JP4797299B2 - Gas turbine engine - Google Patents

Gas turbine engine Download PDF

Info

Publication number
JP4797299B2
JP4797299B2 JP2001245907A JP2001245907A JP4797299B2 JP 4797299 B2 JP4797299 B2 JP 4797299B2 JP 2001245907 A JP2001245907 A JP 2001245907A JP 2001245907 A JP2001245907 A JP 2001245907A JP 4797299 B2 JP4797299 B2 JP 4797299B2
Authority
JP
Japan
Prior art keywords
bearing
lubricating oil
convex portion
turbine engine
nut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001245907A
Other languages
Japanese (ja)
Other versions
JP2003056362A (en
Inventor
樹一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001245907A priority Critical patent/JP4797299B2/en
Publication of JP2003056362A publication Critical patent/JP2003056362A/en
Application granted granted Critical
Publication of JP4797299B2 publication Critical patent/JP4797299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6685Details of collecting or draining, e.g. returning the liquid to a sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービンエンジンに関し、特に、潤滑油が供給される軸受を備えるガスタービンエンジンに関する。
【0002】
【従来の技術】
航空機等に用いられるガスタービンエンジンは、燃焼ガスによってタービンロータを回転させ、その回転力をプロペラ等を介して航空機推進用に利用したり、あるいは燃焼ガスを直接後方に噴出し、その反作用として推進力を得るように構成されている。
【0003】
タービンシャフトなどの回転部材は、ボールベアリングやローラベアリング等の軸受によって回転自在に支持されており、軸受には、通常、潤滑油が供給される。軸受を潤滑した後のオイル(排油)は、軸受を収容する軸受室から所定の流路を介して排油ポンプに吸引される。
【0004】
【発明が解決しようとする課題】
ところで、ガスタービンエンジンでは、近年、小型化の推進が図られており、これに伴い、軸受を収容する軸受室の容積も狭くなる傾向にある。ところが、軸受室が狭くなると、軸受を潤滑した後のオイルが流れにくくなるなど、オイルが軸受室内に停滞しやすくなり、オイル温度の過度な上昇を招いて、損傷等の不具合を生じさせるおそれがある。これに対する対策としては、従来より、オイルドレイン通路を設けたり、軸受室の容積を広げたりする技術が知られているが、これらはいずれもエンジンの小型化に対して不利である。
【0005】
本発明は、上述する事情に鑑みてなされたものであり、軸受室の容積を大きく広げることなく、軸受に供給される潤滑油の停滞を抑制できるガスタービンエンジンを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明のガスタービンエンジンは、内輪が回転しかつ潤滑油が供給される軸受を備えるガスタービンエンジンであって、前記軸受の内輪を固定し、前記軸受の内輪とともに回転するナットの外周面には、回転軸方向に対して斜めの溝が設けられていることを特徴とする。このガスタービンエンジンでは、ナットの外周面に、回転軸方向に対して斜めの溝が設けられていることから、ナットの回転に伴い、部材の外周面付近の流体に対して、回転軸方向の力が作用する。そのため、軸受に供給される潤滑油の回転軸方向の移動が促進され、潤滑油の停滞が抑制される。
【0007】
また、本発明のガスタービンエンジンは、内輪が回転しかつ潤滑油が供給される軸受を備えるガスタービンエンジンであって、前記軸受の内輪とともに回転する回転部材の外周面には、径方向外方に突出する凸部が設けられ、前記軸受の外輪を固定するナットの内周面には、前記凸部と対向する位置に、回転軸方向を向いた斜面が形成されていることを特徴とする。このガスタービンエンジンでは、回転部材の外周面に、径方向外方に突出する凸部が設けられていることから、遠心力等による潤滑油の径方向外方への移動が促進される。また、外輪を固定するナットに、上記凸部に対向して、回転軸方向を向いた斜面が形成されていることから、上記凸部を介して径方向外方に飛散した潤滑油がこの斜面に沿って回転軸方向に導かれる。これにより、軸受に供給される潤滑油の回転軸方向の移動が促進され、潤滑油の停滞が抑制される。
【0008】
この場合において、前記凸部は、前記回転部材の周全体にわたって設けられ、前記斜面は、前記軸受が配置されている方向を向いていてもよい。
この場合、凸部によって、軸受から離れる方向への潤滑油の移動が抑制され、斜面によって、軸受に近づく方向に潤滑油が導かれる。すなわち、凸部から軸受に向かう方向に、潤滑油の移動が促進される。
【0009】
【発明の実施の形態】
以下、本発明のガスタービンエンジンについて図面を参照して説明する。
図1は、本発明のガスタービンエンジンの一実施形態における概略的な構成を示す図である。このガスタービンエンジンでは、エンジン本体10に流入した空気が、エンジン内部で圧縮されながら後方に流れ、不図示のタービンを回転させて排出される。そして、タービンの回転力は、回転シャフト(タービンシャフト)11を介して不図示の圧縮用動翼に伝達される。
【0010】
回転シャフト11は、複数の軸受によって回転自在に支持されている。符号20は、そのうちの一つの軸受を示している。軸受としては、例えばボールベアリングやローラベアリングなどが用いられる。軸受20にはオイルタンク21から潤滑油が供給され、潤滑油は軸受20の摩擦を低減するとともに、軸受20での熱を吸収し、軸受20の温度上昇を抑制する。
【0011】
オイルタンク21からの潤滑油は、オイルポンプ22によって加圧され、軸受20を収容する軸受室23に送られる。オイルポンプ22は、本例では、補機(アクセサリーギアボックス:AGB)24によって駆動される。補機23は、例えば、歯車25を介して回転シャフト11の駆動力を取り出して動力を得るように構成されている。
【0012】
軸受室23に送られた潤滑油は、軸受20の回転軸Ax方向に流れる。この回転軸Ax方向の流れにより、軸受20周辺の潤滑油が順次入れ換わり、軸受20で発生した熱が取り除かれる。軸受20を潤滑した後のオイル(排油)は、排油用の流路26に流れ、排油ポンプ27に吸引されて、オイルタンク21に返送される。
【0013】
図2は、上記軸受室23を拡大して示す部分断面図である。
軸受20の内輪20a、及び外輪20bはそれぞれ、ナット30,31によって軸方向の位置が固定されている。すなわち、内輪20aは、回転シャフト11に設けられた段差とナット30との間に挟まれて固定され、外輪20bは、支持部材32に設けられた段差とナット31との間に挟まれて固定されている。そして、外輪20bが停止した状態で、内輪20aが回転シャフト11とともに回転するようになっている。
【0014】
内輪側のナット30と外輪側のナット31とは、軸受20の2つの側面の異なる側に分けて配置されている。潤滑油は、油道33,34を通って軸受20の2つの側面のそれぞれの側に供給される。軸受室23内の空間のうち、ナット30が配置される軸受室23内の空間は、上述した排油ポンプ27(図2参照)につながる排油用の流路26に接続されている。
【0015】
本例では、潤滑油の移動を促進させるために、内輪側のナット30の外周面に、複数の溝35が設けられている。この溝35は、具体的には、図3に示すように、回転軸Ax方向から傾けて形成されており、軸受20から離れる方向に向かって、回転方向とは逆方向に傾斜している。
【0016】
このように、内輪側のナット30の外周面に溝35が傾斜して設けられていることにより、ナット30が回転すると、ナット30の外周面付近の空気やオイルに対して軸受20から離れる方向に力が作用する。そのため、軸受20の回転軸方向へのオイルの移動が促進され、潤滑油の停滞が抑制される。
【0017】
また、図2に戻り、本例では、回転シャフト11の外周面に、凸部40が設けられている。この凸部40は、軸受20の内輪20aの外周面よりも径方向外方に突出しており、回転シャフト11の周全体にわたって鍔状に設けられている。本例では、凸部40は、軸受20の2つの側面のうちの排油側とは異なる側の側面に面するように設けられている。
【0018】
さらに、軸受20の外輪20bを固定するナット31の内周面には、上記回転シャフト11の凸部40と対向する位置、すなわち上記凸部40の径方向外方の位置に、回転軸Ax方向を向いた斜面41が形成されている。本例では、斜面41は、凸部40を覆うように、凸部40の幅よりも軸方向の長さが長く、軸受20が配置されている方向を向いて形成されている。
【0019】
このように、回転シャフト11の外周面に、径方向外方に突出する凸部40が設けられていることにより、回転シャフト11が回転すると、潤滑油の径方向外方への移動が促進される。すなわち、回転シャフト11の回転に伴う遠心力により、潤滑油は径方向外方に力を受け、凸部40の壁面を凸部40の頂部(先端)に向けて移動する。
【0020】
また、凸部40の頂部は根元よりも周速が高いため、根元よりも大きな空気の旋回流を生み出す。この流れによっても、潤滑油は凸部40の径方向外方に向けて力を受け、潤滑油の径方向外方への移動が促進される。
【0021】
そして、潤滑油の径方向外方への移動が促進されることで、油道33から供給された潤滑油は、大きく停滞することなく、軸受20において順次入れ換わる。さらに、凸部40の頂部では、根元に比べてより強い遠心力が作用するので、潤滑油は表面張力に打ち勝って径方向外方に向けて容易に飛散する。
【0022】
凸部40の径方向外方の位置には、回転軸Ax方向を向いた斜面41が形成されていることから、凸部40を介して径方向外方に飛散した潤滑油は、斜面41に沿って回転軸Ax方向に導かれる。このように、前述した内輪側のナット30が配された側の空間とは異なる側の空間においても、径方向外方、及び回転軸方向にオイルの移動が促進されることにより、潤滑油の停滞がさらに抑制される。
【0023】
また、本例では、凸部40は、回転シャフト11の周全体にわたって設けられていることから、この凸部40は、潤滑油が軸受20から離れる方向(紙面左方向)に移動する際の障壁となる。そのため、潤滑油の回転軸Ax方向への飛散が抑制され、潤滑油が効率的に軸受20の潤滑用に利用される。
【0024】
このように、油道33から供給された潤滑油は、回転軸Ax方向への移動が促進され、軸受20を潤滑した後、上述した内輪側のナット30が配された側の空間に流れる。そして、油道33からの潤滑油、及び油道34からの潤滑油はともに、前述したナット30の溝35によって回転軸Ax方向への移動が促進され、流路26を介して排油ポンプに向けて流れる。
【0025】
したがって、本実施形態のガスタービンエンジンでは、内輪側のナット30に設けられた溝35、回転シャフト11に設けられた凸部40、及び外輪側のナット31に形成された斜面等によって、潤滑油の移動が促進されることから、潤滑油の停滞が抑制される。そのため、損傷等の不具合の発生が抑制される。
【0026】
しかも、ナット30や回転シャフト11の回転運動を利用して、潤滑油の移動を促進させているので、軸受室23の容積を大きく広げる必要は少ない。そのため、エンジンの小型化の推進にも有利である。
【0027】
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
【0028】
例えば、上述した実施形態では、潤滑油の移動を促進させる溝が設けられたナットを軸受の一方の側面の側に配し、他方の側面の側の回転部材に凸部を設けているが、本発明はこれに限らない。すなわち、上記溝、及び上記凸部の少なくとも一方があればよい。
【0029】
また、潤滑油の移動を促進させる溝が設けられたナットを両方の側面の側に配してもよい。この場合、溝の形態(傾斜の向き等)はナットの回転方向と、潤滑油を流したい方向とに基づいて決定される。
【0030】
また、潤滑油の移動を促進させる凸部、及び斜面もまた、軸受の両方の側面の側に配してもよい。この場合、斜面の傾斜方向を、潤滑油を流したい方向に向けるとよい。ただし、前述したように凸部は潤滑油の回転軸方向への移動の障壁となるので、必ずしも、凸部を回転部材の周全体に設けることに限らない。
【0031】
また、上記実施形態において、軸受の外輪側のナットに形成された斜面は、頂部に向かってその傾斜角度(勾配)が大きくなっており、その頂部は回転シャフトに設けられた凸部よりも軸受から離れた位置にある。これにより、軸受に供給された潤滑油が、凸部と軸受の側面との間の空間内で好ましい流れを形成しやすいという利点がある。
【0032】
また、潤滑油の移動を促進させる溝や凸部、及び斜面は、上記実施形態に示した部材に設けるものに限定されない。
【0033】
【発明の効果】
以上説明したように、この発明によれば以下の効果を得ることができる。
本発明のガスタービンエンジンによれば、回転部材の回転運動を利用して、軸受に供給される潤滑油の移動を促進させる。そのため、軸受室の容積を大きく広げることなく、潤滑油の停滞を抑制できる。
【図面の簡単な説明】
【図1】 本発明に係るガスタービンエンジンの一実施形態の構成を模式的に示す図である。
【図2】 軸受室を拡大して示す部分断面図である。
【図3】 軸受の内輪を固定するナットを示し、(a)は正面図、(b)は側面図である。
【符号の説明】
11 回転シャフト(回転部材)
20 軸受
23 軸受室
20a 内輪
20b 外輪
30 ナット(回転部材)
31 ナット(支持部材)
32 支持部材
35 溝
40 凸部
41 斜面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas turbine engine, and more particularly to a gas turbine engine including a bearing to which lubricating oil is supplied.
[0002]
[Prior art]
A gas turbine engine used in an aircraft or the like rotates a turbine rotor with combustion gas and uses the rotational force for propulsion of an aircraft through a propeller or the like, or directly injects combustion gas backward and propels it as a reaction. It is configured to gain power.
[0003]
A rotating member such as a turbine shaft is rotatably supported by a bearing such as a ball bearing or a roller bearing, and lubricating oil is usually supplied to the bearing. The oil (oil drain) after lubricating the bearing is sucked into the oil drain pump through a predetermined flow path from the bearing chamber that houses the bearing.
[0004]
[Problems to be solved by the invention]
By the way, in recent years, gas turbine engines have been promoted to be miniaturized, and accordingly, the volume of a bearing chamber that accommodates the bearings tends to be reduced. However, if the bearing chamber is narrowed, the oil after lubricating the bearing becomes difficult to flow, and the oil tends to stagnate in the bearing chamber, leading to an excessive rise in the oil temperature and possibly causing problems such as damage. is there. As countermeasures against this, techniques for providing an oil drain passage and expanding the volume of the bearing chamber are conventionally known, but these are disadvantageous for downsizing the engine.
[0005]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a gas turbine engine that can suppress stagnation of lubricating oil supplied to a bearing without greatly increasing the volume of the bearing chamber.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, a gas turbine engine according to the present invention is a gas turbine engine including a bearing that rotates an inner ring and is supplied with lubricating oil, and fixes the inner ring of the bearing and rotates together with the inner ring of the bearing. The outer peripheral surface of the nut is provided with an oblique groove with respect to the rotation axis direction. In the gas turbine engine, the outer peripheral surface of the nut, since the oblique grooves are provided for the rotational axis, with the rotation of the nut relative to the fluid in the vicinity of the outer peripheral surface of the member, the rotation axis direction Force acts. Therefore, the movement of the lubricating oil supplied to the bearing in the rotation axis direction is promoted, and the stagnation of the lubricating oil is suppressed.
[0007]
Further, the gas turbine engine of the present invention is a gas turbine engine including a bearing to which an inner ring rotates and to which lubricating oil is supplied, and an outer circumferential surface of a rotating member that rotates together with the inner ring of the bearing has a radially outer side. And a projecting portion is provided on the inner circumferential surface of the nut for fixing the outer ring of the bearing, and a slope facing the rotation axis direction is formed at a position facing the projecting portion. . In this gas turbine engine, since the convex portion protruding radially outward is provided on the outer peripheral surface of the rotating member, movement of the lubricating oil radially outward by centrifugal force or the like is promoted. Further, since the inclined surface facing the rotation axis direction is formed on the nut for fixing the outer ring so as to face the convex portion, the lubricating oil scattered radially outward through the convex portion is formed on the inclined surface. Along the axis of rotation. Thereby, the movement of the lubricating oil supplied to the bearing in the rotation axis direction is promoted, and the stagnation of the lubricating oil is suppressed.
[0008]
In this case, the convex portion may be provided over the entire circumference of the rotating member, and the inclined surface may face a direction in which the bearing is disposed.
In this case, the movement of the lubricating oil in the direction away from the bearing is suppressed by the convex portion, and the lubricating oil is guided in the direction approaching the bearing by the inclined surface. That is, the movement of the lubricating oil is promoted in the direction from the convex portion toward the bearing.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The gas turbine engine of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration in an embodiment of a gas turbine engine of the present invention. In this gas turbine engine, the air flowing into the engine body 10 flows backward while being compressed inside the engine, and is discharged by rotating a turbine (not shown). The rotational force of the turbine is transmitted to a compression blade (not shown) via a rotating shaft (turbine shaft) 11.
[0010]
The rotating shaft 11 is rotatably supported by a plurality of bearings. Reference numeral 20 denotes one of the bearings. For example, a ball bearing or a roller bearing is used as the bearing. Lubricating oil is supplied from the oil tank 21 to the bearing 20, and the lubricating oil reduces friction of the bearing 20 and absorbs heat from the bearing 20 to suppress a temperature rise of the bearing 20.
[0011]
Lubricating oil from the oil tank 21 is pressurized by the oil pump 22 and sent to the bearing chamber 23 that houses the bearing 20. In this example, the oil pump 22 is driven by an auxiliary machine (accessory gear box: AGB) 24. The auxiliary machine 23 is configured to obtain power by taking out the driving force of the rotating shaft 11 via the gear 25, for example.
[0012]
The lubricating oil sent to the bearing chamber 23 flows in the direction of the rotation axis Ax of the bearing 20. Due to the flow in the direction of the rotation axis Ax, the lubricating oil around the bearing 20 is sequentially replaced, and the heat generated in the bearing 20 is removed. The oil (oil drain) after lubricating the bearing 20 flows into the oil drain passage 26, is sucked into the oil pump 27, and is returned to the oil tank 21.
[0013]
FIG. 2 is a partial sectional view showing the bearing chamber 23 in an enlarged manner.
The axial positions of the inner ring 20a and the outer ring 20b of the bearing 20 are fixed by nuts 30 and 31, respectively. That is, the inner ring 20a is fixed by being sandwiched between a step provided on the rotating shaft 11 and the nut 30, and the outer ring 20b is fixed by being sandwiched between a step provided on the support member 32 and the nut 31. Has been. And the inner ring | wheel 20a rotates with the rotating shaft 11 in the state which the outer ring | wheel 20b stopped.
[0014]
The nut 30 on the inner ring side and the nut 31 on the outer ring side are arranged separately on two different sides of the bearing 20. Lubricating oil is supplied to each of the two sides of the bearing 20 through oil passages 33 and 34. Of the space in the bearing chamber 23, the space in the bearing chamber 23 in which the nut 30 is disposed is connected to the oil discharge passage 26 connected to the above-described oil discharge pump 27 (see FIG. 2).
[0015]
In this example, in order to promote the movement of the lubricating oil, a plurality of grooves 35 are provided on the outer peripheral surface of the nut 30 on the inner ring side. Specifically, as shown in FIG. 3, the groove 35 is formed to be inclined from the rotation axis Ax direction, and is inclined in a direction opposite to the rotation direction in a direction away from the bearing 20.
[0016]
As described above, the groove 35 is inclined and provided on the outer peripheral surface of the nut 30 on the inner ring side, so that when the nut 30 rotates, the air and oil in the vicinity of the outer peripheral surface of the nut 30 are separated from the bearing 20. The force acts on. Therefore, the movement of the oil in the rotation axis direction of the bearing 20 is promoted, and the stagnation of the lubricating oil is suppressed.
[0017]
Returning to FIG. 2, in this example, a convex portion 40 is provided on the outer peripheral surface of the rotating shaft 11. The convex portion 40 protrudes radially outward from the outer peripheral surface of the inner ring 20 a of the bearing 20, and is provided in a bowl shape over the entire circumference of the rotating shaft 11. In this example, the convex portion 40 is provided so as to face the side surface of the two side surfaces of the bearing 20 that is different from the oil drain side.
[0018]
Further, on the inner peripheral surface of the nut 31 that fixes the outer ring 20 b of the bearing 20, a position facing the convex portion 40 of the rotating shaft 11, that is, a position radially outward of the convex portion 40, in the direction of the rotation axis Ax. An inclined surface 41 is formed. In this example, the slope 41 is formed so as to cover the convex portion 40 and has a length in the axial direction longer than the width of the convex portion 40 and facing the direction in which the bearing 20 is disposed.
[0019]
Thus, by providing the convex portion 40 projecting radially outward on the outer peripheral surface of the rotating shaft 11, when the rotating shaft 11 rotates, the movement of the lubricating oil radially outward is promoted. The That is, the lubricating oil receives a force radially outward by the centrifugal force accompanying the rotation of the rotating shaft 11, and moves the wall surface of the convex portion 40 toward the top (tip) of the convex portion 40.
[0020]
Moreover, since the peripheral part of the top part of the convex part 40 has a higher peripheral speed than the base, a swirling flow of air larger than the base is generated. Also by this flow, the lubricating oil receives a force toward the radially outward direction of the convex portion 40, and the movement of the lubricating oil to the radially outward direction is promoted.
[0021]
Further, by promoting the outward movement of the lubricating oil in the radial direction, the lubricating oil supplied from the oil passage 33 is sequentially replaced in the bearing 20 without significantly stagnation. Further, since the centrifugal force stronger than that at the root acts on the top of the convex portion 40, the lubricating oil overcomes the surface tension and easily scatters outward in the radial direction.
[0022]
Since the inclined surface 41 facing the rotation axis Ax direction is formed at the radially outward position of the convex portion 40, the lubricating oil scattered radially outward through the convex portion 40 is applied to the inclined surface 41. Along the direction of the rotation axis Ax. In this way, in the space on the side different from the space on the side where the inner ring side nut 30 is disposed, the movement of the oil is promoted radially outward and in the direction of the rotation axis, thereby Stagnation is further suppressed.
[0023]
Further, in this example, since the convex portion 40 is provided over the entire circumference of the rotary shaft 11, the convex portion 40 is a barrier when the lubricating oil moves in the direction away from the bearing 20 (the left direction in the drawing). It becomes. Therefore, scattering of the lubricating oil in the direction of the rotation axis Ax is suppressed, and the lubricating oil is efficiently used for lubricating the bearing 20.
[0024]
Thus, the lubricating oil supplied from the oil passage 33 is promoted to move in the direction of the rotation axis Ax, and after lubricating the bearing 20, flows into the space on the side where the above-described inner ring side nut 30 is disposed. Both the lubricating oil from the oil passage 33 and the lubricating oil from the oil passage 34 are promoted to move in the direction of the rotation axis Ax by the groove 35 of the nut 30 described above, and are supplied to the oil discharge pump through the flow path 26. It flows toward.
[0025]
Therefore, in the gas turbine engine according to the present embodiment, the lubricating oil is provided by the groove 35 provided in the nut 30 on the inner ring side, the convex portion 40 provided on the rotary shaft 11, the slope formed on the nut 31 on the outer ring side, and the like. Therefore, the stagnation of the lubricating oil is suppressed. Therefore, the occurrence of defects such as damage is suppressed.
[0026]
Moreover, since the movement of the lubricating oil is promoted by utilizing the rotational motion of the nut 30 and the rotary shaft 11, there is little need to greatly increase the volume of the bearing chamber 23. Therefore, it is advantageous for promoting the downsizing of the engine.
[0027]
As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to the examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
[0028]
For example, in the above-described embodiment, a nut provided with a groove for promoting the movement of the lubricating oil is arranged on one side surface side of the bearing, and the convex portion is provided on the rotating member on the other side surface side. The present invention is not limited to this. That is, it is sufficient if there is at least one of the groove and the convex portion.
[0029]
Moreover, you may distribute | arrange the nut provided with the groove | channel which accelerates | stimulates the movement of lubricating oil in the side surface of both sides. In this case, the shape of the groove (inclination direction, etc.) is determined based on the rotation direction of the nut and the direction in which the lubricating oil is desired to flow.
[0030]
Further, the convex portion and the inclined surface that promote the movement of the lubricating oil may also be arranged on both side surfaces of the bearing. In this case, the inclination direction of the slope may be directed to the direction in which the lubricating oil is desired to flow. However, as described above, the convex portion serves as a barrier for movement of the lubricating oil in the rotation axis direction, and thus the convex portion is not necessarily provided on the entire circumference of the rotating member.
[0031]
In the above embodiment, the inclined surface formed on the nut on the outer ring side of the bearing has a larger inclination angle (gradient) toward the top, and the top is a bearing than the convex provided on the rotating shaft. It is in the position away from. Thereby, there exists an advantage that the lubricating oil supplied to the bearing is easy to form a preferable flow in the space between the convex portion and the side surface of the bearing.
[0032]
Moreover, the groove | channel, convex part, and slope which accelerate the movement of lubricating oil are not limited to what is provided in the member shown to the said embodiment.
[0033]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
According to the gas turbine engine of the present invention, the movement of the lubricating oil supplied to the bearing is promoted by utilizing the rotational motion of the rotating member. Therefore, the stagnation of the lubricating oil can be suppressed without greatly increasing the volume of the bearing chamber.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a configuration of an embodiment of a gas turbine engine according to the present invention.
FIG. 2 is an enlarged partial sectional view showing a bearing chamber.
FIG. 3 shows a nut for fixing an inner ring of a bearing, (a) is a front view, and (b) is a side view.
[Explanation of symbols]
11 Rotating shaft (Rotating member)
20 Bearing 23 Bearing chamber 20a Inner ring 20b Outer ring 30 Nut (rotating member)
31 Nut (support member)
32 support member 35 groove 40 convex part 41 slope

Claims (3)

内輪が回転しかつ潤滑油が供給される軸受を備えるガスタービンエンジンであって、
前記軸受の内輪とともに回転する回転部材の外周面には、径方向外方に突出する凸部が設けられ、
前記軸受の外輪を固定するナットの内周面には、前記凸部と対向する位置に、回転軸方向を向いた斜面が形成されていることを特徴とするガスタービンエンジン。
A gas turbine engine including a bearing that rotates an inner ring and is supplied with lubricating oil,
On the outer peripheral surface of the rotating member that rotates together with the inner ring of the bearing, a convex portion protruding radially outward is provided,
A gas turbine engine characterized in that a slope facing the direction of the rotation axis is formed on an inner peripheral surface of a nut for fixing an outer ring of the bearing at a position facing the convex portion.
前記凸部は、前記回転部材の周全体にわたって設けられ、
前記斜面は、前記軸受が配置されている方向を向いていることを特徴とする請求項1に記載のガスタービンエンジン。
The convex portion is provided over the entire circumference of the rotating member,
The gas turbine engine according to claim 1 , wherein the inclined surface faces a direction in which the bearing is disposed.
前記軸受の内輪を固定し、前記軸受の内輪とともに回転するナットの外周面には、回転軸方向に対して斜めの溝が設けられていることを特徴とする請求項1または2に記載のガスタービンエンジン。3. The gas according to claim 1, wherein the outer ring of the nut that fixes the inner ring of the bearing and rotates together with the inner ring of the bearing is provided with a groove that is inclined with respect to the direction of the rotation axis. Turbine engine.
JP2001245907A 2001-08-14 2001-08-14 Gas turbine engine Expired - Lifetime JP4797299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001245907A JP4797299B2 (en) 2001-08-14 2001-08-14 Gas turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245907A JP4797299B2 (en) 2001-08-14 2001-08-14 Gas turbine engine

Publications (2)

Publication Number Publication Date
JP2003056362A JP2003056362A (en) 2003-02-26
JP4797299B2 true JP4797299B2 (en) 2011-10-19

Family

ID=19075570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245907A Expired - Lifetime JP4797299B2 (en) 2001-08-14 2001-08-14 Gas turbine engine

Country Status (1)

Country Link
JP (1) JP4797299B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9944382B2 (en) 2013-09-18 2018-04-17 Snecma Tightening and oil discharging nut, and a turbine engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024114B2 (en) * 2008-02-26 2012-09-12 株式会社ジェイテクト Bearing device for turbocharger
US9995174B2 (en) 2010-10-12 2018-06-12 United Technologies Corporation Planetary gear system arrangement with auxiliary oil system
SG11201404964XA (en) * 2012-03-23 2014-10-30 United Technologies Corp Planetary gear system arrangement with auxiliary oil system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2518650B1 (en) * 1981-12-22 1986-05-30 Snecma DEVICE FOR CONTROLLING THE GAMES OF A MULTI-BODY TURBOMACHINE INTER-SHAFT BEARING
JPS60137131U (en) * 1984-02-23 1985-09-11 石川島播磨重工業株式会社 Lubricating device for turbocharger bearings
EP0289897B1 (en) * 1987-05-08 1991-10-02 Maschinenfabrik Rieter Ag High speed rotational bearing
JPH0639067Y2 (en) * 1990-07-10 1994-10-12 川崎重工業株式会社 Gas turbine bearing lubrication structure
JP3089806B2 (en) * 1992-03-06 2000-09-18 石川島播磨重工業株式会社 Gas turbine equipment
US5301957A (en) * 1992-04-27 1994-04-12 General Electric Company Expanding circumferential seal with upper-cooled runner
JP2776173B2 (en) * 1992-10-07 1998-07-16 日産自動車株式会社 Squeeze film damper type bearing device
JPH07224680A (en) * 1994-02-16 1995-08-22 Mitsubishi Heavy Ind Ltd Bearing lubricator of outboard main shaft
JP3639322B2 (en) * 1994-03-18 2005-04-20 株式会社アイ・エイチ・アイ・エアロスペース High-speed rotating body vibration damping support device and manufacturing method thereof
JPH08145053A (en) * 1994-11-24 1996-06-04 Nissan Motor Co Ltd Bearing device
JP3100942B2 (en) * 1998-04-16 2000-10-23 アイシン・エィ・ダブリュ株式会社 Detent of fixing device and molding method thereof
JP2000065031A (en) * 1998-08-19 2000-03-03 Ntn Corp Locking nut

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9944382B2 (en) 2013-09-18 2018-04-17 Snecma Tightening and oil discharging nut, and a turbine engine

Also Published As

Publication number Publication date
JP2003056362A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP4671177B2 (en) Electric turbocharger
JP5080814B2 (en) Gas turbine engine assembly, differential squeeze oil film damper bearing assembly, and gas turbine engine
JP5507142B2 (en) Dynamic impeller oil seal
JP4753033B2 (en) Electric turbocharger
JP5062464B2 (en) Motor rotor
JP4058000B2 (en) Fan blade with an embrittled tip
US20200088233A1 (en) Improvements in or relating to gas bearings
JP6223859B2 (en) Supercharger and motor cooling method
JP6128129B2 (en) Method for manufacturing variable capacity supercharger and housing for variable capacity supercharger
JP4797299B2 (en) Gas turbine engine
KR101382309B1 (en) Bearing of turbo-charger
KR100801717B1 (en) Cross revolution axial flow turbin compressor
FR3036140B1 (en) AIRCRAFT TURBOMACHINE WITH COANDA EFFECT
KR101729232B1 (en) Automotive turbocharger with ratiotional inertia reduced rotor shaft
JPH0151912B2 (en)
JP2014047680A (en) Turbosupercharger
JP2010127240A (en) Fitting structure of impeller
JP6255786B2 (en) Variable capacity turbocharger
JP2015537156A (en) Centrifugal gas compressor or pump including ring and cowl
JP7023710B2 (en) Fluid dynamic bearing
JP2019519717A (en) Exhaust gas turbocharger bearing device and exhaust gas turbocharger
JP6865604B2 (en) Centrifugal compressor and exhaust turbine supercharger
KR100868896B1 (en) Foil bearing and motor thereby
JP2604636B2 (en) All blade steam turbine
JPS595833A (en) Supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4797299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term