JP4794845B2 - Zoom lens and imaging apparatus having the same - Google Patents

Zoom lens and imaging apparatus having the same Download PDF

Info

Publication number
JP4794845B2
JP4794845B2 JP2004302869A JP2004302869A JP4794845B2 JP 4794845 B2 JP4794845 B2 JP 4794845B2 JP 2004302869 A JP2004302869 A JP 2004302869A JP 2004302869 A JP2004302869 A JP 2004302869A JP 4794845 B2 JP4794845 B2 JP 4794845B2
Authority
JP
Japan
Prior art keywords
lens
lens group
negative
zoom
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004302869A
Other languages
Japanese (ja)
Other versions
JP2006113453A (en
JP2006113453A5 (en
Inventor
則廣 難波
玲 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004302869A priority Critical patent/JP4794845B2/en
Publication of JP2006113453A publication Critical patent/JP2006113453A/en
Publication of JP2006113453A5 publication Critical patent/JP2006113453A5/ja
Application granted granted Critical
Publication of JP4794845B2 publication Critical patent/JP4794845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Description

本発明は、ズームレンズ及びそれを有する撮像装置に関し、例えばビデオカメラやデジタルスチルカメラ等の撮像装置に好適なものである。   The present invention relates to a zoom lens and an image pickup apparatus having the same, and is suitable for an image pickup apparatus such as a video camera or a digital still camera.

最近、ビデオカメラ、デジタルスチルカメラ等の撮像装置(カメラ)では、画素数の多い(高画素の)固体撮像素子が多く使用され、それに用いる光学系には高性能のズームレンズが求められている。   Recently, many imaging devices (cameras) such as video cameras and digital still cameras use a solid-state imaging device having a large number of pixels (high pixels), and a high-performance zoom lens is required for an optical system used therefor. .

特に高画素の撮像素子用のズームレンズには色収差として単色収差の補正のみならず広い波長域での色収差の補正を十分に行うことが要望されている。一般に高変倍比(高ズーム比)のズームレンズでは望遠端において全系の焦点距離が長いと、色収差については一次の色消しに加え二次スペクトルの低減が強く求められる。   In particular, zoom lenses for high-pixel imaging devices are required to sufficiently correct chromatic aberration not only for chromatic aberration but also for a wide wavelength range. In general, in a zoom lens having a high zoom ratio (high zoom ratio), if the focal length of the entire system is long at the telephoto end, reduction of the secondary spectrum is strongly required for chromatic aberration in addition to primary achromaticity.

従来、望遠端において軸上色収差の二次スペクトルの補正のために異常分散性を有するガラスより成るレンズを用いたズームレンズが数多く知られている。また、高変倍比化に適したズームレンズのズーム構成としては最も物体側のレンズ群を正の屈折力のレンズ群としたポジティブリード型のズームレンズが挙げられる。   Conventionally, many zoom lenses using a lens made of glass having anomalous dispersion for correcting the secondary spectrum of longitudinal chromatic aberration at the telephoto end are known. As a zoom configuration of a zoom lens suitable for increasing the zoom ratio, a positive lead type zoom lens in which the most object side lens unit is a lens unit having a positive refractive power can be cited.

物体側より順に、正、負、正の屈折力のレンズ群より成る3群構成のズームレンズにおいて異常分散性を有するガラスより成るレンズを用いたズームレンズが知られている(例えば特許文献1〜3)。   In order from the object side, zoom lenses using lenses made of glass having anomalous dispersion in a three-group zoom lens composed of positive, negative, and positive refractive power lens groups are known (for example, Patent Documents 1 to 3). 3).

また物体側より順に、正、負、正、正の屈折力のレンズ群より成る4群構成のズームレンズにおいて異常分散性を有するガラスより成るレンズを用いたズームレンズが知られている(例えば特許文献4〜8)。   A zoom lens using a lens made of glass having anomalous dispersion in a four-group zoom lens composed of lens groups having positive, negative, positive and positive refractive powers in order from the object side is known (for example, patents). References 4-8).

また物体側より順に、正、負、正、負、正の屈折力のレンズ群より成る5群構成のズームレンズにおいて異常分散性を有するガラスより成るレンズを用いたズームレンズが知られている(例えば特許文献9〜12)。
特許第3008580号 特開平6−43363号公報 特公平3−58490号公報 特許第3097399号 特開2002−62478号公報 特開2000−321499号公報 特開平8−248317号公報 特開2001−194590号公報 特開平9−5624号公報 特開2002−62478号公報 特開2001−350093号公報 特開2001−194590号公報
Further, in order from the object side, a zoom lens using a lens made of glass having anomalous dispersion in a five-group zoom lens composed of lens groups of positive, negative, positive, negative, and positive refractive power is known ( For example, Patent Documents 9 to 12).
Patent No. 3008580 JP-A-6-43363 Japanese Patent Publication No. 3-58490 Patent No. 3097399 Japanese Patent Laid-Open No. 2002-62478 JP 2000-32499 A JP-A-8-248317 JP 2001-194590 A Japanese Patent Laid-Open No. 9-5624 Japanese Patent Laid-Open No. 2002-62478 JP 2001-350093 A JP 2001-194590 A

ポジティブリード型の高変倍比のズームレンズにおいては、望遠側のズーム領域において軸上色収差の二次スペクトルが大きくなりやすい。軸上色収差の二次スペクトルを低減させるためには、低分散かつ部分分散比の小さい異常分散性材料を用いるのが有効である。   In a positive lead type zoom lens with a high zoom ratio, the secondary spectrum of axial chromatic aberration tends to be large in the zoom region on the telephoto side. In order to reduce the secondary spectrum of axial chromatic aberration, it is effective to use an anomalous dispersion material having a low dispersion and a small partial dispersion ratio.

特許文献2〜5,7,8,11では正の屈折力の第1レンズ群中の正レンズの材料に、アッベ数が80を越える異常分散性を有するガラスを用いている。   In Patent Documents 2, 5, 7, 8, and 11, glass having anomalous dispersion with an Abbe number exceeding 80 is used as the material of the positive lens in the first lens unit having a positive refractive power.

一般にアッベ数が80を越える低分散ガラスは異常分散性を有しており、ポジティブリードの第1レンズ群の正レンズに用いると望遠側の二次スペクトルを低減させる効果がある。しかしながら異常分散性材料は一般に加工が難しく特に径の大きい第1レンズ群に用いる場合は製造が難しくなる。   In general, a low dispersion glass having an Abbe number exceeding 80 has anomalous dispersion, and when used for a positive lens in the first lens group of positive lead, there is an effect of reducing the secondary spectrum on the telephoto side. However, anomalous dispersive materials are generally difficult to process and particularly difficult to manufacture when used for the first lens group having a large diameter.

特許文献1〜5,9では正の屈折力の第3レンズ群中の正レンズの材料に、アッベ数が80を越える異常分散性を有するガラスを用いて二次スペクトルを低減させている。   In Patent Documents 1 to 5 and 9, the secondary spectrum is reduced by using a glass having an anomalous dispersion with an Abbe number exceeding 80 as the material of the positive lens in the third lens group having a positive refractive power.

しかしながら第3レンズ群中の負レンズの材料に異常分散特性を有するものは開示されておらず、二次スペクトルの低減方法としては、正レンズの材料に異常分散特性のガラスを用いることが開示されているだけであった。このため撮像素子の高画素化のために二次スペクトル量を従来より低減させるには、第3レンズ群中の正レンズに蛍石等のより異常分散性の強い材料を用いなければならなかった。   However, the negative lens material in the third lens group has not been disclosed as having anomalous dispersion characteristics, and as a method for reducing the secondary spectrum, the use of anomalous dispersion characteristic glass as the positive lens material is disclosed. It was only there. For this reason, in order to reduce the amount of secondary spectrum in order to increase the number of pixels of the image sensor, it has been necessary to use a material having a higher anomalous dispersion such as fluorite for the positive lens in the third lens group. .

本発明は、異常分散性の材料より成るレンズを適切に用いることによって広角端から望遠端に至る全ズーム範囲において、色収差、特に2次スペクトルを良好に補正し、高い光学性能が得られるズームレンズの提供を目的とする。   The present invention is a zoom lens capable of satisfactorily correcting chromatic aberration, particularly the secondary spectrum, and obtaining high optical performance in the entire zoom range from the wide-angle end to the telephoto end by appropriately using a lens made of an anomalous dispersion material. The purpose is to provide.

本発明のズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成され、広角端に比べて望遠端において、前記第1レンズ群と前記第2レンズ群の間隔が広くなり、前記第2レンズ群と前記第3レンズ群の間隔が狭くなり、前記第3レンズ群と前記第4レンズ群の間隔が広くなるように各レンズ群の間隔を変化させてズーミングを行うズームレンズにおいて、前記第3レンズ群は、アッベ数をνd3n、部分分散比をθgF3nとするとき、
10<νd3n≦28.3
−0.0027νd3n+0.620<θgF3n<−0.0027νd3n+0.680
なる条件を満足する材料で構成される負レンズを有することを特徴としている。
この他本発明のズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群より構成され、広角端に比べて望遠端において、前記第1レンズ群と前記第2レンズ群の間隔が広くなり、前記第2レンズ群と前記第3レンズ群の間隔が狭くなり、前記第3レンズ群と前記第4レンズ群の間隔が広くなり、前記第4レンズ群と前記第5レンズ群の間隔が狭くなるように各レンズ群の間隔を変化させてズーミングを行うズームレンズにおいて、前記第3レンズ群は、アッベ数をνd3n、部分分散比をθgF3nとするとき、
10<νd3n≦28.3
−0.0027νd3n+0.620<θgF3n<−0.0027νd3n+0.680
なる条件を満足する材料で構成される負レンズを有することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive refractive power. is a fourth lens unit, at the telephoto end than at the wide-angle end, the distance between the first lens and the second lens group and group is wide, it narrows the distance between the second lens and the third lens group and group Ri, wherein the third lens group and the distance between the fourth lens group changing the interval each lens group so that widens zoom lens for zooming, the third lens group, Nyudi3n the Abbe number, a partial dispersion When the ratio is θgF3n,
10 <νd3n ≦ 28.3
−0.0027νd3n + 0.620 <θgF3n <−0.0027νd3n + 0.680
It is characterized by having a negative lens made of a material that satisfies the following conditions.
In addition, the zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power , and a negative refraction. the fourth lens group of the force, is composed of a fifth lens unit having positive refractive power, at the telephoto end than at the wide-angle end, the spacing of the first lens group and the second lens group becomes large, the second lens Ri a narrow interval between the the group third lens group, the distance between the fourth lens group and the third lens group becomes large, so that the distance of said fifth lens group and the fourth lens group is narrowed each by changing the distance between the lens units in the zoom lens for zooming, the third lens group, Nyudi3n an Abbe number, when the partial dispersion ratio and ShitagF3n,
10 <νd3n ≦ 28.3
−0.0027νd3n + 0.620 <θgF3n <−0.0027νd3n + 0.680
It is characterized by having a negative lens made of a material that satisfies the following conditions.

本発明によれば、広いズーム範囲において、色収差を良好に補正し、高い光学性能が得られるズームレンズが実現できる。   According to the present invention, it is possible to realize a zoom lens that can satisfactorily correct chromatic aberration and obtain high optical performance in a wide zoom range.

以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。   Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.

図1は、本発明のズームレンズの一例としての実施例1〜6のズームレンズの近軸屈折力配置の説明図である。   FIG. 1 is an explanatory diagram of the paraxial refractive power arrangement of the zoom lenses of Examples 1 to 6 as an example of the zoom lens of the present invention.

図2は、実施例1のズームレンズの要部断面図、図3〜図5は実施例1のズームレンズの広角端、中間焦点距離、望遠端における収差図である。   FIG. 2 is a cross-sectional view of a main part of the zoom lens of Example 1, and FIGS. 3 to 5 are aberration diagrams of the zoom lens of Example 1 at the wide-angle end, the intermediate focal length, and the telephoto end.

図6は、実施例2のズームレンズの要部断面図、図7〜図9は実施例2のズームレンズの広角端、中間焦点距離、望遠端における収差図である。   FIG. 6 is a cross-sectional view of a main part of the zoom lens of Example 2, and FIGS. 7 to 9 are aberration diagrams of the zoom lens of Example 2 at the wide angle end, the intermediate focal length, and the telephoto end.

図10は、参考例1のズームレンズの要部断面図、図11〜図13は参考例1のズームレンズの広角端、中間焦点距離、望遠端における収差図である。 FIG. 10 is a cross-sectional view of the main part of the zoom lens of Reference Example 1 , and FIGS. 11 to 13 are aberration diagrams of the zoom lens of Reference Example 1 at the wide angle end, intermediate focal length, and telephoto end.

図14は、実施例のズームレンズの要部断面図、図15〜図17は実施例のズームレンズの広角端、中間焦点距離、望遠端における収差図である。 FIG. 14 is a cross-sectional view of a main part of the zoom lens of Example 3 , and FIGS. 15 to 17 are aberration diagrams of the zoom lens of Example 3 at the wide angle end, the intermediate focal length, and the telephoto end.

図18は、実施例のズームレンズの要部断面図、図19〜図21は実施例のズームレンズの広角端、中間焦点距離、望遠端における収差図である。 FIG. 18 is a cross-sectional view of a principal part of the zoom lens of Example 4 , and FIGS. 19 to 21 are aberration diagrams of the zoom lens of Example 4 at the wide angle end, the intermediate focal length, and the telephoto end.

図22は、実施例のズームレンズの要部断面図、図23〜図25は実施例のズームレンズの広角端、中間焦点距離、望遠端における収差図である。 FIG. 22 is a cross-sectional view of a principal part of the zoom lens of Example 5 , and FIGS. 23 to 25 are aberration diagrams of the zoom lens of Example 5 at the wide angle end, the intermediate focal length, and the telephoto end.

図26は、実施例のズームレンズの要部断面図、図27〜図29は実施例のズームレンズの広角端、中間焦点距離、望遠端における収差図である。 FIG. 26 is a cross-sectional view of a principal part of the zoom lens of Example 6 , and FIGS. 27 to 29 are aberration diagrams of the zoom lens of Example 6 at the wide-angle end, the intermediate focal length, and the telephoto end.

図30はアッベ数νdと部分分散比Θg,Fとの関係を示す説明図、図31,図32は本発明の実施例8,9の撮像装置の概略図である。   FIG. 30 is an explanatory diagram showing the relationship between the Abbe number νd and the partial dispersion ratio Θg, F, and FIGS. 31 and 32 are schematic diagrams of image pickup apparatuses according to Examples 8 and 9 of the present invention.

