JP4797706B2 - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP4797706B2
JP4797706B2 JP2006057828A JP2006057828A JP4797706B2 JP 4797706 B2 JP4797706 B2 JP 4797706B2 JP 2006057828 A JP2006057828 A JP 2006057828A JP 2006057828 A JP2006057828 A JP 2006057828A JP 4797706 B2 JP4797706 B2 JP 4797706B2
Authority
JP
Japan
Prior art keywords
light
polarization
order diffracted
diffracted light
head device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006057828A
Other languages
Japanese (ja)
Other versions
JP2007234194A (en
Inventor
浩一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006057828A priority Critical patent/JP4797706B2/en
Publication of JP2007234194A publication Critical patent/JP2007234194A/en
Application granted granted Critical
Publication of JP4797706B2 publication Critical patent/JP4797706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

本発明は、例えばCD、DVD等の光記録媒体(以下「光ディスク」という。)に対して記録再生を行うときに回折格子を切り替える必要のある光ヘッド装置に関する。   The present invention relates to an optical head device in which a diffraction grating needs to be switched when recording / reproducing is performed on an optical recording medium (hereinafter referred to as an “optical disk”) such as a CD and a DVD.

従来の光ディスクには、情報記録層が単層の単層光ディスクと、複数層ある複数層光ディスクとがある。例えば2層の記録層を有する2層光ディスクにおいて情報の記録再生を行うときに、トラッキング方式として、光源からの光を回折素子で0次回折光及び±1次回折光の3つのビームに分離し、±1次回折光を用いて3ビーム法や作動プッシュプル(DPP)法が採用される。このとき、分離された光の光量比−1次:0次:+1次は、例えば1:10以上:1、すなわち、0次回折光の光量を±1次回折光の光量よりも大きくすることが、光利用効率的に有利である。   Conventional optical disks include a single-layer optical disk having a single information recording layer and a multi-layer optical disk having a plurality of layers. For example, when recording and reproducing information on a two-layer optical disc having two recording layers, as a tracking method, light from a light source is separated into three beams of 0th-order diffracted light and ± 1st-order diffracted light by a diffraction element, and ± A three-beam method or a working push-pull (DPP) method is adopted using the first-order diffracted light. At this time, the light quantity ratio of the separated light—first order: zero order: +1 order is, for example, 1:10 or more: 1, that is, the light quantity of the 0th-order diffracted light may be larger than the light quantity of ± 1st-order diffracted light. It is advantageous in terms of light utilization efficiency.

また、記録再生時において、光検出器に戻る光は、対物レンズの焦点に位置した層のみならず、隣接した層からも影響を受ける。光ディスクの規格で定める層間間隔は、光ディスクの情報に層間クロストークが影響を与えない間隔で決定されるので、光ピックアップでは、このような層間クロストークがサーボ信号に影響を与えないような構成にする必要がある。なお、本明細書で用いる「記録再生」という文言は、光ディスクに対する記録、再生、記録及び再生を総称するものである。   In recording and reproduction, the light returning to the photodetector is affected not only by the layer positioned at the focal point of the objective lens but also by the adjacent layer. Since the interlayer spacing determined by the optical disc standard is determined by an interval at which interlayer crosstalk does not affect the information on the optical disc, the optical pickup is configured so that such interlayer crosstalk does not affect the servo signal. There is a need to. The term “recording / playback” used in this specification is a general term for recording, playback, recording, and playback on an optical disc.

従来の光ヘッド装置における2層光ディスク再生時の光路の模式図を図7に示す。図7に示すように、2層光ディスクの光入射面から近い層をL1層、遠い層をL2層とすると、L1層の再生時に光検出器に受光される光L11に対し、L2層で反射された光L12は、その焦点が光L11より前方に位置する。一方、L2層の再生時に光検出器に受光される光L22に対し、L1層で反射された光L21は、その焦点が光L22より後方に位置する。   FIG. 7 shows a schematic diagram of an optical path when reproducing a two-layer optical disk in a conventional optical head device. As shown in FIG. 7, when the layer closer to the light incident surface of the two-layer optical disc is the L1 layer and the far layer is the L2 layer, the L2 layer reflects the light L11 received by the photodetector during reproduction of the L1 layer. The focused light L12 is positioned in front of the light L11. On the other hand, the light L21 reflected by the L1 layer is positioned behind the light L22 with respect to the light L22 received by the photodetector during reproduction of the L2 layer.

そのため、L1層の再生時においてL1層からの反射光は、回折素子で回折された0次回折光、±1次回折光がそれぞれ光検出器に集光されるが、この光に、L2層より反射された光が、光検出器上で焦点を結ばないため、ビーム径が大きく光密度は低いものの、迷光となる。   Therefore, when the L1 layer is reproduced, the reflected light from the L1 layer is focused on the photodetector by the 0th order diffracted light and the ± 1st order diffracted light diffracted by the diffraction element, but this light is reflected from the L2 layer. Since the emitted light is not focused on the photodetector, it becomes stray light although the beam diameter is large and the light density is low.

この迷光は、L1層からの0次回折光(メインビーム)に対しては、光検出器上では十分に低いが、もともとメインビームに比べて光量が1/10以下の±1次回折光(サブビーム)に対しては無視できない光量となる。したがって、従来の光ヘッド装置では、この迷光によりトラッキング性能が劣化するという問題が生じていた。   This stray light is sufficiently low on the photodetector with respect to the 0th-order diffracted light (main beam) from the L1 layer, but originally ± 1st-order diffracted light (sub-beam) whose light quantity is 1/10 or less than the main beam. The amount of light is not negligible. Therefore, the conventional optical head device has a problem that the tracking performance deteriorates due to the stray light.

この対策として、例えば特許文献1に示すような光ピックアップが提案されている。これは、図8に示すようなホログラム素子を光束中に配置し、光ディスクからの反射光の一部を回折し、サブビームの光検出器に照射される迷光を取り除くものである。   As a countermeasure, for example, an optical pickup as shown in Patent Document 1 has been proposed. In this method, a hologram element as shown in FIG. 8 is arranged in a light beam, and a part of reflected light from the optical disk is diffracted to remove stray light irradiated to the sub-beam photodetector.

特開2005−203090号公報JP 2005-203090 A

しかしながら、特許文献1に示されたものでは、L2層からの迷光のみならず、本来情報を読み出したいL1層からの光もホログラム素子で回折することになり、光検出器に入る信号光強度も低下してしまうという問題があった。   However, in the case shown in Patent Document 1, not only the stray light from the L2 layer but also the light from the L1 layer from which information is originally read is diffracted by the hologram element, and the signal light intensity entering the photodetector is also increased. There was a problem of being lowered.

本発明は、従来の問題を解決するためになされたものであり、光検出器への信号強度を低下させることなく複層光ディスクを記録再生することができる光ヘッド装置を提供することを目的とする。   The present invention has been made to solve the conventional problems, and an object of the present invention is to provide an optical head device capable of recording / reproducing a multi-layered optical disk without reducing the signal intensity to the photodetector. To do.

本発明の光ヘッド装置は、光源と、透過型の回折素子と、前記回折素子からの出射光を光記録媒体上に集光させる対物レンズと、前記対物レンズによって集光され前記光記録媒体により反射された光を検出する光検出器とを備え、前記光記録媒体に対して情報の記録再生を行う光ヘッド装置において、前記回折素子からの出射光は、0次回折光、+1次回折光及び−1次回折光の3ビームに分離され、前記0次回折光と他の回折光とでは偏光状態が異なり、前記光検出器は、前記各3ビームが前記光記録媒体に集光されて反射された後に前記各3ビームのビーム強度を、前記光検出器の受光面に配置された複数の受光エリアで個別に検出する構成を有している。 An optical head device according to the present invention includes a light source, a transmissive diffraction element, an objective lens that condenses light emitted from the diffraction element on an optical recording medium, and is collected by the objective lens and is collected by the optical recording medium. And an optical head device that detects and reflects reflected light, and records and reproduces information on and from the optical recording medium. The light emitted from the diffraction element includes zero-order diffracted light, + 1st-order diffracted light, and − The first-order diffracted light is separated into three beams, and the polarization state is different between the zero-order diffracted light and the other diffracted light. After the three beams are condensed and reflected on the optical recording medium, the photodetector The beam intensity of each of the three beams is individually detected by a plurality of light receiving areas arranged on the light receiving surface of the photodetector .

この構成により、メインビームである0次回折光とサブビームである±1次回折光の偏光状態が異なることで、光ディスクの読み出したい記録層から反射光のサブビームの偏光状態と、迷光となる記録層からの強度の大きなメインビームの偏光状態とが異なることで、この2つの光の干渉性が低減される。その結果、複層ディスクの層間隔や波長が変化して2つの光の干渉条件が変化することにより生じるトラッキング信号の強度変化によるトラッキング性能の低下を抑制することができる。   With this configuration, the polarization state of the 0th-order diffracted light that is the main beam and the ± 1st-order diffracted light that is the sub-beam are different, so that the polarization state of the sub-beam of the reflected light from the recording layer to be read from the optical disk and the stray light from the recording layer The difference in polarization state of the main beam having a high intensity reduces the coherence between the two lights. As a result, it is possible to suppress a decrease in tracking performance due to a change in the intensity of the tracking signal caused by a change in the interference condition between the two lights due to a change in the layer interval or wavelength of the multilayer disc.

また、本発明の光ヘッド装置は、前記回折素子が、入射する光の偏光方向によって回折効率の異なる偏光回折格子で構成されている。   In the optical head device of the present invention, the diffraction element is composed of a polarization diffraction grating having different diffraction efficiency depending on the polarization direction of incident light.

この構成により、回折素子の回折効率が偏光状態によって異なることにより0次回折光と1次回折光の偏光状態を異なるようにすることができる。   With this configuration, it is possible to make the polarization states of the 0th-order diffracted light and the 1st-order diffracted light different because the diffraction efficiency of the diffractive element varies depending on the polarization state.

さらに、本発明の光ヘッド装置は、前記偏光回折格子に入射する光の偏光状態が、前記回折効率の高い偏光方向の成分と、前記回折効率の低い偏光方向の成分との両方を有している構成である。   Furthermore, in the optical head device of the invention, the polarization state of the light incident on the polarization diffraction grating has both a polarization direction component having a high diffraction efficiency and a polarization direction component having a low diffraction efficiency. It is the composition which is.

この構成により、偏光回折格子に入射する偏光成分のうち偏光回折格子の回折効率の高い偏光成分を1次回折光とし、回折効率の低い偏光成分を0次回折光とすることができ、0次回折光と1次回折光の偏光状態を明確に分離でき好ましい。   With this configuration, the polarization component having a high diffraction efficiency of the polarization diffraction grating among the polarization components incident on the polarization diffraction grating can be set as the first-order diffracted light, and the polarization component having a low diffraction efficiency can be set as the 0th-order diffracted light. It is preferable because the polarization state of the first-order diffracted light can be clearly separated.

さらに、本発明の光ヘッド装置は、前記回折素子と前記光記録媒体との間の光路中に、前記0次回折光以外の回折光に対して作用し、前記0次回折光以外の回折光の波面形状を変化させる偏光位相差発生素子を配置する構成を有している。   Furthermore, the optical head device of the present invention acts on the diffracted light other than the 0th-order diffracted light in the optical path between the diffractive element and the optical recording medium, and the wavefront of the diffracted light other than the 0th-order diffracted light. A polarization phase difference generating element whose shape is changed is arranged.

この構成により、次のような効果が得られる。一般に、対物レンズに対してメインビームは垂直に入射されるが、サブビームは斜めに入射される。そのため、対物レンズの軸外の非点収差がサブビームのみに発生してしまい、トラッキング性能を劣化させる。そこで、回折素子と光記録媒体との間の光路中に偏光位相差発生素子を配置することにより、1次回折光などの回折光のみ位相差の面内分布を発生させ、サブビームのみ波面形状を変化させることができる。つまり、回折光のみ非点収差を発生させることで、対物レンズの軸外光の非点収差を補正することができ、トラッキング性能が向上するので好ましい。   With this configuration, the following effects can be obtained. In general, the main beam is incident perpendicular to the objective lens, but the sub beam is incident obliquely. As a result, off-axis astigmatism of the objective lens occurs only in the sub-beam, and the tracking performance is degraded. Therefore, by arranging a polarization phase difference generating element in the optical path between the diffractive element and the optical recording medium, the in-plane distribution of the phase difference is generated only for the diffracted light such as the first-order diffracted light, and the wavefront shape of only the sub beam is changed. Can be made. In other words, it is preferable to generate astigmatism only in the diffracted light because the astigmatism of off-axis light of the objective lens can be corrected and the tracking performance is improved.

本発明は、光検出器への信号強度を低下させることなく複層光ディスクを記録再生することができるという効果を有する光ヘッド装置を提供することができるものである。   The present invention can provide an optical head device having an effect that a multilayer optical disk can be recorded and reproduced without reducing the signal intensity to the photodetector.

以下、本発明の一実施の形態について図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施の形態に係る光ヘッド装置100の概念的な構成を示す図である。図1において、光ヘッド装置100は、所定の波長の光束を出射する光源1と、光源1が出射した光束の一部を回折させてメインビームと2つのサブビームとで偏光状態が異なる3つのビームにする回折素子2と、入射された光束を略平行光に変換するコリメータレンズ3と、コリメータレンズ3から出射した上記3つのビームを透過させると共に、光ディスク6の情報記録面6aから反射して戻ってくる3つのビームの戻り光を反射して光検出器8に導くビームスプリッタ4と、上記3つのビームを光ディスク6の情報記録面6aに集光する対物レンズ5と、上記3つのビームの戻り光を光検出器8に集光するコリメータレンズ7と、上記3つのビームの戻り光を検出する光検出器8とを備える。   FIG. 1 is a diagram showing a conceptual configuration of an optical head device 100 according to the present embodiment. In FIG. 1, an optical head device 100 includes a light source 1 that emits a light beam having a predetermined wavelength, and three beams having different polarization states between a main beam and two sub beams by diffracting a part of the light beam emitted by the light source 1. The diffractive element 2, the collimator lens 3 that converts the incident light beam into substantially parallel light, and the three beams emitted from the collimator lens 3 are transmitted and reflected back from the information recording surface 6 a of the optical disk 6. A beam splitter 4 that reflects the returned light of the three beams and guides it to the photodetector 8, an objective lens 5 that focuses the three beams on the information recording surface 6a of the optical disc 6, and a return of the three beams A collimator lens 7 that condenses the light on the photodetector 8 and a photodetector 8 that detects the return light of the three beams are provided.

光源1が出射した光束は、その一部が回折素子2で回折してメインビーム及び2つのサブビームからなる3つのビームになり、コリメータレンズ3、ビームスプリッタ4、対物レンズ5の順に透過し、光ディスク6の情報記録面6aに集光される。光ディスク6の情報記録面6aに集光された上記の3つのビームは、それぞれ、情報記録面6aで反射され、対物レンズ5を透過してビームスプリッタ4で反射され、コリメータレンズ7から光検出器8に入射される。   A part of the light beam emitted from the light source 1 is diffracted by the diffraction element 2 into three beams including a main beam and two sub beams, which are transmitted through the collimator lens 3, the beam splitter 4, and the objective lens 5 in this order. 6 is condensed on the information recording surface 6a. The above three beams condensed on the information recording surface 6a of the optical disc 6 are reflected by the information recording surface 6a, transmitted through the objective lens 5, and reflected by the beam splitter 4, and are detected from the collimator lens 7 by a photodetector. 8 is incident.

ここで、光検出器8の出力信号は、光ディスク6の情報記録面6aに記録された情報の、読み取り信号、フォーカスエラー信号及びトラッキングエラー信号の生成に用いられる。なお、光ヘッド装置100は、上記のフォーカスエラー信号に基づいてレンズを光軸方向に制御する機構(フォーカスサーボ)と、上記のトラッキングエラー信号に基づいてレンズを光軸にほぼ垂直な方向に制御する機構(トラッキングサーボ)とを備えるが、図1に示す構成図では省略されている。   Here, the output signal of the photodetector 8 is used to generate a read signal, a focus error signal, and a tracking error signal of information recorded on the information recording surface 6a of the optical disc 6. The optical head device 100 controls the lens in the optical axis direction based on the focus error signal (focus servo), and controls the lens in a direction substantially perpendicular to the optical axis based on the tracking error signal. 1 is omitted in the configuration diagram shown in FIG.

光源1は、例えば、半導体レーザで構成され、波長650nm近傍の波長かつ直線偏光の発散光束を出射するようになっている。なお、上記では光源1が波長650nm近傍の波長の光束を出射するように構成されているものとしたが、本発明は、光源1が波長650nm近傍の波長の光束を出射する構成に必ずしも限定されるものではなく、例えば400nm近傍の波長の光束、780nm近傍の波長の光束等を出射する構成でも、その他の波長の光束を出射する構成でもよい。ここで、400nm近傍、波長650nm近傍及び780nm近傍の波長とは、それぞれ、385nm〜430nm、630nm〜670nm及び760nm〜800nmの範囲にある波長を意味する。   The light source 1 is composed of, for example, a semiconductor laser, and emits a divergent light beam having a wavelength in the vicinity of 650 nm and linearly polarized light. In the above description, the light source 1 is configured to emit a light beam having a wavelength near 650 nm. However, the present invention is not necessarily limited to a configuration in which the light source 1 emits a light beam having a wavelength near 650 nm. For example, it may be configured to emit a light beam having a wavelength near 400 nm, a light beam having a wavelength near 780 nm, or the like, or may be configured to emit a light beam having another wavelength. Here, the wavelength near 400 nm, the wavelength near 650 nm, and the wavelength near 780 nm mean wavelengths in the range of 385 nm to 430 nm, 630 nm to 670 nm, and 760 nm to 800 nm, respectively.

なお、光源1が2つ又は3つの波長の光束を出射する構成とし、同一パッケージ内の同一基板上に2個又は3個の半導体レーザチップがマウントされた、所謂ハイブリッド型の2波長レーザ光源又は3波長レーザ光源をなすように、光源1が構成されるのでもよい。また、光源1は、互いに異なる波長を発光する2個の発光点を持ったモノリシック型の2波長レーザ光源(例えば、特開2004−39898号公報参照。)又は3個の発光点を持ったモノリシック型の3波長レーザ光源によって構成されるのでもよい。   A so-called hybrid two-wavelength laser light source in which the light source 1 emits light beams having two or three wavelengths and two or three semiconductor laser chips are mounted on the same substrate in the same package. The light source 1 may be configured to form a three-wavelength laser light source. The light source 1 is a monolithic two-wavelength laser light source (for example, refer to Japanese Patent Application Laid-Open No. 2004-39898) having two light emitting points that emit light having different wavelengths, or a monolithic having three light emitting points. A three-wavelength laser light source may be used.

図2は、本実施の形態に係る光ヘッド装置100が備える回折素子2の構成例としての偏光回折格子を模式的に示す断面図である。   FIG. 2 is a cross-sectional view schematically showing a polarization diffraction grating as a configuration example of the diffraction element 2 provided in the optical head device 100 according to the present embodiment.

回折素子2に入射した光は回折され、0次回折光、+1次回折光及び−1次回折光の3つのビームに分離され、その偏光状態が例えば図2に示すように、0次回折光25が紙面に平行方向で、±1次回折光24a及び24bが紙面に垂直な偏光状態とする。   The light incident on the diffractive element 2 is diffracted and separated into three beams of 0th order diffracted light, + 1st order diffracted light, and −1st order diffracted light. The polarization state of the light is, for example, as shown in FIG. In the parallel direction, the ± first-order diffracted lights 24a and 24b are in a polarization state perpendicular to the paper surface.

図2に示された回折素子2は、例えば、一対の透明基板21と、透明基板21上に格子状に設けられた複屈折性媒質22と、一対の透明基板21に挟持される領域に充填された等方性媒質23とを備える。   The diffractive element 2 shown in FIG. 2 fills a region sandwiched between a pair of transparent substrates 21, a birefringent medium 22 provided in a lattice shape on the transparent substrate 21, and the pair of transparent substrates 21, for example. The isotropic medium 23 is provided.

透明基板21は、ガラスやプラスティック等の複屈折性の無い透明な基板で構成されるのが好ましい。複屈折性媒質22としては、例えば液晶を重合した高分子液晶が好ましいが、その他の単結晶などで構成してもよい。等方性媒質23は、複屈折の無い樹脂で構成されるのが好ましいが、例えばガラスで構成してもよい。   The transparent substrate 21 is preferably composed of a transparent substrate having no birefringence, such as glass or plastic. The birefringent medium 22 is preferably a polymer liquid crystal obtained by polymerizing liquid crystal, for example, but may be composed of other single crystals. The isotropic medium 23 is preferably made of a resin having no birefringence, but may be made of glass, for example.

この構成において、紙面に平行な偏光の光に対しての複屈折性媒質22の屈折率と、等方性媒質23の屈折率とを等しくし、紙面に垂直な偏光方向の屈折率が複屈折性媒質22と等方性媒質23とでΔnだけ異なるようにする。ここで、複屈折性媒質22及び等方性媒質23からなる凹凸格子(以下「凹凸格子部」という。)の深さ(高さ)dとΔnとの積Δn・dが、用いる波長λに対して概ね1/2になるように設定することが好ましい。   In this configuration, the refractive index of the birefringent medium 22 is equal to the refractive index of the isotropic medium 23 for light polarized in parallel to the paper surface, and the refractive index in the polarization direction perpendicular to the paper surface is birefringent. The difference between the neutral medium 22 and the isotropic medium 23 is different by Δn. Here, the product Δn · d of the depth (height) d and Δn of the concavo-convex grating (hereinafter referred to as “concavo-convex grating portion”) composed of the birefringent medium 22 and the isotropic medium 23 is the wavelength λ used. On the other hand, it is preferable to set it to be approximately ½.

前述のように構成された回折素子2において、紙面に平行な偏光成分の光に対しては、凹凸格子部の屈折率は等しいので、光はほとんど回折されずに透過し、0次回折光となる。これに対して紙面に垂直な偏光成分の光は、凹凸格子部でλ/2の位相回折格子の影響でほとんどの光が回折する。したがって、適当な偏光状態の光を入射することで、0次回折光及び±1次回折光の偏光状態を変えることができる。   In the diffraction element 2 configured as described above, the refractive index of the concavo-convex grating portion is equal to the light of the polarization component parallel to the paper surface, so that the light is transmitted almost without being diffracted and becomes zero-order diffracted light. . On the other hand, most of the light of the polarization component perpendicular to the paper surface is diffracted by the influence of the λ / 2 phase diffraction grating at the concave / convex grating portion. Therefore, the polarization states of the 0th-order diffracted light and the ± 1st-order diffracted light can be changed by entering light having an appropriate polarization state.

このように、紙面に垂直な偏光方向と平行な偏光の光では、偏光回折素子の回折効率が異なる。偏光回折素子に入射する直線偏光の偏光方向を変えたとき、回折効率が最も高い偏光方向の光に対する、0次回折効率(透過率)及び1次回折効率をそれぞれη0H、η1Hとし、最も回折効率が低い偏光方向の光に対する0次回折効率(透過率)及び1次回折効率をそれぞれη0L、η1Lとしたとき、回折効率が高い、紙面に垂直な偏光の光に対して凹凸格子部でλ/2の位相差を持つ回折格子の±1次の回折効率η1Hは概ね40%ずつとなり、0次回折効率η0Hは概ね0%となる。一方、回折効率の低い、紙面に平行な偏光に対しては、凹凸格子部で位相差が概ね0となり、回折格子の±1次回折効率η1Lは概ね0%、0次回折効率(透過率)η0Lは概ね100%となる。つまり、計算上はη1H/η1L〜∞、η0L/η0H〜∞となり、偏光回折素子の回折効率の偏光依存性を大きくすることができる。この例は、η1H/η1L及びη0L/η0Hをそれぞれ最も大きくすることができる例の一つである。 As described above, the polarization diffraction element has different diffraction efficiencies in the case of polarized light parallel to the polarization direction perpendicular to the paper surface. When the polarization direction of linearly polarized light incident on the polarization diffraction element is changed, the 0th-order diffraction efficiency (transmittance) and the first-order diffraction efficiency for the light in the polarization direction with the highest diffraction efficiency are η 0H and η 1H , respectively. A concavo-convex grating for light of high polarization efficiency and perpendicular to the paper surface when the zero-order diffraction efficiency (transmittance) and the first-order diffraction efficiency for light in the polarization direction with low diffraction efficiency are η 0L and η 1L , respectively. The first order diffraction efficiency η 1H of the diffraction grating having a phase difference of λ / 2 at the part is approximately 40%, and the 0th order diffraction efficiency η 0H is approximately 0%. On the other hand, for polarized light having a low diffraction efficiency and parallel to the paper surface, the phase difference is approximately 0 at the concave and convex grating portion, and the ± 1st-order diffraction efficiency η 1L of the diffraction grating is approximately 0%, and the 0th-order diffraction efficiency (transmittance) ) Η 0L is approximately 100%. That is, in calculation, η 1H / η 1L to ∞ and η 0L / η 0H to ∞, and the polarization dependency of the diffraction efficiency of the polarization diffraction element can be increased. This example is one example in which η 1H / η 1L and η 0L / η 0H can be maximized .

また、図2に例示した回折素子2における回折効率は、紙面に垂直な偏光成分の±1次回折効率が概ね40%となるため、入射する光の偏光状態を紙面に平行な成分が80%、垂直な成分が20%となるような偏光とすると、紙面に平行な偏光成分の光は、ほとんど全て0次回折光となり0次回折光の光量が80%となる。一方、紙面に垂直な偏光成分の光は、1次回折効率40%で回折されるため、±1次回折光の光量はそれぞれ0.4×0.2=0.08(8%)となる。したがって、0次回折光と1次回折光との比が80%/8%=10の回折効率比の回折素子2を実現することができる。   In addition, the diffraction efficiency of the diffraction element 2 illustrated in FIG. 2 is that the ± 1st-order diffraction efficiency of the polarization component perpendicular to the paper surface is approximately 40%, so that the polarization state of incident light is 80% of the component parallel to the paper surface. If the polarization is such that the vertical component is 20%, almost all the light of the polarization component parallel to the paper surface becomes 0th order diffracted light, and the amount of 0th order diffracted light becomes 80%. On the other hand, since the light of the polarization component perpendicular to the paper surface is diffracted with a first-order diffraction efficiency of 40%, the light amount of ± first-order diffracted light is 0.4 × 0.2 = 0.08 (8%). Therefore, the diffraction element 2 having a diffraction efficiency ratio of 80% / 8% = 10 between the 0th-order diffracted light and the 1st-order diffracted light can be realized.

上記のような入射偏光を実現する方法として、例えば直線偏光の偏光方向を紙面に垂直でも平行でもない斜め偏光(本例では紙面を基準として垂直方向に約27度傾いた偏光)を入射してもよいし、楕円偏光を入射することによっても実現することができる。   As a method for realizing the above-described incident polarized light, for example, obliquely polarized light whose polarization direction is not perpendicular to or parallel to the paper surface (in this example, polarized light tilted by about 27 degrees perpendicular to the paper surface) is incident. Alternatively, it can be realized by entering elliptically polarized light.

例えば、斜めの直線偏光を実現する方法としては、光源1である半導体レーザの偏光方向が所定の角度になるよう半導体レーザを回転して設置する方法がある。このとき、半導体レーザの偏光方向の個体ばらつきや、温度変化により偏光方向の変化が生じることがある。入射光の偏光方向が所定の角度からずれると、回折効率比が変化してしまう場合がある。この対策として、光源1と回折素子2との間の光路中に例えば偏光ビームスプリッタを所定の角度に配置することが好ましい。偏光ビームスプリッタとしては、偏光方向により透過率の異なる偏光ビームスプリッタプリズムや、偏光方向により透過率の異なる吸収型偏光子を用いることができる。なお、前述の偏光ビームスプリッタプリズムを用いる場合は、素子サイズが比較的大きいことと、プリズム外形及び透過偏光方向を自由に選択することができないため、回折型偏光ビームスプリッタを用いることが好ましい。   For example, as a method for realizing oblique linearly polarized light, there is a method in which the semiconductor laser is rotated and installed so that the polarization direction of the semiconductor laser as the light source 1 becomes a predetermined angle. At this time, the polarization direction may change due to individual variations in the polarization direction of the semiconductor laser or temperature changes. When the polarization direction of incident light deviates from a predetermined angle, the diffraction efficiency ratio may change. As a countermeasure, it is preferable to arrange, for example, a polarizing beam splitter at a predetermined angle in the optical path between the light source 1 and the diffraction element 2. As the polarization beam splitter, a polarization beam splitter prism having different transmittance depending on the polarization direction, or an absorption polarizer having different transmittance depending on the polarization direction can be used. In the case of using the above-described polarizing beam splitter prism, it is preferable to use a diffractive polarizing beam splitter because the element size is relatively large and the prism outer shape and the transmission polarization direction cannot be freely selected.

図3には、回折型偏光ビームスプリッタと回折格子とを一体にした回折素子2の構成例を示す。このように一体とすることで、別個で構成する場合よりも部品点数を減らすことができ、また、回折型偏光ビームスプリッタの透過する偏光方向と、回折格子に入射させたい光の偏光方向とを容易に高精度で合わせることができるため、回折効率比の精度を高めることができるので好ましい。   FIG. 3 shows a configuration example of the diffraction element 2 in which a diffractive polarizing beam splitter and a diffraction grating are integrated. By integrating in this way, the number of parts can be reduced as compared with the case where they are configured separately, and the polarization direction transmitted by the diffractive polarizing beam splitter and the polarization direction of light to be incident on the diffraction grating can be determined. It is preferable because the accuracy of the diffraction efficiency ratio can be increased because the alignment can be easily performed with high accuracy.

図3に示された回折素子2は、前述の図2で示したものと同様の透明基板21、複屈折性媒質22及び等方性媒質23に加え、回折型偏光ビームスプリッタとしての複屈折性媒質27からなる格子が積層されたものである。複屈折性媒質27が透過させる光の偏光方向(本例では紙面基準で垂直方向に約27度)に対する複屈折性媒質27の屈折率を、等方性媒質23とほぼ等しくし、それと直交する偏光方向では屈折率差が生じるように設定する。この設定により、約27度の偏光の光に対しては透過し、それと直交する偏光方向の光に対しては0次透過率を小さくするよう回折させることができる。その結果、複屈折性媒質27を透過した光は、ほぼ27度方向の直線偏光となり、回折格子に入射する偏光方向を安定させることができるので好ましい。ここで、複屈折性媒質27で回折された、不要な偏光成分の光は対物レンズ5に到達しないように設定することができる。   The diffractive element 2 shown in FIG. 3 has a birefringence as a diffractive polarizing beam splitter in addition to the transparent substrate 21, the birefringent medium 22 and the isotropic medium 23 similar to those shown in FIG. A lattice made of the medium 27 is laminated. The refractive index of the birefringent medium 27 with respect to the polarization direction of light transmitted by the birefringent medium 27 (in this example, about 27 degrees in the vertical direction with respect to the paper surface) is made substantially equal to the isotropic medium 23 and orthogonal thereto. It is set so that a difference in refractive index occurs in the polarization direction. With this setting, light having a polarization of about 27 degrees can be transmitted, and light having a polarization direction orthogonal thereto can be diffracted so as to reduce the zero-order transmittance. As a result, the light transmitted through the birefringent medium 27 becomes linearly polarized light in the direction of approximately 27 degrees, which is preferable because the polarization direction incident on the diffraction grating can be stabilized. Here, it can be set so that light of an unnecessary polarization component diffracted by the birefringent medium 27 does not reach the objective lens 5.

さらに、図4に示すように、偏光方向回転手段28を積層して回折素子2を構成することも可能である。偏光方向回転手段28を積層することにより、光源1を構成する半導体レーザの出射偏光方向を回転することなく、所望の偏光方向の光を得ることができる。偏光方向回転手段28としては、例えば1/2波長板や、ツイストされた高分子液晶素子を用いることができる。   Furthermore, as shown in FIG. 4, the diffraction element 2 can be configured by laminating the polarization direction rotating means 28. By laminating the polarization direction rotating means 28, light having a desired polarization direction can be obtained without rotating the output polarization direction of the semiconductor laser constituting the light source 1. As the polarization direction rotating means 28, for example, a half-wave plate or a twisted polymer liquid crystal element can be used.

次に、光検出器8の受光面上における光の集光状態について図5を用いて説明する。図5は、光検出器8の受光面上における光の集光状態の一例を模式的に示したものである。   Next, the light collection state on the light receiving surface of the photodetector 8 will be described with reference to FIG. FIG. 5 schematically shows an example of the light condensing state on the light receiving surface of the photodetector 8.

図5において、光検出器8の受光面は、複数の受光エリア51、52及び53を有し、その受光エリア内に記録又は再生したい光ディスク記録層からの光が、集光スポット55、56及び57を形成している状態が示されている。ここで、集光スポット56は回折素子2から出射された0次回折光(メインビーム)に相当し、集光スポット55及び57は、±1次回折光(サブビーム)に相当する。また、集光スポット58は、迷光となる光ディスクの記録層からの反射光の集光スポットを示し、光検出器8の受光面上ではデフォーカス状態となっており、図5に示すような大きな半径を有する。   In FIG. 5, the light receiving surface of the photodetector 8 has a plurality of light receiving areas 51, 52, and 53, and light from an optical disk recording layer to be recorded or reproduced in the light receiving areas is condensed spots 55, 56, and The state of forming 57 is shown. Here, the condensing spot 56 corresponds to 0th-order diffracted light (main beam) emitted from the diffraction element 2, and the condensing spots 55 and 57 correspond to ± 1st-order diffracted light (sub-beams). Further, the condensing spot 58 is a condensing spot of reflected light from the recording layer of the optical disc that becomes stray light, and is defocused on the light receiving surface of the photodetector 8 and has a large size as shown in FIG. Has a radius.

迷光の集光スポット58は、受光エリア51、52及び53にかかり、集光スポット55、56及び57の光と干渉してノイズとなる。特に、サブビームは前述のように光量がメインビームに比べて10分の1以下と小さいので、従来、この迷光の干渉の影響が特に大きくトラッキング性能の低下を導いていた。また、迷光の干渉の影響により、光ディスクの層間間隔や波長が変動すると、それぞれの層からの光の干渉条件が変化するので、特に問題となっていた。   The stray light condensing spot 58 is applied to the light receiving areas 51, 52, and 53 and interferes with the light of the condensing spots 55, 56, and 57 to generate noise. In particular, since the sub beam has a light amount as small as 1/10 or less as compared with the main beam as described above, conventionally, the influence of this interference of stray light is particularly large, leading to a decrease in tracking performance. Further, when the interlayer distance or wavelength of the optical disk fluctuates due to the influence of stray light interference, the interference condition of light from each layer changes, which is a particular problem.

前述のように、本実施の形態に係る回折素子2を用いることで、0次回折光と1次回折光の偏光状態を異なるようにすることができる。また、迷光の集光スポット58も回折素子2から出射される0次回折光と1次回折光との重ね合わせであるが、光量的には1次回折光に比べて0次回折光が10倍以上大きいので、この迷光の偏光状態は概ね0次回折光の偏光状態に等しいと考えて実質的に問題は無い。   As described above, by using the diffractive element 2 according to the present embodiment, the polarization states of the 0th-order diffracted light and the 1st-order diffracted light can be made different. The stray light condensing spot 58 is also a superposition of the 0th-order diffracted light and the 1st-order diffracted light emitted from the diffraction element 2, but the 0th-order diffracted light is 10 times or more larger than the 1st-order diffracted light in terms of light quantity. Considering that the polarization state of the stray light is substantially equal to the polarization state of the 0th-order diffracted light, there is substantially no problem.

つまり、本実施の形態に係る回折素子2を用いることで、サブビームの集光スポット55及び57の偏光状態と、迷光の集光スポット58の偏光状態とを異なるようにすることができる。偏光状態の異なる光は、干渉性が低下するため、本実施の形態に係る光ヘッド装置100は、サブビームと迷光との干渉によるトラッキング性能の低下を抑制することができる。 That is, by using the diffractive element 2 according to the present embodiment, the polarization state of the sub-beam condensing spots 55 and 57 and the polarization state of the stray light condensing spot 58 can be made different. Lights having different polarization states, because the interference decreases, the optical head apparatus 100 according to the present embodiment, it is possible to suppress the reduction of the tracking performance due to interference between the sub-beams and the stray light.

以上のように偏光回折素子は、メインビームとサブビームとの偏光状態が異なることによりトラッキング性能の低下を抑制することができる。そのため、メインビームの偏光が偏光回折素子の回折効率が低い偏光方向の0次透過光(η0Lに対応)が支配的とし、サブビームの偏光が偏光回折素子の回折効率が高い偏光方向の1次回折光(η1Hに対応)が支配的とすることが好ましい。 As described above, the polarization diffraction element can suppress a decrease in tracking performance due to different polarization states of the main beam and the sub beam. Therefore, the polarization of the main beam is dominated by the 0th-order transmitted light (corresponding to η 0L ) in the polarization direction where the diffraction efficiency of the polarization diffraction element is low, and the polarization of the sub beam is the primary in the polarization direction where the diffraction efficiency of the polarization diffraction element is high. The folding light (corresponding to η 1H ) is preferably dominant.

そのために、偏光回折素子の回折効率の偏光依存性を式(6)及び(7)とすることで、メインビームとサブビームの偏光状態が概ね直交する直線偏光とすることができ、2つの光の干渉を抑制できるので好ましい。   Therefore, by setting the polarization dependency of the diffraction efficiency of the polarization diffraction element to the expressions (6) and (7), the polarization state of the main beam and the sub beam can be linearly polarized light, and the two light beams This is preferable because interference can be suppressed.

η0L/η0H ≧ 5 (6) η 0L / η 0H ≧ 5 (6)

η1H/η1L ≧ 5 (7) η 1H / η 1L ≧ 5 (7)

さらに好ましくは、式(8)及び(9)とすることで、さらに効果が増すので好ましい。   More preferably, formulas (8) and (9) are preferable because the effect is further increased.

η0L/η0H ≧ 10 (8) η 0L / η 0H ≧ 10 (8)

η1H/η1L ≧ 10 (9) η 1H / η 1L ≧ 10 (9)

なお、以上の記載において、説明を簡単にするため、0次回折光と1次回折光の偏光方向を図2に示すように、それぞれ、紙面に平行及び垂直としたが、本発明はこれに限定されるものではない。例えば、0次回折光を右回り円偏光とし、1次回折光を左回り円偏光や楕円偏光、又はその他の偏光状態としてもよい。   In the above description, in order to simplify the explanation, the polarization directions of the 0th-order diffracted light and the 1st-order diffracted light are parallel and perpendicular to the paper surface as shown in FIG. 2, but the present invention is not limited to this. It is not something. For example, the zero-order diffracted light may be clockwise circularly polarized light, and the first-order diffracted light may be counterclockwise circularly polarized light, elliptically polarized light, or another polarization state.

次に、0次回折光と1次回折光の偏光状態を表すために、ストークスパラメータを用いて説明する。なお、ストークスパラメータの詳細な説明は、例えば培風館発行「応用光学2」第5−3章「偏光の表記」に記されている。ここでは、ストークスパラメータについて簡単に説明する。   Next, in order to express the polarization states of the 0th-order diffracted light and the 1st-order diffracted light, description will be made using Stokes parameters. A detailed description of the Stokes parameters is given in, for example, “Applied Optics 2”, Chapter 5-3 “Polarization Notation” issued by Baifukan. Here, the Stokes parameters will be briefly described.

z方向に進む光を、z方向に対して垂直な面内に(x,y)座標系を選んだとき、x、y成分の光Ex、Eyを次式で表すこととする。   When the light traveling in the z direction is selected in the (x, y) coordinate system in a plane perpendicular to the z direction, the light Ex and Ey of the x and y components are expressed by the following equations.

=A・exp{i(ωt−k+δ)} (10) E x = A x · exp {i (ωt−k z + δ x )} (10)

=A・exp{i(ωt−k+δy)} (11) E y = A y · exp {i (ωt−k z + δy)} (11)

ここで、ωは角周波数、kは波数ベクトル、δ、δはそれぞれx、y方向の光の位相、A、Aはそれぞれx、y方向の電場振幅を示す。 Here, ω is an angular frequency, k is a wave vector, δ x and δ y are light phases in the x and y directions, respectively, and A x and A y are electric field amplitudes in the x and y directions, respectively.

偏光状態は4つのパラメータであるストークスパラメータ(S,S,S,S)によって表すことができる。 The polarization state can be expressed by the Stokes parameters (S 0 , S 1 , S 2 , S 3 ), which are four parameters.

=<A >+<A > (12) S 0 = <A x 2> + <A y 2> (12)

=<A >−<A > (13) S 1 = <A x 2> - <A y 2> (13)

=2<A・A・cosδ> (14) S 2 = 2 <A x ·A y ·cosδ> (14)

=2<A・A・sinδ> (15) S 3 = 2 <A x ·A y ·sinδ> (15)

ここで、δ=δ−δとし、記号"< >"は十分に長い時間の平均値を示す。 Here, δ = δ y −δ x , and the symbol “<>” indicates an average value for a sufficiently long time.

は光強度を表すパラメータなので、Sで規格化した基準化ストークスパラメータによって、光の偏光状態を表すことができる。つまり、基準化ストークスパラメータは、次のように表される。 S 0 because parameters representing the light intensity, the reference Stokes parameters normalized by S 0, can represent a polarization state of light. That is, the standardized Stokes parameter is expressed as follows.

0k={<A >+<A >}/{<A >+<A >}=1 (16) S 0k = {<A x 2> + <A y 2>} / {<A x 2> + <A y 2>} = 1 (16)

1k={<A >−<A >}/{<A >+<A >} (17) S 1k = {<A x 2> - <A y 2>} / {<A x 2> + <A y 2>} (17)

2k=2<A・A・cosδ>/{<A >+<A >} (18) S 2k = 2 <A x ·A y ·cosδ> / {<A x 2> + <A y 2>} (18)

3k=2<A・A・sinδ>/{<A >+<A >} (19) S 3k = 2 <A x ·A y ·sinδ> / {<A x 2> + <A y 2>} (19)

以下、S=1と規格化した基準化ストークスパラメータを用いて表記する。 Hereinafter, the standardized Stokes parameters normalized as S 0 = 1 are used.

0次回折光と1次回折光の偏光状態を、それぞれ(1,S10,S20,S30)と(1,S11,S21,S31)としたとき、式(20)に示された関係であると、2つの偏光状態の光の干渉性を半分以下にすることができるので好ましい。 When the polarization states of the 0th-order diffracted light and the 1st-order diffracted light are (1, S10, S20, S30) and (1, S11, S21, S31), respectively, the relationship shown by the equation ( 20 ) is 2 It is preferable because the coherence of light in one polarization state can be reduced to half or less.

(S10−S11+(S20−S21+(S30−S31 ≧ 2 (20) (S 10 -S 11) 2 + (S 20 -S 21) 2 + (S 30 -S 31) 2 ≧ 2 (20)

さらに、式(21)に示された関係が好ましい。 Furthermore, the relationship shown in Formula ( 21 ) is preferable.

(S10−S11+(S20−S21+(S30−S31 ≧ 2.5 (21) (S 10 -S 11) 2 + (S 20 -S 21) 2 + (S 30 -S 31) 2 ≧ 2.5 (21)

さらに、式(22)に示された関係とすることで、干渉性を大きく抑制できるので好ましい。 Furthermore, the relationship shown in the formula ( 22 ) is preferable because the coherence can be greatly suppressed.

(S10−S11+(S20−S21+(S30−S31 ≧ 3 (22) (S 10 -S 11) 2 + (S 20 -S 21) 2 + (S 30 -S 31) 2 ≧ 3 (22)

さらに、式(23)に示された関係とすることで、干渉性を非常に小さく抑制できるので好ましい。   Furthermore, the relationship shown in the equation (23) is preferable because the coherence can be suppressed very small.

(S10−S11+(S20−S21+(S30−S31 = 4 (23) (S 10 -S 11) 2 + (S 20 -S 21) 2 + (S 30 -S 31) 2 = 4 (23)

最も好ましくは、式(24)に示された関係とすることで完全に干渉を抑制することができる。   Most preferably, interference can be completely suppressed by using the relationship shown in the equation (24).

(S10−S11+(S20−S21 = 4, S30=S31=0 (24) (S 10 -S 11) 2 + (S 20 -S 21) 2 = 4, S 30 = S 31 = 0 (24)

具体的には、例えば(1,S10,S20,S30)=(1,1,0,0)と(1,S11,S21,S31)=(1,−1,0,0)のように直線偏光が直交した2つの偏光の組み合わせの場合や、(1,S10,S20,S30)=(1,0,0,1)と(1,S11,S21,S31)=(1,0,0,−1)のように円偏光の回転方向が左右逆周りの場合などがある。 Specifically, for example, (1, S 10 , S 20 , S 30 ) = (1, 1, 0, 0) and (1, S 11 , S 21 , S 31 ) = (1, -1, 0, In the case of a combination of two polarizations in which linearly polarized light is orthogonal, such as (0), or (1, S 10 , S 20 , S 30 ) = (1, 0, 0, 1) and (1, S 11 , S 21 , S 31 ) = (1, 0, 0, −1).

次に、回折素子2と光ディスク6との間の光路中に回折光の偏光の光束に対してのみ、波面形状を変化させる偏光位相差発生素子を配置する例について説明する。なお、回折光には、透過光である0次回折光は含まれない。   Next, an example in which a polarization phase difference generating element that changes the wavefront shape only for the polarized light beam of diffracted light is disposed in the optical path between the diffractive element 2 and the optical disc 6 will be described. The diffracted light does not include 0th-order diffracted light that is transmitted light.

一般に、対物レンズに対してメインビームは垂直に入射されるが、サブビームは斜めに入射される。そのため、対物レンズの軸外の非点収差がサブビームのみに発生してしまう。非点収差を持ったサブビームは、光ディスク上での集光特性が劣化し、トラッキング性能を劣化させる。この対策として、サブビームの偏光にのみ作用し位相差の面内分布を発生させることで、サブビームのみ波面形状を変化させることができる。つまり、回折光のみ非点収差を発生させることで、対物レンズの軸外光の非点収差を補正することができ、トラッキング性能を向上させることができるので好ましい。   In general, the main beam is incident perpendicular to the objective lens, but the sub beam is incident obliquely. Therefore, off-axis astigmatism of the objective lens occurs only in the sub beam. The sub beam having astigmatism deteriorates the condensing characteristic on the optical disc, and degrades the tracking performance. As a countermeasure, the wavefront shape of only the sub-beam can be changed by acting only on the polarization of the sub-beam and generating an in-plane distribution of the phase difference. That is, it is preferable to generate astigmatism only in the diffracted light because the astigmatism of off-axis light of the objective lens can be corrected and the tracking performance can be improved.

変化させる波面形状としては、非点収差以外にも球面収差やフォーカス成分、コマ収差等があり、さまざまな収差発生が可能であるが、ここでは、説明を簡単にするために非点収差発生方法について説明する。   The wavefront shape to be changed includes spherical aberration, focus component, coma aberration, etc. in addition to astigmatism, and various aberrations can be generated. Will be described.

図6(a)は、本実施の形態に係る偏光位相差発生素子の構成例を模式的に示す図である。   FIG. 6A is a diagram schematically illustrating a configuration example of the polarization phase difference generating element according to the present embodiment.

図6(a)に示された偏光位相差発生素子は、一対の透明基板61に複屈折性媒質62が格子状に設けられ、一対の透明基板61に挟持される領域に充填された等方性媒質63を備えた構成となっている。透明基板61はガラスやプラスティックなど複屈折性の無い透明な基板が好ましい。複屈折性媒質62としては、液晶を重合した高分子液晶などが好ましいが、その他の単結晶でもよい。等方性媒質63としては、複屈折の無い樹脂が好ましいが例えばガラスでもよい。   The polarization phase difference generating element shown in FIG. 6A is isotropic in which a birefringent medium 62 is provided in a lattice shape on a pair of transparent substrates 61 and is filled in a region sandwiched between the pair of transparent substrates 61. The structure is provided with a conductive medium 63. The transparent substrate 61 is preferably a transparent substrate having no birefringence, such as glass or plastic. The birefringent medium 62 is preferably a polymer liquid crystal obtained by polymerizing liquid crystal, but may be other single crystals. The isotropic medium 63 is preferably a resin having no birefringence, but may be glass, for example.

この構成において、回折素子2で回折された偏光方向が図2に示すように紙面に垂直な場合、紙面に平行な偏光の光に対しての複屈折性媒質62の屈折率と等方性媒質63の屈折率を等しくし、紙面に垂直な偏光方向の屈折率が複屈折性媒質62と等方性媒質63でΔnだけ異なるようにする。この構成により、サブビームの偏光方向の光にのみ複屈折性媒質62の形状に対応し、透過光の波面形状が変化し、メインビームの光に対しては波面形状の変化は生じない。   In this configuration, when the polarization direction diffracted by the diffraction element 2 is perpendicular to the paper surface as shown in FIG. 2, the refractive index of the birefringent medium 62 and the isotropic medium for polarized light parallel to the paper surface The refractive index of 63 is made equal, and the refractive index in the polarization direction perpendicular to the paper surface is made to differ by Δn between the birefringent medium 62 and the isotropic medium 63. With this configuration, only the light in the polarization direction of the sub-beam corresponds to the shape of the birefringent medium 62, the wavefront shape of the transmitted light changes, and the wavefront shape does not change for the light of the main beam.

例えば、複屈折性媒質62と等方性媒質63とからなる凹凸格子をシリンドリカルなホログラム回折格子とすることでサブビームにのみ非点収差を発生させることができる。なお、ホログラム回折格子に代えて例えば位相段差を設ける構成としてもよい。   For example, an astigmatism can be generated only in the sub-beam by using a cylindrical hologram diffraction grating as the concavo-convex grating composed of the birefringent medium 62 and the isotropic medium 63. For example, a phase step may be provided instead of the hologram diffraction grating.

回折格子の回折光であるサブビームの波面を変化させることは、回折格子のストライプ方向を直線格子ではなく湾曲させるホログラムとすることによっても可能である。しかしながら、この方法では、回折素子2から出射される±1次回折光では波面の形状が反転してしまう。例えば+1次回折光に対して凸レンズ的に作用するホログラムの場合、−1次回折光は凹レンズ的に作用してしまう。これに対し、図6(a)に示された偏光位相差発生素子を備えた構成では、±1次回折光に対して同じ様に波面形状を変化させることができるので好ましい。   It is also possible to change the wavefront of the sub beam, which is the diffracted light of the diffraction grating, by using a hologram that curves the stripe direction of the diffraction grating instead of a linear grating. However, with this method, the wavefront shape of the ± first-order diffracted light emitted from the diffraction element 2 is reversed. For example, in the case of a hologram that acts as a convex lens for + 1st order diffracted light, the -1st order diffracted light acts as a concave lens. On the other hand, the configuration provided with the polarization phase difference generating element shown in FIG. 6A is preferable because the wavefront shape can be changed in the same manner with respect to ± first-order diffracted light.

さらに、図6(b)に示すように、対物レンズ変位時に発生するDPP信号の劣化を防ぐために、サブビームの波面に位相段差64を発生させることでレンズ変位時のトラッキング性能劣化を防ぐことができるので好ましい。   Furthermore, as shown in FIG. 6B, in order to prevent the deterioration of the DPP signal that occurs when the objective lens is displaced, the tracking step performance can be prevented from being degraded when the lens is displaced by generating a phase step 64 in the wavefront of the sub beam. Therefore, it is preferable.

また、偏光位相差発生素子の波面を変化させる偏光方向と、回折素子2の回折格子の偏光方向とがずれると0次回折光の波面も若干変化してしまうので、2つの偏光方向は精度よく合わせる必要がある。   In addition, if the polarization direction that changes the wavefront of the polarization phase difference generating element and the polarization direction of the diffraction grating of the diffraction element 2 are shifted, the wavefront of the 0th-order diffracted light also slightly changes, so the two polarization directions are accurately matched. There is a need.

なお、図6(a)及び(b)に示された偏光位相差発生素子を回折素子2と一体とすることで部品点数を削減することができ、偏光位相差発生素子に入射する偏光状態を精度よく合わせることができるので好ましい。   The number of parts can be reduced by integrating the polarization phase difference generating element shown in FIGS. 6A and 6B with the diffraction element 2, and the polarization state incident on the polarization phase difference generating element can be reduced. Since it can match | combine accurately, it is preferable.

以上のように、本実施の形態に係る光ヘッド装置100によれば、回折素子2を透過した出射光は0次回折光及び±1次回折光を含む光束に分離され、0次回折光とその他の回折光とでは偏光状態が異なる構成としたので、複層ディスクに対する記録再生時のトラッキング性能を向上させることができ、光検出器8への信号強度を低下させることなく複層光ディスクを記録再生することができる。   As described above, according to the optical head device 100 according to the present embodiment, the outgoing light transmitted through the diffractive element 2 is separated into light beams including the 0th-order diffracted light and the ± 1st-order diffracted light, and the 0th-order diffracted light and other diffractions Since the polarization state is different from that of light, it is possible to improve the tracking performance at the time of recording / reproducing with respect to the multi-layer disc, and to record / reproduce the multi-layer optical disc without reducing the signal intensity to the photodetector 8. Can do.

また、本実施の形態に係る光ヘッド装置100によれば、回折光の偏光の光に対して波面形状を変更する偏光位相差発生素子をさらに備えることにより、例えばトラックピッチが互いに異なる光ディスクの記録再生においても精度よくトラッキングを行うことができる。   Further, the optical head device 100 according to the present embodiment further includes a polarization phase difference generating element that changes the wavefront shape with respect to the polarized light of the diffracted light, so that, for example, recording of optical disks having different track pitches Tracking can be performed with high accuracy during reproduction.

以上のように、本発明に係る光ヘッド装置は、光検出器への信号強度を低下させることなく複層光ディスクを記録再生することができるという効果を有する光ヘッド装置等として有用である。   As described above, the optical head device according to the present invention is useful as an optical head device having an effect that a multilayer optical disk can be recorded / reproduced without lowering the signal intensity to the photodetector.

本発明の一実施の形態に係る光ヘッド装置の概念的な構成を示す図The figure which shows the notional structure of the optical head apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係る光ヘッド装置の回折素子の構成例を模式的に示す断面図Sectional drawing which shows typically the structural example of the diffraction element of the optical head apparatus which concerns on one embodiment of this invention 本発明の一実施の形態に係る光ヘッド装置の回折素子の構成例を模式的に示す断面図Sectional drawing which shows typically the structural example of the diffraction element of the optical head apparatus which concerns on one embodiment of this invention 本発明の一実施の形態に係る光ヘッド装置の回折素子の構成例を模式的に示す断面図Sectional drawing which shows typically the structural example of the diffraction element of the optical head apparatus which concerns on one embodiment of this invention 本発明の一実施の形態に係る光ヘッド装置の光検出器が受光する集光スポットの一例を示す模式図The schematic diagram which shows an example of the condensing spot which the photodetector of the optical head apparatus which concerns on one embodiment of this invention light-receives 本発明の一実施の形態に係る光ヘッド装置の偏光位相差発生素子の構成例を模式的に示す断面図Sectional drawing which shows typically the structural example of the polarization phase difference generation element of the optical head apparatus which concerns on one embodiment of this invention 二層光ディスク再生時の光路の模式図Schematic diagram of the optical path when playing a double-layer optical disc 光ディスクからの反射光の一部を回折する従来のホログラム素子の模式図Schematic diagram of a conventional hologram element that diffracts part of the reflected light from an optical disk

符号の説明Explanation of symbols

1 光源
2 回折素子
3、7 コリメータレンズ
4 ビームスプリッタ
5 対物レンズ
6 光ディスク
6a 情報記録面
8 光検出器
21 透明基板
22 複屈折性媒質
23 等方性媒質
24a +1次回折光
24b −1次回折光
25 0次回折光
27 複屈折性媒質
28 偏光方向回転手段
51、52、53 受光エリア
55 メインビームの集光スポット
56、57 サブビームの集光スポット
58 迷光となる反射光の集光スポット
61 透明基板
62 複屈折性媒質
63 等方性媒質
64 位相段差
100 光ヘッド装置
DESCRIPTION OF SYMBOLS 1 Light source 2 Diffraction element 3, 7 Collimator lens 4 Beam splitter 5 Objective lens 6 Optical disk 6a Information recording surface 8 Photo detector 21 Transparent substrate 22 Birefringent medium 23 Isotropic medium 24a + 1st order diffracted light 24b -1st order diffracted light 25 0 Next diffracted light 27 Birefringent medium 28 Polarization direction rotating means 51, 52, 53 Light receiving area 55 Main beam condensing spot 56, 57 Sub beam condensing spot 58 Condensing spot of reflected light that becomes stray light 61 Transparent substrate 62 Birefringence Medium 63 isotropic medium 64 phase difference 100 optical head device

Claims (4)

光源と、透過型の回折素子と、前記回折素子からの出射光を光記録媒体上に集光させる対物レンズと、前記対物レンズによって集光され前記光記録媒体により反射された光を検出する光検出器とを備え、前記光記録媒体に対して情報の記録再生を行う光ヘッド装置において、
前記回折素子からの出射光は、0次回折光、+1次回折光及び−1次回折光の3ビームに分離され、前記0次回折光と他の回折光とでは偏光状態が異なり、
前記光検出器は、前記各3ビームが前記光記録媒体に集光されて反射された後に前記各3ビームのビーム強度を、前記光検出器の受光面に配置された複数の受光エリアで個別に検出することを特徴とする光ヘッド装置。
A light source, a transmissive diffractive element, an objective lens for condensing the light emitted from the diffractive element on an optical recording medium, and light for detecting the light collected by the objective lens and reflected by the optical recording medium In an optical head device comprising a detector and recording / reproducing information with respect to the optical recording medium,
The emitted light from the diffractive element is separated into three beams of 0th order diffracted light, + 1st order diffracted light and −1st order diffracted light, and the polarization state is different between the 0th order diffracted light and the other diffracted light,
The light detector individually collects the intensity of each of the three beams after being focused on the optical recording medium and reflected by a plurality of light receiving areas arranged on a light receiving surface of the light detector. An optical head device characterized in that the optical head device is detected.
前記回折素子は、入射する光の偏光方向によって回折効率の異なる偏光回折格子で構成されている請求項1記載の光ヘッド装置。   The optical head device according to claim 1, wherein the diffraction element is configured by a polarization diffraction grating having a diffraction efficiency different depending on a polarization direction of incident light. 前記偏光回折格子に入射する光の偏光状態が、前記回折効率の高い偏光方向の成分と、前記回折効率の低い偏光方向の成分との両方を有している請求項2記載の光ヘッド装置。   3. The optical head device according to claim 2, wherein the polarization state of light incident on the polarization diffraction grating has both a component in a polarization direction with a high diffraction efficiency and a component in a polarization direction with a low diffraction efficiency. 前記回折素子と前記光記録媒体との間の光路中に、前記0次回折光以外の回折光に対して作用し、前記0次回折光以外の回折光の波面形状を変化させる偏光位相差発生素子を配置する請求項1から3までのいずれか1項記載の光ヘッド装置。   A polarization phase difference generating element that acts on diffracted light other than the 0th-order diffracted light and changes a wavefront shape of diffracted light other than the 0th-order diffracted light in an optical path between the diffractive element and the optical recording medium. 4. The optical head device according to claim 1, wherein the optical head device is disposed.
JP2006057828A 2006-03-03 2006-03-03 Optical head device Expired - Fee Related JP4797706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057828A JP4797706B2 (en) 2006-03-03 2006-03-03 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057828A JP4797706B2 (en) 2006-03-03 2006-03-03 Optical head device

Publications (2)

Publication Number Publication Date
JP2007234194A JP2007234194A (en) 2007-09-13
JP4797706B2 true JP4797706B2 (en) 2011-10-19

Family

ID=38554616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057828A Expired - Fee Related JP4797706B2 (en) 2006-03-03 2006-03-03 Optical head device

Country Status (1)

Country Link
JP (1) JP4797706B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328877A (en) * 2006-06-09 2007-12-20 Hitachi Media Electoronics Co Ltd Optical pickup and optical disk device
WO2008132912A1 (en) * 2007-04-23 2008-11-06 Nec Corporation Optical head device and optical information recording/reproducing device
JP2009146528A (en) * 2007-12-17 2009-07-02 Panasonic Corp Optical pickup device and optical disk device
US9245572B2 (en) * 2012-11-21 2016-01-26 Oracle International Corporation Optical tape pick up unit with holographic optical element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314502A (en) * 1986-12-16 1988-12-22 Nec Corp Double refractive diffraction grating type polarizing plate
JPH0935352A (en) * 1995-07-20 1997-02-07 Sony Corp Optical pickup device
JP2001076368A (en) * 1999-07-06 2001-03-23 Toyo Commun Equip Co Ltd Optical head and quarter-wavelength plate
JP2002092925A (en) * 2000-09-13 2002-03-29 Sony Corp Optical pickup unit
JP4168680B2 (en) * 2002-06-28 2008-10-22 旭硝子株式会社 Optical head device
JP4389154B2 (en) * 2003-08-18 2009-12-24 ソニー株式会社 Optical pickup and disk drive device
KR100965884B1 (en) * 2004-01-14 2010-06-24 삼성전자주식회사 Optical pickup

Also Published As

Publication number Publication date
JP2007234194A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
KR100965884B1 (en) Optical pickup
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
WO2007105767A1 (en) Optical head device
JP2006351086A (en) Optical path compensation apparatus and optical pickup using the same
JP2005339766A (en) Optical disk apparatus
WO2007043663A1 (en) Optical head
JP2008171470A (en) Optical pickup device
JP4806643B2 (en) Optical pickup and optical disc apparatus
JP2008130167A (en) Optical pickup device
JP2001290017A (en) Diffraction device for two wavelengths and optical head device
JP4797706B2 (en) Optical head device
KR100656000B1 (en) Optical diffraction device and optical information processing device
JP2007328877A (en) Optical pickup and optical disk device
JPWO2006064777A1 (en) OPTICAL HEAD DEVICE, OPTICAL INFORMATION RECORDING / REPRODUCING DEVICE HAVING OPTICAL HEAD DEVICE
WO2006112288A1 (en) Optical head device and optical information processor
JP2007272980A (en) Optical pickup device
KR20070044275A (en) Optical pick-up device
JP4806661B2 (en) Optical pickup and optical information reproducing apparatus
JP2009146528A (en) Optical pickup device and optical disk device
KR100464419B1 (en) Compatible optical pickup for recording and/or reproducing
JP4985081B2 (en) Optical head device
KR20080046463A (en) Optical pick-up apparatus
JP2011502325A (en) Optical pickup and optical information recording medium system using the same
JP2007242081A (en) Optical pickup device
JP2005310298A (en) Optical pickup and optical information processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees