清糖化タンパク質定量のためのチオバルビツール酸測定法の改良(Improvement of the thiobarbituric acid assay for serum glycosylprotein determination)」,クリニカ・ケミカ・アクタ(Clin Chim Acta),1981年5月5日,第112巻,第2号,p.197−204Dolhofer R, 1 other, “Improvement of the thiobarbituric acid assay for serum glycosylprotein determination”, Clin Chim Acta May 5, 1981, Vol. 112, No. 2, p. 197-204

本発明は、臨床診断に用いられるFPOXの液状試薬中での安定化方法に関する。   The present invention relates to a method for stabilizing FPOX used in clinical diagnosis in a liquid reagent.

本発明者等は、前記課題解決のために鋭意研究を重ねた結果、単独では安定化の効果が確認できないアンモニウム塩、オキシカルボン酸系のキレート試薬、糖アルコール類、アミノ酸類、をポリアミノカルボン酸系のキレート試薬と共存させることにより、相乗的効果を発揮し、FPOXの液状状態での安定性が極めて向上することなどを見出し、これらの知見に基づき本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that ammonium salts, oxycarboxylic acid-based chelating reagents, sugar alcohols, amino acids, which cannot be confirmed alone, are polyaminocarboxylic acids. By coexisting with a chelating reagent of the system, it has been found that a synergistic effect is exhibited and the stability of FPOX in a liquid state is extremely improved, and the present invention has been completed based on these findings.

すなわち、本発明は、
1)フルクトシルペプチドオキシダーゼ含有溶液にポリアミノカルボン酸系のキレート試薬および、アンモニウム塩、オキシカルボン酸系のキレート試薬、糖アルコール類、アミノ酸類より選ばれる1種以上の試薬を共存させることを特徴とするフルクトシルペプチドオキシダーゼの安定化方法。
2)ポリアミノカルボン酸系のキレート試薬がエチレンジアミン4酢酸である上記1)記載のフルクトシルペプチドオキシダーゼの安定化方法。
3)フルクトシルペプチドオキシダーゼの含有濃度が100U/ml以下である上記1)または2)記載のフルクトシルペプチドオキシダーゼの安定化方法。
に関する。
That is, the present invention
1) A polyaminocarboxylic acid chelating reagent and one or more reagents selected from ammonium salts, oxycarboxylic acid chelating reagents, sugar alcohols, and amino acids are allowed to coexist in a fructosyl peptide oxidase-containing solution. A method for stabilizing fructosyl peptide oxidase.
2) The method for stabilizing fructosyl peptide oxidase according to 1) above, wherein the polyaminocarboxylic acid-based chelating reagent is ethylenediaminetetraacetic acid.
3) The method for stabilizing fructosyl peptide oxidase according to 1) or 2) above, wherein the concentration of fructosyl peptide oxidase is 100 U / ml or less.
About.

本発明によれば、安定化したFPOXの液状試薬を、簡単な方法でかつ安価に製造することができる。   According to the present invention, a stabilized FPOX liquid reagent can be produced by a simple method and at low cost.

以下、本発明を詳細に説明する。本発明に用いられるFPOXは、酸素存在下でフルクトシルペプチドに作用し、α−ケトアルデヒド、ペプチド及び過酸化水素を生成するオキシダーゼであり、この作用を有する酵素であれば、如何なるオキシダーゼも含まれる。本発明に用いられるFPOXの起源は如何なるものであってもよく、例えば、糸状菌、酵母、放線菌、バクテリア、古細菌など特に制限されないが、好ましくは、例えば、コニオカエタ(Coniochaeta)、ユーペニシリウム(Eupenicillium)、アカエトミエラ(Achaetomiella)などを起源とするFPOXなどを挙げることができる。また、これらのFPOXは、遺伝子組み換え体によって製造されたものを用いることもできる。   Hereinafter, the present invention will be described in detail. FPOX used in the present invention is an oxidase that acts on fructosyl peptide in the presence of oxygen to produce α-ketoaldehyde, peptide, and hydrogen peroxide, and any oxidase is included as long as it has this action. . The origin of FPOX used in the present invention may be any, for example, filamentous fungi, yeast, actinomycetes, bacteria, archaea, etc., but is not particularly limited, but preferably, for example, Coniochaeta, Eupenicillium ( FPOX originating from Eupenicillium), Achaetomiella, etc. These FPOXs can also be those produced by gene recombinants.

本発明において、FPOXの安定性を向上させるために共存させるポリアミノカルボン酸系のキレート試薬は、金属イオンに配位しキレート化合物を与えるような化合物である。本発明に使用できるポリアミノカルボン酸系のキレート試薬としては、FPOXの安定性を向上させるものであればいかなるものでも良く、例えばエチレンジアミン4酢酸(以下「EDTA」と言う)、trans−1,2−diaminocyclohexane−N,N,N’,N’−tetraacetic acid(以下「CyDTA」と言う)、diethylenetriamine−N,N,N’,N”,N”−pentaacetic acid(DTPA)、グリコールエーテルジアミン4酢酸(EGDTA)、1,6−hexametylenediamine−N,N,N’,N’−tetraacetic acid(HDTA)、トリエチレンテトラミン6酢酸(TTHA)等が挙げられる。本発明においては、上記ポリアミノカルボン酸系のキレート試薬に何ら限定されるものではないが、例えば、EDTAが好ましく用いられる。用いられるEDTAは如何なる塩でも良く、EDTAの塩としては、ナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩等が挙げられる。   In the present invention, the polyaminocarboxylic acid-based chelating reagent coexisting to improve the stability of FPOX is a compound that coordinates to a metal ion to give a chelate compound. The polyaminocarboxylic acid-based chelating reagent that can be used in the present invention may be any one that improves the stability of FPOX, such as ethylenediaminetetraacetic acid (hereinafter referred to as “EDTA”), trans-1,2- diaminocyclohexane-N, N, N ′, N′-tetraacetic acid (hereinafter referred to as “CyDTA”), diethylenamine-N, N, N ′, N ″, N ″ -pentaacetic acid (DTPA), glycol ether diaminetetraacetic acid (DTPA) EGDTA), 1,6-hexaneethylenediamine-N, N, N ′, N′-tetraacetic acid (HDTA), triethylenetetramine hexaacetic acid (TTHA) and the like. In the present invention, the polyaminocarboxylic acid-based chelating reagent is not limited in any way, but for example, EDTA is preferably used. The EDTA used may be any salt, and examples of the EDTA salt include sodium salt, potassium salt, lithium salt, and ammonium salt.

本発明において、FPOXの安定性を向上させるために共存させるアンモニウム塩類は、如何なるアンモニウム塩類でも用いることができる。例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、酒石酸アンモニウム等が挙げられる。本発明においては、上記アンモニウム塩類に何ら限定されるものではないが、例えば、硫酸アンモニウムが好ましく用いられる。また上記アンモニウム塩類は、それぞれ単独でも複数組み合わせても用いることができる。   In the present invention, any ammonium salt can be used as the ammonium salt to be present in order to improve the stability of FPOX. Examples thereof include ammonium sulfate, ammonium chloride, ammonium phosphate, and ammonium tartrate. In the present invention, the ammonium salts are not limited at all, but, for example, ammonium sulfate is preferably used. The ammonium salts can be used alone or in combination.

本発明において、FPOXの安定性を向上させるために共存させるオキシカルボン酸系のキレート試薬は、如何なるオキシカルボン酸系のキレート試薬でも用いることができる。例えば、クエン酸、リンゴ酸、イソクエン酸、またこれらの塩類等が挙げられる。本発明においては、上記オキシカルボン酸系のキレート試薬に何ら限定されるものではないが、例えばクエン酸三ナトリウムが好ましく用いられる。また上記オキシカルボン酸系のキレート試薬は、それぞれ単独でも複数組み合わせても用いることができる。   In the present invention, any oxycarboxylic acid-based chelating reagent can be used as the oxycarboxylic acid-based chelating reagent that coexists in order to improve the stability of FPOX. Examples thereof include citric acid, malic acid, isocitric acid, and salts thereof. In the present invention, the oxycarboxylic acid-based chelating reagent is not limited at all, but, for example, trisodium citrate is preferably used. The oxycarboxylic acid chelating reagents can be used alone or in combination.

本発明において、FPOXの安定性を向上させるために共存させる糖アルコール類は、如何なる糖アルコール類でも用いることができる。例えば、トレハロース、キシリトール、ソルビトール、イノシトール、マンニトール、アラビトール、ズルシトール、エリスリトール等が挙げられる。本発明においては、上記糖アルコール類に何ら限定されるものではないが、例えば、キシリトールが好ましく用いられる。また上記糖アルコール類は、それぞれ単独でも複数組み合わせても用いることができる。   In the present invention, any sugar alcohol can be used as the sugar alcohol to be coexisted in order to improve the stability of FPOX. Examples include trehalose, xylitol, sorbitol, inositol, mannitol, arabitol, dulcitol, erythritol and the like. In the present invention, the sugar alcohols are not limited at all, but, for example, xylitol is preferably used. The sugar alcohols can be used alone or in combination.

本発明において、FPOXの安定性を向上させるために共存させるアミノ酸類は、如何なるアミノ酸類でも用いることができる。例えば、グルタミン酸ナトリウム、グリシン、リジン塩酸塩、アスパラギン、アラニン、メチオニン、トレオニン等が挙げられる。本発明においては、上記アミノ酸類に何ら限定されるものではないが、例えば、グリシンが好ましく用いられる。また上記アミノ酸類は、それぞれ単独でも複数組み合わせても用いることができる。   In the present invention, any amino acid can be used as the amino acid to coexist in order to improve the stability of FPOX. For example, sodium glutamate, glycine, lysine hydrochloride, asparagine, alanine, methionine, threonine and the like can be mentioned. In the present invention, the amino acids are not limited at all, but for example, glycine is preferably used. The amino acids can be used alone or in combination.

本発明の安定化方法は、上記FPOXと前記のポリアミノカルボン酸系のキレート試薬および、アンモニウム塩、オキシカルボン酸系のキレート試薬、糖アルコール類、アミノ酸塩類より選ばれる1種以上の試薬類を共存させる。このとき、必要により、その他の試薬が共存していてもよい。通常、FPOX、試薬などの固体粉末もしくはそれらの溶解液をそれぞれ適宜混合することにより共存させることができる。   In the stabilization method of the present invention, the FPOX and the polyaminocarboxylic acid chelating reagent and one or more reagents selected from ammonium salts, oxycarboxylic acid chelating reagents, sugar alcohols, and amino acid salts coexist. Let At this time, if necessary, other reagents may coexist. Usually, solid powders such as FPOX and reagents, or a solution thereof can be mixed together as appropriate.

本発明の安定化方法に用いられるFPOXの濃度は特に制限されないが、好ましくは0.05〜1000U/ml、より好ましくは0.10〜100U/mlである。なお、ここでの酵素力価は、フルクトシルバリルヒスチジンを基質として測定したとき、1分間に1μmolの過酸化水素を生成する酵素量を1Uと定義している。   The concentration of FPOX used in the stabilization method of the present invention is not particularly limited, but is preferably 0.05 to 1000 U / ml, more preferably 0.10 to 100 U / ml. The enzyme titer here is defined as 1 U for the amount of enzyme that produces 1 μmol of hydrogen peroxide per minute when measured using fructosyl valyl histidine as a substrate.

ポリアミノカルボン酸系のキレート試薬、アンモニウム塩、オキシカルボン酸系のキレート試薬、糖アルコール類、アミノ酸類の濃度は、FPOXの安定化効果が発揮され、かつ酵素を含む試薬を取り扱う上で不都合のない範囲内であれば、如何なる濃度でも調製することができる。例えば、上記ポリアミノカルボン酸系のキレート試薬およびオキシカルボン酸系のキレート試薬の好ましい濃度としては0.1mM以上、より好ましくは1〜100mMが挙げられる。アンモニウム塩の好ましい濃度としては0.1mM以上、より好ましくは1〜500mMが挙げられる。糖アルコール類の好ましい濃度としては1%以上、より好ましくは2〜20%が挙げられる。アミノ酸類の好ましい濃度としては1%以上、より好ましくは2〜20%が挙げられる。   The concentration of polyaminocarboxylic acid-based chelating reagent, ammonium salt, oxycarboxylic acid-based chelating reagent, sugar alcohols and amino acids is effective in stabilizing FPOX and is not inconvenient when handling reagents containing enzymes. Any concentration within the range can be prepared. For example, the preferred concentration of the polyaminocarboxylic acid-based chelating reagent and the oxycarboxylic acid-based chelating reagent is 0.1 mM or more, more preferably 1 to 100 mM. A preferable concentration of the ammonium salt is 0.1 mM or more, more preferably 1 to 500 mM. A preferable concentration of the sugar alcohol is 1% or more, more preferably 2 to 20%. A preferred concentration of amino acids is 1% or more, more preferably 2 to 20%.

一般に酵素は、保存時のpHによりその安定性が大きく影響を受けるため、その他の試薬として、安定なpH域の種々の緩衝液を同時に用いることが好ましい。本発明において用いられる緩衝液の種類及びその濃度、pHは特に限定されるものではないが、例えば、pH6〜10の間で緩衝能を有し、かつ必要十分な緩衝能を保つ濃度に設定されていることが望ましい。この様な緩衝液として、例えば、汎用的なトリス緩衝液やリン酸緩衝液を挙げることもできるし、BES、HEPES、TES、ビシン、トリシン等のグッドバッファー、グリシン−NaOHなどのアミノ酸系緩衝液、ホウ酸緩衝液、Bis−Tris propane緩衝液、イミダゾール緩衝液などを使用することもできる。緩衝液の濃度については、例えば、好ましくは1〜1000mM、さらに好ましくは10〜100mMである。本発明では、トリス緩衝液若しくはリン酸緩衝液が好ましく用いられる。本発明のキレート試薬、アンモニウム塩、糖アルコール類、アミノ酸類を緩衝液に添加する場合は、直接添加するか、又は、例えば、pH5〜9、好ましくは6〜8に調整したそれらの水溶液を添加すればよい。前記の試薬類を添加することにより、pHが目的とする範囲からはずれるときは、例えば水酸化ナトリウム、水酸化カリウム、アンモニア水等の添加でpHが目的の範囲内におさまるように調整するのが好適である。   In general, since the stability of an enzyme is greatly affected by the pH during storage, it is preferable to simultaneously use various buffers in a stable pH range as other reagents. The type of buffer solution used in the present invention, its concentration, and pH are not particularly limited. For example, the buffer solution has a buffer capacity between pH 6 and 10, and is set to a concentration that maintains a necessary and sufficient buffer capacity. It is desirable that Examples of such buffers include general-purpose tris buffers and phosphate buffers, good buffers such as BES, HEPES, TES, bicine, and tricine, and amino acid buffers such as glycine-NaOH. A borate buffer solution, a Bis-Tris propane buffer solution, an imidazole buffer solution, or the like can also be used. About the density | concentration of a buffer solution, Preferably it is 1-1000 mM, More preferably, it is 10-100 mM. In the present invention, Tris buffer or phosphate buffer is preferably used. When adding the chelating reagent, ammonium salt, sugar alcohol, and amino acids of the present invention to the buffer, add them directly or add their aqueous solutions adjusted to pH 5-9, preferably 6-8, for example. do it. When the pH deviates from the target range by adding the above-mentioned reagents, the pH is adjusted to fall within the target range by adding, for example, sodium hydroxide, potassium hydroxide, or aqueous ammonia. Is preferred.

さらに、その他の試薬として、必要により、例えば、塩化ナトリウム、塩化カリウム、アジ化ナトリウム等の各種無機塩、デキストラン等の多糖類、ボバインセーラムアルブミン(bovine serum albumin:BSA)、グリセロール、界面活性剤、抗生物質、サルファ剤等の化学療法剤等を共存させてもよい。これらの試薬は、あらかじめ緩衝液に添加しておいてもよい。   Further, as other reagents, for example, various inorganic salts such as sodium chloride, potassium chloride and sodium azide, polysaccharides such as dextran, bovine serum albumin (BSA), glycerol, surfactants Further, chemotherapeutic agents such as antibiotics and sulfa drugs may coexist. These reagents may be added to the buffer in advance.

安定性の評価は、実際に用いる酵素の保存条件、輸送条件及び測定条件などに即した種々の条件下に、FPOX液状試薬を保存、放置して、経時的にその活性の変化を測定することにより行なわれるが、一般に、短時間で評価を行なうために、通常、虐待試験が用いられる。例えば、一定の高温下にFPOX液状試薬を保温して、経時的に残存活性を測定する方法などが挙げられる。   Evaluation of stability is to store the FPOX liquid reagent under various conditions according to the storage conditions, transport conditions and measurement conditions of the enzyme actually used, and measure the change in its activity over time. In general, an abuse test is usually used to perform evaluation in a short time. For example, there may be mentioned a method in which the FPOX liquid reagent is kept at a constant high temperature and the residual activity is measured over time.

この様にして、ポリアミノカルボン酸系のキレート試薬および、アンモニウム塩、オキシカルボン酸系のキレート試薬、糖アルコール類、アミノ酸類より選ばれる1種以上の試薬を共存させることにより、FPOXを液状状態で安定化することができる。この安定化方法を用いて、FPOXとポリアミノカルボン酸系のキレート試薬および、アンモニウム塩、オキシカルボン酸系のキレート試薬、糖アルコール類、アミノ酸類より選ばれる1種以上の試薬を含有する安定化されたFPOX液状試薬を製造することができる。例えば、EDTAを1mM以上の濃度で含有する、pH6〜10の緩衝液を調製し、この緩衝液にFPOX(キッコーマン社製)を濃度が0.1〜100Uとなるように添加する。さらに、アンモニウム塩、オキシカルボン酸系のキレート試薬、糖アルコール類、アミノ酸類より選ばれた1種以上の試薬を添加する。この混合液を撹拌し、完全に溶解させることにより、FPOX液状試薬を製造することができる。このようにして得られた本発明のFPOX液状試薬は、従来の方法により製造された液状試薬に比べて著しく安定化されており、本発明の方法により、簡単な方法でかつ安価に、安定化されたFPOX液状試薬を製造することができる。   In this way, FPOX is in a liquid state by coexisting a polyaminocarboxylic acid-based chelating reagent and one or more reagents selected from ammonium salts, oxycarboxylic acid-based chelating reagents, sugar alcohols, and amino acids. Can be stabilized. This stabilization method is used to stabilize a FPOX-containing polyaminocarboxylic acid chelating reagent and one or more reagents selected from ammonium salts, oxycarboxylic acid chelating reagents, sugar alcohols, and amino acids. FPOX liquid reagent can be produced. For example, a buffer solution having a pH of 6 to 10 containing EDTA at a concentration of 1 mM or more is prepared, and FPOX (manufactured by Kikkoman) is added to this buffer solution so that the concentration is 0.1 to 100 U. Further, one or more reagents selected from ammonium salts, oxycarboxylic acid chelating reagents, sugar alcohols, and amino acids are added. By stirring this mixed solution and completely dissolving it, a FPOX liquid reagent can be produced. The FPOX liquid reagent of the present invention thus obtained is significantly stabilized as compared with the liquid reagent produced by the conventional method, and is stabilized by a simple method and at a low cost by the method of the present invention. The prepared FPOX liquid reagent can be manufactured.

以下、実験例及び実施例により、本発明を更に具体的に説明する。但し、本発明の技術的範囲は、これらの例により、何ら限定されるものではない。
<実験例1>
Hereinafter, the present invention will be described in more detail with reference to experimental examples and examples. However, the technical scope of the present invention is not limited by these examples.
<Experimental example 1>

(FPOXの活性測定法及び安定性試験)
過酸化水素量を測定する方法について示す。以下、本発明オキシダーゼ等の活性測定には、ことわりのない限り、フルクトシルバリルヒスチジンを基質として用いる。なお、酵素力価は、フルクトシルバリルヒスチジンを基質として測定したとき、1分間に1μmolの過酸化水素を生成する酵素量を1Uと定義した。
A.試薬の調製
(1)試薬1:POD−4-アミノアンチピリン溶液
1.0kUのパーオキシダーゼ(キッコーマン社製)、100mgの4-アミノアンチピリン(東京化成社製)を0.1Mのリン酸カリウム緩衝液(pH8.0)に溶解し、1Lに定容する。
(2)試薬2:2,4−ジクロロフェノールサルフェート溶液
市販2%溶液(ナカライ社製)25mlをイオン交換水に溶解し、100mlに定容する。
(3)試薬3:基質溶液(150mM;終濃度 5mM)
フルクトシルバリルヒスチジン624mgをイオン交換水に溶解して10mlに定容する。フルクトシルバリンヒスチジンは特開2001−95598号公報記載の方法により調製した。
B.測定法
2.7mlの試薬1、100μlの試薬2、および100μlのFPOX酵素液(キッコーマン社製)を混和し、30℃で5分間予備加温する。その後100μlの試薬3を加えて良く混ぜた後、分光光度計(U−2000A、日立社製)により、510nmにおける吸光度を測定する。測定値は、510nmにおける1分後から3分後の1分間あたりの吸光度変化とする。なお対照液は、100μlの試薬3の代わりに100μlのイオン交換水を加える以外は前記と同様にした。これをあらかじめ作製しておいた過酸化水素の標準溶液を試薬3の代わりに、また酵素液の代わりにイオン交換水を用い、その生成色素量との関係を調べたグラフを用意した。このグラフを用いて、30℃、1分間当たりに生成される過酸化水素のマイクロモルを計算し、この数値を酵素液中の活性単位とした。なお活性測定用のFPOX酵素液の希釈には、0.15%(w/v)BSAを含有する10mM リン酸カリウム緩衝液(pH8.0)を用いた。FPOX液状試薬の安定性試験は、虐待試験後の残存活性を比較して行なった。虐待試験を行った後の該酵素溶液の残存活性は、該酵素溶液調製時における吸光度変化量を100%としたときの相対量(%)として表わした。
(FPOX activity measurement method and stability test)
A method for measuring the amount of hydrogen peroxide will be described. Hereinafter, fructosyl valyl histidine is used as a substrate for measurement of the activity of the oxidase of the present invention unless otherwise specified. The enzyme titer was defined as 1 U for the amount of enzyme that produces 1 μmol of hydrogen peroxide per minute when measured using fructosyl valyl histidine as a substrate.
A. Preparation of Reagent (1) Reagent 1: POD-4-aminoantipyrine solution 1.0 kU peroxidase (manufactured by Kikkoman), 100 mg of 4-aminoantipyrine (manufactured by Tokyo Chemical Industry), 0.1 M potassium phosphate buffer Dissolve in (pH 8.0) and make up to 1 L.
(2) Reagent 2: 2,4-dichlorophenol sulfate solution 25 ml of a commercially available 2% solution (manufactured by Nacalai) is dissolved in ion-exchanged water, and the volume is adjusted to 100 ml.
(3) Reagent 3: Substrate solution (150 mM; final concentration 5 mM)
Dissolve 624 mg of fructosyl valyl histidine in ion exchange water to a constant volume of 10 ml. Fructosylvaline histidine was prepared by the method described in JP-A No. 2001-95598.
B. Measurement method 2.7 ml of reagent 1, 100 μl of reagent 2, and 100 μl of FPOX enzyme solution (manufactured by Kikkoman) are mixed and preheated at 30 ° C. for 5 minutes. Thereafter, 100 μl of reagent 3 is added and mixed well, and then the absorbance at 510 nm is measured with a spectrophotometer (U-2000A, manufactured by Hitachi, Ltd.). The measured value is the change in absorbance per minute from 1 minute to 3 minutes after 510 nm. The control solution was the same as described above except that 100 μl of ion exchange water was added instead of 100 μl of reagent 3. A hydrogen peroxide standard solution prepared in advance was used in place of the reagent 3 and ion-exchanged water in place of the enzyme solution, and a graph was prepared in which the relationship with the amount of generated dye was examined. Using this graph, the micromol of hydrogen peroxide produced per minute at 30 ° C. was calculated, and this value was used as the activity unit in the enzyme solution. For dilution of the FPOX enzyme solution for activity measurement, a 10 mM potassium phosphate buffer (pH 8.0) containing 0.15% (w / v) BSA was used. The stability test of the FPOX liquid reagent was performed by comparing the residual activity after the abuse test. The residual activity of the enzyme solution after the abuse test was expressed as a relative amount (%) when the change in absorbance at the time of preparing the enzyme solution was taken as 100%.

(試薬を単独で添加したときの効果確認)
まず、安定化剤無添加(コントロール)の試験として、20mMのトリス−塩酸緩衝液(pH8.0)1mlにFPOX−CE(キッコーマン社製)を20U/mlとなるよう添加した。この溶液を、30℃、7日間保存した後、酵素活性を測定した。結果は表1、entry1に示す通り、保存前の酵素活性と比較して、活性は1%まで低下することがわかった。
(Confirmation of effect when reagent is added alone)
First, as a test for adding no stabilizer (control), FPOX-CE (manufactured by Kikkoman) was added to 1 ml of 20 mM Tris-HCl buffer (pH 8.0) so as to be 20 U / ml. This solution was stored at 30 ° C. for 7 days, and then the enzyme activity was measured. As a result, as shown in Table 1, entry 1, it was found that the activity decreased to 1% as compared with the enzyme activity before storage.

次に、各種試薬を表1に示した最終濃度で添加し、上記と同様の試験を行った。結果は表1に示す通り、ポリアミノカルボン酸系のキレート試薬のEDTAを添加することで、著しく安定性が向上することが確認された。一方、EDTA以外の試薬は、単独では顕著な効果は確認できなかった。   Next, various reagents were added at final concentrations shown in Table 1, and the same test as described above was performed. As shown in Table 1, it was confirmed that the stability was remarkably improved by adding EDTA, a polyaminocarboxylic acid chelating reagent. On the other hand, a reagent other than EDTA alone could not confirm a remarkable effect.

表1

Figure 0004798600
Table 1
Figure 0004798600

(EDTAとの共存効果の確認)
表1において顕著な効果が確認できなかった試薬を、EDTAと共存させ、安定化効果を確認した。
5mMのEDTAを含有する20mMのトリス−塩酸緩衝液(pH8.0)に各種試薬を表2に示した最終濃度で添加し、実施例1と同様の試験を行った。
表2のentry1にEDTA単独の結果を、entry2から7に追加添加の結果を示した。驚くべきことに、単独では、無添加と比較して1〜4%の加算的安定化効果しか認められなかったクエン酸三ナトリウム、キシリトール、グリシン、硫酸アンモニウムが、EDTAと共存させることにより、EDTA単独と比較して20%近い安定化効果を示すことが確認された。
(Confirmation of coexistence effect with EDTA)
Reagents for which a remarkable effect was not confirmed in Table 1 were allowed to coexist with EDTA, and the stabilizing effect was confirmed.
Various reagents were added to 20 mM Tris-HCl buffer (pH 8.0) containing 5 mM EDTA at the final concentrations shown in Table 2, and the same tests as in Example 1 were performed.
In Table 2, entry 1 shows the result of EDTA alone, and entries 2 to 7 show the result of additional addition. Surprisingly, trisodium citrate, xylitol, glycine, and ammonium sulfate, which alone had only 1 to 4% additive stabilizing effect compared to no addition, were allowed to coexist with EDTA. It was confirmed that the stabilization effect is close to 20%.

表2

Figure 0004798600
Table 2
Figure 0004798600

次に、FPOX−CEの濃度を40U/mlとして、さらに保存期間を延長して実施例2の試験を行なった。
5mMのEDTAを含有する20mMのトリス−塩酸緩衝液(pH8.0)に各種試薬を表3に示した最終濃度で添加し、さらにFPOX−CEを40U/mlとなるように添加した。この溶液を、30℃、18日間保存した後、酵素活性を測定した。
表3のentry1にEDTA単独の結果を、entry2から7に追加添加の結果を示した。表2と同様に、クエン酸三ナトリウム、キシリトール、グリシン、硫酸アンモニウムが、EDTAと共存させることにより、EDTA単独と比較して顕著に安定化効果を示すことが確認された。
Next, the test of Example 2 was performed by setting the concentration of FPOX-CE to 40 U / ml and extending the storage period.
Various reagents were added to 20 mM Tris-HCl buffer (pH 8.0) containing 5 mM EDTA at the final concentrations shown in Table 3, and FPOX-CE was further added to a concentration of 40 U / ml. This solution was stored at 30 ° C. for 18 days, and then the enzyme activity was measured.
In Table 3, entry 1 shows the results of EDTA alone, and entries 2 to 7 show the results of additional addition. As in Table 2, it was confirmed that trisodium citrate, xylitol, glycine, and ammonium sulfate coexist with EDTA and show a remarkable stabilizing effect as compared with EDTA alone.

表3

Figure 0004798600
Table 3
Figure 0004798600

本発明により、FPOXを溶液状態で安定に保つことが可能となり、糖尿病の診断用酵素として測定用キットに容易に利用される。さらに保存・輸送などの際、酵素を長期間安定に保つ事が可能となり、安定性に優れた本発明と共に、保存安定性に優れた臨床診断用キットの開発が可能になる。

According to the present invention, FPOX can be stably maintained in a solution state, and can be easily used in a measurement kit as a diagnostic enzyme for diabetes. Furthermore, it becomes possible to keep the enzyme stable for a long period of time during storage and transportation, and the development of a clinical diagnostic kit excellent in storage stability together with the present invention excellent in stability.

Claims (1)

フルクトシルペプチドオキシダーゼの含有濃度が100U/ml以下であるフルクトシルペプチドオキシダーゼ含有溶液にエチレンジアミン4酢酸を添加し、さらに硫酸アンモニウム、キシリトール、グリシンより選ばれる1種以上の試薬を共存させることを特徴とするフルクトシルペプチドオキシダーゼの安定化方法。 It is characterized in that ethylenediaminetetraacetic acid is added to a fructosyl peptide oxidase-containing solution having a fructosyl peptide oxidase concentration of 100 U / ml or less, and at least one reagent selected from ammonium sulfate, xylitol, and glycine coexists. Method for stabilizing fructosyl peptide oxidase.
JP2005157446A 2005-05-30 2005-05-30 Method for stabilizing fructosyl peptide oxidase Active JP4798600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157446A JP4798600B2 (en) 2005-05-30 2005-05-30 Method for stabilizing fructosyl peptide oxidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157446A JP4798600B2 (en) 2005-05-30 2005-05-30 Method for stabilizing fructosyl peptide oxidase

Publications (2)

Publication Number Publication Date
JP2006325547A JP2006325547A (en) 2006-12-07
JP4798600B2 true JP4798600B2 (en) 2011-10-19

Family

ID=37547910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157446A Active JP4798600B2 (en) 2005-05-30 2005-05-30 Method for stabilizing fructosyl peptide oxidase

Country Status (1)

Country Link
JP (1) JP4798600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994827B2 (en) 2012-01-13 2018-06-12 Toyobo Co., Ltd. Method for producing fructosyl valyl histidine oxidase preparation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6682268B2 (en) 2013-08-09 2020-04-15 キッコーマン株式会社 Modified amadoriase and method for producing the same, surfactant resistance improving agent for amadoriase, and composition for HbA1c measurement using the same
US11198852B2 (en) 2014-11-07 2021-12-14 Kikkoman Corporation Amadoriase having enhanced anionic surfactant tolerance

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534001A (en) * 1978-08-28 1980-03-10 Noda Sangyo Kagaku Kenkyusho Stabilization of sarcosine oxidase
JPS6274285A (en) * 1985-09-28 1987-04-06 Kikkoman Corp Stabilization of monomethylamine oxidase
JPH0261119A (en) * 1988-08-25 1990-03-01 Murata Mach Ltd Method for winding yarn of prescribed length in double twister
JP2820893B2 (en) * 1994-08-31 1998-11-05 日本商事株式会社 Stabilization of bilirubin oxidase
JPH10191972A (en) * 1997-01-13 1998-07-28 Toyo Ink Mfg Co Ltd Stabilization of atpase
JP4122084B2 (en) * 1998-03-11 2008-07-23 オリエンタル酵母工業株式会社 Urease liquid reagent
JP3949854B2 (en) * 1999-10-01 2007-07-25 キッコーマン株式会社 Method for measuring glycated protein
JP4620881B2 (en) * 2001-02-08 2011-01-26 ユニチカ株式会社 Method for stabilizing ascorbate oxidase and reagent for measuring biological components
JP4231668B2 (en) * 2001-09-04 2009-03-04 キッコーマン株式会社 Novel fructosyl peptide oxidase
JP2003116539A (en) * 2001-10-12 2003-04-22 Kikkoman Corp Method for stabilizing ascorbic acid oxidase
US20060281165A1 (en) * 2003-06-09 2006-12-14 Davis Paul J Method for stabilization of enzymes during exposure to sterilizing radation
JP4557571B2 (en) * 2004-03-04 2010-10-06 キッコーマン株式会社 Method for stabilizing fructosyl peptide oxidase

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994827B2 (en) 2012-01-13 2018-06-12 Toyobo Co., Ltd. Method for producing fructosyl valyl histidine oxidase preparation

Also Published As

Publication number Publication date
JP2006325547A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP3159451B2 (en) Measurement of glycated protein
CN107870170B (en) A kind of kit of luminol chemiluminescence analysis measurement glycated albumin
WO2012020745A1 (en) Method for measuring glycosylated hemoglobin
JP4798600B2 (en) Method for stabilizing fructosyl peptide oxidase
JP3217066B2 (en) Compositions useful for anaerobic determination of analytes
JP2854995B2 (en) Uric acid measurement reagent composition
JP2796462B2 (en) Ethanol analysis composition
JP3619865B2 (en) Liquid stable thiol activator
JP4557571B2 (en) Method for stabilizing fructosyl peptide oxidase
JP4639287B2 (en) Stabilization method for enzymatic measurement reagents
JP2619222B2 (en) Reagents and methods for determining fructosamine content in blood samples or blood-derived samples
JP7195847B2 (en) Measurement of glycated protein
JP7276327B2 (en) METHOD FOR SUPPRESSING SENSITIVITY REDUCTION OF BIOLOGICAL COMPONENT MEASUREMENT REAGENT KIT
JP2005292110A (en) Method of restraining nonspecific coloring
JP4090266B2 (en) Method for stabilizing composition for measuring conjugated bilirubin and composition for measuring conjugated bilirubin
JP5177479B2 (en) Glycated albumin measuring reagent
JPH0155880B2 (en)
EP3461908B1 (en) Measurement of glycoprotein
JP3727392B2 (en) Conjugated bilirubin measurement reagent
JP2006149230A (en) Method for determining ratio of glycated protein
JP2004129531A (en) Stable ketoamine oxidase-containing reagent
JP4104393B2 (en) Method for quantifying specific components in biological sample and reagent for quantification
JP3095887B2 (en) Assay method and reagent for the determination of unsaturated iron binding capacity
JPH08242893A (en) Liquid reagent for determination of creatine kinase activity
US20100209953A1 (en) Method of determining carbonic anhydrase i activity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4798600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250