JP4794416B2 - Target location system - Google Patents

Target location system Download PDF

Info

Publication number
JP4794416B2
JP4794416B2 JP2006303714A JP2006303714A JP4794416B2 JP 4794416 B2 JP4794416 B2 JP 4794416B2 JP 2006303714 A JP2006303714 A JP 2006303714A JP 2006303714 A JP2006303714 A JP 2006303714A JP 4794416 B2 JP4794416 B2 JP 4794416B2
Authority
JP
Japan
Prior art keywords
target
unit
azimuth
self
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006303714A
Other languages
Japanese (ja)
Other versions
JP2008122127A (en
Inventor
彰 加藤
正明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006303714A priority Critical patent/JP4794416B2/en
Publication of JP2008122127A publication Critical patent/JP2008122127A/en
Application granted granted Critical
Publication of JP4794416B2 publication Critical patent/JP4794416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、複数の方位測定装置を用いて目標から放射される電波を分析することにより、目標の位置を標定するようにした目標位置標定装置に関するものである。   The present invention relates to a target position locating apparatus that determines a target position by analyzing radio waves radiated from a target using a plurality of azimuth measuring apparatuses.

複数の方位測定装置等を用いて目標から放射される電波を分析することにより目標の位置を標定することが知られている。
例えば、目標より送信される電波を受信することで目標の方位を測定する位置情報部と、自己位置を設定する位置設定部と、位置情報部に対して到来電波の方位の基準方位を設定する基準方位設定部とを備えた方位測定装置を少なくとも2つ用いて、目標位置を標定する目標位置標定装置において、互いに自己の有する位置情報部により相手の方位を測定すると共に相手の自己位置を取得し、相手の方位および相手の自己位置と、自分の自己位置とに基づいて目標方位を求める基準となる基準方位を演算することにより、基準方位の設定を高精度に行うようにした目標位置標定装置が知られている。(特許文献1参照)
特開平6−241817号公報
It is known to determine the position of a target by analyzing radio waves radiated from the target using a plurality of azimuth measuring devices and the like.
For example, a position information unit that measures the direction of the target by receiving a radio wave transmitted from the target, a position setting unit that sets the self-position, and a reference direction of the direction of the incoming radio wave for the position information unit In a target position locating device that uses at least two azimuth measuring devices equipped with a reference azimuth setting unit to measure a target position, the other party's own position is measured and the other party's own position is obtained by using the position information unit of each other. The target position is determined with high accuracy by calculating the reference direction that is the reference for obtaining the target direction based on the other party's direction and the other party's own position. The device is known. (See Patent Document 1)
JP-A-6-241817

複数の方位測定装置を用いて目標から放射される電波を分析することにより三角測量の原理等で目標の位置を標定する際に、目標から見て互いに直交する方向に近い方向から測定を実施した場合は、高精度に目標位置を標定できるが、目標から見て近接した方向から目標の方位を測定した場合は、位置標定誤差が大きいという課題があった。
これを解決するためには極力互いに直交する方向から目標の方位を測定する必要があるが、目標周辺に危険エリアが存在するなど、方位測定装置を搭載した航空機等の飛行可能領域に制約がある場合は、必ずしも互いに直交する方向から測定できないことになる。
When locating the target position using the principle of triangulation, etc. by analyzing the radio waves radiated from the target using multiple azimuth measuring devices, measurements were performed from directions close to each other perpendicular to the target. In this case, the target position can be determined with high accuracy. However, when the direction of the target is measured from a direction close to the target, there is a problem that a position determination error is large.
In order to solve this, it is necessary to measure the direction of the target from directions orthogonal to each other as much as possible, but there is a restriction on the flightable area of an aircraft etc. equipped with a direction measuring device, such as the presence of a dangerous area around the target In such a case, measurement cannot always be performed from directions orthogonal to each other.

この発明の目的は、方位測定装置を搭載した航空機等が、目標周辺の危険エリアに進入しなくても、等価的に目標から見て互いに直交する方向に近い方向から測定が実施できるようにして、高精度に目標位置の標定を行うようにした目標位置標定装置を提供するものである。   An object of the present invention is to enable an aircraft or the like equipped with a direction measuring device to perform measurement from directions that are equivalent to directions orthogonal to each other equivalently when viewed from the target, without entering the danger area around the target. The present invention provides a target position locating device that performs target position locating with high accuracy.

この発明の目標位置標定装置は、少なくとも2つの移動する航空機、艦船または車両にそれぞれ搭載された観測点に設けた方位測定装置からの目標方位の観測結果に基づき目標位置の標定を行う目標位置標定装置において、
目標からの電波を受信する第1の目標電波受信部と、この第1の目標電波受信部で受信した目標電波を用いて目標方位を算出する第1の目標方位算出部と、自機位置の座標を算出する第1の自己位置算出部と、前記第1の目標方位算出部で求めた方探結果1及び前記第1の自己位置算出部で求めた自己位置座標のデータを転送する第1の観測データ転送部と、前記第1の観測データ転送部からの方探結果1及び自己位置座標のデータを記録する第1の記録部と、前記第1の観測データ転送部からの方探結果1及び自己位置座標のデータを後記する第2の観測点の方位測定装置に送信する第1の通信部を設けた第1の観測点の方位測定装置、前記目標から放射され既知の反射面で反射した電波を受信する第2の目標電波受信部と、この第2の目標電波受信部で受信した目標電波を用いて目標方位を算出する第2の目標方位算出部と、自機位置の座標を算出する第2の自己位置算出部と、前記第2の目標方位算出部で求めた方探結果2及び前記第2の自己位置算出部で求めた自己位置座標のデータを転送する第2の観測データ転送部と、前記第2の観測データ転送部からの方探結果2及び自己位置座標のデータを記録する第2の記録部と、前記第1の通信部からの方探結果1及び自己位置座標のデータを受信する第2の通信部と、前記反射面の位置座標及び前記反射面の角度の情報を予め保持する反射面情報保持部と、前記第2の通信部からの方探結果1(Θ1)と自己位置座標(x1,y1)、及び第2の観測データ転送部からの方探結果2(Θ2)と自己位置座標(x2,y2)、及び前記反射面情報保持部からの反射面位置座標(x3,y3)と反射面角度(Θ3)に基づいて演算処理し、目標位置の標定を行う目標位置標定処理部とを設けた第2の観測点の方位測定装置を備え、前記第1の観測点の方位測定装置の目標方位と前記第2の観測点の方位測定装置の目標方位とのなす角度が前記反射面がない場合と比べより直角に近い方向から測定するようにしたものである。
Target position locating system of the present invention, the target of performing the orientation of the target position based on the target azimuth observations from the azimuth measuring device provided at least two moving aircraft, the observation points which are respectively mounted on the ship or vehicle In the location system,
A first target radio wave receiving unit that receives radio waves from the target, a first target azimuth calculating unit that calculates a target azimuth using the target radio wave received by the first target radio wave receiving unit, A first self-position calculation unit that calculates coordinates, a first search result 1 obtained by the first target azimuth calculation unit, and a first position coordinate data obtained by the first self-position calculation unit are transferred. Observation data transfer unit, direction finding result 1 from the first observation data transfer unit and a first recording unit for recording data of the self-position coordinates, and direction finding result from the first observation data transfer unit 1 and a first observation point azimuth measuring device provided with a first communication unit for transmitting the data of the self-position coordinates to a second observation point azimuth measuring device which will be described later. A second target radio wave receiving unit for receiving the reflected radio wave, and the second eye A second target azimuth calculating unit that calculates a target azimuth using the target radio wave received by the radio wave receiving unit, a second self-position calculating unit that calculates the coordinates of the own device position, and the second target azimuth calculating unit 2 and the second observation data transfer unit for transferring the data of the self-position coordinates obtained by the second self-position calculation unit, and the direction search result 2 from the second observation data transfer unit And a second recording unit for recording data of the self-position coordinates, a second communication unit for receiving the direction finding result 1 and the data of the self-position coordinates from the first communication unit, and the position coordinates of the reflecting surface A reflection surface information holding unit that holds in advance information on the angle of the reflection surface, a direction finding result 1 (Θ1) and self-position coordinates (x1, y1) from the second communication unit, and second observation data Direction finding result 2 (Θ2) from the transfer unit, self-position coordinates (x2, y2), and The second observation is provided with a target position locating processing unit that performs calculation processing based on the reflection surface position coordinates (x3, y3) and the reflection surface angle (Θ3) from the reflection surface information holding unit to determine the target position. A point azimuth measuring device, and the angle formed between the target azimuth of the azimuth measuring device at the first observation point and the target azimuth of the azimuth measuring device at the second observation point is more perpendicular than when there is no reflecting surface Measured from the direction close to.

適当な位置に存在する反射面あるいは反射点での反射波を活用することにより、等価的に目標から見て互いに直交する方向に近い方向から観測を行うことにより、高精度の目標位置標定が可能となる。これにより測定装置を搭載した航空機等が飛行危険エリア等に進入せずに所定の精度での目標位置標定が可能となったり、航空機の燃料の節約等が可能となる効果が期待できる。   By using the reflected wave at the reflection surface or reflection point at an appropriate position, the target position can be determined with high precision by equivalently observing from directions close to each other when viewed from the target. It becomes. As a result, it can be expected that the target position can be determined with a predetermined accuracy without causing the aircraft or the like equipped with the measuring apparatus to enter the dangerous flight area or the like, and the fuel of the aircraft can be saved.

実施の形態1
この発明の実施の形態1における目標位置標定装置を図1〜図5に基づいて説明する。図1はこの発明の実施形態1のブロック構成図、図2は反射面を用いない場合の基本処理を示す処理内容の説明図、図3は近接した方向からの観測による位置標定結果の計算例を示す図、図4は反射面を用いた場合の処理内容の説明図、図5は等価的に離隔した方向からの観測による位置標定結果の計算例を示す図である。
Embodiment 1
A target position locating apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of Embodiment 1 of the present invention, FIG. 2 is an explanatory diagram of processing contents showing basic processing when a reflecting surface is not used, and FIG. 3 is a calculation example of a position location result by observation from close directions. FIG. 4 is an explanatory diagram of processing contents when a reflecting surface is used, and FIG. 5 is a diagram showing a calculation example of a position location result by observation from an equivalently spaced direction.

図1のブロック構成図において、航空機、艦船、車両等に搭載されるか或いは地上に固定される方位測定装置1は、第1の観測点に位置し、目標3からの到来電波の方探機能を有する。同じく、航空機、艦船、車両等に搭載されるか或いは地上に固定される方位測定装置2は、第2の観測点に位置し、目標3から放射され既知の反射面4で反射した到来電波の方探機能を有する。反射面4は航空機、艦船、車両等に搭載した反射体あるいは地上の建築物等でよく、すでにその位置座標及び反射面角度が知られているものである。更に、これら方位測定装置1、2の観測点は目標3から見て実際に互いに直交する方向に位置していなくてもよい。なお以下の説明では、方位測定装置1、2は航空機に搭載されている場合について説明する。   In the block diagram of FIG. 1, an azimuth measuring device 1 mounted on an aircraft, a ship, a vehicle, or the like or fixed to the ground is located at a first observation point and has a function of searching for an incoming radio wave from a target 3 Have Similarly, the azimuth measuring device 2 mounted on an aircraft, a ship, a vehicle, or the like or fixed on the ground is located at the second observation point, and the incoming radio wave radiated from the target 3 and reflected by the known reflecting surface 4 is used. Has a direction finding function. The reflecting surface 4 may be a reflector mounted on an aircraft, a ship, a vehicle, or the like, or a building on the ground, and the position coordinates and the reflecting surface angle are already known. Furthermore, the observation points of these azimuth measuring apparatuses 1 and 2 do not have to be actually located in directions orthogonal to each other when viewed from the target 3. In the following description, a case where the azimuth measuring apparatuses 1 and 2 are mounted on an aircraft will be described.

航空機Aに搭載された方位測定装置1は、目標3からの電波を受信する目標電波受信部10、目標電波受信部10で受信した目標電波を用いて目標方位を算出する目標方位算出部11、自機位置の座標を算出する自己位置算出部12、目標方位算出部11で求めた方探結果1(Θ1)及び自己位置算出部12で求めた自己位置座標(x1,y1)のデータを記録部14及び通信部15へ転送する観測データ転送部13、観測データ転送部13から転送されたデータを記録する記録部14、観測データ転送部13から転送されたデータを第2の観測点にいる航空機Bに搭載された方位測定装置2へ送信する通信部15を備えている。   The azimuth measuring apparatus 1 mounted on the aircraft A includes a target radio wave receiving unit 10 that receives radio waves from the target 3, a target azimuth calculating unit 11 that calculates a target azimuth using the target radio waves received by the target radio wave receiving unit 10, The self-position calculation unit 12 that calculates the coordinates of its own position, the direction finding result 1 (Θ1) obtained by the target orientation calculation unit 11 and the data of the self-position coordinates (x1, y1) obtained by the self-position calculation unit 12 are recorded. The observation data transfer unit 13 for transferring to the unit 14 and the communication unit 15, the recording unit 14 for recording the data transferred from the observation data transfer unit 13, and the data transferred from the observation data transfer unit 13 at the second observation point. A communication unit 15 that transmits to the direction measuring device 2 mounted on the aircraft B is provided.

航空機Bに搭載された方位測定装置2は、目標3から放射され既知の反射面4で反射した電波を受信する目標電波受信部20、受信した目標電波を用いて目標方位を算出する目標方位算出部21、自機位置の座標を算出する自己位置算出部22、方位測定装置1の通信部15から伝送された方探結果1(Θ1)及び自己位置座標(x1,y1)の観測データを受信する通信部23、反射面4の位置座標(x3,y3)及び反射面4の角度(Θ3)の情報を予め保持する反射面情報保持部24、通信部23より入力する方探結果1(Θ1)と自己位置座標(x1,y1)、及び自己位置算出部22より入力する自己位置座標(x2,y2)、及び目標方位算出部21より入力する方探結果2(Θ2)、及び反射面情報保持部24より入力する反射面位置座標(x3,y3)と反射面角度(Θ3)を用いて目標位置の標定結果を求める目標位置標定処理部25、目標位置標定処理部25への入力情報を記録し目標位置標定結果をユーザに表示する、記録部と表示部の機能を有する表示記録部26を備えている。また上記目標位置標定処理部25は、入力された各データ(x1,y1〜x3,y3、Θ1〜Θ3)の情報を表示記録部26または地上の位置標定装置に送信するための通信部(図示省略)へ転送する観測データ転送部の機能も有している。
なお上記した自己位置算出部12、22はGPS(GlobalPositioning System)受信機を用いて自己位置を自動的に測定してもよいし、手動で設定してもよい。また反射面情報保持部24に保持されている反射面4の位置座標(x3,y3)及び反射面角度(Θ3)の情報は既に知られているので、目標位置標定処理部25にメモリとして内蔵していてもよい。
The azimuth measuring apparatus 2 mounted on the aircraft B includes a target radio wave receiving unit 20 that receives a radio wave emitted from the target 3 and reflected by a known reflecting surface 4, and a target azimuth calculation that calculates a target azimuth using the received target radio wave. Unit 21, a self-position calculation unit 22 that calculates the coordinates of the position of the own device, and the direction finding result 1 (Θ1) and the observation data of the self-position coordinates (x1, y1) transmitted from the communication unit 15 of the direction measuring device 1 are received. The communication unit 23, the reflection surface information holding unit 24 that stores in advance information on the position coordinates (x3, y3) of the reflection surface 4 and the angle (Θ3) of the reflection surface 4, and the search result 1 (Θ1) input from the communication unit 23 ), Self-position coordinates (x1, y1), self-position coordinates (x2, y2) input from the self-position calculation section 22, direction finding result 2 (Θ2) input from the target orientation calculation section 21, and reflecting surface information Reflection input from the holding unit 24 Position coordinates (x3, y3) and the target position location processor 25 for determining the orientation results of the target position by using a reflecting surface angle (.THETA.3), the input information to the target position location processor 25 records the user a target position orientation results And a display recording unit 26 having the functions of a display unit and a display unit. The target position locator 25 is a communication unit (not shown) for transmitting information of each input data (x1, y1 to x3, y3, Θ1 to Θ3) to the display recording unit 26 or the ground position locator. It also has a function of an observation data transfer unit for transferring to (omitted).
Note that the above-described self-position calculating units 12 and 22 may automatically measure the self-position using a GPS (Global Positioning System) receiver or may manually set the self-position. Further, since the information on the position coordinates (x3, y3) and the reflection surface angle (Θ3) of the reflection surface 4 held in the reflection surface information holding unit 24 is already known, it is built in the target position determination processing unit 25 as a memory. You may do it.

次にこの発明の実施形態1において、第1の観測点及び第2の観測点で方位測定装置1及び2が算出した方探結果(Θ1、Θ2)から目標3の位置を標定する処理内容について説明する。まず、予備説明として反射面4がない場合について図2を用いて説明する。
図2(a)は、第1の観測点(以下観測点1という)にいる方位測定装置1と第2の観測点2(以下観測点2という)にいる方位測定装置2が、目標3を方探している状態の図で、図2(b)は、方位測定装置1、2がX−Y平面上にあり、基準方位をX軸として、観測点1および観測点2での方探結果(Θ1、Θ2)から目標位置を求める処理内容を示す図である。
図2において、真の目標位置座標を(x,y)=(0,0)とする。これは未知のものである。このとき観測点1及び観測点2の位置座標を以下のように極座標で表す。
観測点1の位置座標 (x1,y1)=(r1・cosθ1,r1・sinθ1)
観測点2の位置座標 (x2,y2)=(r2・cosθ2,r2・cosθ2)
ここで、θ1は観測点1と目標3を結ぶ線がX軸となす角度、θ2は観測点2と目標3を結ぶ線がX軸となす角度である。r1は観測点1と目標3との距離、r2は観測点2と目標3との距離である。
Next, in Embodiment 1 of the present invention, processing contents for locating the target 3 from the direction finding results (Θ1, Θ2) calculated by the azimuth measuring apparatuses 1 and 2 at the first observation point and the second observation point explain. First, as a preliminary explanation, a case where there is no reflecting surface 4 will be described with reference to FIG.
FIG. 2A shows that the azimuth measuring device 1 located at the first observation point (hereinafter referred to as observation point 1) and the azimuth measurement device 2 located at the second observation point 2 (hereinafter referred to as observation point 2) set the target 3. FIG. 2 (b) shows a direction finding result at observation point 1 and observation point 2 with the direction measurement devices 1 and 2 on the XY plane and the reference direction as the X axis. It is a figure which shows the processing content which calculates | requires a target position from ((theta) 1, (theta) 2).
In FIG. 2, the true target position coordinates are (x, y) = (0, 0). This is unknown. At this time, the position coordinates of the observation point 1 and the observation point 2 are expressed in polar coordinates as follows.
Position coordinates of observation point 1 (x1, y1) = (r1 · cos θ1, r1 · sin θ1)
Position coordinates of observation point 2 (x2, y2) = (r2, cos θ2, r2, cos θ2)
Here, θ1 is an angle formed by a line connecting the observation point 1 and the target 3 with the X axis, and θ2 is an angle formed by a line connecting the observation point 2 and the target 3 with the X axis. r1 is the distance between the observation point 1 and the target 3, and r2 is the distance between the observation point 2 and the target 3.

観測点1における方探誤差をφ1、観測点2における方探誤差をφ2として、観測点1及び観測点2における方探結果を直線の式で表すと以下のようになる。
観測点1の方探結果y=a1・x+b1 ・・・(1)
a1=tan(θ1−φ1)
b1=r1sinθ1−tan(θ1−φ1)・r1cosθ1
=y1−tan(θ1−φ1)・x1
θ1−φ1=Θ1+180°
Θ1:観測点1における目標方探結果(方探結果1)
観測点2の方探結果y=a2・x+b2 ・・・(2)
a2=tan(θ2−φ2)
b2=r2sinθ2−tan(θ2−φ2)・r2cosθ2
=y2−tan(θ2−φ2)・x2
θ2−φ2=Θ2+180°
Θ2:観測点2における目標方探結果(方探結果2)
When the direction finding error at observation point 1 is φ1, the direction finding error at observation point 2 is φ2, and the direction finding result at observation point 1 and observation point 2 is expressed by a straight line expression, it is as follows.
Observation result at observation point 1 y = a1 · x + b1 (1)
a1 = tan (θ1−φ1)
b1 = r1sin θ1-tan (θ1-φ1) · r1cos θ1
= Y1-tan (θ1-φ1) · x1
θ1-φ1 = Θ1 + 180 °
Θ1: Target search result at observation point 1 (Search result 1)
Observation result at observation point 2 y = a2 · x + b2 (2)
a2 = tan (θ2−φ2)
b2 = r2sin θ2-tan (θ2-φ2) · r2cos θ2
= Y2-tan (θ2-φ2) · x2
θ2-φ2 = Θ2 + 180 °
Θ2: Target search result at observation point 2 (Search result 2)

上記の(1)式及び(2)式の交点を求めることにより三角測量の原理で目標位置の座標を求めることができる。
即ち、目標位置座標(目標位置標定結果)は、次の(3)式となる。
(x,y)=((b2-b1)/(a1-a2),(a1b2-a2b1)/(a1-a2))
・・・(3)
従って、観測点1における方位測定装置1の自己位置算出部12から得られる自己位置座標(x1,y1)及び目標方位算出部11から得られる方探結果1(Θ1)を通信部15により観測点2へ伝送し、観測点2における方位測定装置2の自己位置算出部22から得られる自己位置座標(x2,y2)及び目標方位算出部21から得られる方探結果2(Θ2)も用いることにより、観測点2にいる方位測定装置2の目標位置標定処理部25にて目標位置を標定することができる。
The coordinates of the target position can be obtained by the principle of triangulation by obtaining the intersection of the above equations (1) and (2).
That is, the target position coordinates (target position determination result) are expressed by the following equation (3).
(X, y) = ((b2-b1) / (a1-a2), (a1b2-a2b1) / (a1-a2))
... (3)
Therefore, the communication unit 15 transmits the self-position coordinates (x1, y1) obtained from the self-position calculation unit 12 of the azimuth measuring apparatus 1 at the observation point 1 and the direction finding result 1 (Θ1) obtained from the target azimuth calculation unit 11 to the observation point. 2 and using the self-position coordinates (x2, y2) obtained from the self-position calculation unit 22 of the azimuth measuring device 2 at the observation point 2 and the direction finding result 2 (Θ2) obtained from the target azimuth calculation unit 21 The target position can be determined by the target position determination processing unit 25 of the azimuth measuring apparatus 2 at the observation point 2.

通常、位置標定を行うべき目標3は航空機等が容易には飛行して進入できない飛行危険エリアに存在するため、航空機A(観測点1)と航空機B(観測点2)は目標3に対して近接した方向から方探を行わざるを得ない。したがってどうしても位置標定誤差が大きくなってしまう。このことについて図3を用いて位置標定結果をシュミレーションした計算例を説明する。
図3に示したように目標3に対して近接した方向から方探を行って目標位置標定を実施する場合、2つの観測点1、2における方探結果の直線の傾きが近い値となるため、この2つの直線の交点の分布も大きくばらつく。その結果、観測点1のr1を80[NM(rms)]、θ1を250[deg]、観測点2のr2を100[NM(rms)]、θ2を284[deg]とした時、位置標定誤差は23.5[NM(rms)]となり、位置標定誤差が大きい。
Usually, the target 3 to be located is located in a flight danger area where an aircraft or the like cannot easily fly and enter, so the aircraft A (observation point 1) and the aircraft B (observation point 2) You have to search from a close direction. Therefore, the positioning error is inevitably increased. A calculation example in which the position determination result is simulated will be described with reference to FIG.
As shown in FIG. 3, when the target position is determined by performing the direction finding from the direction close to the target 3, the slope of the straight line of the direction finding result at the two observation points 1 and 2 becomes a close value. The distribution of the intersection of these two straight lines also varies greatly. As a result, when r1 of observation point 1 is 80 [NM (rms)], θ1 is 250 [deg], r2 of observation point 2 is 100 [NM (rms)], and θ2 is 284 [deg], the position is determined. The error is 23.5 [NM (rms)], and the positioning error is large.

そこで図4に示したように、位置座標及び角度が既知の反射面4からの反射波を用いて目標位置標定を行うことにより位置標定精度を大幅に向上することができる。反射面4を用いた場合の目標位置標定の処理内容について説明する。まず観測点1において方探結果1(Θ1)及び自己位置座標(x1,y1)を求めて観測点2へ送信する。次に観測点2では反射面4による反射波の方位を算出することにより等価的に目標3と反射面4を結ぶ直線上から方探を行ったのと同じ結果を得ることができる。
等価的な方探結果2 Θ2’=2Θ3−Θ2
Θ2:観測点2における方探結果
Θ3:反射面の角度(反射面情報保持部24に予め登録)
Therefore, as shown in FIG. 4, by performing the target position determination using the reflected wave from the reflection surface 4 whose position coordinates and angle are known, the position determination accuracy can be greatly improved. The processing contents of target position determination when the reflecting surface 4 is used will be described. First, the direction finding result 1 (Θ1) and the self-position coordinates (x1, y1) are obtained at the observation point 1 and transmitted to the observation point 2. Next, at the observation point 2, by calculating the azimuth of the reflected wave by the reflecting surface 4, the same result can be obtained as if the direction search was equivalently performed from the straight line connecting the target 3 and the reflecting surface 4.
Equivalent method of finding 2 Θ2 '= 2Θ3-Θ2
Θ2: Direction finding result at observation point 2
Θ3: angle of reflection surface (pre-registered in reflection surface information holding unit 24)

等価的な観測点2の位置座標は次の(4)式で求めることができる。

Figure 0004794416
(x3,y3):反射面の位置座標(反射面情報保持部24に予め登録)
(x2,y2):観測点2の位置座標
Θ4=2(Θ3−Θ2)
以上より反射波を用いて求めた等価的な方探結果2(Θ2’)及び等価的な観測点2の位置座標(x2’,y2’)をそれぞれ方探結果2(Θ2)、観測点2の位置座標(x2,y2)として反射面がない場合と同じ処理により位置標定を行うことによって、目標に対して離隔した方向(目標からみて互いに直交する方向に近い方向)から方探を行ったのと同様な高い精度での目標位置標定が可能となる。この処理は航空機B(観測点2)の方位測定装置2の目標位置標定処理部25で実施する。 An equivalent position coordinate of the observation point 2 can be obtained by the following equation (4).
Figure 0004794416
(X3, y3): Position coordinates of the reflecting surface (registered in advance in the reflecting surface information holding unit 24)
(X2, y2): Position coordinates of observation point 2
Θ4 = 2 (Θ3-Θ2)
As described above, the equivalent direction finding result 2 (Θ2 ′) obtained by using the reflected wave and the position coordinates (x2 ′, y2 ′) of the equivalent observation point 2 are obtained as the direction finding result 2 (Θ2) and the observation point 2 respectively. As the position coordinates (x2, y2), the position is determined by the same process as when there is no reflecting surface, and the direction is searched from directions separated from the target (directions close to each other perpendicular to the target). The target position can be determined with high accuracy similar to the above. This processing is performed by the target position locating processing unit 25 of the direction measuring device 2 of the aircraft B (observation point 2).

反射面4を用いて、等価的に目標に対して離隔した方向から方探を行った場合の目標位置の標定結果をシュミレーションした計算例を図5に示す。
図5に示したように、等価的に目標に対して離隔した方向から方探を行うことにより、2つの観測点1、2における方探結果の傾きが垂直に近くなるため、この2つの直線の交点も分布のばらつきは小さくなり高い精度での目標位置標定が可能となる。その結果、観測点1のr1を80[NM(rms)]、θ1を250[deg]、観測点2のr2を100[NM(rms)]、θ2を350[deg]とした時、位置標定誤差は4.6[NM(rms)]となり、位置標定誤差が小さい。
FIG. 5 shows a calculation example in which the target position locating result is simulated when the direction search is performed from the direction that is equivalently separated from the target by using the reflecting surface 4.
As shown in FIG. 5, by performing a direction search from a direction that is equivalently separated from the target, the inclinations of the direction search results at the two observation points 1 and 2 become nearly vertical. The variation of the distribution at the intersection of the points becomes small, and the target position can be determined with high accuracy. As a result, when r1 at observation point 1 is 80 [NM (rms)], θ1 is 250 [deg], r2 at observation point 2 is 100 [NM (rms)], and θ2 is 350 [deg], the position is determined. The error is 4.6 [NM (rms)], and the positioning error is small.

実施の形態2
この発明の実施形態1では位置座標及び角度が既知の反射面4の情報を用いて目標位置標定を行う装置及び処理内容を示したが、実施形態1では、目標信号が反射面4で鏡面反射すること、及び反射面4の角度が既知であることが必要であった。この発明の実施形態2では反射面4ではなく反射点5を用い、目標信号が反射面で鏡面反射しなくても、観測点1及び観測点2に到来する目標信号の時間差を用いて双曲線法を組み合わせることにより目標位置標定が可能となるようにしたものである。
Embodiment 2
In the first embodiment of the present invention, the apparatus and the processing content for performing the target position determination using the information of the reflecting surface 4 whose position coordinates and angle are known are shown. However, in the first embodiment, the target signal is specularly reflected by the reflecting surface 4. And the angle of the reflecting surface 4 needs to be known. In the second embodiment of the present invention, the reflection point 5 is used instead of the reflection surface 4, and the hyperbolic method is used by using the time difference between the target signals arriving at the observation point 1 and the observation point 2 even if the target signal is not specularly reflected by the reflection surface. The target position can be determined by combining.

この発明の実施の形態2における目標位置標定装置を図6〜図10に基づいて説明する。図6はこの発明の実施形態2のブロック構成図、図7は反射点を用いない場合の基本処理を示す処理内容の説明図、図8は近接した方向からの観測による位置標定結果の計算例を示す図、図9は反射点を用いた場合の処理内容の説明図、図10は等価的に離隔した方向からの観測による位置標定結果の計算例を示す図である。   A target position locating device according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 6 is a block diagram of Embodiment 2 of the present invention, FIG. 7 is an explanatory diagram of processing contents showing basic processing when a reflection point is not used, and FIG. 8 is a calculation example of a position location result by observation from close directions. FIG. 9 is an explanatory diagram of processing contents when a reflection point is used, and FIG. 10 is a diagram showing a calculation example of a position location result by observation from an equivalently spaced direction.

図6のブロック構成図において、図1に示す実施の形態1のブロック構成図と同一または相当する部分には同一符号を付している。航空機、艦船、車両等(図6では航空機)に搭載される方位測定装置1および2は、第1の観測点および第2の観測点にそれぞれ位置される。方位測定装置1は目標3からの到来電波の方探機能を有する。方位測定装置2は目標3から放射され既知の反射点5で反射した到来電波の方探機能を有する。反射点5は、航空機、艦船、車両等に搭載した反射体あるいは地上の建築物等でよく、すでにその位置座標が知られているものである。これら方位測定装置1、2の観測点は目標3から見て実際に互いに直交する方向に位置していなくてもよい。   In the block configuration diagram of FIG. 6, the same or corresponding parts as those in the block configuration diagram of the first embodiment shown in FIG. Orientation measuring devices 1 and 2 mounted on an aircraft, a ship, a vehicle, etc. (aircraft in FIG. 6) are positioned at the first observation point and the second observation point, respectively. The azimuth measuring device 1 has a function of searching for incoming radio waves from the target 3. The azimuth measuring device 2 has a function of searching for an incoming radio wave emitted from the target 3 and reflected by a known reflection point 5. The reflection point 5 may be a reflector mounted on an aircraft, a ship, a vehicle, or the like, or a building on the ground, and its position coordinates are already known. The observation points of these azimuth measuring apparatuses 1 and 2 do not have to be actually located in directions orthogonal to each other when viewed from the target 3.

航空機A(観測点1)に搭載した方位測定装置1は、目標からの電波を受信する目標電波受信部10、受信した目標電波を用いて目標方位を算出する目標方位算出部11、自機位置の座標を算出する自己位置算出部12、航空機A(観測点1)と航空機B(観測点2)の間で時刻同期をとるためのGPS受信機16、GPS受信機16からの信号と受信した目標電波を用いて信号到来時刻を測定する信号到来時刻測定部17、目標方位算出部11で求めた方探結果1(Θ1)、自己位置算出部12で求めた自己位置座標(x1,y1)及び信号到来時刻測定部17で求めた信号到来時刻1(t1)のデータを通信部15及び記録部14へ転送する観測データ転送部13、観測データ転送部13から転送されたデータを航空機B(観測点2)へ伝送する通信部15、観測データ転送部13から転送されたデータを記録する記録部14を備えている。   The azimuth measuring apparatus 1 mounted on the aircraft A (observation point 1) includes a target radio wave receiving unit 10 that receives radio waves from a target, a target azimuth calculation unit 11 that calculates a target azimuth using the received target radio waves, The self-position calculating unit 12 that calculates the coordinates of the GPS receiver 16 for synchronizing the time between the aircraft A (observation point 1) and the aircraft B (observation point 2), and the signal from the GPS receiver 16 are received. A signal arrival time measurement unit 17 that measures the signal arrival time using the target radio wave, a direction finding result 1 (Θ1) obtained by the target azimuth calculation unit 11, and a self-position coordinate (x1, y1) obtained by the self-position calculation unit 12 And the observation data transfer unit 13 that transfers the data of the signal arrival time 1 (t1) obtained by the signal arrival time measurement unit 17 to the communication unit 15 and the recording unit 14, and the data transferred from the observation data transfer unit 13 is the aircraft B ( To observation point 2) Communication unit 15 for sending, and a recording unit 14 for recording the data transferred from the observed data transfer unit 13.

航空機B(観測点2)に搭載した方位測定装置2は、目標から放射され反射点5で反射・散乱した電波を受信する目標電波受信部20、自機位置の座標を算出する自己位置算出部22、航空機A(観測点1)の通信部15から伝送された方探結果1(Θ1)、自己位置座標(x1,y1)及び信号到来時刻(t1)の観測データを受信する通信部23、航空機A(観測点1)と航空機B(観測点2)の間で時刻同期をとるためのGPS受信機27、GPS受信機27からの信号と受信した目標電波を用いて信号到来時刻を測定する信号到来時刻測定部28、反射点5の位置座標(x3,y3)の情報を予め保持する反射点情報保持部29、通信部23より入力する方探結果1(Θ1)、自己位置座標(x1,y1)及び信号到来時刻(t1)、及び自己位置算出部22より入力する自己位置座標(x2,y2)、及び信号到来時刻測定部28より入力する信号到来時刻(t2)、及び反射点情報保持部29より入力する反射点位置座標(x3,y3)を用いて目標位置標定結果を求める目標位置標定処理部25、目標位置標定処理部25への入力情報を記録し目標位置標定結果をユーザに表示する、記録部と表示部の機能を有する表示記録部26を備えている。また上記目標位置標定処理部25は、入力された各データ(x1,y1〜x3,y3、Θ1、t1〜t2)の情報を表示記録部26または地上の位置標定装置に送信するための通信部(図示省略)へ転送する観測データ転送部の機能も有している。
なお反射点情報保持部29に保持されている反射点5の位置座標(x3,y3)の情報は既に知られているので、目標位置標定処理部25にメモリとして内蔵していてもよい。
The azimuth measuring apparatus 2 mounted on the aircraft B (observation point 2) includes a target radio wave reception unit 20 that receives radio waves emitted from the target and reflected / scattered at the reflection point 5, and a self-position calculation unit that calculates the coordinates of the position of the aircraft. 22, a communication unit 23 that receives observation data of the direction finding result 1 (Θ1), the self-position coordinates (x1, y1), and the signal arrival time (t1) transmitted from the communication unit 15 of the aircraft A (observation point 1); A GPS receiver 27 for synchronizing time between the aircraft A (observation point 1) and the aircraft B (observation point 2), signals from the GPS receiver 27 and the received target radio wave are used to measure the signal arrival time. Signal arrival time measuring unit 28, reflection point information holding unit 29 holding information of position coordinates (x3, y3) of reflection point 5 in advance, direction finding result 1 (Θ1) input from communication unit 23, self-position coordinates (x1) , Y1) and signal arrival time (t1), The self-position coordinates (x2, y2) input from the self-position calculation unit 22, the signal arrival time (t2) input from the signal arrival time measurement unit 28, and the reflection point position coordinates (from the reflection point information holding unit 29) Functions of a recording unit and a display unit that record input information to the target position locating processing unit 25 and the target position locating processing unit 25 that obtain a target position locating result using x3, y3) and display the target position locating result to the user. The display recording unit 26 is provided. The target location processing unit 25 is a communication unit for transmitting information of each input data (x1, y1 to x3, y3, Θ1, t1 to t2) to the display recording unit 26 or the ground location unit. It also has a function of an observation data transfer unit for transferring to (not shown).
Since the information of the position coordinates (x3, y3) of the reflection point 5 held in the reflection point information holding unit 29 is already known, it may be built in the target position locating processing unit 25 as a memory.

次にこの発明の実施形態2において、第1の観測点で方位測定装置1が算出した方探結果(Θ1)及び第2の観測点で方位測定装置2が算出した信号到来時刻の差から目標3の位置を標定する処理内容について説明する。まず、予備説明として反射点5がない場合について図7を用いて説明する。
図7(a)は、第1の観測点(以下観測点1という)にいる方位測定装置1と第2の観測点2(以下観測点2という)にいる方位測定装置2が、目標3を方探している状態の図で、図7(b)は、方位測定装置1、2がX−Y平面上にあり、基準方位をX軸として、観測点1での方探結果(Θ1)および観測点2での信号到来時刻差から目標位置を求める処理内容を示す図である。
図7において、真の目標位置座標を(x,y)=(0,0)とする。これは未知のものである。このとき観測点1及び観測点2の位置座標を以下のように極座標で表す。
観測点1の位置座標 (x1,y1)=(r1・cosθ1,r1・sinθ1)
観測点2の位置座標 (x2,y2)=(r2・cosθ2,r2・cosθ2)
ここで、θ1は観測点1と目標3を結ぶ線がX軸となす角度、θ2は観測点2と目標3を結ぶ線がX軸となす角度である。r1は観測点1と目標3との距離、r2は観測点2と目標3との距離である。
観測点1における方探誤差をφ1として、観測点1における方探結果を直線の式で表すと以下のようになる。
観測点1の方探結果y=a1・x+b1 ・・・(5)
a1=tan(θ1−φ1)
b1=r1sinθ1−tan(θ1−φ1)・r1cosθ1
=y1−tan(θ1−φ1)・x1
θ1−φ1=Θ1+180°
Θ1:観測点1における目標方探結果(方探結果1)
Next, in the second embodiment of the present invention, the target is calculated from the difference between the direction finding result (Θ1) calculated by the azimuth measuring device 1 at the first observation point and the signal arrival time calculated by the azimuth measuring device 2 at the second observation point. The content of the process of locating the position 3 will be described. First, as a preliminary explanation, a case where there is no reflection point 5 will be described with reference to FIG.
FIG. 7A shows that the azimuth measuring device 1 located at the first observation point (hereinafter referred to as observation point 1) and the azimuth measurement device 2 located at the second observation point 2 (hereinafter referred to as observation point 2) set the target 3. FIG. 7 (b) shows a direction search result (Θ1) at the observation point 1 with the azimuth measuring devices 1 and 2 on the XY plane and the reference azimuth as the X axis. It is a figure which shows the processing content which calculates | requires a target position from the signal arrival time difference in the observation point.
In FIG. 7, the true target position coordinates are (x, y) = (0, 0). This is unknown. At this time, the position coordinates of the observation point 1 and the observation point 2 are expressed in polar coordinates as follows.
Position coordinates of observation point 1 (x1, y1) = (r1 · cos θ1, r1 · sin θ1)
Position coordinates of observation point 2 (x2, y2) = (r2, cos θ2, r2, cos θ2)
Here, θ1 is an angle formed by a line connecting the observation point 1 and the target 3 with the X axis, and θ2 is an angle formed by a line connecting the observation point 2 and the target 3 with the X axis. r1 is the distance between the observation point 1 and the target 3, and r2 is the distance between the observation point 2 and the target 3.
When the direction finding error at the observation point 1 is φ1, the direction finding result at the observation point 1 is expressed by a straight line expression as follows.
Observation result at observation point 1 y = a1 · x + b1 (5)
a1 = tan (θ1−φ1)
b1 = r1sin θ1-tan (θ1-φ1) · r1cos θ1
= Y1-tan (θ1-φ1) · x1
θ1-φ1 = Θ1 + 180 °
Θ1: Target search result at observation point 1 (Search result 1)

次に観測点2において、GPS受信機16、27を用いて時刻同期を行った観測点1と観測点2における信号到来時間差Δtを求める。
信号到来時間差 Δt=t2−t1
t2:観測点2における信号到来時刻
t1:観測点1における信号到来時刻
上記の信号到来時間差Δtを用いて観測点1及び観測点2を焦点とする双曲線を求める。

Figure 0004794416
x’,y’:以下の式を満たす双曲線
x’2/a2−y’2/b2=1
a=(r2−r1)/2=Vc・Δt/2
Vc:光速 Δt:信号到来時間差
b=(c2−a21/2
c=((x2−x1)2+(y2−y1)21/2/2
ξ=tan-1((y2−y1)/(x2−x1))
xc,yc:観測点1及び観測点2の中点の座標 Next, at the observation point 2, a signal arrival time difference Δt between the observation point 1 and the observation point 2 which are time-synchronized using the GPS receivers 16 and 27 is obtained.
Signal arrival time difference Δt = t2−t1
t2: Signal arrival time at observation point 2
t1: Signal arrival time at observation point 1 Using the above signal arrival time difference Δt, a hyperbola with the observation point 1 and the observation point 2 as a focal point is obtained.
Figure 0004794416
x ′, y ′: Hyperbola that satisfies the following formula
x ′ 2 / a 2 −y ′ 2 / b 2 = 1
a = (r2-r1) / 2 = Vc · Δt / 2
Vc: speed of light Δt: signal arrival time difference b = (c 2 −a 2 ) 1/2
c = ((x2-x1) 2 + (y2-y1) 2 ) 1/2 / 2
ξ = tan −1 ((y2−y1) / (x2−x1))
xc, yc: coordinates of the midpoint of observation point 1 and observation point 2

上記の(5)式及び(6)式の交点を求めることにより、方探結果と双曲線法の組合せにより目標位置座標(x,y)を求めることができる。
従って、観測点1における自己位置算出部12から得られる自己位置座標(x1,y1)、目標方位算出部11から得られる方探結果1(Θ1)及び信号到来時刻測定部17から得られる信号到来時刻(t1)を観測データ転送部13を介して通信部15により第2の観測点の方位測定装置2へ伝送し、第2の観測点における方位測定装置2の自己位置算出部22から得られる自己位置座標(x2,y2)、及び信号到来時刻測定部28から得られる信号到来時刻2(t2)も用いることにより、観測点2の方位測定装置2の目標位置標定処理部25にて目標位置を標定することができる。
By obtaining the intersection of the above equations (5) and (6), the target position coordinates (x, y) can be obtained by a combination of the direction finding result and the hyperbolic method.
Therefore, the self-position coordinates (x1, y1) obtained from the self-position calculation unit 12 at the observation point 1, the direction finding result 1 (Θ1) obtained from the target orientation calculation unit 11, and the signal arrival time obtained from the signal arrival time measurement unit 17 The time (t1) is transmitted to the azimuth measuring device 2 at the second observation point by the communication unit 15 via the observation data transfer unit 13 and obtained from the self-position calculating unit 22 of the azimuth measuring device 2 at the second observation point. By using the self-position coordinates (x2, y2) and the signal arrival time 2 (t2) obtained from the signal arrival time measurement unit 28, the target position is determined by the target position determination processing unit 25 of the azimuth measuring apparatus 2 at the observation point 2. Can be standardized.

通常、位置標定を行うべき目標3は航空機等が容易には飛行して進入できない飛行危険エリアに存在するため、航空機A(観測点1)と航空機B(観測点2)は目標に対して近接した方向から方探を行わざるを得ない。したがってどうしても位置標定誤差が大きくなってしまう。このことについて図8を用いて位置標定結果をシュミレーションした計算例を説明する。
図8に示したように目標3に対して近接した方向から方探及び信号到来時間差の測定を行って目標位置標定を実施する場合、観測点1における方探結果の直線及び観測点1、2間の信号到来時間差から求めた双曲線の傾きが近い値となるため、交点の分布も大きくばらつき、位置標定誤差が大きい。
Usually, the target 3 to be located is in a flight danger area where an aircraft or the like cannot easily fly and enter, so the aircraft A (observation point 1) and the aircraft B (observation point 2) are close to the target. I have to do a search from the direction I did. Therefore, the positioning error is inevitably increased. A calculation example in which the position determination result is simulated will be described with reference to FIG.
As shown in FIG. 8, when the target position is determined by measuring the direction finding and the signal arrival time difference from the direction close to the target 3, the straight line of the direction finding result at the observation point 1 and the observation points 1 and 2. Since the slope of the hyperbola obtained from the signal arrival time difference between them becomes a close value, the distribution of the intersections varies greatly, and the positioning error is large.

そこで図9に示したように、位置座標が既知の反射点5からの反射波を用いて目標位置標定を行うことにより位置標定精度を大幅に向上することができる。反射点5を用いた場合の目標位置標定の処理内容について説明する。まず観測点1において方探結果1(Θ1)及び自己位置座標(x1,y1)及び信号到来時刻(t1)を求めて観測点2へ伝送する。次に観測点2では反射点5による反射波を用いて観測点1、2間の信号到来時間差Δtを算出することにより等価的に反射点5から観測を行ったのと同じ結果を得ることができる。
等価的な信号到来時刻t2’は次の式となる。
t2’=t2−((x3−x2)2+(y3−y2)21/2/Vc
Vc:光速
x2,y2:観測点2の位置座標
x3,y3:反射点の位置座標(反射点情報保持部29に予め登録)
Therefore, as shown in FIG. 9, the position location accuracy can be greatly improved by performing the target position location using the reflected wave from the reflection point 5 whose position coordinates are already known. The processing content of the target position determination when the reflection point 5 is used will be described. First, the observation result 1 (Θ1), the self-position coordinates (x1, y1), and the signal arrival time (t1) are obtained at the observation point 1 and transmitted to the observation point 2. Next, the observation point 2 can obtain the same result as that observed from the reflection point 5 equivalently by calculating the signal arrival time difference Δt between the observation points 1 and 2 using the reflected wave from the reflection point 5. it can.
The equivalent signal arrival time t2 ′ is expressed by the following equation.
t2 '= t2-((x3-x2) 2 + (y3-y2) 2 ) 1/2 / Vc
Vc: speed of light
x2, y2: Position coordinates of observation point 2
x3, y3: position coordinates of the reflection point (registered in advance in the reflection point information holding unit 29)

等価的な観測点2の位置座標は次の式となる。

Figure 0004794416
以上より反射波を用いて求めた等価的な信号到来時刻(t2’)及び等価的な観測点2の位置座標(x2’,y2’)を、それぞれ信号到来時刻(t2)及び観測点2の位置座標(x2,y2)として反射点がない場合と同じ処理により位置標定を行うことによって、目標に対して離隔した方向(目標からみて互いに直交する方向に近い方向)から方探を行ったのと同様な高い精度での目標位置標定が可能となる。この処理は航空機B(観測点2)の位置測定装置2の目標位置標定処理部25で実施する。 The equivalent position coordinates of the observation point 2 are as follows.
Figure 0004794416
As described above, the equivalent signal arrival time (t2 ′) and the equivalent position coordinate (x2 ′, y2 ′) of the observation point 2 obtained using the reflected wave are respectively obtained from the signal arrival time (t2) and the observation point 2. By performing the position determination by the same process as when there is no reflection point as the position coordinates (x2, y2), the direction search was performed from a direction away from the target (a direction close to the direction orthogonal to the target). The target position can be determined with high accuracy similar to the above. This processing is performed by the target position locating processing unit 25 of the position measuring device 2 of the aircraft B (observation point 2).

反射点5を用いて、等価的に目標に対して離隔した方向から観測を行った場合の目標位置の標定結果をシュミレーションした計算例を図10に示す。
図10に示したように、等価的に目標3に対して離隔した方向から観測を行うことにより、観測点1における方探結果の傾きと観測点2で算出した双曲線の傾きが垂直に近くなるため、交点も分布のばらつきは小さくなり、高い精度での目標位置標定が可能となる。
FIG. 10 shows a calculation example simulating the target position locating result when the reflection point 5 is used for observation from a direction equivalently spaced from the target.
As shown in FIG. 10, by performing observation from a direction that is equivalently separated from the target 3, the inclination of the direction finding result at the observation point 1 and the inclination of the hyperbola calculated at the observation point 2 become nearly perpendicular. For this reason, the variation in the distribution of the intersections is also small, and the target position can be determined with high accuracy.

実施の形態3
この発明の実施形態1及び実施形態2では、航空機A(観測点1)の方位測定装置1から必要なデータを通信手段により航空機B(観測点2)の方位測定装置2が受け取り、航空機B(観測点2)の方位測定装置2が有する目標位置標定処理部25にて目標位置標定処理を実施したが、航空機A(観測点1)の方位測定装置1が有する記録部14及び航空機B(観測点2)の方位測定装置2が有する表示記録部26に観測データを記録しているので、これら観測データを地上に設けた目標位置標定処理装置でオフラインにより目標位置標定処理を行っても同じ効果が期待できる。なおこの場合、反射面4または反射点5の位置座標と反射面角度のデータは既知であるので、このデータは予め地上に設けた目標位置標定処理装置に保持していてもよい。
また、航空機A(観測点1)の方位測定装置1及び航空機B(観測点2)の方位測定装置2から必要なデータを通信手段により、それぞれの観測点以外のプラットフォームに伝送し、リアルタイムで目標位置標定処理を行っても同じ効果が期待できる。
Embodiment 3
In the first and second embodiments of the present invention, the azimuth measuring device 2 of the aircraft B (observation point 2) receives necessary data from the azimuth measuring device 1 of the aircraft A (observation point 1) by the communication means, and the aircraft B ( The target position locating processing unit 25 included in the azimuth measuring device 2 of the observation point 2) performs the target position locating processing, but the recording unit 14 and the aircraft B (observation) included in the azimuth measuring device 1 of the aircraft A (observation point 1). Since the observation data is recorded in the display recording unit 26 of the azimuth measuring apparatus 2 of point 2), the same effect can be obtained even if the target position locating processing is performed off-line by the target position locating processing apparatus provided on the ground. Can be expected. In this case, since the position coordinates and the reflection surface angle data of the reflection surface 4 or the reflection point 5 are known, this data may be held in advance in a target position locating processing device provided on the ground.
In addition, the necessary data is transmitted from the direction measuring device 1 of the aircraft A (observation point 1) and the direction measuring device 2 of the aircraft B (observation point 2) to a platform other than each observation point by means of communication, and the target is obtained in real time. The same effect can be expected even if the position location processing is performed.

この発明は2つの観測点(航空機等)から目標の方位及び目標信号到来時刻を観測することにより目標が存在する位置を特定する場合などに利用することができる。   The present invention can be used when, for example, a position where a target exists is specified by observing a target direction and a target signal arrival time from two observation points (aircraft or the like).

この発明の実施形態1のブロック構成図。The block block diagram of Embodiment 1 of this invention. この発明の実施形態1における処理内容(反射面を用いない場合の基本処理)の説明図。Explanatory drawing of the processing content (basic process when not using a reflective surface) in Embodiment 1 of this invention. この発明の実施形態1において近接した方向からの観測による位置標定結果の計算例を示す図。The figure which shows the calculation example of the position determination result by the observation from the direction which adjoined in Embodiment 1 of this invention. この発明の実施形態1における処理内容(反射面を用いる場合の処理)の説明図。Explanatory drawing of the processing content (process in the case of using a reflective surface) in Embodiment 1 of this invention. この発明の実施形態1において等価的に離隔した方向からの観測による位置標定結果の計算例を示す図。The figure which shows the example of a calculation of the position determination result by the observation from the direction distantly equivalent in Embodiment 1 of this invention. この発明の実施形態2のブロック構成図。The block block diagram of Embodiment 2 of this invention. この発明の実施形態2における処理内容(反射点を用いない場合の基本処理)の説明図。Explanatory drawing of the processing content (basic processing when not using a reflective point) in Embodiment 2 of this invention. この発明の実施形態2において近接した方向からの観測による位置標定結果の計算例を示す図。The figure which shows the calculation example of the position determination result by the observation from the direction which adjoined in Embodiment 2 of this invention. この発明の実施形態2における処理内容(反射点を用いる場合の処理)の説明図。Explanatory drawing of the processing content (process in the case of using a reflective point) in Embodiment 2 of this invention. この発明の実施形態2において等価的に離隔した方向からの観測による位置標定結果の計算例を示す図。The figure which shows the example of a calculation of the position determination result by the observation from the direction equally separated in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1:第1の観測点の方位測定装置 2:第2の観測点の方位測定装置
3:目標 4:反射面
5:反射点
10:第1の目標電波受信部 11:第1の目標方位算出部
12:第1の自己位置算出部 13:第1の観測データ転送部
14:第1の記録部 15:第1の通信部
16:第1のGPS受信機 17:第1の信号到来時刻測定部
20:第2の目標電波受信部 21:第2の目標方位算出部
22:第2の自己位置算出部 23:第2の通信部
24:反射面情報保持部
25:第2の観測データ転送部及び目標位置標定処理部
26:第2の記録部(表示記録部) 27:第2のGPS受信機
28:第2の信号到来時刻測定部 29:反射点情報保持部
1: Direction measuring device for first observation point 2: Direction measuring device for second observation point 3: Target 4: Reflecting surface 5: Reflecting point 10: First target radio wave receiver 11: First target direction calculation Unit 12: First self-position calculation unit 13: First observation data transfer unit 14: First recording unit 15: First communication unit 16: First GPS receiver 17: First signal arrival time measurement Unit 20: Second target radio wave reception unit 21: Second target azimuth calculation unit 22: Second self-position calculation unit 23: Second communication unit 24: Reflecting surface information holding unit 25: Second observation data transfer Unit and target location processing unit 26: second recording unit (display recording unit) 27: second GPS receiver 28: second signal arrival time measuring unit 29: reflection point information holding unit

Claims (3)

少なくとも2つの移動する航空機、艦船または車両にそれぞれ搭載された観測点に設けた方位測定装置からの目標方位の観測結果に基づき目標位置の標定を行う目標位置標定装置において、
目標からの電波を受信する第1の目標電波受信部と、この第1の目標電波受信部で受信した目標電波を用いて目標方位を算出する第1の目標方位算出部と、自機位置の座標を算出する第1の自己位置算出部と、前記第1の目標方位算出部で求めた方探結果1及び前記第1の自己位置算出部で求めた自己位置座標のデータを転送する第1の観測データ転送部と、前記第1の観測データ転送部からの方探結果1及び自己位置座標のデータを記録する第1の記録部と、前記第1の観測データ転送部からの方探結果1及び自己位置座標のデータを後記する第2の観測点の方位測定装置に送信する第1の通信部を設けた第1の観測点の方位測定装置、
前記目標から放射され既知の反射面で反射した電波を受信する第2の目標電波受信部と、この第2の目標電波受信部で受信した目標電波を用いて目標方位を算出する第2の目標方位算出部と、自機位置の座標を算出する第2の自己位置算出部と、前記第2の目標方位算出部で求めた方探結果2及び前記第2の自己位置算出部で求めた自己位置座標のデータを転送する第2の観測データ転送部と、前記第2の観測データ転送部からの方探結果2及び自己位置座標のデータを記録する第2の記録部と、前記第1の通信部からの方探結果1及び自己位置座標のデータを受信する第2の通信部と、前記反射面の位置座標及び前記反射面の角度の情報を予め保持する反射面情報保持部と、前記第2の通信部からの方探結果1(Θ1)と自己位置座標(x1,y1)、及び第2の観測データ転送部からの方探結果2(Θ2)と自己位置座標(x2,y2)、及び前記反射面情報保持部からの反射面位置座標(x3,y3)と反射面角度(Θ3)に基づいて演算処理し、目標位置の標定を行う目標位置標定処理部とを設けた第2の観測点の方位測定装置を備え、
前記第1の観測点の方位測定装置の目標方位と前記第2の観測点の方位測定装置の目標方位とのなす角度が前記反射面がない場合と比べより直角に近い方向から測定するようにしたことを特徴とする目標位置標定装置。
At least two moving aircraft, at the target position locating system that performs orientation of the target position based on the target azimuth observations from the azimuth measuring device provided to the observation point mounted respectively to ship or vehicle,
A first target radio wave receiving unit that receives radio waves from the target, a first target azimuth calculating unit that calculates a target azimuth using the target radio wave received by the first target radio wave receiving unit, A first self-position calculation unit that calculates coordinates, a first search result 1 obtained by the first target azimuth calculation unit, and a first position coordinate data obtained by the first self-position calculation unit are transferred. Observation data transfer unit, direction finding result 1 from the first observation data transfer unit and a first recording unit for recording data of the self-position coordinates, and direction finding result from the first observation data transfer unit A first observation point azimuth measuring apparatus provided with a first communication unit for transmitting data of 1 and the self-position coordinates to a second observation point azimuth measuring apparatus described later;
A second target radio wave receiving unit that receives a radio wave radiated from the target and reflected by a known reflecting surface, and a second target that calculates a target azimuth using the target radio wave received by the second target radio wave receiving unit An azimuth calculation unit, a second self-position calculation unit that calculates coordinates of the position of the aircraft, a direction finding result 2 obtained by the second target azimuth calculation unit, and a self obtained by the second self-position calculation unit A second observation data transfer unit that transfers position coordinate data; a second recording unit that records the direction finding result 2 from the second observation data transfer unit and self-position coordinate data; and the first A second communication unit that receives data of the direction finding result 1 and the self-position coordinates from the communication unit; a reflection surface information holding unit that holds in advance information on the position coordinates of the reflection surface and the angle of the reflection surface; Direction finding result 1 (Θ1) from the second communication unit and self-position coordinates (x , Y1), the direction finding result 2 (Θ2) and the self-position coordinates (x2, y2) from the second observation data transfer unit, and the reflection surface position coordinates (x3, y3) from the reflection surface information holding unit An azimuth measuring device for a second observation point that is provided with a target position locating processing unit that performs arithmetic processing based on the reflection surface angle (Θ3) and performs locating of the target position,
The angle formed between the target azimuth of the azimuth measuring device at the first observation point and the target azimuth of the azimuth measuring device at the second observation point is measured from a direction closer to a right angle than when there is no reflecting surface. A target position locating device characterized by that.
目標位置標定処理部に入力されるデータ情報を記録し、目標位置標定結果をユーザに表示する表示記録部を第2の観測点の方位測定装置に備えた請求項1に記載の目標位置標定装置。   The target position locating apparatus according to claim 1, wherein the second position observation device is provided with a display recording section for recording data information input to the target position locating processing section and displaying a target position locating result to the user. . 少なくとも2つの移動する航空機、艦船または車両にそれぞれ搭載された観測点に設けた方位測定装置からの目標方位の観測結果に基づき目標位置の標定を行う目標位置標定装置において、
目標からの電波を受信する第1の目標電波受信部と、この第1の目標電波受信部で受信した目標電波を用いて目標方位を算出する第1の目標方位算出部と、自機位置の座標を算出する第1の自己位置算出部と、前記第1の目標方位算出部で求めた方探結果1及び前記第1の自己位置算出部で求めた自己位置座標のデータを転送する第1の観測データ転送部と、前記第1の観測データ転送部からの方探結果1及び自己位置座標のデータを記録する第1の記録部とを設けた第1の観測点の方位測定装置、
前記目標から放射され既知の反射面で反射した電波を受信する第2の目標電波受信部と、この第2の目標電波受信部で受信した目標電波を用いて目標方位を算出する第2の目標方位算出部と、自機位置の座標を算出する第2の自己位置算出部と、前記第2の目標方位算出部で求めた方探結果2及び前記第2の自己位置算出部で求めた自己位置座標のデータを転送する第2の観測データ転送部と、前記第2の観測データ転送部からの方探結果2及び自己位置座標のデータを記録する第2の記録部とを設けた第2の観測点の方位測定装置、
地上に設けられ、前記第1の記録部及び第2の記録部からのデータを入力する目標位置標定処理部を備え、
前記第1の観測点の方位測定装置の目標方位と前記第2の観測点の方位測定装置の目標方位とのなす角度が前記反射面がない場合と比べより直角に近い方向から測定するように配置し、
前記目標位置標定処理部は前記入力データと前記反射面位置座標(x3,y3)と反射面角度(Θ3)とに基づいて演算処理し、目標位置の標定を行うようにしたことを特徴とする目標位置標定装置。
At least two moving aircraft, at the target position locating system that performs orientation of the target position based on the target azimuth observations from the azimuth measuring device provided to the observation point mounted respectively to ship or vehicle,
A first target radio wave receiving unit that receives radio waves from the target, a first target azimuth calculating unit that calculates a target azimuth using the target radio wave received by the first target radio wave receiving unit, A first self-position calculation unit that calculates coordinates, a first search result 1 obtained by the first target azimuth calculation unit, and a first position coordinate data obtained by the first self-position calculation unit are transferred. A first observation point azimuth measuring apparatus comprising: an observation data transfer unit; and a first recording unit that records data of the direction finding result 1 and the self-position coordinates from the first observation data transfer unit,
A second target radio wave receiving unit that receives a radio wave radiated from the target and reflected by a known reflecting surface, and a second target that calculates a target azimuth using the target radio wave received by the second target radio wave receiving unit An azimuth calculation unit, a second self-position calculation unit that calculates coordinates of the position of the aircraft, a direction finding result 2 obtained by the second target azimuth calculation unit, and a self obtained by the second self-position calculation unit A second observation data transfer unit that transfers position coordinate data; and a second recording unit that records a direction finding result from the second observation data transfer unit and data of the self-position coordinates. Azimuth measuring device
A target position locating processing unit which is provided on the ground and inputs data from the first recording unit and the second recording unit;
The angle formed between the target azimuth of the azimuth measuring device at the first observation point and the target azimuth of the azimuth measuring device at the second observation point is measured from a direction closer to a right angle than when there is no reflecting surface. Place and
And wherein the target position location processing unit for performing arithmetic processing on the basis of said input data said the position coordinates of the reflecting surface (x3, y3) and the reflection surface angle (.THETA.3), and to perform orientation of the target position Target position locating device.
JP2006303714A 2006-11-09 2006-11-09 Target location system Active JP4794416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303714A JP4794416B2 (en) 2006-11-09 2006-11-09 Target location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303714A JP4794416B2 (en) 2006-11-09 2006-11-09 Target location system

Publications (2)

Publication Number Publication Date
JP2008122127A JP2008122127A (en) 2008-05-29
JP4794416B2 true JP4794416B2 (en) 2011-10-19

Family

ID=39507046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303714A Active JP4794416B2 (en) 2006-11-09 2006-11-09 Target location system

Country Status (1)

Country Link
JP (1) JP4794416B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200478A (en) * 2015-04-09 2016-12-01 株式会社日本自動車部品総合研究所 Position estimation device
CN111487588A (en) * 2019-01-29 2020-08-04 北京奇虎科技有限公司 Positioning method and device of charging seat of sweeper and sweeper
JP7301621B2 (en) * 2019-06-20 2023-07-03 日本無線株式会社 Position location device, position location program and position location system
JP7389072B2 (en) 2021-02-03 2023-11-29 株式会社日立国際電気 Radio wave source display system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127809A (en) * 1991-04-19 1993-05-25 Sharp Corp Three-dimensional spatial coordinate input device
JPH08201501A (en) * 1995-01-24 1996-08-09 Nec Corp Electric wave source locating device
JP2001091623A (en) * 1999-09-17 2001-04-06 Toshiba Corp Position specifying system and position specifying method
JP2002098748A (en) * 2000-09-26 2002-04-05 Toshiba Corp Threat alarm system
GB0229689D0 (en) * 2002-12-19 2003-01-29 Koninkl Philips Electronics Nv Positioning system and method
JP4019149B2 (en) * 2004-03-05 2007-12-12 独立行政法人情報通信研究機構 Radio wave arrival direction identification system

Also Published As

Publication number Publication date
JP2008122127A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
KR102133105B1 (en) 3D spatial detection system, positioning method and system
JP4644197B2 (en) Target location method and apparatus using TDOA distributed antenna
RU2459217C2 (en) Radio-frequency navigation using frequency characteristic comparison
US6545751B2 (en) Low cost 2D position measurement system and method
KR100939640B1 (en) Method and system for recognition of location by using sound sources with different frequencies
US20100118658A1 (en) Acoustic location of gunshots using combined angle of arrival and time of arrival measurements
US9689962B2 (en) Determining the geographic location of a portable electronic device
KR101674993B1 (en) Indoor positioning method and user terminal
CN109343072A (en) Laser range finder
JP4794416B2 (en) Target location system
CN103969625A (en) Wireless positioning method
CN110553655A (en) Autonomous vehicle positioning using 5G infrastructure
US3445847A (en) Method and apparatus for geometrical determinations
US9939516B2 (en) Determining location and orientation of directional transceivers
KR100715178B1 (en) Method For Determining Position Of An Object
Jiménez et al. Precise localisation of archaeological findings with a new ultrasonic 3D positioning sensor
KR101058098B1 (en) A terminal and a system for measuring its own location according to the location information of another terminal and the reliability of the location information and a method for measuring the location
KR20170112641A (en) Apparatus and method for determining location
WO2021208662A1 (en) Method for estimating over-the-air propagation delay of direct wave
JP3484995B2 (en) Instantaneous passive distance measuring device
KR101042953B1 (en) System and method for detecting geographical information in shadow region
CN209640496U (en) Laser range finder
Sesyuk et al. 3d millimeter-wave indoor localization
JPH08201501A (en) Electric wave source locating device
KR102519152B1 (en) A method for estimating indoor location of terminal using angle of arrive and received signal strength

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R151 Written notification of patent or utility model registration

Ref document number: 4794416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250