図2,図6,図10,図14,図18,図22に示した実施例1、2、参考例1、実施例3〜5のズームレンズのレンズ断面図において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。SPは開口絞りであり、第3レンズ群L3の前方に位置している。 In the lens sectional views of the zoom lenses of Examples 1 and 2, Reference Example 1, and Examples 3 to 5 shown in FIGS. 2, 6, 10, 14, 18, and 22, L1 is a positive refractive power. L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is a fourth lens group having a positive refractive power. SP is an aperture stop, which is located in front of the third lens unit L3.

図26に示した実施例のズームレンズのレンズ断面図において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は負の屈折力の第4レンズ群、L5は正の屈折力の第5レンズ群である。やはり、SPは開口絞りであり、第3レンズ群L3の前方に位置している。 In the lens cross-sectional view of the zoom lens of Example 6 shown in FIG. 26, L1 is a first lens unit having a positive refractive power, L2 is a second lens unit having a negative refractive power, and L3 is a third lens unit having a positive refractive power. A lens group, L4 is a fourth lens group having a negative refractive power, and L5 is a fifth lens group having a positive refractive power. After all, SP is an aperture stop and is located in front of the third lens unit L3.

図2,図6,図10,図14,図18,図22,図26のレンズ断面図において、Gは光学フィルター、フェースプレート、色分解プリズム等に相当し、設計上設けられた光学ブロックである。IPは像面であり、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面が位置している。又レンズ断面図において左方が物体側で右方が像側である。   In the lens cross-sectional views of FIGS. 2, 6, 10, 14, 18, 22, and 26, G corresponds to an optical filter, a face plate, a color separation prism, etc., and is an optical block provided by design. is there. IP is an image plane on which an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is located. In the lens cross-sectional view, the left side is the object side and the right side is the image side.

収差図において、d,g,C,Fはd線,g線,C線,F線、ΔM,ΔSはメリディオナル像面,サジタル像面、倍率色収差はg線,C線,F線によって表している。   In the aberration diagrams, d, g, C and F are d-line, g-line, C-line and F-line, ΔM and ΔS are meridional image surface and sagittal image surface, and lateral chromatic aberration is expressed by g-line, C-line and F-line. Yes.

各実施例と参考例では、広角端から望遠端へのズーミングに際して矢印のように各レンズ群を移動させている。 In each example and reference example , each lens group is moved as indicated by an arrow during zooming from the wide-angle end to the telephoto end.

尚、広角端と望遠端とは変倍用のレンズ群が機構上、光軸方向に移動可能な範囲の両端に位置した時のズーム位置をいう。   Note that the wide-angle end and the telephoto end are zoom positions when the zooming lens groups are positioned at both ends of a range in which the lens group can be moved in the optical axis direction.

各実施例と参考例では、広角端から望遠端へのズーミングに際して、第1レンズ群L1と第2レンズ群L2の間隔が広がるように第1レンズ群L1を物体側へ、第2レンズ群L2と絞りSPとの間隔が狭まるように第2レンズ群L2を像側へ、第2レンズ群L2と第3レンズ群L3の間隔が狭まるように第3レンズ群L3を物体側へ移動させるとともに、ズーミングに伴う像面変動を第4レンズ群L4(実施例では第5レンズ群L5)を移動させて補正している。 In each example and reference example , during zooming from the wide-angle end to the telephoto end, the first lens unit L1 is moved to the object side and the second lens unit L2 is set so that the distance between the first lens unit L1 and the second lens unit L2 is widened. The second lens unit L2 is moved to the image side so that the distance between the aperture SP and the stop SP is narrowed, and the third lens unit L3 is moved to the object side so that the distance between the second lens unit L2 and the third lens unit L3 is narrowed. Image plane fluctuations associated with zooming are corrected by moving the fourth lens unit L4 (in the sixth embodiment, the fifth lens unit L5).

第1レンズ群L1をズーミングの際に移動させることにより、広角端でのレンズ全長を短縮し光軸方向におけるレンズ系全体の小型化を図っている。また望遠側に比べて広角側にて第1レンズ群L1と絞りSPとの間隔を短縮することで第1レンズ群L1の有効径を小さくし、前玉径の小型化を図っている。   By moving the first lens unit L1 during zooming, the total lens length at the wide-angle end is shortened, and the entire lens system in the optical axis direction is downsized. In addition, the effective diameter of the first lens unit L1 is reduced by reducing the distance between the first lens unit L1 and the stop SP on the wide-angle side compared to the telephoto side, thereby reducing the size of the front lens.

また、第3レンズ群L3を広角端から望遠端へのズーミングの際に物体側に移動させるとともに、第3レンズ群L3と第4レンズ群L4の間隔が広がるように移動させ、更に第3レンズ群L3に変倍作用を分担させている。これにより第1レンズ群L1と第2レンズ群L2の間隔変化による変倍作用を弱めることができ、望遠端における第1レンズ群L1と第2レンズ群L2の間隔を短縮することができる。これによって望遠側でのレンズ全長の短縮及び前玉径の小型化を図っている。   The third lens unit L3 is moved toward the object side during zooming from the wide-angle end to the telephoto end, and is moved so that the distance between the third lens unit L3 and the fourth lens unit L4 is widened. The group L3 is assigned the zooming action. Accordingly, it is possible to weaken the zooming effect due to the change in the distance between the first lens group L1 and the second lens group L2, and it is possible to shorten the distance between the first lens group L1 and the second lens group L2 at the telephoto end. As a result, the total lens length on the telephoto side is shortened and the front lens diameter is reduced.

なお、絞りSPは、ズーミングの際に第3レンズ群L3と一体に移動させても、又別体にて移動させてもよい。一体とすると移動数が少なくなりメカ構造を簡素化しやすくなる。また、第3レンズ群L3と別体にて移動させる場合は特に物体側に凸状の軌跡にて移動させると前玉径の小型化が容易となる。 次に各実施例と参考例の特徴について説明する。 The aperture stop SP may be moved integrally with the third lens unit L3 during zooming or may be moved separately. When integrated, the number of movements is reduced and the mechanical structure is easily simplified. Further, when the lens is moved separately from the third lens unit L3, the front lens diameter can be easily reduced particularly by moving the third lens unit L3 along a convex locus on the object side. Next, features of each embodiment and reference example will be described.

◎各実施例のズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3およびこれに続く一つ以上のレンズ群を含む後群を有し、広角端に比べ望遠端での該第1レンズ群L1と第2レンズ群L2の間隔が広く、第2レンズ群L2と第3レンズ群L3の間隔が狭くなるようにレンズ群を移動させて、ズーミングを行っている。なお、実施例1、2、参考例1、実施例3〜5は、後群が正の屈折力の第4レンズ群のみで構成されている例であり、実施例は、後群が、負の屈折力の第4レンズ群と正の屈折力の第5レンズ群で構成されている例である。 The zoom lens of each embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, a third lens unit L3 having a positive refractive power, This has a rear group including one or more lens groups, and the distance between the first lens group L1 and the second lens group L2 at the telephoto end is wider than the wide-angle end, and the second lens group L2 and the third lens group Zooming is performed by moving the lens groups so that the distance between the lens groups L3 is narrow. Examples 1 and 2, Reference Example 1 and Examples 3 to 5 are examples in which the rear group is configured only by the fourth lens group having a positive refractive power. In Example 6 , the rear group is In this example, the fourth lens unit has a negative refractive power and the fifth lens unit has a positive refractive power.

◎また、各実施例では、次の条件式のうち1以上を満足するようにしており、これによって各々の条件式に対応した効果を得ている。   In each embodiment, one or more of the following conditional expressions are satisfied, thereby obtaining an effect corresponding to each conditional expression.

第3レンズ群L3は1枚以上の負レンズを有し、第3レンズ群L3中の所定の負レンズAの材料の屈折率とアッベ数を各々N3n,νd3n、部分分散比をΘg,F3n、負レンズAの焦点距離をf3n、第1,第2,第3レンズ群の焦点距離を各々f1,f2,f3、全系における望遠端の焦点距離をft、第3レンズ群L3においてアッベ数の最も大きい正レンズBのアッベ数をνd3p、正レンズBの部分分散比をΘg,F3p、負レンズAは空気と接する凹面の曲率半径をR3n、負レンズAを含んだ接合レンズの焦点距離をf3s、接合レンズを構成する正レンズの材料のアッベ数をνd3ps、部分分散比をΘg,F3psとするとき
10<νd3n≦28.3 ‥‥‥(1)
−0.0027νd3n+0.620<Θg,F3n<−0.0027νd3n+0.680‥‥‥(2)
0.2<|f3n|/f3<3.5‥‥‥(3)
0.2<f3/ft<0.8 ‥‥‥(4)
−0.0030<(Θg,F3n−Θg,F3p)/(νd3n−νd3p)‥‥‥(5)
1.80<N3n ‥‥‥(6)
0.2<|R3n|/f3<1.2‥‥‥(7)
0.01<|f3n|/f3s<1.5‥‥‥(8)
−0.0030<(Θg,F3n−Θg、F3ps)/(νd3n−νd3ps)‥‥‥(9)
0.5<f1/ft<2.2 ‥‥‥(10)
0.1<|f2|/ft<0.4 ‥‥‥(11)
なる条件を満足している。
The third lens unit L3 has one or more negative lenses, and the refractive index and Abbe number of the material of the predetermined negative lens A in the third lens unit L3 are N3n and νd3n, the partial dispersion ratios are Θg, F3n, The focal length of the negative lens A is f3n, the focal lengths of the first, second, and third lens groups are f1, f2, and f3, respectively. The focal length at the telephoto end in the entire system is ft, and the Abbe number of the third lens group L3 is The Abbe number of the largest positive lens B is νd3p, the partial dispersion ratio of the positive lens B is Θg, F3p, the negative lens A is the radius of curvature of the concave surface in contact with air R3n, and the focal length of the cemented lens including the negative lens A is f3s. When the Abbe number of the material of the positive lens constituting the cemented lens is νd3ps and the partial dispersion ratio is Θg, F3ps, 10 <νd3n ≦ 28.3 (1)
−0.0027νd3n + 0.620 <Θg, F3n <−0.0027νd3n + 0.680 (2)
0.2 <| f3n | / f3 <3.5 (3)
0.2 <f3 / ft <0.8 (4)
−0.0030 <(Θg, F3n−Θg, F3p) / (νd3n−νd3p) (5)
1.80 <N3n (6)
0.2 <| R3n | / f3 <1.2 (7)
0.01 <| f3n | / f3s <1.5 (8)
−0.0030 <(Θg, F3n−Θg, F3ps) / (νd3n−νd3ps) (9)
0.5 <f1 / ft <2.2 (10)
0.1 <| f2 | / ft <0.4 (11)
Is satisfied.

ここでフラウンホーファ線のd線、F線、C線、g線における材料の屈折率を順にNd,NF,NC,Ngとするとき、材料のアッベ数νd、部分分散比Θg,Fは、   Here, when the refractive indices of materials in the d-line, F-line, C-line, and g-line of the Fraunhofer line are Nd, NF, NC, and Ng in this order, the Abbe number νd of the material and the partial dispersion ratios Θg and F are

である。 It is.

次に前述の各条件式の技術的意味について説明する。   Next, the technical meaning of each conditional expression described above will be described.

条件式(1)は第3レンズ群L3の負レンズAのアッベ数νd3nを規定する式であり、上限値を超えてアッベ数が大きくなると分散が小さくなりすぎ第3レンズ群L3の正レンズで発生する一次の色収差が補正不足となる。   Conditional expression (1) defines the Abbe number νd3n of the negative lens A of the third lens unit L3. When the Abbe number increases beyond the upper limit, the dispersion becomes too small and the positive lens of the third lens unit L3. The generated primary chromatic aberration is insufficiently corrected.

また下限値を超えてアッベ数が小さくなると分散が大きくなり一次の色収差を補正するための負レンズAの屈折力が小さくなる。負レンズAの屈折力が弱すぎるとペッツバール和をマイナス側に補正する効果が薄れ像面彎曲がアンダー側に発生するので良くない。   Further, when the Abbe number decreases beyond the lower limit, the dispersion increases and the refractive power of the negative lens A for correcting primary chromatic aberration decreases. If the refractive power of the negative lens A is too weak, the effect of correcting the Petzval sum to the minus side is weakened and the image surface curvature occurs on the under side, which is not good.

条件式(2)は第3レンズ群L3の負レンズAの部分分散比Θg,F3nを規定する式である。図30においてΘg,F3n=−0.0027νd3n+0.680となるのが線分Eであり、条件式(2)は図30の線分Eより下側に位置することを意味する。線分Eは基準線2と同じ傾きを持つ線分であり条件式(2)を満足するガラスは基準線2近傍のガラスに対し高分散のわりに部分分散比が小さい材料である。   Conditional expression (2) defines the partial dispersion ratio Θg, F3n of the negative lens A of the third lens unit L3. In FIG. 30, Θg, F3n = −0.0027νd3n + 0.680 is the line segment E, which means that the conditional expression (2) is located below the line segment E in FIG. The line segment E is a line segment having the same inclination as that of the reference line 2, and the glass satisfying the conditional expression (2) is a material having a small partial dispersion ratio for the glass in the vicinity of the reference line 2 instead of high dispersion.

条件式(2)の上限値を超えて図30の線分Eより上に位置する材料は高分散材料としては部分分散比が高く、負レンズAに用いた場合、二次スペクトルを補正する効果が少なくなり、二次スペクトルが補正不足となる。また、図30においてΘg,F3n=−0.0027νd3n+0.620となるのが線分Fであり、条件式(2)は図30の線分Fより上側に位置することを意味する。   A material that exceeds the upper limit of conditional expression (2) and is above the line segment E in FIG. 30 has a high partial dispersion ratio as a high dispersion material, and when used for the negative lens A, the effect of correcting the secondary spectrum. And the secondary spectrum is undercorrected. Further, in FIG. 30, Θg, F3n = −0.0027νd3n + 0.620 is the line segment F, which means that the conditional expression (2) is located above the line segment F in FIG.

条件式(2)の下限を超えて図30の線分Fより下側の材料では二次スペクトルの補正能力は高まるが、補正能力が高すぎ負レンズAの屈折力は弱まる。負レンズAの屈折力が弱すぎるとペッツバール和をマイナス側に補正する効果が薄れ像面彎曲がアンダー側に発生するので良くない。   In the material below the line segment F in FIG. 30 exceeding the lower limit of the conditional expression (2), the correction capability of the secondary spectrum is increased, but the correction capability is too high and the refractive power of the negative lens A is weakened. If the refractive power of the negative lens A is too weak, the effect of correcting the Petzval sum to the minus side is weakened and the image surface curvature occurs on the under side, which is not good.

条件式(3)は第3レンズ群L3の負レンズAの焦点距離を規定する式である。上限を超えて負レンズAの焦点距離が長すぎると、すなわち負レンズAの屈折力が弱すぎると高分散ガラス用いても第3レンズ群L3内における一次の色収差が補正不足となる。   Conditional expression (3) defines the focal length of the negative lens A of the third lens unit L3. If the upper limit is exceeded and the focal length of the negative lens A is too long, that is, if the refractive power of the negative lens A is too weak, even if high dispersion glass is used, the primary chromatic aberration in the third lens unit L3 is insufficiently corrected.

また二次スペクトルを補正する効果も薄れる。下限を超えて負レンズAの焦点距離が短すぎるとすなわち負レンズAの屈折力が強すぎる場合はペッツバール和が負の側に大きくなりオーバー側に像面彎曲が発生するので良くない。   Also, the effect of correcting the secondary spectrum is diminished. If the lower limit is exceeded and the focal length of the negative lens A is too short, that is, if the refractive power of the negative lens A is too strong, the Petzval sum will increase on the negative side and an image surface curvature will occur on the over side.

条件式(4)は第3レンズ群L3の焦点距離を規定する式である。上限を超えて第3レンズ群L3の焦点距離が長すぎると第3レンズ群L3からピント面までの距離が長くなり全長が大型化する。   Conditional expression (4) defines the focal length of the third lens unit L3. If the upper limit is exceeded and the focal length of the third lens unit L3 is too long, the distance from the third lens unit L3 to the focus surface becomes longer, and the overall length increases.

下限を超えて第3レンズ群L3の焦点距離が短くなりすぎると、すなわち屈折力が強すぎると第3レンズ群L3にて球面収差の発生が顕著となり非球面を用いても補正が困難となる。   If the lower limit is exceeded and the focal length of the third lens unit L3 becomes too short, that is, if the refractive power is too strong, spherical aberration will occur in the third lens unit L3 and correction will be difficult even if an aspherical surface is used. .

条件式(5)は第3レンズ群L3の負レンズAと正レンズの部分分散比の関係を規定する式である。条件式(5)において(Θg,F3n−Θg、F3p)/(νd3n−νd3p)は図30において第3レンズ群L3の負レンズAと正レンズのアッベ数と部分分散比から該当する点を結んだ線分の傾きを表すものであり、傾きが小さいほど二次スペクトルが低減されやすい。   Conditional expression (5) is an expression defining the relationship between the partial dispersion ratios of the negative lens A and the positive lens in the third lens unit L3. In Conditional Expression (5), (Θg, F3n−Θg, F3p) / (νd3n−νd3p) connects the corresponding points from the Abbe numbers and partial dispersion ratios of the negative lens A and the positive lens in the third lens unit L3 in FIG. This represents the slope of the ellipse line. The smaller the slope, the easier the secondary spectrum is reduced.

下限を超えて傾きが大きくなりすぎると条件式(1),(2)を満たすガラスを負レンズに用いても二次スペクトルの低減が難しくなる。各実施例において特に好ましくは、負レンズAが条件式(1),(2)を満たした上で第3レンズ群L3の正レンズが条件式(5)を満足するのが好ましい。   If the inclination becomes too large beyond the lower limit, it is difficult to reduce the secondary spectrum even if glass satisfying conditional expressions (1) and (2) is used for the negative lens. In each embodiment, it is particularly preferable that the negative lens A satisfies the conditional expressions (1) and (2) and the positive lens of the third lens unit L3 satisfies the conditional expression (5).

条件式(6)は第3レンズ群の負レンズAの材料の屈折率を規定する式である。第3レンズ群L3の負レンズAの材料の屈折力が条件式(3)を満たす場合に、条件式(6)の下限を超えて屈折率が小さくなりすぎるとペッツバール和が負側に大きくなりすぎオーバー側に像面彎曲が発生するので良くない。   Conditional expression (6) defines the refractive index of the material of the negative lens A of the third lens group. When the refractive power of the material of the negative lens A of the third lens unit L3 satisfies the conditional expression (3), if the refractive index becomes too small exceeding the lower limit of the conditional expression (6), the Petzval sum increases to the negative side. It is not good because a field curvature occurs on the over-over side.

条件式(7)は負レンズAの凹面の曲率半径を規定する式である。上限を超えて曲率が緩すぎると二次スペクトルを補正する効果が薄れる。また下限値を超えて曲率がきつすぎると球面収差、コマ収差の発生が顕著となり非球面を用いても補正が困難となる。   Conditional expression (7) defines the radius of curvature of the concave surface of the negative lens A. If the curvature exceeds the upper limit and the curvature is too loose, the effect of correcting the secondary spectrum is diminished. If the curvature exceeds the lower limit and the curvature is too tight, spherical aberration and coma will occur significantly, and correction will be difficult even if an aspherical surface is used.

条件式(8)は第3レンズ群L3中の接合レンズを構成する負レンズAの焦点距離を規定する式である。上限を超えて接合レンズの焦点距離に対して負レンズAの焦点距離が長すぎる場合、すなわち屈折力が弱すぎる場合は負レンズAにより二次スペクトルを補正する効果が薄れる。   Conditional expression (8) defines the focal length of the negative lens A constituting the cemented lens in the third lens unit L3. When the focal length of the negative lens A is too long with respect to the focal length of the cemented lens beyond the upper limit, that is, when the refractive power is too weak, the effect of correcting the secondary spectrum by the negative lens A is diminished.

また下限を超えて焦点距離が短すぎる場合、すなわち屈折力が強すぎる場合は接合面において発生する収差、例えば高次の色収差、球面収差、コマ収差等の発生が多くなるので良くない。   Further, when the focal length is too short beyond the lower limit, that is, when the refractive power is too strong, aberrations generated on the cemented surface, for example, higher-order chromatic aberration, spherical aberration, coma aberration, etc. increase, which is not good.

条件式(9)は第3レンズ群L3中の接合レンズを構成する負レンズAと正レンズの部分分散比の関係を規定する式であり、接合レンズにて二次スペクトルが良好に補正されるための条件である。条件式(9)における(Θg,F3n−Θg、F3ps)/(νd3n−νd3ps)は図30において接合レンズを構成する負レンズAと正レンズのアッベ数と部分分散比から該当する点を結んだ線分の傾きを表すものであり、傾きが小さいほど二次スペクトルが低減される組み合わせとなる。下限を超えて傾きが大きくなりすぎると条件式(1),(2)を満たすガラスを負レンズAに用いても二次スペクトルの補正が難しくなる。   Conditional expression (9) defines the relationship between the partial dispersion ratios of the negative lens A and the positive lens constituting the cemented lens in the third lens unit L3, and the secondary spectrum is corrected well by the cemented lens. It is a condition for. (Θg, F3n−Θg, F3ps) / (νd3n−νd3ps) in the conditional expression (9) connects the corresponding points from the Abbe numbers and partial dispersion ratios of the negative lens A and the positive lens constituting the cemented lens in FIG. This represents the slope of the line segment. The smaller the slope, the lower the secondary spectrum. If the slope becomes too large beyond the lower limit, correction of the secondary spectrum becomes difficult even if glass satisfying conditional expressions (1) and (2) is used for the negative lens A.

各実施例においては負レンズAが条件式(1),(2)を満たした上で接合レンズを構成する正レンズが条件式(9)を満足するのが好ましい。   In each embodiment, it is preferable that the positive lens constituting the cemented lens satisfies the conditional expression (9) after the negative lens A satisfies the conditional expressions (1) and (2).

条件式(10)は第1レンズ群L1の焦点距離を規定する式である。上限を超えて第1レンズ群L1の焦点距離が長すぎると、すなわち第1レンズ群L1の屈折力が弱すぎると望遠端における全長が長くなるので良くない。下限を超えて第1レンズ群L1の焦点距離が短くなりすぎると、すなわち第1レンズ群L1の屈折力が強すぎると望遠端での球面収差の発生が顕著となる。   Conditional expression (10) defines the focal length of the first lens unit L1. If the focal length of the first lens unit L1 is too long beyond the upper limit, that is, if the refractive power of the first lens unit L1 is too weak, the total length at the telephoto end becomes long. If the lower limit is exceeded and the focal length of the first lens unit L1 becomes too short, that is, if the refractive power of the first lens unit L1 is too strong, the occurrence of spherical aberration at the telephoto end becomes significant.

条件式(11)は第2レンズ群L2の焦点距離を規定する式である。上限値を超えて第2レンズ群L2の焦点距離が長くなりすぎると、すなわち第2レンズ群L2の屈折力が弱すぎるとズーミング時に所望のズーム比を確保するための第2レンズ群L2の移動量が大きくなるため広角端における全長が大型化してくる。   Conditional expression (11) defines the focal length of the second lens unit L2. If the focal length of the second lens unit L2 becomes too long beyond the upper limit, that is, if the refractive power of the second lens unit L2 is too weak, the second lens unit L2 moves to ensure a desired zoom ratio during zooming. Since the amount increases, the overall length at the wide-angle end increases.

下限値を超えて第2レンズ群L2の焦点距離が短くなりすぎると、すなわち第2レンズ群L2の屈折力が強すぎるとペッツバール和が負の側に大きくなり像面彎曲の発生が多くなるので良くない。   If the lower limit value is exceeded and the focal length of the second lens unit L2 becomes too short, that is, if the refractive power of the second lens unit L2 is too strong, the Petzval sum increases on the negative side and the occurrence of field curvature increases. Not good.

尚、更に好ましくは条件式(1)〜(11)の数値範囲を次の如く設定するのが良い。   More preferably, the numerical ranges of the conditional expressions (1) to (11) are set as follows.

15<νd3n≦28.3 ‥‥‥(1a)
−0.0027νd3n+0.650<Θg,F3n<−0.0027νd3n+0.676‥‥‥(2a)
0.3<|f3n|/f3<3.2‥‥‥(3a)
0.3<f3/ft<0.7 ‥‥‥(4a)
−0.0025<(Θg,F3n−Θg,F3p)/(νd3n−νd3p)‥‥‥(5a)
1.85<N3n ‥‥‥(6a)
0.3<|R3n|/f3<1.1‥‥‥(7a)
0.02<|f3n|/f3s<1.45‥‥‥(8a)
−0.0025<(Θg,F3n−Θg、F3ps)/(νd3n−νd3ps)‥‥(9a)
0.6<f1/ft<2.1 ‥‥‥(10a)
0.12<|f2|/ft<0.35 ‥‥‥(11a)
尚、条件式(2a)は条件式(2)を上限値、下限値ともに限定したものであり、条件式(2a)を満足すると二次スペクトル補正と像面彎曲補正がより両立するという効果がある。
15 <νd3n ≦ 28.3 (1a)
−0.0027νd3n + 0.650 <Θg, F3n <−0.0027νd3n + 0.676 (2a)
0.3 <| f3n | / f3 <3.2 (3a)
0.3 <f3 / ft <0.7 (4a)
−0.0025 <(Θg, F3n−Θg, F3p) / (νd3n−νd3p) (5a)
1.85 <N3n (6a)
0.3 <| R3n | / f3 <1.1 (7a)
0.02 <| f3n | / f3s <1.45 (8a)
−0.0025 <(Θg, F3n−Θg, F3ps) / (νd3n−νd3ps) (9a)
0.6 <f1 / ft <2.1 (10a)
0.12 <| f2 | / ft <0.35 (11a)
Conditional expression (2a) limits conditional expression (2) to both an upper limit value and a lower limit value. If conditional expression (2a) is satisfied, secondary spectrum correction and field curvature correction are more compatible. is there.

又、条件式(6a)は条件式(6)に対してより高屈折率側に限定したものであり、より像面彎曲を低減しフラットな像面特性を得ることが容易となる。   Conditional expression (6a) is limited to the higher refractive index side than conditional expression (6), and it becomes easier to obtain a flat image surface characteristic by further reducing image surface curvature.

次に各実施例の具体的な特徴について説明する。   Next, specific features of each embodiment will be described.

図2の実施例1は広角端から望遠端へのズーミングに際して第1レンズ群L1は物体側に、第2レンズ群L2は像側に凸状の軌跡で、第3レンズ群L3は物体側に、第4レンズ群L4は物体側に凸状の軌跡で移動する。   In Example 1 of FIG. 2, during zooming from the wide-angle end to the telephoto end, the first lens unit L1 is on the object side, the second lens unit L2 is a convex locus on the image side, and the third lens unit L3 is on the object side. The fourth lens unit L4 moves along a locus convex toward the object side.

第1レンズ群L1の構成は、物体側から順に負レンズと正レンズからなる接合レンズ、正レンズの3枚で構成し、高変倍ながら軸上色収差、倍率色収差の各色補正と球面収差の補正をしている。   The first lens unit L1 is composed of a cemented lens composed of a negative lens and a positive lens in order from the object side, and a positive lens, and each color correction of axial chromatic aberration and chromatic aberration of magnification and correction of spherical aberration are performed with a high zoom ratio. I am doing.

第2レンズ群L2の構成は、物体側から像側へ順に、像側の面が凹でメニスカス形状の負レンズ、負レンズ、両レンズ面が凸形状の正レンズ、負レンズの4枚で構成している。   The second lens unit L2 is composed of four lenses in order from the object side to the image side: a negative lens having a negative image side, a negative lens having a meniscus shape, a positive lens having both lens surfaces having a convex shape, and a negative lens. is doing.

第3レンズ群L3の構成は物体側から像側へ順に、正レンズ31と負レンズ32からなり全体として正の屈折力の接合レンズ36と、負レンズ33と正レンズ34からなり全体として正の屈折力の接合レンズ37と、正レンズ35との3群5枚で構成している。ここで負レンズ33を前述の負レンズAとし、高分散硝材としては比較的部分分散比が小さい材料を用いて軸上色収差の二次スペクトル低減を図っている。   The configuration of the third lens unit L3 is composed of a positive lens 31 and a negative lens 32 in order from the object side to the image side, and is composed of a cemented lens 36 having a positive refractive power as a whole, and a negative lens 33 and a positive lens 34 as a whole. It is composed of five elements in three groups, a cemented lens 37 having a refractive power and a positive lens 35. Here, the negative lens 33 is the above-described negative lens A, and the secondary spectrum of axial chromatic aberration is reduced by using a material having a relatively small partial dispersion ratio as the high dispersion glass material.

負レンズ33の材料は株式会社オハラ社製の商品名S−LAH79(Nd=2.00330、νd=28.3、Θg,F=0.598)である。   The material of the negative lens 33 is trade name S-LAH79 (Nd = 2.00330, νd = 28.3, Θg, F = 0.598) manufactured by OHARA INC.

図30は光学材料のアッベ数νdと部分分散比Θg,Fの関係を示したグラフである。図中点Aは株式会社オハラ社製での商品名PBM2(νd=36.26、Θg,F=0.5828)、点Bは株式会社オハラ社製での商品名NSL7(νd=60.49、Θg,F=0.5436)、点Cは株式会社オハラ社製での商品名S−TIH53(νd=23.8、Θg,F=0.621)、点Dは株式会社オハラ社製での商品名S−TIM22(νd=33.8、Θg,F=0.594)を示す。   FIG. 30 is a graph showing the relationship between the Abbe number νd of the optical material and the partial dispersion ratio Θg, F. In the figure, point A is a trade name PBM2 (νd = 36.26, Θg, F = 0.5828) manufactured by OHARA INC., And point B is a trade name NSL7 (νd = 60.49, Θg, F = 0.5436) manufactured by OHARA INC. ), Point C is a trade name S-TIH53 (νd = 23.8, Θg, F = 0.621) manufactured by OHARA, Inc., and point D is a trade name S-TIM22 (νd = 33.8, Θg, manufactured by OHARA CORPORATION. , F = 0.594).

点A,点Bを結んだ線を基準線1とすると、光学ガラスの分布としては大まかにはアッベ数νdが35程度より小さい高分散ガラスは基準線1より上側に、アッベ数νdが35から65程度までの低分散ガラスは基準線1より下側に位置するものが多く、νdが60以上にて基準線1より上側に位置する異常分散性ガラスが存在している。   Assuming that the line connecting points A and B is the reference line 1, as a distribution of the optical glass, a high dispersion glass having an Abbe number νd smaller than about 35 is roughly above the reference line 1 and an Abbe number νd is 35. Many low-dispersion glasses up to about 65 are located below the reference line 1, and there exists an anomalous dispersion glass located above the reference line 1 when νd is 60 or more.

しかしながらアッベ数νdが35より小さい高分散ガラスでは点A,点Bを結んだ基準線1より下側に位置するものはあまりないため、高分散ガラスに対しては点C,点Dを結んだ線を高分散ガラスにおける基準線2と定義する。このときアッベ数νdが35以下では基準線2近傍に位置するガラスが多く見られるが一部基準線2より下側に位置するものがある。一例として商品名S−LAH79はこの基準線2より下側に位置しており高分散材料としては比較的部分分散比が小さいという点が特徴である。   However, in the high dispersion glass whose Abbe number νd is smaller than 35, there are not many that are located below the reference line 1 connecting the points A and B, so the points C and D are connected to the high dispersion glass. The line is defined as reference line 2 in the high dispersion glass. At this time, when the Abbe number νd is 35 or less, a lot of glass located near the reference line 2 is seen, but some of them are located below the reference line 2. As an example, the trade name S-LAH79 is located below the reference line 2 and is characterized by a relatively small partial dispersion ratio as a high dispersion material.

このような材料を第3レンズ群L3の負レンズに用いると軸上色収差の二次スペクトル低減が図れるという効果がある。   When such a material is used for the negative lens of the third lens unit L3, there is an effect that the secondary spectrum of axial chromatic aberration can be reduced.

図2に示す実施例1の第3レンズ群L3のレンズ構成では高分散材料としては部分分散比の小さいガラスを用いた負レンズをある程度の屈折力とし、第3レンズ群L3中の正レンズを低分散としては部分分散比が大きい異常分散ガラスとしなくても二次スペクトルの低減を図っている。   In the lens configuration of the third lens unit L3 of Example 1 shown in FIG. 2, a negative lens using glass having a small partial dispersion ratio as a high dispersion material has a certain refractive power, and a positive lens in the third lens unit L3 is used. As low dispersion, the secondary spectrum is reduced without using anomalous dispersion glass having a large partial dispersion ratio.

なお第3レンズ群L3は広角端から望遠端へのズーミングに至るズーム領域全域にて軸上光線の高さが高い箇所であり、軸上色収差に関してズーム領域全域で二次スペクトルの補正効果を有している。   The third lens unit L3 has a high axial ray height in the entire zoom range from zooming to the telephoto end, and has a secondary spectrum correction effect in the entire zoom range with respect to axial chromatic aberration. is doing.

また、第3レンズ群L3の正レンズの材料に低分散としては部分分散比が大きい異常分散特性を有するガラス(図30のアッベ数νdが60以上で基準線1より上側に位置するガラス)を用いるのが良く、これによればより一層の二次スペクトルが低減できる。このように負レンズの材料を高分散としては比較的部分分散比が小さい材料、正レンズの材料を低分散としては比較的部分分散比が大きい材料を用いることにより二次スペクトルの補正効果が高められ、高画素の撮像素子への対応、望遠端の焦点距離を長焦点化してズーム比を上げること等が容易となる。   Further, as the positive lens material of the third lens unit L3, a glass having anomalous dispersion characteristics with a large partial dispersion ratio (a glass positioned above the reference line 1 with an Abbe number νd of 60 or more in FIG. 30) is used. It is good to use, and according to this, a further secondary spectrum can be reduced. As described above, the negative lens material has a relatively small partial dispersion ratio for high dispersion, and the positive lens material has a relatively large partial dispersion ratio for low dispersion. Therefore, it is easy to cope with a high-pixel image sensor, to increase the zoom ratio by increasing the focal length at the telephoto end.

次に図6の実施例2について説明する。各レンズ群の屈折力やズーミングにおける各レ
ンズ群の移動条件等の基本レンズ構成は図2の実施例1と同じである。
Next, Example 2 in FIG. 6 will be described. The basic lens configuration, such as the refractive power of each lens group and the movement conditions of each lens group during zooming, is the same as that of the first embodiment shown in FIG.

第3レンズ群L3の負レンズ23は株式会社オハラ社製の商品名S−LAH79(νd=28.3、Θg,F=0.598)、正レンズ24は株式会社オハラ社製の商品名S−FPL51(νd=81.5、Θg,F=0.538)を用いている。負レンズ23には高分散としては比較的部分分散比が小さい材料、正レンズ24には低分散としては比較的部分分散比が大きい材料を用いており、これによって二次スペクトルを良好に補正している。特に接合レンズとすることにより極端な高次収差を発生させず二次スペクトルを容易に補正している。   The negative lens 23 of the third lens unit L3 is trade name S-LAH79 (νd = 28.3, Θg, F = 0.598) manufactured by OHARA INC., And the positive lens 24 is trade name S manufactured by OHARA INC. -FPL51 (νd = 81.5, Θg, F = 0.538) is used. The negative lens 23 is made of a material having a relatively small partial dispersion ratio for high dispersion, and the positive lens 24 is made of a material having a relatively large partial dispersion ratio for low dispersion, thereby favorably correcting the secondary spectrum. ing. In particular, by using a cemented lens, the secondary spectrum is easily corrected without causing extremely high-order aberrations.

次に図10の参考例1について説明する。基本レンズ構成は実施例1と同じである。第3レンズ群L3の負レンズ32は像側の面が凹形状の負レンズであり材料に株式会社HOYA社製の商品名NBFD15(νd=33.3、Θg,F=0.588)を用いている。また正レンズ34,35の材料は株式会社オハラ社製の商品名S−FPLである。負レンズ32は高分散としては比較的部分分散比が小さい材料であるが空気と接する像側のレンズ面の曲率をある程度きつくすることで屈折力を強め二次スペクトルの補正効果を高めている。   Next, Reference Example 1 in FIG. 10 will be described. The basic lens configuration is the same as in Example 1. The negative lens 32 of the third lens unit L3 is a negative lens having a concave surface on the image side. The material used is NBFD15 (νd = 33.3, Θg, F = 0.588) manufactured by HOYA Corporation. ing. The material of the positive lenses 34 and 35 is trade name S-FPL manufactured by OHARA INC. The negative lens 32 is a material having a relatively small partial dispersion ratio as high dispersion, but the refractive power is enhanced by increasing the curvature of the lens surface on the image side in contact with air to a certain degree, thereby enhancing the effect of correcting the secondary spectrum.

また正レンズ34、35には低分散としては比較的部分分散比が大きい材料を用いており負レンズ32を用いたときの効果に加えさらに二次スペクトルを良好に補正している。   The positive lenses 34 and 35 are made of a material having a relatively large partial dispersion ratio as low dispersion, and the secondary spectrum is corrected well in addition to the effects obtained when the negative lens 32 is used.

次に図14の実施例について説明する。基本レンズ構成は実施例1と同じである。 Next, Example 3 in FIG. 14 will be described. The basic lens configuration is the same as in Example 1.

実施例は実施例1に比べて第3レンズ群L3を3群4枚のレンズ構成とした点が異なる。第3レンズ群L3の負レンズ42は像側の面が凹形状の負レンズであり材料に株式会社オハラ社製の商品名S−LAH79(νd=28.3、Θg,F=0.598)を用いている。正レンズ43は株式会社オハラ社製の商品名S−FPL51(νd=81.5、Θg,F=0.538)の材料を用いている。負レンズ42には高分散としては比較的部分分散比が小さい材料を用いて空気と接する像側のレンズ面の曲率をある程度きつくすることで屈折力を強め二次スペクトルの補正効果を高めている。 The third embodiment is different from the first embodiment in that the third lens unit L3 has a three-group four-lens configuration. The negative lens 42 of the third lens unit L3 is a negative lens having a concave surface on the image side, and the material name is S-LAH79 (νd = 28.3, Θg, F = 0.598) manufactured by OHARA INC. Is used. The positive lens 43 is made of a material of trade name S-FPL51 (νd = 81.5, Θg, F = 0.538) manufactured by OHARA INC. The negative lens 42 is made of a material having a relatively small partial dispersion ratio for high dispersion, and the curvature of the lens surface on the image side in contact with the air is tightened to some extent to increase the refractive power and enhance the secondary spectrum correction effect. .

また正レンズ43には低分散としては比較的部分分散比が大きい材料を用いて負レンズ
42を用いたときの効果に加えさらに二次スペクトルを良好に補正している。
In addition to the effect of using the negative lens 42 by using a material having a relatively large partial dispersion ratio as the low dispersion for the positive lens 43, the secondary spectrum is corrected well.

次に図18の実施例について説明する。基本レンズ構成は実施例1と同じである。第3レンズ群L3の負レンズ53にはテルライト系ガラス(νd=17.6、Θg,F=0.626)を用いている。正レンズ54の材料には株式会社オハラ社製の商品名S−FPL51(νd=81.6、Θg,F=0.538)を用いている。負レンズ53は高分散としては比較的部分分散比が小さい材料、正レンズ54は低分散としては比較的部分分散比が大きい材料を用いており、これによって二次スペクトルの補正効果を高めている。特に接合レンズとすることにより極端な高次収差を発生させず二次スペクトルを良好に補正している。 Next, Example 4 in FIG. 18 will be described. The basic lens configuration is the same as in Example 1. Tellurite glass (νd = 17.6, Θg, F = 0.626) is used for the negative lens 53 of the third lens unit L3. As the material of the positive lens 54, trade name S-FPL51 (νd = 81.6, Θg, F = 0.538) manufactured by OHARA INC. Is used. The negative lens 53 uses a material with a relatively small partial dispersion ratio for high dispersion, and the positive lens 54 uses a material with a relatively large partial dispersion ratio for low dispersion, thereby enhancing the correction effect of the secondary spectrum. . In particular, by using a cemented lens, the secondary spectrum is satisfactorily corrected without causing extremely high-order aberrations.

次に図22の実施例について説明する。実施例5は4つのレンズ群より成るズームレンズであり、各レンズ群の屈折力配置が実施例1と同じである。実施例は実施例1に比べてズーミングの際に全レンズ群が移動することが同じであるが、広角端から望遠端へのズーミングに際して第2レンズ群L2が像側に単調移動し、第3レンズ群L3、第4レンズ群L4がともに物体側に凸状の軌跡で移動することが異なる。 Next, Example 5 of FIG. 22 will be described. The fifth embodiment is a zoom lens including four lens groups, and the refractive power arrangement of each lens group is the same as that of the first embodiment. The fifth embodiment is the same as the first embodiment in that all lens units move during zooming, but the second lens unit L2 monotonously moves to the image side during zooming from the wide-angle end to the telephoto end. The third lens unit L3 and the fourth lens unit L4 are both moved along a locus convex toward the object side.

また第2レンズ群L2は物体側より像側へ順に、像側の面が凹でメニスカス形状の負レンズ、負レンズ、正レンズの3枚で構成している。第3レンズ群L3は正レンズ61、負レンズ62、正レンズ63の3枚で構成している点も実施例1と異なる。第3レンズ群L3の負レンズ62には株式会社オハラ社製の商品名S−LAH79(νd=28.3、Θg,F=0.598)の材料を用いている。負レンズ62に高分散としては比較的部分分散比が小さい材料を用いることで二次スペクトルを良好に補正している。   The second lens unit L2 is composed of three lenses, a meniscus negative lens, negative lens, and positive lens having a concave surface on the image side in order from the object side to the image side. The third lens unit L3 is different from that of the first embodiment in that the third lens unit L3 includes a positive lens 61, a negative lens 62, and a positive lens 63. The negative lens 62 of the third lens unit L3 is made of a material of trade name S-LAH79 (νd = 28.3, Θg, F = 0.598) manufactured by OHARA INC. The secondary lens is favorably corrected by using a material with a relatively small partial dispersion ratio as the high dispersion for the negative lens 62.

次に図26の実施例について説明する。実施例のズームレンズは、物体側より像側へ順に正の屈折力を有する第1レンズ群L1、負の屈折力を有する第2レンズ群L2、正の屈折力を有する第3レンズ群L3、負の屈折力を有する第4レンズ群L4、正の屈折力を有する第5レンズ群L5より成っている。 Next, Example 6 of FIG. 26 will be described. In the zoom lens of Example 6 , the first lens unit L1 having a positive refractive power, the second lens unit L2 having a negative refractive power, and the third lens unit L3 having a positive refractive power in order from the object side to the image side. The fourth lens unit L4 has a negative refractive power, and the fifth lens unit L5 has a positive refractive power.

広角端から望遠端へのズーミングに際して、第1レンズ群L1は物体側に、第2レンズ群L2は像側に、第3レンズ群L3は物体側に、第4レンズ群L4は像側に、第5レンズ群L5は物体側に移動している。この結果、広角端に比べ望遠端において第4レンズ群L4と第5レンズ群L5の間隔は狭くなっている。またガラスブロックGは色分解用プリズム等と光路長が等価であり他の実施例よりも厚い。第3レンズ群L3は負レンズ71、正レンズ72から構成される接合レンズ、正レンズ73の2群3枚で構成している。負レンズ71は株式会社オハラ社製の商品名S−LAH79(νd=28.3、Θg,F=0.598)である。負レンズ71は高分散としては比較的部分分散比が小さい材料であり負レンズに用いることで二次スペクトルを良好に補正している。 During zooming from the wide-angle end to the telephoto end, the first lens unit L1 is on the object side, the second lens unit L2 is on the image side, the third lens unit L3 is on the object side, and the fourth lens unit L4 is on the image side. The fifth lens unit L5 has moved to the object side. As a result, the distance between the fourth lens unit L4 and the fifth lens unit L5 is narrower at the telephoto end than at the wide-angle end. The glass block G has an optical path length equivalent to that of the color separation prism and the like, and is thicker than the other embodiments. The third lens unit L3 includes two lenses in three groups, a negative lens 71, a cemented lens including a positive lens 72, and a positive lens 73. The negative lens 71 is trade name S-LAH79 (νd = 28.3, Θg, F = 0.598) manufactured by OHARA INC. The negative lens 71 is a material having a relatively small partial dispersion ratio as high dispersion, and corrects the secondary spectrum favorably by being used for the negative lens.

なお各実施例のレンズ構成は上記実施例の移動方式に限定されるものではなく、正の屈折力の第1レンズ群、第3レンズ群をズーミングの為には固定としても良い。   The lens configuration of each embodiment is not limited to the moving system of the above embodiment, and the first lens unit and the third lens unit having a positive refractive power may be fixed for zooming.

次に本発明のズームレンズの数値実施例を示す。実施例1、2、参考例1、実施例3〜6は数値実施例1〜7に相当している。数値実施例においてiは物体側からの光学面の順序を示し、Riは物体側より順に第i番目のレンズ面の曲率半径、Diは物体側より順に第i番目のレンズ厚及び空気間隔、Niとνiは各々物体側より順に第i番目のレンズのガラスの屈折率、アッベ数である。又前述の各条件式と数値実施例の関係を表1に示す。部分分散比Θg,F Iについては第3レンズ群の負レンズAについてのみ示す。非球面形状は光軸方向の変位を面頂点を基準にしてX軸、光軸と垂直方向にH軸、光の進行方向を正としRを近軸曲率半径、Kを円錐定数、A’,B’,C’,D’,B,C,D,Eを各々非球面係数としたとき Next, numerical examples of the zoom lens of the present invention will be shown. Examples 1, 2, Reference Example 1, and Examples 3-6 correspond to Numerical Examples 1-7. In the numerical examples, i indicates the order of the optical surfaces from the object side, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing in order from the object side, Ni And νi are the refractive index and Abbe number of the glass of the i-th lens in order from the object side. Table 1 shows the relationship between the above-described conditional expressions and numerical examples. The partial dispersion ratio Θg, FI is shown only for the negative lens A of the third lens group. The aspherical shape is based on the displacement in the optical axis direction as the X axis, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, K is the conic constant, A ′, When B ′, C ′, D ′, B, C, D, and E are aspherical coefficients, respectively

+A'H3+BH4+B'H5+CH6+C'H7+DH8+D'H9+EH10
なる式で表している。
+ A′H 3 + BH 4 + B′H 5 + CH 6 + C′H 7 + DH 8 + D′ H 9 + EH 10
It is expressed by the following formula.

また例えば「e−Z」の表示は「10-Z」を意味する。またfは焦点距離、FnoはFナンバー、ωは半画角を示す。各数値実施例において最終の2つの面はフィルター等のガラスブロックである。 Further, for example, the display of “e-Z” means “10 −Z ”. F is a focal length, Fno is an F number, and ω is a half angle of view. In each numerical example, the last two surfaces are glass blocks such as filters.

[数値実施例1]
f=7.42〜 49.81 Fno= 2.45 〜 3.14 2ω=74.1゜ 〜 12.8゜

R 1 = 60.867 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.9
R 2 = 39.187 D 2 = 5.30 N 2 = 1.603112 ν 2 = 60.6
R 3 = 418.644 D 3 = 0.20
R 4 = 48.333 D 4 = 3.20 N 3 = 1.603112 ν 3 = 60.6
R 5 = 150.081 D 5 = 可変
R 6 = 56.887 D 6 = 1.10 N 4 = 1.772499 ν 4 = 49.6
R 7 = 9.793 D 7 = 4.58
R 8 = -54.743 D 8 = 0.90 N 5 = 1.719995 ν 5 = 50.2
R 9 = 21.822 D 9 = 1.38
R10 = 31.006 D10 = 3.30 N 6 = 1.846660 ν 6 = 23.9
R11 = -24.564 D11 = 0.53
R12 = -15.952 D12 = 0.80 N 7 = 1.882997 ν 7 = 40.8
R13 = -55.425 D13 = 可変
R14 = 絞り D14 = 2.40
R15 = 10.897 D15 = 4.00 N 8 = 1.743300 ν 8 = 49.3
R16 = -29.579 D16 = 4.00 N 9 = 1.647689 ν 9 = 33.8
R17 = 9.522 D17 = 1.42
R18 = 72.553 D18 = 1.16 N10 = 2.003300 ν10 = 28.3
R19 = 23.852 D19 = 4.40 N11 = 1.487490 ν11 = 70.2
R20 = -22.225 D20 = 2.00
R21 = 20.206 D21 = 3.00 N12 = 1.487490 ν12 = 70.2
R22 = -166.360 D22 = 可変
R23 = 25.324 D23 = 2.80 N13 = 1.772499 ν13 = 49.6
R24 = -53.348 D24 = 0.90 N14 = 1.846660 ν14 = 23.9
R25 = 250.592 D25 = 可変
R26 = ∞ D26 = 2.40 N15 = 1.516330 ν15 = 64.1
R27 = ∞

\焦点距離 7.42 20.40 49.81
可変間隔\
D 5 1.50 20.10 34.81
D13 19.97 6.94 1.30
D22 1.66 13.11 23.30
D25 5.00 5.67 3.55

非球面係数
R10 k=-7.17899e+00 B= 8.46885e-05 C=-3.33220e-07 D=-7.27660e-10
E=-1.32077e-11
R11 k=-2.53914e-01 B=-5.82787e-06 C=-2.30584e-07 D=-5.10167e-09
E= 1.70407e-11
R15 k=-4.51997e-01 B=-3.07120e-05 C= 3.11687e-08 D= 0.00000e+00
E= 0.00000e+00

[数値実施例2]
f=7.41〜 49.76 Fno= 2.45 〜 3.14 2ω=74.2゜ 〜 12.8゜

R 1 = 60.391 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.9
R 2 = 39.348 D 2 = 5.30 N 2 = 1.603112 ν 2 = 60.6
R 3 = 372.414 D 3 = 0.20
R 4 = 48.834 D 4 = 3.20 N 3 = 1.603112 ν 3 = 60.6
R 5 = 148.809 D 5 = 可変
R 6 = 55.691 D 6 = 1.10 N 4 = 1.772499 ν 4 = 49.6
R 7 = 9.837 D 7 = 4.46
R 8 = -64.785 D 8 = 0.90 N 5 = 1.719995 ν 5 = 50.2
R 9 = 21.479 D 9 = 1.38
R10 = 30.601 D10 = 3.30 N 6 = 1.846660 ν 6 = 23.9
R11 = -24.721 D11 = 0.53
R12 = -15.784 D12 = 0.80 N 7 = 1.882997 ν 7 = 40.8
R13 = -57.872 D13 = 可変
R14 = 絞り D14 = 2.40
R15 = 10.942 D15 = 5.00 N 8 = 1.743300 ν 8 = 49.3
R16 = -31.848 D16 = 3.00 N 9 = 1.647689 ν 9 = 33.8
R17 = 9.569 D17 = 1.41
R18 = 73.381 D18 = 1.00 N10 = 2.003300 ν10 = 28.3
R19 = 25.459 D19 = 4.40 N11 = 1.496999 ν11 = 81.5
R20 = -22.737 D20 = 2.00
R21 = 20.362 D21 = 3.00 N12 = 1.487490 ν12 = 70.2
R22 = -234.301 D22 = 可変
R23 = 25.885 D23 = 3.00 N13 = 1.772499 ν13 = 49.6
R24 = -48.420 D24 = 0.90 N14 = 1.846660 ν14 = 23.9
R25 = 806.972 D25 = 可変
R26 = ∞ D26 = 2.40 N15 = 1.516330 ν15 = 64.1
R27 = ∞

\焦点距離 7.41 20.78 49.76
可変間隔\
D 5 1.50 20.68 35.27
D13 20.23 6.56 1.01
D22 2.43 13.24 23.01
D25 5.00 6.25 4.53

非球面係数
R10 k=-8.08213e+00 B= 7.85119e-05 C=-1.85039e-07 D=-4.85066e-09
E= 4.29041e-11
R11 k=-3.50553e-01 B=-1.82078e-05 C=-9.87066e-08 D=-9.37907e-09
E= 7.81990e-11
R15 k=-4.52946e-01 B=-2.97445e-05 C= 5.14379e-08 D= 0.00000e+00
E= 0.00000e+00

[数値実施例3]
f=7.40〜 49.79 Fno= 2.45 〜 3.17 2ω=74.2゜ 〜 12.8゜

R 1 = 65.191 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.9
R 2 = 40.823 D 2 = 5.30 N 2 = 1.603112 ν 2 = 60.6
R 3 = 683.073 D 3 = 0.20
R 4 = 50.030 D 4 = 3.20 N 3 = 1.603112 ν 3 = 60.6
R 5 = 158.327 D 5 = 可変
R 6 = 69.953 D 6 = 1.10 N 4 = 1.772499 ν 4 = 49.6
R 7 = 9.044 D 7 = 5.40
R 8 = -41.303 D 8 = 0.90 N 5 = 1.743997 ν 5 = 44.8
R 9 = 30.183 D 9 = 0.25
R10 = 39.230 D10 = 3.30 N 6 = 1.846660 ν 6 = 23.9
R11 = -23.968 D11 = 0.55
R12 = -15.318 D12 = 0.80 N 7 = 1.882997 ν 7 = 40.8
R13 = -27.956 D13 = 可変
R14 = 絞り D14 = 0.80
R15 = 9.075 D15 = 4.00 N 8 = 1.743300 ν 8 = 49.3
R16 = -126.862 D16 = 4.00 N 9 = 1.806100 ν 9 = 33.3
R17 = 8.141 D17 = 1.57
R18 = 36.369 D18 = 1.00 N10 = 1.603420 ν10 = 38.0
R19 = 13.766 D19 = 4.40 N11 = 1.496999 ν11 = 81.5
R20 = -21.700 D20 = 2.00
R21 = 15.685 D21 = 3.00 N12 = 1.496999 ν12 = 81.5
R22 = 69.573 D22 = 可変
R23 = 22.235 D23 = 4.00 N13 = 1.772499 ν13 = 49.6
R24 = -27.099 D24 = 0.90 N14 = 1.846660 ν14 = 23.9
R25 = 5461.127 D25 = 可変
R26 = ∞ D26 = 2.40 N15 = 1.516330 ν15 = 64.1
R27 = ∞


\焦点距離 7.40 20.82 49.79
可変間隔\
D 5 1.50 21.95 35.88
D13 19.69 7.09 1.42
D22 1.96 13.13 23.14
D25 5.00 4.95 2.35

非球面係数
R10 k=-9.11623e+00 B= 8.43674e-05 C= 2.03964e-07 D= 7.73046e-09
E=-3.40062e-10
R11 k= 6.28631e+00 B= 4.19463e-05 C= 7.32183e-07 D=-3.87583e-09
E=-1.21361e-10
R15 k=-4.18532e-01 B=-2.22198e-05 C= 9.08447e-08 D= 0.00000e+00
E= 0.00000e+00

[数値実施例
f=7.40〜 49.79 Fno= 2.45 〜 3.37 2ω=74.2゜ 〜 12.8゜

R 1 = 67.958 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.9
R 2 = 40.649 D 2 = 5.50 N 2 = 1.603112 ν 2 = 60.6
R 3 = 858.539 D 3 = 0.20
R 4 = 46.066 D 4 = 3.30 N 3 = 1.603112 ν 3 = 60.6
R 5 = 151.771 D 5 = 可変
R 6 = 74.979 D 6 = 1.10 N 4 = 1.772499 ν 4 = 49.6
R 7 = 8.930 D 7 = 5.33
R 8 = -55.569 D 8 = 0.90 N 5 = 1.806098 ν 5 = 40.9
R 9 = 32.588 D 9 = 0.25
R10 = 40.466 D10 = 3.30 N 6 = 1.846660 ν 6 = 23.9
R11 = -22.739 D11 = 0.61
R12 = -14.581 D12 = 0.80 N 7 = 1.882997 ν 7 = 40.8
R13 = -30.718 D13 = 可変
R14 = 絞り D14 = 0.80
R15 = 9.714 D15 = 4.00 N 8 = 1.743300 ν 8 = 49.3
R16 = 36.804 D16 = 4.00 N 9 = 2.003300 ν 9 = 28.3
R17 = 9.343 D17 = 1.25
R18 = 35.677 D18 = 5.40 N10 = 1.496999 ν10 = 81.5
R19 = -19.905 D19 = 2.00
R20 = 17.166 D20 = 3.00 N11 = 1.487490 ν11 = 70.2
R21 = 81.806 D21 = 可変
R22 = 24.402 D22 = 4.00 N12 = 1.772499 ν12 = 49.6
R23 = -28.644 D23 = 0.90 N13 = 1.922860 ν13 = 18.9
R24 = -325.677 D24 = 可変
R25 = ∞ D25 = 2.40 N14 = 1.516330 ν14 = 64.1
R26 = ∞

\焦点距離 7.40 21.54 49.79
可変間隔\
D 5 1.00 21.60 34.61
D13 22.75 8.61 2.92
D21 6.20 16.22 25.46
D24 5.00 6.14 4.33

非球面係数
R10 k= 4.73026e+00 B= 6.80111e-05 C=-1.90565e-07 D= 3.41468e-09
E=-1.11868e-11
R11 k= 1.60490e+00 B= 1.07600e-05 C=-1.80049e-07 D=-3.93171e-09
E= 2.77776e-11
R15 k=-4.16400e-01 B=-1.63805e-05 C= 8.95486e-08 D= 0.00000e+00
E= 0.00000e+00

[数値実施例
f=7.41〜 49.76 Fno= 2.45 〜 3.14 2ω=74.2゜ 〜 12.8゜

R 1 = 62.198 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.9
R 2 = 39.904 D 2 = 5.30 N 2 = 1.603112 ν 2 = 60.6
R 3 = 561.465 D 3 = 0.20
R 4 = 51.676 D 4 = 3.20 N 3 = 1.603112 ν 3 = 60.6
R 5 = 168.814 D 5 = 可変
R 6 = 76.445 D 6 = 1.10 N 4 = 1.772499 ν 4 = 49.6
R 7 = 9.604 D 7 = 4.53
R 8 = -80.828 D 8 = 0.90 N 5 = 1.743997 ν 5 = 44.8
R 9 = 25.586 D 9 = 1.38
R10 = 33.444 D10 = 3.30 N 6 = 1.846660 ν 6 = 23.9
R11 = -22.591 D11 = 0.30
R12 = -16.830 D12 = 0.80 N 7 = 1.882997 ν 7 = 40.8
R13 = -75.117 D13 = 可変
R14 = 絞り D14 = 2.40
R15 = 10.589 D15 = 4.00 N 8 = 1.743300 ν 8 = 49.3
R16 = 2031.389 D16 = 4.00 N 9 = 1.672700 ν 9 = 32.1
R17 = 9.417 D17 = 1.38
R18 = 55.536 D18 = 1.16 N10 = 2.003300 ν10 = 28.3
R19 = 30.869 D19 = 4.40 N11 = 1.496999 ν11 = 81.5
R20 = -23.001 D20 = 2.00
R21 = 20.478 D21 = 3.00 N12 = 1.487490 ν12 = 70.2
R22 = -518.854 D22 = 可変
R23 = 23.937 D23 = 2.80 N13 = 1.772499 ν13 = 49.6
R24 = -101.645 D24 = 0.90 N14 = 1.846660 ν14 = 23.9
R25 = 131.019 D25 = 可変
R26 = ∞ D26 = 2.40 N15 = 1.516330 ν15 = 64.1
R27 = ∞

\焦点距離 7.41 20.07 49.76
可変間隔\
D 5 1.50 20.39 35.65
D13 20.49 7.18 1.00
D22 1.37 11.98 21.62
D25 5.00 5.26 2.87

非球面係数
R10 k=-1.11862e+01 B= 8.65350e-05 C=-3.62465e-07 D= 1.05864e-08
E=-4.46762e-10
R11 k=-8.21740e-01 B=-1.80820e-05 C= 9.96845e-08 D=-1.45132e-08
E=-1.11035e-10
R15 k=-5.02012e-01 B=-1.87507e-05 C= 8.73716e-08 D= 0.00000e+00
E= 0.00000e+00

[数値実施例
f=6.74〜 64.80 Fno= 2.88 〜 3.13 2ω=52.9゜ 〜 5.9゜

R 1 = 47.310 D 1 = 1.30 N 1 = 1.846660 ν 1 = 23.9
R 2 = 29.094 D 2 = 5.00 N 2 = 1.487490 ν 2 = 70.2
R 3 = -4034.398 D 3 = 0.20
R 4 = 28.453 D 4 = 3.70 N 3 = 1.696797 ν 3 = 55.5
R 5 = 94.268 D 5 = 可変
R 6 = 57.709 D 6 = 0.80 N 4 = 1.785896 ν 4 = 44.2
R 7 = 7.491 D 7 = 3.62
R 8 = -28.113 D 8 = 0.70 N 5 = 1.834000 ν 5 = 37.2
R 9 = 26.990 D 9 = 0.86
R10 = 17.245 D10 = 1.90 N 6 = 1.922860 ν 6 = 18.9
R11 = 126.626 D11 = 可変
R12 = 絞り D12 = 1.04
R13 = 10.155 D13 = 3.00 N 7 = 1.583126 ν 7 = 59.4
R14 = 90.080 D14 = 2.60
R15 = 20.045 D15 = 0.70 N 8 = 2.003300 ν 8 = 28.3
R16 = 10.467 D16 = 1.10
R17 = 39.936 D17 = 1.60 N 9 = 1.487490 ν 9 = 70.2
R18 = -25.038 D18 = 可変
R19 = ∞ D19 = 可変
R20 = 18.193 D20 = 2.70 N10 = 1.696797 ν10 = 55.5
R21 = -27.078 D21 = 0.70 N11 = 1.846660 ν11 = 23.9
R22 = 23515.459 D22 = 可変
R23 = ∞ D23 = 2.60 N12 = 1.516330 ν12 = 64.1
R24 = ∞

\焦点距離 6.74 21.28 64.80
可変間隔\
D 5 0.92 15.31 26.28
D11 29.16 12.02 3.80
D18 2.30 2.30 2.30
D19 1.89 1.57 7.27
D22 5.00 9.31 3.05

非球面係数
R13 k= 2.23526e-01 B=-1.31600e-05 C= 2.00597e-05 D= 2.17778e-07
E=-2.26333e-10

[数値実施例
f=10.70〜 50.94 Fno= 2.47 〜 3.13 2ω=73.6゜ 〜 17.9゜

R 1 = 87.732 D 1 = 2.20 N 1 = 1.846660 ν 1 = 23.9
R 2 = 63.233 D 2 = 8.00 N 2 = 1.487490 ν 2 = 70.2
R 3 = 641.376 D 3 = 0.20
R 4 = 58.183 D 4 = 5.00 N 3 = 1.696797 ν 3 = 55.5
R 5 = 132.663 D 5 = 可変
R 6 = 69.387 D 6 = 1.50 N 4 = 1.743997 ν 4 = 44.8
R 7 = 12.542 D 7 = 7.70
R 8 = -87.184 D 8 = 1.20 N 5 = 1.712995 ν 5 = 53.9
R 9 = 31.114 D 9 = 0.20
R10 = 19.841 D10 = 4.80 N 6 = 1.805181 ν 6 = 25.4
R11 = 204.668 D11 = 0.70
R12 = -166.551 D12 = 1.05 N 7 = 1.603420 ν 7 = 38.0
R13 = 46.363 D13 = 可変
R14 = 絞り D14 = 1.40
R15 = -29.974 D15 = 0.70 N 8 = 2.003300 ν 8 = 28.3
R16 = 36.573 D16 = 3.80 N 9 = 1.806098 ν 9 = 40.9
R17 = -21.759 D17 = 0.12
R18 = 37.569 D18 = 3.20 N10 = 1.719995 ν10 = 50.2
R19 = -70.150 D19 = 可変
R20 = -31.089 D20 = 2.05 N11 = 1.846660 ν11 = 23.9
R21 = -17.262 D21 = 0.75 N12 = 1.638539 ν12 = 55.4
R22 = 4911.493 D22 = 可変
R23 = -201.546 D23 = 3.00 N13 = 1.583126 ν13 = 59.4
R24 = -47.511 D24 = 1.40
R25 = -28.970 D25 = 1.10 N14 = 1.846660 ν14 = 23.9
R26 = -371.076 D26 = 5.40 N15 = 1.516330 ν15 = 64.1
R27 = -25.270 D27 = 0.20
R28 = 86.741 D28 = 5.60 N16 = 1.438750 ν16 = 95.0
R29 = -35.679 D29 = 0.20
R30 = 91.355 D30 = 3.80 N17 = 1.438750 ν17 = 95.0
R31 = -90.021 D31 = 2.00
R32 = ∞ D32 = 30.00 N18 = 1.516330 ν18 = 64.1
R33 = ∞

\焦点距離 10.70 21.10 50.94
可変間隔\
D 5 1.30 21.84 44.16
D13 31.11 15.68 4.38
D19 2.41 10.83 23.52
D22 25.03 16.61 3.92
D31 2.00 4.66 7.44
非球面係数
R23 k= 1.65044e+02 B=-1.19664e-05 C= 8.10561e-09 D=-7.88905e-11
E= 3.12444e-13
[Numerical Example 1]
f = 7.42-49.81 Fno = 2.45-3.14 2ω = 74.1 °-12.8 °

R 1 = 60.867 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.9
R 2 = 39.187 D 2 = 5.30 N 2 = 1.603112 ν 2 = 60.6
R 3 = 418.644 D 3 = 0.20
R 4 = 48.333 D 4 = 3.20 N 3 = 1.603112 ν 3 = 60.6
R 5 = 150.081 D 5 = Variable
R 6 = 56.887 D 6 = 1.10 N 4 = 1.772499 ν 4 = 49.6
R 7 = 9.793 D 7 = 4.58
R 8 = -54.743 D 8 = 0.90 N 5 = 1.719995 ν 5 = 50.2
R 9 = 21.822 D 9 = 1.38
R10 = 31.006 D10 = 3.30 N 6 = 1.846660 ν 6 = 23.9
R11 = -24.564 D11 = 0.53
R12 = -15.952 D12 = 0.80 N 7 = 1.882997 ν 7 = 40.8
R13 = -55.425 D13 = variable
R14 = Aperture D14 = 2.40
R15 = 10.897 D15 = 4.00 N 8 = 1.743300 ν 8 = 49.3
R16 = -29.579 D16 = 4.00 N 9 = 1.647689 ν 9 = 33.8
R17 = 9.522 D17 = 1.42
R18 = 72.553 D18 = 1.16 N10 = 2.003300 ν10 = 28.3
R19 = 23.852 D19 = 4.40 N11 = 1.487490 ν11 = 70.2
R20 = -22.225 D20 = 2.00
R21 = 20.206 D21 = 3.00 N12 = 1.487490 ν12 = 70.2
R22 = -166.360 D22 = variable
R23 = 25.324 D23 = 2.80 N13 = 1.772499 ν13 = 49.6
R24 = -53.348 D24 = 0.90 N14 = 1.846660 ν14 = 23.9
R25 = 250.592 D25 = variable
R26 = ∞ D26 = 2.40 N15 = 1.516330 ν15 = 64.1
R27 = ∞

\ Focal length 7.42 20.40 49.81
Variable interval \
D 5 1.50 20.10 34.81
D13 19.97 6.94 1.30
D22 1.66 13.11 23.30
D25 5.00 5.67 3.55

Aspheric coefficient
R10 k = -7.17899e + 00 B = 8.46885e-05 C = -3.33220e-07 D = -7.27660e-10
E = -1.32077e-11
R11 k = -2.53914e-01 B = -5.82787e-06 C = -2.30584e-07 D = -5.10167e-09
E = 1.70407e-11
R15 k = -4.51997e-01 B = -3.07120e-05 C = 3.11687e-08 D = 0.00000e + 00
E = 0.00000e + 00

[Numerical Example 2]
f = 7.41-49.76 Fno = 2.45-3.14 2ω = 74.2 °-12.8 °

R 1 = 60.391 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.9
R 2 = 39.348 D 2 = 5.30 N 2 = 1.603112 ν 2 = 60.6
R 3 = 372.414 D 3 = 0.20
R 4 = 48.834 D 4 = 3.20 N 3 = 1.603112 ν 3 = 60.6
R 5 = 148.809 D 5 = Variable
R 6 = 55.691 D 6 = 1.10 N 4 = 1.772499 ν 4 = 49.6
R 7 = 9.837 D 7 = 4.46
R 8 = -64.785 D 8 = 0.90 N 5 = 1.719995 ν 5 = 50.2
R 9 = 21.479 D 9 = 1.38
R10 = 30.601 D10 = 3.30 N 6 = 1.846660 ν 6 = 23.9
R11 = -24.721 D11 = 0.53
R12 = -15.784 D12 = 0.80 N 7 = 1.882997 ν 7 = 40.8
R13 = -57.872 D13 = Variable
R14 = Aperture D14 = 2.40
R15 = 10.942 D15 = 5.00 N 8 = 1.743300 ν 8 = 49.3
R16 = -31.848 D16 = 3.00 N 9 = 1.647689 ν 9 = 33.8
R17 = 9.569 D17 = 1.41
R18 = 73.381 D18 = 1.00 N10 = 2.003300 ν10 = 28.3
R19 = 25.459 D19 = 4.40 N11 = 1.496999 ν11 = 81.5
R20 = -22.737 D20 = 2.00
R21 = 20.362 D21 = 3.00 N12 = 1.487490 ν12 = 70.2
R22 = -234.301 D22 = variable
R23 = 25.885 D23 = 3.00 N13 = 1.772499 ν13 = 49.6
R24 = -48.420 D24 = 0.90 N14 = 1.846660 ν14 = 23.9
R25 = 806.972 D25 = variable
R26 = ∞ D26 = 2.40 N15 = 1.516330 ν15 = 64.1
R27 = ∞

\ Focal length 7.41 20.78 49.76
Variable interval \
D 5 1.50 20.68 35.27
D13 20.23 6.56 1.01
D22 2.43 13.24 23.01
D25 5.00 6.25 4.53

Aspheric coefficient
R10 k = -8.08213e + 00 B = 7.85119e-05 C = -1.85039e-07 D = -4.85066e-09
E = 4.29041e-11
R11 k = -3.50553e-01 B = -1.82078e-05 C = -9.87066e-08 D = -9.37907e-09
E = 7.81990e-11
R15 k = -4.52946e-01 B = -2.97445e-05 C = 5.14379e-08 D = 0.00000e + 00
E = 0.00000e + 00

[Numerical Example 3]
f = 7.40-49.79 Fno = 2.45-3.17 2ω = 74.2 °-12.8 °

R 1 = 65.191 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.9
R 2 = 40.823 D 2 = 5.30 N 2 = 1.603112 ν 2 = 60.6
R 3 = 683.073 D 3 = 0.20
R 4 = 50.030 D 4 = 3.20 N 3 = 1.603112 ν 3 = 60.6
R 5 = 158.327 D 5 = Variable
R 6 = 69.953 D 6 = 1.10 N 4 = 1.772499 ν 4 = 49.6
R 7 = 9.044 D 7 = 5.40
R 8 = -41.303 D 8 = 0.90 N 5 = 1.743997 ν 5 = 44.8
R 9 = 30.183 D 9 = 0.25
R10 = 39.230 D10 = 3.30 N 6 = 1.846660 ν 6 = 23.9
R11 = -23.968 D11 = 0.55
R12 = -15.318 D12 = 0.80 N 7 = 1.882997 ν 7 = 40.8
R13 = -27.956 D13 = variable
R14 = Aperture D14 = 0.80
R15 = 9.075 D15 = 4.00 N 8 = 1.743300 ν 8 = 49.3
R16 = -126.862 D16 = 4.00 N 9 = 1.806100 ν 9 = 33.3
R17 = 8.141 D17 = 1.57
R18 = 36.369 D18 = 1.00 N10 = 1.603420 ν10 = 38.0
R19 = 13.766 D19 = 4.40 N11 = 1.496999 ν11 = 81.5
R20 = -21.700 D20 = 2.00
R21 = 15.685 D21 = 3.00 N12 = 1.496999 ν12 = 81.5
R22 = 69.573 D22 = variable
R23 = 22.235 D23 = 4.00 N13 = 1.772499 ν13 = 49.6
R24 = -27.099 D24 = 0.90 N14 = 1.846660 ν14 = 23.9
R25 = 5461.127 D25 = variable
R26 = ∞ D26 = 2.40 N15 = 1.516330 ν15 = 64.1
R27 = ∞


\ Focal length 7.40 20.82 49.79
Variable interval \
D 5 1.50 21.95 35.88
D13 19.69 7.09 1.42
D22 1.96 13.13 23.14
D25 5.00 4.95 2.35

Aspheric coefficient
R10 k = -9.11623e + 00 B = 8.43674e-05 C = 2.03964e-07 D = 7.73046e-09
E = -3.40062e-10
R11 k = 6.28631e + 00 B = 4.19463e-05 C = 7.32183e-07 D = -3.87583e-09
E = -1.21361e-10
R15 k = -4.18532e-01 B = -2.22198e-05 C = 9.08447e-08 D = 0.00000e + 00
E = 0.00000e + 00

[Numerical Example 4 ]
f = 7.40-49.79 Fno = 2.45-3.37 2ω = 74.2 °-12.8 °

R 1 = 67.958 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.9
R 2 = 40.649 D 2 = 5.50 N 2 = 1.603112 ν 2 = 60.6
R 3 = 858.539 D 3 = 0.20
R 4 = 46.066 D 4 = 3.30 N 3 = 1.603112 ν 3 = 60.6
R 5 = 151.771 D 5 = variable
R 6 = 74.979 D 6 = 1.10 N 4 = 1.772499 ν 4 = 49.6
R 7 = 8.930 D 7 = 5.33
R 8 = -55.569 D 8 = 0.90 N 5 = 1.806098 ν 5 = 40.9
R 9 = 32.588 D 9 = 0.25
R10 = 40.466 D10 = 3.30 N 6 = 1.846660 ν 6 = 23.9
R11 = -22.739 D11 = 0.61
R12 = -14.581 D12 = 0.80 N 7 = 1.882997 ν 7 = 40.8
R13 = -30.718 D13 = variable
R14 = Aperture D14 = 0.80
R15 = 9.714 D15 = 4.00 N 8 = 1.743300 ν 8 = 49.3
R16 = 36.804 D16 = 4.00 N 9 = 2.003300 ν 9 = 28.3
R17 = 9.343 D17 = 1.25
R18 = 35.677 D18 = 5.40 N10 = 1.496999 ν10 = 81.5
R19 = -19.905 D19 = 2.00
R20 = 17.166 D20 = 3.00 N11 = 1.487490 ν11 = 70.2
R21 = 81.806 D21 = variable
R22 = 24.402 D22 = 4.00 N12 = 1.772499 ν12 = 49.6
R23 = -28.644 D23 = 0.90 N13 = 1.922860 ν13 = 18.9
R24 = -325.677 D24 = variable
R25 = ∞ D25 = 2.40 N14 = 1.516330 ν14 = 64.1
R26 = ∞

\ Focal length 7.40 21.54 49.79
Variable interval \
D 5 1.00 21.60 34.61
D13 22.75 8.61 2.92
D21 6.20 16.22 25.46
D24 5.00 6.14 4.33

Aspheric coefficient
R10 k = 4.73026e + 00 B = 6.80111e-05 C = -1.90565e-07 D = 3.41468e-09
E = -1.11868e-11
R11 k = 1.60490e + 00 B = 1.07600e-05 C = -1.80049e-07 D = -3.93171e-09
E = 2.77776e-11
R15 k = -4.16400e-01 B = -1.63805e-05 C = 8.95486e-08 D = 0.00000e + 00
E = 0.00000e + 00

[Numerical Example 5 ]
f = 7.41-49.76 Fno = 2.45-3.14 2ω = 74.2 °-12.8 °

R 1 = 62.198 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.9
R 2 = 39.904 D 2 = 5.30 N 2 = 1.603112 ν 2 = 60.6
R 3 = 561.465 D 3 = 0.20
R 4 = 51.676 D 4 = 3.20 N 3 = 1.603112 ν 3 = 60.6
R 5 = 168.814 D 5 = Variable
R 6 = 76.445 D 6 = 1.10 N 4 = 1.772499 ν 4 = 49.6
R 7 = 9.604 D 7 = 4.53
R 8 = -80.828 D 8 = 0.90 N 5 = 1.743997 ν 5 = 44.8
R 9 = 25.586 D 9 = 1.38
R10 = 33.444 D10 = 3.30 N 6 = 1.846660 ν 6 = 23.9
R11 = -22.591 D11 = 0.30
R12 = -16.830 D12 = 0.80 N 7 = 1.882997 ν 7 = 40.8
R13 = -75.117 D13 = Variable
R14 = Aperture D14 = 2.40
R15 = 10.589 D15 = 4.00 N 8 = 1.743300 ν 8 = 49.3
R16 = 2031.389 D16 = 4.00 N 9 = 1.672700 ν 9 = 32.1
R17 = 9.417 D17 = 1.38
R18 = 55.536 D18 = 1.16 N10 = 2.003300 ν10 = 28.3
R19 = 30.869 D19 = 4.40 N11 = 1.496999 ν11 = 81.5
R20 = -23.001 D20 = 2.00
R21 = 20.478 D21 = 3.00 N12 = 1.487490 ν12 = 70.2
R22 = -518.854 D22 = variable
R23 = 23.937 D23 = 2.80 N13 = 1.772499 ν13 = 49.6
R24 = -101.645 D24 = 0.90 N14 = 1.846660 ν14 = 23.9
R25 = 131.019 D25 = variable
R26 = ∞ D26 = 2.40 N15 = 1.516330 ν15 = 64.1
R27 = ∞

\ Focal length 7.41 20.07 49.76
Variable interval \
D 5 1.50 20.39 35.65
D13 20.49 7.18 1.00
D22 1.37 11.98 21.62
D25 5.00 5.26 2.87

Aspheric coefficient
R10 k = -1.11862e + 01 B = 8.65350e-05 C = -3.62465e-07 D = 1.05864e-08
E = -4.46762e-10
R11 k = -8.21740e-01 B = -1.80820e-05 C = 9.96845e-08 D = -1.45132e-08
E = -1.11035e-10
R15 k = -5.02012e-01 B = -1.87507e-05 C = 8.73716e-08 D = 0.00000e + 00
E = 0.00000e + 00

[Numerical Example 6 ]
f = 6.74-64.80 Fno = 2.88-3.13 2ω = 52.9 °-5.9 °

R 1 = 47.310 D 1 = 1.30 N 1 = 1.846660 ν 1 = 23.9
R 2 = 29.094 D 2 = 5.00 N 2 = 1.487490 ν 2 = 70.2
R 3 = -4034.398 D 3 = 0.20
R 4 = 28.453 D 4 = 3.70 N 3 = 1.696797 ν 3 = 55.5
R 5 = 94.268 D 5 = variable
R 6 = 57.709 D 6 = 0.80 N 4 = 1.785896 ν 4 = 44.2
R 7 = 7.491 D 7 = 3.62
R 8 = -28.113 D 8 = 0.70 N 5 = 1.834000 ν 5 = 37.2
R 9 = 26.990 D 9 = 0.86
R10 = 17.245 D10 = 1.90 N 6 = 1.922860 ν 6 = 18.9
R11 = 126.626 D11 = variable
R12 = Aperture D12 = 1.04
R13 = 10.155 D13 = 3.00 N 7 = 1.583126 ν 7 = 59.4
R14 = 90.080 D14 = 2.60
R15 = 20.045 D15 = 0.70 N 8 = 2.003300 ν 8 = 28.3
R16 = 10.467 D16 = 1.10
R17 = 39.936 D17 = 1.60 N 9 = 1.487490 ν 9 = 70.2
R18 = -25.038 D18 = variable
R19 = ∞ D19 = variable
R20 = 18.193 D20 = 2.70 N10 = 1.696797 ν10 = 55.5
R21 = -27.078 D21 = 0.70 N11 = 1.846660 ν11 = 23.9
R22 = 23515.459 D22 = variable
R23 = ∞ D23 = 2.60 N12 = 1.516330 ν12 = 64.1
R24 = ∞

\ Focal length 6.74 21.28 64.80
Variable interval \
D 5 0.92 15.31 26.28
D11 29.16 12.02 3.80
D18 2.30 2.30 2.30
D19 1.89 1.57 7.27
D22 5.00 9.31 3.05

Aspheric coefficient
R13 k = 2.23526e-01 B = -1.31600e-05 C = 2.00597e-05 D = 2.17778e-07
E = -2.26333e-10

[Numerical Example 7 ]
f = 10.70 to 50.94 Fno = 2.47 to 3.13 2ω = 73.6 ° to 17.9 °

R 1 = 87.732 D 1 = 2.20 N 1 = 1.846660 ν 1 = 23.9
R 2 = 63.233 D 2 = 8.00 N 2 = 1.487490 ν 2 = 70.2
R 3 = 641.376 D 3 = 0.20
R 4 = 58.183 D 4 = 5.00 N 3 = 1.696797 ν 3 = 55.5
R 5 = 132.663 D 5 = Variable
R 6 = 69.387 D 6 = 1.50 N 4 = 1.743997 ν 4 = 44.8
R 7 = 12.542 D 7 = 7.70
R 8 = -87.184 D 8 = 1.20 N 5 = 1.712995 ν 5 = 53.9
R 9 = 31.114 D 9 = 0.20
R10 = 19.841 D10 = 4.80 N 6 = 1.805181 ν 6 = 25.4
R11 = 204.668 D11 = 0.70
R12 = -166.551 D12 = 1.05 N 7 = 1.603420 ν 7 = 38.0
R13 = 46.363 D13 = variable
R14 = Aperture D14 = 1.40
R15 = -29.974 D15 = 0.70 N 8 = 2.003300 ν 8 = 28.3
R16 = 36.573 D16 = 3.80 N 9 = 1.806098 ν 9 = 40.9
R17 = -21.759 D17 = 0.12
R18 = 37.569 D18 = 3.20 N10 = 1.719995 ν10 = 50.2
R19 = -70.150 D19 = variable
R20 = -31.089 D20 = 2.05 N11 = 1.846660 ν11 = 23.9
R21 = -17.262 D21 = 0.75 N12 = 1.638539 ν12 = 55.4
R22 = 4911.493 D22 = Variable
R23 = -201.546 D23 = 3.00 N13 = 1.583126 ν13 = 59.4
R24 = -47.511 D24 = 1.40
R25 = -28.970 D25 = 1.10 N14 = 1.846660 ν14 = 23.9
R26 = -371.076 D26 = 5.40 N15 = 1.516330 ν15 = 64.1
R27 = -25.270 D27 = 0.20
R28 = 86.741 D28 = 5.60 N16 = 1.438750 ν16 = 95.0
R29 = -35.679 D29 = 0.20
R30 = 91.355 D30 = 3.80 N17 = 1.438750 ν17 = 95.0
R31 = -90.021 D31 = 2.00
R32 = ∞ D32 = 30.00 N18 = 1.516330 ν18 = 64.1
R33 = ∞

\ Focal length 10.70 21.10 50.94
Variable interval \
D 5 1.30 21.84 44.16
D13 31.11 15.68 4.38
D19 2.41 10.83 23.52
D22 25.03 16.61 3.92
D31 2.00 4.66 7.44
Aspheric coefficient
R23 k = 1.65044e + 02 B = -1.19664e-05 C = 8.10561e-09 D = -7.88905e-11
E = 3.12444e-13

各実施例では、高変倍、コンパクトで球面収差、コマ収差、像面彎曲が良好に補正され、かつ軸上色収差の二次スペクトルが良好に補正された高画素のデジタルカメラ、ビデオカメラに対応可能な高性能なズームレンズを達成している。   Each embodiment is compatible with high-pixel digital cameras and video cameras with high zoom ratio, compact size, spherical aberration, coma, and field curvature corrected well, and with the secondary spectrum of axial chromatic aberration corrected well. Achieving high-performance zoom lenses that are possible.

次に本発明のズームレンズを撮影光学系として用いたデジタルカメラ(撮像装置)の実施例を図31を用いて説明する。   Next, an embodiment of a digital camera (imaging device) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.

図31において、20はデジタルカメラ本体、21は本発明のズームレンズによって構成された撮影光学系、22は撮影光学系21によって被写体像を受光するCCD等の撮像素子、23は撮像素子22が受光した被写体像を記録する記録手段、24は不図示の表示素子に表示された被写体像を観察する為のファインダーである。   In FIG. 31, 20 is a digital camera body, 21 is a photographing optical system constituted by the zoom lens of the present invention, 22 is an image pickup device such as a CCD for receiving a subject image by the photographing optical system 21, and 23 is picked up by the image pickup device 22. A recording means 24 for recording the subject image, and a viewfinder 24 for observing the subject image displayed on a display element (not shown).

上記表示素子は液晶パネル等によって構成され、撮像素子22上に形成された被写体像が表示される。   The display element is constituted by a liquid crystal panel or the like, and a subject image formed on the image sensor 22 is displayed.

このように本発明のズームレンズをデジタルカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置を実現している。   Thus, by applying the zoom lens of the present invention to an imaging apparatus such as a digital camera, an imaging apparatus having a small size and high optical performance is realized.

次に本発明のズームレンズを撮影光学系として用いたカメラ(撮像装置)の実施形態を図32を用いて説明する。   Next, an embodiment of a camera (imaging device) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.

図32において10はビデオカメラ本体、11は本発明のズームレンズによって構成された撮影光学系、12は撮影光学系11によって被写体像を受光するCCD等の撮像素子、13は撮像素子12が受光した被写体像を記録する記録手段、14は不図示の表示素子に表示された被写体像を観察する為のファインダーである。上記表示素子は液晶パネル等によって構成され、撮像素子12上に形成された被写体像が表示される。   In FIG. 32, 10 is a video camera body, 11 is a photographing optical system constituted by the zoom lens of the present invention, 12 is an image sensor such as a CCD that receives a subject image by the photographing optical system 11, and 13 is received by the image sensor 12. A recording unit 14 for recording a subject image is a finder for observing the subject image displayed on a display element (not shown). The display element is constituted by a liquid crystal panel or the like, and a subject image formed on the image sensor 12 is displayed.

このように本発明のズームレンズをビデオカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置を実現している。   Thus, by applying the zoom lens of the present invention to an image pickup apparatus such as a video camera, a small-size image pickup apparatus having high optical performance is realized.

本発明における変倍光学系の近軸屈折力配置の概略図Schematic diagram of paraxial refractive power arrangement of variable magnification optical system in the present invention 実施例1のレンズ断面図Lens sectional view of Example 1 実施例1の広角端における収差図Aberration diagram at the wide-angle end of Example 1 実施例1の中間位置における収差図Aberration diagram at the intermediate position of Example 1 実施例1の望遠端における収差図Aberration diagram at telephoto end of Example 1 実施例2のレンズ断面図Lens sectional view of Example 2 実施例2の広角端における収差図Aberration diagrams at the wide-angle end of Example 2 実施例2の中間位置における収差図Aberration diagram at intermediate position of Example 2 実施例2の望遠端における収差図Aberration diagrams at the telephoto end of Example 2 参考例1のレンズ断面図Lens cross section of Reference Example 1 参考例1の広角端における収差図Aberration diagram at the wide-angle end of Reference Example 1 参考例1の中間位置における収差図Aberration diagram at intermediate position in Reference Example 1 参考例1の望遠端における収差図Aberration diagram at the telephoto end of Reference Example 1 実施例3のレンズ断面図Lens sectional view of Example 3 実施例3の広角端における収差図Aberration diagrams at the wide-angle end of Example 3 実施例3の中間位置における収差図Aberration diagrams at the intermediate position of Example 3 実施例3の望遠端における収差図Aberration diagrams at the telephoto end of Example 3 実施例4のレンズ断面図Lens sectional view of Example 4 実施例4の広角端における収差図Aberration diagrams at the wide-angle end of Example 4 実施例4の中間位置における収差図Aberration diagrams at the intermediate position of Example 4 実施例4の望遠端における収差図Aberration diagrams at the telephoto end of Example 4 実施例5のレンズ断面図Lens sectional view of Example 5 実施例5の広角端における収差図Aberration diagrams at the wide-angle end of Example 5 実施例5の中間位置における収差図Aberration diagrams at the intermediate position of Example 5 実施例5の望遠端における収差図Aberration diagrams at the telephoto end of Example 5 実施例6のレンズ断面図Lens sectional view of Example 6 実施例6の広角端における収差図Aberration diagrams at the wide-angle end of Example 6 実施例6の中間位置における収差図Aberration diagram at intermediate position of Example 6 実施例6の望遠端における収差図Aberration diagrams at the telephoto end of Example 6 アッベ数νdと部分分散比Θg,Fの関係を示すグラフ。The graph which shows the relationship between Abbe number (nu) d and partial dispersion ratio (theta) g, F. 本発明のズームレンズをデジタルカメラに適用したときの概略図Schematic when the zoom lens of the present invention is applied to a digital camera 本発明のズームレンズをビデオカメラに適用したときの概略図Schematic when the zoom lens of the present invention is applied to a video camera

L1… 第1レンズ群
L2…第2レンズ群
L3…第3レンズ群
L4…第4レンズ群
L5…第5レンズ群
SP…絞り
IP…像面
d…d線
g…g線
C…C線
F…F線
ΔM…メリディオナル像面
ΔS…サジタル像面
G…ガラスブロック
L1 ... 1st lens group L2 ... 2nd lens group L3 ... 3rd lens group L4 ... 4th lens group L5 ... 5th lens group SP ... Aperture IP ... Image plane d ... d line g ... g line C ... C line F ... F line ΔM ... Meridional image plane ΔS ... Sagittal image plane G ... Glass block

Claims (12)

物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成され、広角端に比べて望遠端において、前記第1レンズ群と前記第2レンズ群の間隔が広くなり、前記第2レンズ群と前記第3レンズ群の間隔が狭くなり、前記第3レンズ群と前記第4レンズ群の間隔が広くなるように各レンズ群の間隔を変化させてズーミングを行うズームレンズにおいて、前記第3レンズ群は、アッベ数をνd3n、部分分散比をθgF3nとするとき、
10<νd3n≦28.3
−0.0027νd3n+0.620<θgF3n<−0.0027νd3n+0.680
なる条件を満足する材料で構成される負レンズを有することを特徴とするズームレンズ。
In order from the object side to the image side, the lens unit includes a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens group having a positive refractive power. , at the telephoto end than at the wide-angle end, wherein the first lens group distance between the second lens group becomes large, Ri said that the second lens group distance between the third lens group is narrowed, the third lens group in a fourth lens group of the zoom lens distance for zooming by changing the distance between each lens group so that the wider, the third lens group, Nyudi3n an Abbe number, when the partial dispersion ratio and ShitagF3n,
10 <νd3n ≦ 28.3
−0.0027νd3n + 0.620 <θgF3n <−0.0027νd3n + 0.680
A zoom lens comprising a negative lens made of a material that satisfies the following conditions:
物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群より構成され、広角端に比べて望遠端において、前記第1レンズ群と前記第2レンズ群の間隔が広くなり、前記第2レンズ群と前記第3レンズ群の間隔が狭くなり、前記第3レンズ群と前記第4レンズ群の間隔が広くなり、前記第4レンズ群と前記第5レンズ群の間隔が狭くなるように各レンズ群の間隔を変化させてズーミングを行うズームレンズにおいて、前記第3レンズ群は、アッベ数をνd3n、部分分散比をθgF3nとするとき、
10<νd3n≦28.3
−0.0027νd3n+0.620<θgF3n<−0.0027νd3n+0.680
なる条件を満足する材料で構成される負レンズを有することを特徴とするズームレンズ。
In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive lens is composed of a fifth lens group having a refractive power, at the telephoto end than at the wide-angle end, wherein the first lens group distance between the second lens group becomes large, the interval of the third lens group and the second lens group tends to close, the third lens wherein becomes distance of the fourth lens group is large and groups, by changing the distance between the lens units such that the distance between the fourth lens group and the fifth lens group becomes narrow zooming in the zoom lens to perform, the third lens group, Nyudi3n an Abbe number, when the partial dispersion ratio and ShitagF3n,
10 <νd3n ≦ 28.3
−0.0027νd3n + 0.620 <θgF3n <−0.0027νd3n + 0.680
A zoom lens comprising a negative lens made of a material that satisfies the following conditions:
前記負レンズの焦点距離をf3n、前記第3レンズ群の焦点距離をf3、望遠端における全系の焦点距離をftとするとき、
0.2<|f3n|/f3<3.5
0.2<f3/ft<0.8
を満足することを特徴とする請求項1または2に記載のズームレンズ。
When the focal length of the negative lens is f3n, the focal length of the third lens group is f3, and the focal length of the entire system at the telephoto end is ft .
0.2 <| f3n | / f3 <3.5
0.2 <f3 / ft <0.8
The zoom lens according to claim 1 , wherein the zoom lens satisfies the following.
前記第3レンズ群は、アッベ数をνd3p、部分分散比をθgF3pとするとき、
−0.0030<(θgF3n−θgF3p)/(νd3n−νd3p)
なる条件を満足する材料で構成される正レンズを有することを特徴とする請求項1乃至3のいずれか1項に記載のズームレンズ。
The third lens group has an Abbe number of νd3p and a partial dispersion ratio of θgF3p.
−0.0030 <(θgF3n−θgF3p) / (νd3n−νd3p)
The zoom lens according to any one of claims 1 to 3, characterized in that it has a positive lens made of a material that satisfies the following condition.
前記負レンズの材料の屈折率をN3nとするとき、
1.80<N3n
なる条件を満足することを特徴とする請求項1乃至4のいずれか1項に記載のズームレンズ。
When the refractive index of the negative lens material is N3n,
1.80 <N3n
The zoom lens according to any one of claims 1 to 4, characterized by satisfying the following condition.
前記負レンズは空気と接する凹面を有し、該負レンズの凹面の曲率半径をR3n、前記第3レンズ群の焦点距離をf3、望遠端における全系の焦点距離をftとするとき、
0.2<|R3n|/f3<1.2
0.2<f3/ft<0.8
なる条件を満足することを特徴とする請求項1乃至5のいずれか1項に記載のズームレンズ。
When the negative lens has a concave surface in contact with air, the radius of curvature of the concave surface of the negative lens is R3n, the focal length of the third lens group is f3, and the focal length of the entire system at the telephoto end is ft.
0.2 <| R3n | / f3 <1.2
0.2 <f3 / ft <0.8
The zoom lens according to any one of claims 1 to 5, characterized by satisfying the following condition.
前記負レンズは接合レンズの一部を構成し、該負レンズの焦点距離をf3n、前記接合レンズの焦点距離をf3sとするとき、
0.01<|f3n|/f3s<1.5
なる条件を満足することを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。
When the negative lens constitutes a part of the cemented lens, which f3n the focal length of the negative lens, and f3s the focal length of the cemented lens,
0.01 <| f3n | / f3s <1.5
The zoom lens according to any one of claims 1 to 6, characterized by satisfying the following condition.
前記接合レンズは正レンズを含み、該正レンズを構成する材料のアッベ数をνd3ps、部分分散比をθgF3psとするとき、
−0.0030<(θgF3n−θgF3ps)/(νd3n−νd3ps)
なる条件を満足することを特徴とする請求項に記載のズームレンズ。
The cemented lens includes a positive lens, and when the Abbe number of the material constituting the positive lens is νd3 ps and the partial dispersion ratio is θgF3 ps,
−0.0030 <(θgF3n−θgF3ps) / (νd3n−νd3ps)
The zoom lens according to claim 7 , wherein the following condition is satisfied.
前記第1レンズ群の焦点距離をf1、望遠端における全系の焦点距離をftとするとき、
0.5<f1/ft<2.2
なる条件を満足することを特徴とする請求項1乃至8のいずれか1項に記載のズームレンズ。
When the focal length of the first lens group is f1, and the focal length of the entire system at the telephoto end is ft,
0.5 <f1 / ft <2.2
The zoom lens according to any one of claims 1 to 8, characterized by satisfying the following condition.
前記第2レンズ群の焦点距離をf2、望遠端における全系の焦点距離をftとするとき、
0.1<|f2|/ft<0.4
なる条件を満足することを特徴とする請求項1乃至9のいずれか1項に記載のズームレンズ。
When the focal length of the second lens group is f2, and the focal length of the entire system at the telephoto end is ft,
0.1 <| f2 | / ft <0.4
The zoom lens according to any one of claims 1 to 9, characterized by satisfying the following condition.
固体撮像素子に像を形成することを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。 Any zoom lens according to one of claims 1 to 10 and forming an image on a solid-state image device. 請求項1乃至11のいずれか1項のズームレンズと、該ズームレンズによって形成された像を受光する固体撮像素子を有することを特徴とする撮像装置。 And any one of the zoom lens according to claim 1 to 11, an imaging apparatus characterized by comprising a solid-state image sensor for receiving an image formed by the zoom lens.
JP2004302869A 2004-10-18 2004-10-18 Zoom lens and imaging apparatus having the same Expired - Fee Related JP4794845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302869A JP4794845B2 (en) 2004-10-18 2004-10-18 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302869A JP4794845B2 (en) 2004-10-18 2004-10-18 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2006113453A JP2006113453A (en) 2006-04-27
JP2006113453A5 JP2006113453A5 (en) 2007-12-06
JP4794845B2 true JP4794845B2 (en) 2011-10-19

Family

ID=36382006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302869A Expired - Fee Related JP4794845B2 (en) 2004-10-18 2004-10-18 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4794845B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678823B2 (en) * 2004-11-09 2011-04-27 オリンパスイメージング株式会社 Zoom lens
JP2006133632A (en) * 2004-11-09 2006-05-25 Olympus Corp Zoom lens
JP2008046347A (en) * 2006-08-16 2008-02-28 Pentax Corp Wide angle zoom lens system
JP5026763B2 (en) * 2006-10-16 2012-09-19 株式会社リコー Zoom lens, imaging device, and portable information terminal device
JP2008164725A (en) * 2006-12-27 2008-07-17 Sony Corp Zoom lens and imaging apparatus
US7656589B2 (en) 2007-01-22 2010-02-02 Panasonic Corporation Zoom lens system, imaging device and camera
JP5072474B2 (en) 2007-08-06 2012-11-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5053750B2 (en) 2007-08-06 2012-10-17 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5163007B2 (en) * 2007-08-15 2013-03-13 ソニー株式会社 Zoom lens and imaging device
JP5167724B2 (en) * 2007-08-21 2013-03-21 株式会社ニコン Optical system
JP2009286673A (en) * 2008-05-30 2009-12-10 Ohara Inc Optical glass, preform and optical element
JP5510876B2 (en) * 2008-08-12 2014-06-04 株式会社ニコン Zoom lens and optical apparatus provided with the zoom lens
WO2010018727A1 (en) * 2008-08-12 2010-02-18 株式会社ニコン Zoom lens, optical apparatus with the zoom lens, and method of manufacturing zoom lens
US8320051B2 (en) 2009-10-13 2012-11-27 Panasonic Corporation Zoom lens system, imaging device and camera
JP5574796B2 (en) 2010-04-19 2014-08-20 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5594606B2 (en) * 2011-08-22 2014-09-24 株式会社ニコン Zoom lens and imaging device
JP5594607B2 (en) * 2011-08-22 2014-09-24 株式会社ニコン Zoom lens and imaging device
US8995064B2 (en) 2011-08-22 2015-03-31 Nikon Corporation Zoom lens, imaging apparatus, and method for manufacturing zoom lens

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870035B2 (en) * 1989-08-28 1999-03-10 ミノルタ株式会社 High-magnification zoom lens system including wide-angle range
JPH04140704A (en) * 1990-10-03 1992-05-14 Sigma Corp Inner focus type zoom lens
JP3296876B2 (en) * 1993-03-26 2002-07-02 オリンパス光学工業株式会社 Zoom lens
JP3365087B2 (en) * 1994-10-14 2003-01-08 ミノルタ株式会社 Optical system with camera shake correction function
JPH09288236A (en) * 1996-04-19 1997-11-04 Copal Co Ltd Zoom lens with rear focusing system
JPH11352401A (en) * 1998-06-04 1999-12-24 Nikon Corp Focal distance variable lens system
JP2000171710A (en) * 1998-12-08 2000-06-23 Ricoh Co Ltd Zoom lens
JP4691768B2 (en) * 2000-09-28 2011-06-01 株式会社ニコン Zoom lens
JP4686835B2 (en) * 2000-09-28 2011-05-25 株式会社ニコン Zoom lens
JP2003121742A (en) * 2001-10-17 2003-04-23 Nikon Corp Zoom lens
JP2003241092A (en) * 2002-02-15 2003-08-27 Nikon Corp Zoom lens
JP4221670B2 (en) * 2004-09-30 2009-02-12 ソニー株式会社 Zoom lens and imaging device

Also Published As

Publication number Publication date
JP2006113453A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP4731834B2 (en) Zoom lens and imaging apparatus having the same
JP4950630B2 (en) Zoom lens and imaging apparatus having the same
JP4898410B2 (en) Zoom lens and imaging apparatus having the same
JP6566646B2 (en) Zoom lens and imaging apparatus having the same
JP4819414B2 (en) Zoom lens and imaging apparatus having the same
JP4829586B2 (en) Zoom lens and imaging apparatus having the same
JP5072474B2 (en) Zoom lens and imaging apparatus having the same
JP5393259B2 (en) Zoom lens and imaging apparatus having the same
JP5043471B2 (en) Zoom lens and optical apparatus having the same
JP5053750B2 (en) Zoom lens and imaging apparatus having the same
JP4902240B2 (en) Zoom lens and imaging apparatus having the same
JP4776936B2 (en) Zoom lens and imaging apparatus having the same
JP4794845B2 (en) Zoom lens and imaging apparatus having the same
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
JP5350129B2 (en) Zoom lens and imaging apparatus having the same
JP2007003600A (en) Zoom lens and imaging apparatus equipped with same
JP4971632B2 (en) Zoom lens and imaging apparatus having the same
JPH10206736A (en) Zoom lens
US20040161228A1 (en) Zoom lens system and camera having the same
JP2014029375A (en) Zoom lens and imaging apparatus including the same
JP6808441B2 (en) Zoom lens and imaging device with it
JP4717399B2 (en) Zoom lens and imaging apparatus having the same
JP5656684B2 (en) Zoom lens and imaging apparatus having the same
JP4865218B2 (en) Zoom lens and imaging apparatus having the same
JP2917567B2 (en) Rear focus zoom lens

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R151 Written notification of patent or utility model registration

Ref document number: 4794845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees