JP4798507B2 - Method for producing single-crystal LiMn2O4 nanowire and high-rate Li-ion battery using single-crystal LiMn2O4 nanowire - Google Patents

Method for producing single-crystal LiMn2O4 nanowire and high-rate Li-ion battery using single-crystal LiMn2O4 nanowire Download PDF

Info

Publication number
JP4798507B2
JP4798507B2 JP2007133271A JP2007133271A JP4798507B2 JP 4798507 B2 JP4798507 B2 JP 4798507B2 JP 2007133271 A JP2007133271 A JP 2007133271A JP 2007133271 A JP2007133271 A JP 2007133271A JP 4798507 B2 JP4798507 B2 JP 4798507B2
Authority
JP
Japan
Prior art keywords
nanowire
rate
limn
nanowires
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007133271A
Other languages
Japanese (ja)
Other versions
JP2008285372A (en
Inventor
豪慎 周
英司 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007133271A priority Critical patent/JP4798507B2/en
Publication of JP2008285372A publication Critical patent/JP2008285372A/en
Application granted granted Critical
Publication of JP4798507B2 publication Critical patent/JP4798507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、単結晶LiMn2O4ナノワイヤーの製造方法及び単結晶LiMn2O4ナノワイヤーを用いたハイレートLiイオン電池に関する。 The present invention relates to a high-rate Li-ion battery using the manufacturing method and a single crystal LiMn 2 O 4 nanowires monocrystalline LiMn 2 O 4 nanowires.

近年、エネルギー、環境問題が盛んに取り上げら、その問題の解決の手段としてクリーンなエネルギーデバイスの開発が必要とされており、交通、物流の手段として重要な自動車を電気エネルギーで稼動させることへの要求は、非常に高まっている。電気自動車用のエネルギー源として、Liイオン電池の有する可能性は高いものがある。何故ならLiイオン電池は、エネルギー密度が高いためである。
しかしながら、Liイオン電池には出力密度が低いという欠点がある。この問題を解決するために、多くの発明者によって電気自動車用のLi貯蔵デバイスの研究が行われてきた。
In recent years, energy and environmental issues have been actively taken up, and it has been necessary to develop clean energy devices as a means of solving these problems. The demand is very high. As an energy source for electric vehicles, there is a high possibility that a Li-ion battery has. This is because Li-ion batteries have a high energy density.
However, Li-ion batteries have the disadvantage of low power density. In order to solve this problem, many inventors have studied Li storage devices for electric vehicles.

Liイオン電池には、正極、負極が必要であるが、本発明では正極材料に注目した。現行のLiCoO2はCoのコストが高いことを考えると今後の自動車用用途(大量に必要)には難しいことが予想される。それに対してMnは安価な材料であることから、普及に関して問題がない。層状構造を持つLiMnO2などのMn化合物が正極材料として研究されているが、電気化学サイクルに対して不安定であるために、充放電を繰り返すことによる容量劣化が問題である。この問題を解決するために、スピネル構造を有する安定なLiMn2O4が研究されている。
また、急速に充電放電ができるハイレートLi貯蔵デバイスの開発のためには、以下の解決すべき、四つの問題がある。
1)活物質材料内でのLiの拡散長を減少させるための粒子径の減少。2)急速な充放電過程における電流密度の減少。3)急速な充放電過程におけるサイクル特性の向上。4)電極材料の電子伝導性の向上の4つの問題である。
つまり、ナノ構造制御を行わなければ、ハイレートデバイスは実現できないのである。
The Li ion battery requires a positive electrode and a negative electrode, but in the present invention, attention was paid to the positive electrode material. Current LiCoO 2 is expected to be difficult for future automotive applications (necessary in large quantities) given the high cost of Co. On the other hand, since Mn is an inexpensive material, there is no problem regarding its spread. Mn compounds such as LiMnO 2 having a layered structure have been studied as positive electrode materials. However, since they are unstable with respect to the electrochemical cycle, capacity degradation due to repeated charge and discharge is a problem. In order to solve this problem, stable LiMn 2 O 4 having a spinel structure has been studied.
In addition, there are four problems to be solved in order to develop a high-rate Li storage device that can rapidly charge and discharge.
1) Reduction of particle size to reduce the diffusion length of Li in the active material. 2) A decrease in current density during a rapid charge / discharge process. 3) Improvement of cycle characteristics in a rapid charge / discharge process. 4) There are four problems of improving the electron conductivity of the electrode material.
In other words, a high-rate device cannot be realized without nanostructure control.

これまで、LiMn2O4の用いた良好なハイレート特性の報告はない。これは、まず一つは、ナノ粒子を作製できたとしても、電極材料として使用する際に、容易に凝集して大きな二次粒子となり、本来のナノ粒子の特性を発揮できないことに起因する。二つ目は、安定な充放電電位を有するためには、高い結晶性を有するLiMn2O4を作製する必要があり、高温での熱処理を行わなければならない。この高温熱処理での粒成長の抑制が困難であり、ハイレートLiイオン電池が必要とするナノ構造を得ることができなかったためと考えられる。
凝集と高温熱処理での粒成長の抑制を考慮すると、ハイレートLiイオン電池電極の作製のためには、ナノ粒子の作製は不適切であり、ナノワイヤーからなる不織布の形態を作製することが適切であると考えられる。なぜならば、ナノワイヤーによって形成された不織布は、すでにワイヤー同士によって固定化されており、ポーラスな構造を持ったまま、凝集することがない。その上、ナノワイヤー同士の接点も、非常に少なく、高温での熱処理によっても、粒成長することなく、ナノワイヤーの構造を維持するからである。したがって、ハイレートLiイオン電池の電極構造に必要なナノ構造を有することができるうえ、単結晶のワイヤー構造であれば、粒界による電気抵抗も軽減され、よりハイレートLiイオン電池電極として最適な構造であることも分かる。
So far, there has been no report of good high rate characteristics using LiMn 2 O 4 . This is because, first of all, even if nanoparticles can be produced, they can be easily agglomerated into large secondary particles when used as an electrode material and cannot exhibit the characteristics of the original nanoparticles. Second, in order to have a stable charge / discharge potential, it is necessary to produce LiMn 2 O 4 having high crystallinity, and heat treatment must be performed at a high temperature. This is probably because it is difficult to suppress the grain growth by this high-temperature heat treatment, and the nanostructure required by the high-rate Li-ion battery could not be obtained.
Considering the suppression of grain growth during agglomeration and high-temperature heat treatment, it is inappropriate to produce nanoparticles for producing high-rate Li-ion battery electrodes. It is believed that there is. This is because the non-woven fabric formed of nanowires is already immobilized by wires and does not aggregate while having a porous structure. In addition, the number of contacts between the nanowires is very small, and the structure of the nanowires is maintained without grain growth even by heat treatment at a high temperature. Therefore, it is possible to have a nanostructure necessary for the electrode structure of a high-rate Li-ion battery, and if it is a single crystal wire structure, the electrical resistance due to the grain boundary is reduced, and the structure is more suitable as a higher-rate Li-ion battery electrode. I understand that there is.

結晶性が良く、ナノ構造を有する電極材料を作製することができれば、ハイレートにおいても、放電曲線がフラットなプラトーを有する電池特性を示すことも期待される。電池のキャパシタに勝る特性の中で、一つは大容量であり、さらには、安定な電圧を供給することができるという点がある。これまでに報告されているハイレートLi貯蔵デバイスは、ほとんどの報告において、フラットなプラトーを示さず、電池ではなくスーパーキャパシタと呼ばれ、放電曲線キャパシタと同様であり、安定な電圧を供給することができなかった。
現在、負極材料として用いられる、グラファイト電極には、グラファイトの粉と共に、カーボンファイバーを混合することにより、電極活物質の充填率の向上と体積緩和を行い、サイクル特性の向上にも寄与している。
本発明者は、マンガン酸ナトリウム(Na0.44MnO2)単結晶ナノワイヤーを用いて、ハイレート電池の電極をすでに提案している(特願2007−067835)。
特願2007−067835
If an electrode material having good crystallinity and a nanostructure can be produced, it is expected that even at a high rate, a battery characteristic having a flat plateau in the discharge curve is expected. Among the characteristics superior to the capacitor of a battery, one has a large capacity, and furthermore, a stable voltage can be supplied. The high-rate Li storage devices reported so far do not show a flat plateau in most reports and are called supercapacitors rather than batteries, and are similar to discharge curve capacitors and can supply a stable voltage. could not.
Currently, graphite electrodes used as negative electrode materials are mixed with carbon powder together with graphite powder to improve the filling rate and volume of the electrode active material, thereby contributing to improved cycle characteristics. .
The present inventor has already proposed a high-rate battery electrode using sodium manganate (Na 0.44 MnO 2 ) single crystal nanowire (Japanese Patent Application No. 2007-067835).
Japanese Patent Application No. 2007-067875

本発明では、立方晶の結晶構造を有する物質の単結晶ナノワイヤーを製造する。単結晶スピネル型LiMn2O4ナノワイヤーを作製し、Liイオン電池正極材料として、低い出力密度から高い出力密度においても、大きな容量を示し、安定したサイクル特性および安定なプラトーを有するLiイオン電池正極材料を提供する。 In the present invention, a single crystal nanowire made of a material having a cubic crystal structure is manufactured. A single-crystal spinel-type LiMn 2 O 4 nanowire is fabricated, and as a Li-ion battery cathode material, it exhibits a large capacity even from low to high power density, and has stable cycling characteristics and a stable plateau. Provide material.

すなわち、本発明は、Mnと1〜20Mの水酸化ナトリウム水溶液を、1〜500気圧で、180〜250℃、6時間〜240時間で反応させ、反応物を水洗後乾燥させ、単結晶マンガン酸ナトリウム(Na0.44MnO)ナノワイヤ−とし、さらに、単結晶マンガン酸ナトリウム(Na0.44MnO)ナノワイヤ−を水洗し、乾燥させ、この単結晶マンガン酸ナトリウムと超過のLiNO/LiClを、400〜500℃において反応させた後、水洗し、乾燥させ、600〜1000℃で熱処理することを特徴とする単結晶LiMナノワイヤ−の製造方法である。
本発明のナノワイヤーの製造方法では、水洗をイオン交換水で行うことができる。
That is, in the present invention, Mn 3 O 4 and 1 to 20 M sodium hydroxide aqueous solution are reacted at 1 to 500 atm, 180 to 250 ° C. for 6 to 240 hours, and the reaction product is washed with water and dried. Crystalline sodium manganate (Na 0.44 MnO 2 ) nanowires, and the single crystal sodium manganate (Na 0.44 MnO 2 ) nanowires were washed with water, dried, and the single crystal sodium manganate and excess LiNO 3 / LiCl is reacted at 400 to 500 ° C., then washed with water, dried, and heat treated at 600 to 1000 ° C. to produce a single crystal LiM 2 O 4 nanowire.
In the method for producing nanowires of the present invention, washing with water can be performed with ion-exchanged water.

本発明の製造方法により得られた単結晶LiMn2O4ナノワイヤーは、製造方法が簡単であるばかりか、この単結晶LiMn2O4ナノワイヤーを用いた電極は、大きな容量を示し、安定したサイクル特性および安定なプラトーを有するLiイオン電池正極材料を提供することができる。 The single crystal LiMn 2 O 4 nanowire obtained by the production method of the present invention is not only simple in production method, but the electrode using this single crystal LiMn 2 O 4 nanowire exhibits a large capacity and is stable. Li-ion battery positive electrode materials having cycle characteristics and stable plateaus can be provided.

本発明で用いるMn3O4は、市販品を用いることが出来る。
本発明で用いる水酸化ナトリウム水溶液は、1〜20Mを用いる必要がある。
1M以下では反応が遅く、20M以上だと品質の良い単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーが得られない。
また、本発明において、反応圧力は、1〜400気圧が適当である。
1気圧以下では反応が遅く、500気圧以上だと品質の良い単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーが得られない。
また、本発明において、反応温度は、180〜250℃が適当である。
180℃以下では反応が遅く、250℃以上だと品質の良い単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーが得られない。
さらに、本発明において、反応時間は、6時間〜240時間が必要である。
本発明において、単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーも、単結晶LiMn2O4ナノワイヤーについても、水洗は純度がよいものなら何でも良いが、水洗をイオン交換水で行うことが望ましい。
A commercial item can be used for Mn 3 O 4 used in the present invention.
The sodium hydroxide aqueous solution used in the present invention needs to use 1 to 20M.
Below 1M, the reaction is slow, and when above 20M, good quality single crystal sodium manganate (Na 0.44 MnO 2 ) nanowires cannot be obtained.
In the present invention, the reaction pressure is suitably 1 to 400 atmospheres.
Below 1 atm, the reaction is slow, and when it is above 500 atm, good quality single crystal sodium manganate (Na 0.44 MnO 2 ) nanowires cannot be obtained.
In the present invention, the reaction temperature is suitably 180 to 250 ° C.
Below 180 ° C, the reaction is slow, and above 250 ° C, good quality single crystal sodium manganate (Na 0.44 MnO 2 ) nanowires cannot be obtained.
Furthermore, in the present invention, the reaction time needs 6 hours to 240 hours.
In the present invention, the single-crystal sodium manganate (Na 0.44 MnO 2 ) nanowire and the single-crystal LiMn 2 O 4 nanowire may be washed with water as long as they have good purity. desirable.

さらに、本発明においては、単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーと超過のLiNO3/LiClを反応させるに際して、350〜600℃の温度が適当であるが、より好ましくは、450℃程度が望ましい。
またさらに、本発明においては、この反応生成物を水洗し、乾燥させ、熱処理するが、その温度は600〜1000℃が好ましい。より好ましくは、800℃程度が良く、品質の良い単結晶LiMn2O4ナノワイヤーが得られる。
さらに、本発明においては、導電助剤として周知のモノを用いることが出来るが、炭素材料が好ましく用いることが出来る。
結着材としては、業界周知の結着材を用いることが出来る。
単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーと導電助剤と結着材とを混合して、成型することにより、任意の形状のハイレート用電極とすることが出来る。
このような電極を用いて、ハイレート用Liイオン電池を作成することが出来る。
本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
Furthermore, in the present invention, when the single crystal sodium manganate (Na 0.44 MnO 2 ) nanowire is reacted with excess LiNO 3 / LiCl, a temperature of 350 to 600 ° C. is suitable, but more preferably 450 ° C. Degree is desirable.
Furthermore, in the present invention, the reaction product is washed with water, dried and heat-treated, and the temperature is preferably 600 to 1000 ° C. More preferably, a single crystal LiMn 2 O 4 nanowire having a good quality at about 800 ° C. is obtained.
Furthermore, in the present invention, well-known materials can be used as the conductive assistant, but a carbon material can be preferably used.
As the binder, a binder known in the industry can be used.
A single-crystal sodium manganate (Na 0.44 MnO 2 ) nanowire, a conductive additive, and a binder are mixed and molded to form a high-rate electrode having an arbitrary shape.
Using such an electrode, a high-rate Li-ion battery can be produced.
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(単結晶LiMn2O4ナノワイヤーの製造)
Mn3O4を5Mの水酸化ナトリウム水溶液に加え、ステンレス製の密閉容器のテフロン(登録商標)製の内筒に入れ、205℃で四日の水熱反応を行った。作製されたマンガン酸ナトリウム(Na0.44MnO2)単結晶ナノワイヤーはイオン交換水で洗浄し、乾燥させた。このマンガン酸ナトリウムと超過のLiNO3/LiClを450℃において1時間反応させた後、イオン交換水で洗浄し、乾燥させた。これを800℃で一時間熱処理することにより、単結晶LiMn2O4ナノワイヤーを得た。
(電極の製造)
作製したLiMn2O4を導電助剤であるカーボンと混合した後に、結着材と混合し、SUSメッシュ集電体にプレスし、これを電極とした。
(Li電池の製造)
対極・参照極には金属Liを、電解液には1MのLiClO4を含むEC/DECの混合溶媒を用いて電気化学的評価を行った。
図1に作製されたLiMn2O4のXRDを示す。
JCPDSパターンと一致するスピネル型のLiMn2O4が作製されたことが分かる。
(Manufacture of single crystal LiMn 2 O 4 nanowires)
Mn 3 O 4 was added to a 5M aqueous sodium hydroxide solution, placed in a Teflon (registered trademark) inner cylinder in a stainless steel sealed container, and subjected to a hydrothermal reaction at 205 ° C. for 4 days. The produced sodium manganate (Na 0.44 MnO 2 ) single crystal nanowire was washed with ion-exchanged water and dried. This sodium manganate and excess LiNO 3 / LiCl were reacted at 450 ° C. for 1 hour, then washed with ion-exchanged water and dried. This was heat-treated at 800 ° C. for 1 hour to obtain single crystal LiMn 2 O 4 nanowires.
(Manufacture of electrodes)
The produced LiMn 2 O 4 was mixed with carbon, which is a conductive additive, and then mixed with a binder, and pressed onto a SUS mesh current collector, which was used as an electrode.
(Manufacture of Li batteries)
Electrochemical evaluation was performed using metallic Li for the counter electrode and reference electrode, and an EC / DEC mixed solvent containing 1M LiClO 4 for the electrolyte.
FIG. 1 shows the XRD of LiMn 2 O 4 produced.
It can be seen that spinel-type LiMn 2 O 4 that matches the JCPDS pattern was produced.

実施例1で得られたLiMn2O4の電子顕微鏡(SEM)写真を図2に示す。図2のから数十-150nm程度の直径を持つナノワイヤー構造であることが分かり、アスペクト比も1000以上と非常に大きい。また、ナノワイヤーによって不織布の形態をとり、凝集が抑制される構造となっている。
実施例1で得られたLiMn2O4の電子顕微鏡(TEM)写真と電子線回折を図3に示す。
図3の電子顕微鏡(TEM)写真と電子線回折から、得られたナノワイヤーは単結晶であることが分かる。
An electron microscope (SEM) photograph of LiMn 2 O 4 obtained in Example 1 is shown in FIG. From FIG. 2, it can be seen that the nanowire structure has a diameter of about several tens to 150 nm, and the aspect ratio is very large as 1000 or more. Moreover, it takes the form of a nonwoven fabric with nanowires, and has a structure in which aggregation is suppressed.
The electron microscope (TEM) photograph and electron beam diffraction of LiMn 2 O 4 obtained in Example 1 are shown in FIG.
From the electron microscope (TEM) photograph and electron beam diffraction of FIG. 3, it can be seen that the obtained nanowire is a single crystal.

実施例1で得られたLiMn2O4、本荘化学製(参考例1)LiMn2O4、および三井金属製(参考例2)5wt%-MgドープLiMn2O4の電気化学特性について、二サイクル目のサイクリックボルタンメトリー(0.1mV/s)と充放電曲線(0.1C,1C=100mA/gとした)を図4(a),(b)に示す。サイクリックボルタンメトリーでは、ナノワイヤーを用いたもののみが、Liの脱挿入の二つの電位において鋭いピークを示し、結晶性の高さが分かる。また、充放電曲線からもナノワイヤーを用いた場合、サイクリックボルタンメトリーの結果と同様に、二種類のLiの脱挿入の電位によって二段のプラトーを示し容量も最も大きい。市販の充放電曲線は、二種類の電位が一定でなく、二段のプラトーを示さず、なだらかな充放電曲線を示している。 Regarding the electrochemical characteristics of LiMn 2 O 4 obtained in Example 1, Honjo Chemical (Reference Example 1) LiMn 2 O 4 , and Mitsui Kinzoku (Reference Example 2) 5 wt% -Mg-doped LiMn 2 O 4 The cyclic voltammetry (0.1 mV / s) and charge / discharge curve (0.1 C, 1 C = 100 mA / g) at the cycle are shown in FIGS. 4 (a) and 4 (b). In cyclic voltammetry, only those using nanowires show sharp peaks at the two potentials of Li deinsertion, indicating the high crystallinity. Also, from the charge / discharge curve, when nanowires are used, as with the cyclic voltammetry results, the two-stage plateau is shown by the potential of the two types of Li insertion / desorption, and the capacity is the largest. The commercially available charging / discharging curve shows a gentle charging / discharging curve in which the two kinds of potentials are not constant and does not show a two-stage plateau.

実施例1で得られた電極を用いて、ハイレート(50C)で充放電を行った際の二回目の充放電曲線を図5に示す。
ナノワイヤーを用いた場合、50Cというハイレートにおいても、容量が100mA/gを超える大きな容量を示し、図4の低レートでの容量を維持しているうえに、ハイレートにおいてもプラトーを持つ充放電曲線を示している。市販の容量は、図4の低レートの容量よりも大きく減少し、充放電曲線もプラトーを示すことができない。図6においても、ナノワイヤーを用いた電極は100C,200Cの非常にハイレート下での放電曲線も、フラットなプラトーを示していることがわかる。
FIG. 5 shows a second charging / discharging curve when charging / discharging at a high rate (50 C) using the electrode obtained in Example 1.
When nanowire is used, even at a high rate of 50C, the capacity exceeds 100mA / g, and the charge / discharge curve has a plateau at the high rate while maintaining the low rate capacity shown in FIG. Is shown. The commercial capacity is greatly reduced from the low rate capacity of FIG. 4, and the charge / discharge curve cannot show a plateau. Also in FIG. 6, it can be seen that the electrode using nanowires shows a flat plateau in the discharge curve under very high rates of 100C and 200C.

実施例1で得られた電極を用いて、ナノワイヤーと市販のサンプルの充放電サイクル特性を図7に示す。いずれも50Cのハイレートにおいて、100サイクルを行った場合でも良好なサイクル特性を示しているが、その容量はナノワイヤーを用いた場合が、最も大きな値を示している。LiMn2O4ナノワイヤーは、ハイレートにおいても容量が大きく、サイクル特性も良好であると分かる。
実施例1で得られたナノワイヤーと市販のサンプルで得られた電極を用いて、および、報告されているLiMn2O4ナノ粒子を用いた報告のCレート(1C=100mA/g)と容量の関係を図8に示す。
ナノワイヤーを用いた場合、レートの増加に伴う容量の減少はわずかであり、大きな容量をハイレートにいても維持していることが分かる。市販のサンプルはレートの増加にしたがって容量は減少していることが分かり、ナノ粒子を用いた報告の値は、容量が急激に減少している。このグラフからもナノワイヤーを用いたハイレートLiイオン電池の良好な特性が分かる。
FIG. 7 shows the charge / discharge cycle characteristics of the nanowire and the commercially available sample using the electrode obtained in Example 1. Both show good cycle characteristics even when 100 cycles are performed at a high rate of 50C, but the capacity is the highest when nanowires are used. It can be seen that LiMn 2 O 4 nanowires have a large capacity and good cycle characteristics even at high rates.
Reported C-rate (1C = 100 mA / g) and capacity using nanowires obtained in Example 1 and electrodes obtained with commercial samples and using reported LiMn 2 O 4 nanoparticles The relationship is shown in FIG.
When nanowires are used, the capacity decrease with increasing rate is slight, and it can be seen that a large capacity is maintained even at a high rate. Commercial samples are found to decrease in capacity as the rate increases, and reported values using nanoparticles show a sharp decrease in capacity. This graph also shows the good characteristics of high-rate Li-ion batteries using nanowires.

本発明の製造方法により得られた単結晶LiMn2O4ナノワイヤーは、製造方法が簡単であるばかりか、この単結晶LiMn2O4ナノワイヤーを用いた電極は、大きな容量を示し、安定したサイクル特性および安定なプラトーを有するLiイオン電池正極材料を提供することができるため、産業上極めて利用価値が高いものである。 The single crystal LiMn 2 O 4 nanowire obtained by the production method of the present invention is not only simple in production method, but the electrode using this single crystal LiMn 2 O 4 nanowire exhibits a large capacity and is stable. Since a Li-ion battery positive electrode material having cycle characteristics and a stable plateau can be provided, the utility value is extremely high in the industry.

実施例1で得られたLiMn2O4のXRDXRD of LiMn 2 O 4 obtained in Example 1 実施例1で得られたLiMn2O4の電子顕微鏡(SEM)写真Electron microscope (SEM) photograph of LiMn 2 O 4 obtained in Example 1 実施例1で得られたLiMn2O4の電子顕微鏡(TEM)写真と電子線回折図Electron microscope (TEM) photograph and electron diffraction pattern of LiMn 2 O 4 obtained in Example 1 実施例1で得られたLiMn2O4、本荘ケミカル製(参考例1)LiMn2O4、三井金属製(参考例2)5wt%-MgドープLiMn2O4で得られた電極の二サイクル目のサイクリックボルタンメトリー(0.1mV/s)図4(a)と充放電曲線(0.1C,1C=100mA/gとした)図4(b)Example 1 LiMn 2 O 4 obtained by, Honjo Chemical Co. (Example 1) LiMn 2 O 4, Mitsui Mining & Smelting manufactured (Reference Example 2) two cycles of the obtained electrode with 5 wt% -Mg-doped LiMn 2 O 4 Eye cyclic voltammetry (0.1mV / s) Fig. 4 (a) and charge / discharge curve (0.1C, 1C = 100mA / g) Fig. 4 (b) 実施例1で得られた電極を用いて、ハイレート(50C)で充放電を行った際の二回目の充放電曲線Second charge / discharge curve when charging / discharging at high rate (50C) using the electrode obtained in Example 1 実施例1で得られた電極を用いて、低出力の1Cから高出力のハイレート(50C(5A/g), 100(10A/g), 200C(20A/g))で充放電を行った際の二回目の放電曲線When the electrode obtained in Example 1 is used for charging / discharging at a low rate of 1 C to a high rate of high output (50 C (5 A / g), 100 (10 A / g), 200 C (20 A / g)) The second discharge curve 実施例1で得られた電極を用いて、ナノワイヤーと市販のサンプルの充放電サイクル特性Using the electrode obtained in Example 1, charge and discharge cycle characteristics of nanowire and a commercially available sample 実施例1で得られたナノワイヤーと市販のサンプルで得られた電極を用いて、および、報告されているLiMn2O4ナノ粒子を用いた報告のCレート(1C=100mA/g)と容量の関係Reported C-rate (1C = 100 mA / g) and capacity using nanowires obtained in Example 1 and electrodes obtained with commercial samples and using reported LiMn 2 O 4 nanoparticles connection of

Claims (2)

Mnと1〜20Mの水酸化ナトリウム水溶液を、1〜500気圧で、180〜250℃、6時間〜240時間で反応させ、反応物を水洗後乾燥させ、単結晶マンガン酸ナトリウム(Na0.44MnO)ナノワイヤ−とし、さらに、単結晶マンガン酸ナトリウム(Na0.44MnO)ナノワイヤ−を水洗し、乾燥させ、この単結晶マンガン酸ナトリウムと超過のLiNO/LiClを、400〜500℃において反応させた後、水洗し、乾燥させ、600〜1000℃で熱処理することを特徴とする単結晶LiMナノワイヤ−の製造方法。 Mn 3 O 4 and a 1-20M sodium hydroxide aqueous solution are reacted at 1-500 atm. At 180-250 ° C. for 6-240 hours, and the reaction product is washed with water and dried to obtain a single crystal sodium manganate (Na 0.44 MnO 2 ) nanowires, and further, the single crystal sodium manganate (Na 0.44 MnO 2 ) nanowires were washed with water and dried, and the single crystal sodium manganate and excess LiNO 3 / LiCl were converted into 400 A method for producing a single crystal LiM 2 O 4 nanowire, characterized by reacting at ˜500 ° C., washing with water, drying, and heat-treating at 600 ° C. to 1000 ° C. 水洗をイオン交換水で行う請求項1に記載したLiMnナノワイヤ−の製造方法。 The method for producing LiMn 2 O 4 nanowires according to claim 1, wherein washing with water is performed with ion-exchanged water.
JP2007133271A 2007-05-18 2007-05-18 Method for producing single-crystal LiMn2O4 nanowire and high-rate Li-ion battery using single-crystal LiMn2O4 nanowire Expired - Fee Related JP4798507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133271A JP4798507B2 (en) 2007-05-18 2007-05-18 Method for producing single-crystal LiMn2O4 nanowire and high-rate Li-ion battery using single-crystal LiMn2O4 nanowire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133271A JP4798507B2 (en) 2007-05-18 2007-05-18 Method for producing single-crystal LiMn2O4 nanowire and high-rate Li-ion battery using single-crystal LiMn2O4 nanowire

Publications (2)

Publication Number Publication Date
JP2008285372A JP2008285372A (en) 2008-11-27
JP4798507B2 true JP4798507B2 (en) 2011-10-19

Family

ID=40145470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133271A Expired - Fee Related JP4798507B2 (en) 2007-05-18 2007-05-18 Method for producing single-crystal LiMn2O4 nanowire and high-rate Li-ion battery using single-crystal LiMn2O4 nanowire

Country Status (1)

Country Link
JP (1) JP4798507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317053A (en) * 2017-07-25 2017-11-03 湖南电将军新能源有限公司 The method for preparing battery as positive electrode using 1-dimention nano line style LiMn2O4

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030697A1 (en) 2009-09-11 2011-03-17 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
JP5630746B2 (en) * 2010-03-10 2014-11-26 国立大学法人九州大学 Manganese oxide nanowire-covered structure and method for producing the same
JP5917027B2 (en) 2010-06-30 2016-05-11 株式会社半導体エネルギー研究所 Method for producing electrode material
KR101395361B1 (en) * 2011-05-02 2014-05-14 삼성코닝정밀소재 주식회사 Method of producing Manganese Oxide nano-wire
WO2012159001A2 (en) * 2011-05-18 2012-11-22 Battelle Memorial Institute Nanomaterials for sodium-ion batteries
KR101411226B1 (en) * 2012-04-03 2014-06-23 삼성정밀화학 주식회사 Lithium manganese oxide positive active material for lithium ion secondary battery and lithium ion secondary battery including the same
CN106684365A (en) * 2017-01-23 2017-05-17 陕西科技大学 Preparation of C-coated LiMn2O4 nanowire with high-temperature solid-state method
CN110767898B (en) * 2019-09-30 2022-06-07 合肥国轩高科动力能源有限公司 Manganese-based nanowire bundle and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163700A (en) * 1999-12-08 2001-06-19 Tohoku Techno Arch Co Ltd Lithium-based composite metal oxide and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317053A (en) * 2017-07-25 2017-11-03 湖南电将军新能源有限公司 The method for preparing battery as positive electrode using 1-dimention nano line style LiMn2O4

Also Published As

Publication number Publication date
JP2008285372A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
Tian et al. High-rate and cycling-stable nickel-rich cathode materials with enhanced Li+ diffusion pathway
JP4798507B2 (en) Method for producing single-crystal LiMn2O4 nanowire and high-rate Li-ion battery using single-crystal LiMn2O4 nanowire
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
Yuvaraj et al. Effect of carbon coating on the electrochemical properties of Co 2 SnO 4 for negative electrodes in Li-ion batteries
CN111418094A (en) Manganese spinel doped with magnesium, cathode material comprising same, method for preparing same and lithium ion battery comprising such spinel
WO2010150857A1 (en) Composite nano porous electrode material, process for production thereof, and lithium ion secondary battery
KR101550956B1 (en) Metal-doped cathode active material
Yan et al. Effect of precipitators on the morphologies and electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 via rapid nucleation and post-solvothermal method
WO2019125307A1 (en) Core-shell nanoparticles and their use in electrochemical cells
Wu et al. Hydrothermal synthesis of Li 4 Ti 5 O 12 nanosheets as anode materials for lithium ion batteries
CN110336002A (en) Nitrogen-doped carbon-coated zinc oxide composite nano material for lithium ion battery
CN110931741A (en) Tin sulfide quantum dot loaded titanium carbide composite nano material and preparation method thereof
Hu et al. Hierarchical NiO nanobelt film array as an anode for lithium-ion batteries with enhanced electrochemical performance
Fang et al. Establishment of PPy-derived carbon encapsulated LiMn2O4 film electrode and its performance for efficient Li+ electrosorption
KR20090102138A (en) Olivine type positive active material precursor for lithium battery, olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
Wang et al. Hierarchical nanostructured FeS 2 hollow microspheres for lithium-ion batteries
Ke et al. Unveiling the reaction mechanism of an Sb 2 S 3–Co 9 S 8/NC anode for high-performance lithium-ion batteries
CN108735979B (en) Preparation method of lithium ion battery cathode
Ran et al. Grinding aid-assisted preparation of high-performance carbon-LiMnPO4
KR20190007123A (en) Preparation method of conductive metal oxide nanoparticle with large surface area via simple synthetic procedure
KR102512034B1 (en) Manufacturing method of high performance lithium titanate anode material for application in lithium ion battery
KR102522173B1 (en) Anode active material coated with nitrogen-doped carbon for sodium ion secondary battery and method of preparing the same
Zhou et al. Hierarchical LiNi 0.5 Mn 1.5 O 4 micro-rods with enhanced rate performance for lithium-ion batteries
CN113410459A (en) Embedded MoSxThree-dimensional ordered macroporous graphene carbon material of nanosheet, preparation and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees