JP4792949B2 - Semiconductor device manufacturing method and semiconductor device - Google Patents

Semiconductor device manufacturing method and semiconductor device Download PDF

Info

Publication number
JP4792949B2
JP4792949B2 JP2005350191A JP2005350191A JP4792949B2 JP 4792949 B2 JP4792949 B2 JP 4792949B2 JP 2005350191 A JP2005350191 A JP 2005350191A JP 2005350191 A JP2005350191 A JP 2005350191A JP 4792949 B2 JP4792949 B2 JP 4792949B2
Authority
JP
Japan
Prior art keywords
dam
layer
mounting substrate
electrode pad
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005350191A
Other languages
Japanese (ja)
Other versions
JP2007157963A (en
Inventor
卓矢 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005350191A priority Critical patent/JP4792949B2/en
Publication of JP2007157963A publication Critical patent/JP2007157963A/en
Application granted granted Critical
Publication of JP4792949B2 publication Critical patent/JP4792949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the method of manufacturing a semiconductor device capable of forming a delicate dam stably, and coping with the miniaturization of a mounting substrate, and to provide the semiconductor device. <P>SOLUTION: The method of manufacturing the semiconductor device carries out the formation of a dam 21 for damming the outflow of underfill material simultaneously with the forming process of an electrode pad 4. The electrode pad 4 is formed through pattern etching of a conductor layer (aluminum layer, for example) 22 formed on the mounting substrate 1 by photolithography technique. In this case, the pattern etching of the same conductor layer 22 is effected for the dam layer 22A whereby the dam 21 is formed simultaneously with the electrode pad 4. The patterning employing the photolithography technique is capable of controlling the fine processing of less than 1 &mu;m (in the degree of several 10 nm even at minimum) with a high accuracy whereby the remarkably fine dam can be formed stably compared with same dam formed through solder plating method. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、実装基板に半導体チップがフリップチップ実装された半導体装置に関し、更に詳しくは、実装基板と半導体チップとの間に充填されるアンダーフィル材の流出防止用或いは堰き止め用のダムを備えた半導体装置の製造方法及び半導体装置に関する。   The present invention relates to a semiconductor device in which a semiconductor chip is flip-chip mounted on a mounting substrate, and more specifically, includes a dam for preventing an underfill material flowing out or damming between the mounting substrate and the semiconductor chip. The present invention relates to a semiconductor device manufacturing method and a semiconductor device.

近年、電子機器の高機能化や軽薄短小化の要求に伴って電子部品の高密度集積化や高密度実装化が進み、フリップチップ実装を用いたMCM(マルチチップモジュール)又はSIP(システムインパッケージ)タイプの半導体装置が主流になりつつある。この種の半導体装置の中には、インターポーザと称される実装基板に半導体チップをフリップチップ実装した構成を採用したものがある(例えば下記特許文献1参照)。   In recent years, along with demands for higher functionality and lighter, thinner and smaller electronic devices, high-density integration and high-density mounting of electronic components have progressed, and MCM (multi-chip module) or SIP (system-in-package) using flip-chip mounting. ) Type semiconductor devices are becoming mainstream. Some semiconductor devices of this type employ a configuration in which a semiconductor chip is flip-chip mounted on a mounting substrate called an interposer (see, for example, Patent Document 1 below).

図6はこの種の従来の半導体装置の概略構成を示しており、図中Aは平面図、Bは断面図である。図示した半導体装置は、実装基板1と半導体チップ2とによって構成されている。実装基板1は、例えばシリコンインターポーザや半導体チップ2よりも大型の半導体チップによって構成されている。半導体チップ2は実装基板1の主面のほぼ中央部に複数のバンプ3を用いてフリップチップ実装されている。実装基板1の周縁部には、実際に半導体チップ2が実装される領域(以下「チップ実装領域」という。)を取り囲む状態で複数の電極パッド4が形成されている。   FIG. 6 shows a schematic configuration of this type of conventional semiconductor device, in which A is a plan view and B is a cross-sectional view. The illustrated semiconductor device includes a mounting substrate 1 and a semiconductor chip 2. The mounting substrate 1 is composed of, for example, a semiconductor chip larger than the silicon interposer or the semiconductor chip 2. The semiconductor chip 2 is flip-chip mounted using a plurality of bumps 3 at substantially the center of the main surface of the mounting substrate 1. A plurality of electrode pads 4 are formed on the periphery of the mounting substrate 1 so as to surround a region where the semiconductor chip 2 is actually mounted (hereinafter referred to as “chip mounting region”).

また、実装基板1の主面上であってチップ実装領域と電極パッド4の形成領域との間にはダム5が設けられている。ダム5は、電極パッド4の形成領域よりも内側でチップ実装領域を取り囲むように平面視矩形状の枠型に形成されている。ダム5は、実装基板1の主面から突出する状態で形成されている。さらに、実装基板1の主面上では、当該実装基板1と半導体チップ2との間にアンダーフィル材6が充填されている。   A dam 5 is provided on the main surface of the mounting substrate 1 and between the chip mounting region and the electrode pad 4 formation region. The dam 5 is formed in a rectangular frame shape in plan view so as to surround the chip mounting region inside the region where the electrode pad 4 is formed. The dam 5 is formed so as to protrude from the main surface of the mounting substrate 1. Further, on the main surface of the mounting substrate 1, an underfill material 6 is filled between the mounting substrate 1 and the semiconductor chip 2.

アンダーフィル材6は、実装基板1に半導体チップ2をフリップチップ実装した後に充填される。その際、アンダーフィル材6は、図7に示すように、半導体チップ2の周縁部とダム5との間に配置されたノズル7から実装基板1の主面上へ滴下される。こうして滴下されたアンダーフィル材6は、実装基板1と半導体チップ2との間の微小な空間に毛細管現象によって引き込まれ、充填される。その際、ノズル7から滴下されたアンダーフィル材6が電極パッド4を汚染しないように、ダム5がアンダーフィル材6の流出を堰き止める。このアンダーフィル材6の流出防止機能を確保するために、図7に示したようにダム5が二重に形成される場合もある。なお、アンダーフィル材6は、実装基板1と半導体チップ2との間に充填された後、加熱硬化される。   The underfill material 6 is filled after the semiconductor chip 2 is flip-chip mounted on the mounting substrate 1. At that time, as shown in FIG. 7, the underfill material 6 is dropped onto the main surface of the mounting substrate 1 from the nozzle 7 disposed between the peripheral portion of the semiconductor chip 2 and the dam 5. The underfill material 6 dropped in this way is drawn and filled in a minute space between the mounting substrate 1 and the semiconductor chip 2 by capillary action. At that time, the dam 5 blocks the outflow of the underfill material 6 so that the underfill material 6 dropped from the nozzle 7 does not contaminate the electrode pad 4. In order to ensure the function of preventing the underfill material 6 from flowing out, the dam 5 may be doubled as shown in FIG. The underfill material 6 is filled between the mounting substrate 1 and the semiconductor chip 2 and then cured by heating.

ダム5は、従来より、実装基板1のチップ実装領域に形成されるバンプ3と同時に作製されている。すなわち、バンプ3がめっきバンプで構成される従来の半導体装置においては、ダム5もまためっき法で形成されている(例えば下記特許文献2参照)。以下、めっきバンプの形成方法の一例を図8〜図11を参照して説明する。   The dam 5 is conventionally manufactured simultaneously with the bumps 3 formed in the chip mounting region of the mounting substrate 1. That is, in the conventional semiconductor device in which the bump 3 is a plating bump, the dam 5 is also formed by a plating method (see, for example, Patent Document 2 below). Hereinafter, an example of a plating bump forming method will be described with reference to FIGS.

図8〜図11は実装基板1のめっきバンプ3A(及びダム5)の一形成方法を説明する要部の工程断面図である。まず、シリコンからなる実装基板1の主面上に絶縁膜10を介してバンプ下地層11をパターン形成する(図8A)。このバンプ下地層11は、例えば電極パッド4を構成するアルミニウム層で形成される。次に、実装基板1の主面上に例えばSiNからなる絶縁保護膜(パッシベーション膜)12を形成した後、フォトリソ技術を用いてバンプ下地層11の形成領域を一部開口する(図8B)。   8 to 11 are process cross-sectional views of the main part for explaining a method of forming the plating bump 3A (and the dam 5) of the mounting substrate 1. FIG. First, the bump base layer 11 is patterned on the main surface of the mounting substrate 1 made of silicon via the insulating film 10 (FIG. 8A). The bump foundation layer 11 is formed of, for example, an aluminum layer that constitutes the electrode pad 4. Next, after forming an insulating protective film (passivation film) 12 made of, for example, SiN on the main surface of the mounting substrate 1, a part of the formation area of the bump base layer 11 is opened using a photolithographic technique (FIG. 8B).

次に、絶縁保護膜12の上からTiスパッタ膜13及びCuスパッタ膜14を順次積層してバリアメタル層を形成した後(図8C,D)、全面をフォトレジスト層15で被覆する(図9A)。フォトレジスト層15はマスク16を介しての露光処理(図9B)とその後の現像処理を経て、図9Cに示すようなレジスト開口部15aを形成し、電解めっきでNi膜17を選択成長させる(図9D)。そして、電解Ni膜17の上に例えばSnAg系のはんだめっき18を形成する(図10A)。   Next, after a Ti sputtered film 13 and a Cu sputtered film 14 are sequentially laminated on the insulating protective film 12 to form a barrier metal layer (FIGS. 8C and 8D), the entire surface is covered with a photoresist layer 15 (FIG. 9A). ). The photoresist layer 15 undergoes an exposure process (FIG. 9B) through a mask 16 and a subsequent development process to form a resist opening 15a as shown in FIG. 9C, and a Ni film 17 is selectively grown by electrolytic plating ( FIG. 9D). Then, for example, SnAg-based solder plating 18 is formed on the electrolytic Ni film 17 (FIG. 10A).

続いて、フォトレジスト層15を除去した後(図10B)、はんだめっき18の形成領域以外の不要なCu膜14及びTi膜13をウェットエッチング法等で除去する(図10C,D)。そして、実装基板1の主面上にフラックス19を塗布し(図11A)、はんだめっき18をリフローさせることでバンプ3A(及びダム5)が形成され(図11B)、最後にフラックス19を洗浄除去してバンプ形成工程が終了する(図11C)。   Subsequently, after removing the photoresist layer 15 (FIG. 10B), unnecessary Cu film 14 and Ti film 13 other than the formation region of the solder plating 18 are removed by a wet etching method or the like (FIGS. 10C and D). Then, a flux 19 is applied on the main surface of the mounting substrate 1 (FIG. 11A), and the solder plating 18 is reflowed to form bumps 3A (and dams 5) (FIG. 11B). Finally, the flux 19 is removed by washing. Then, the bump forming process is completed (FIG. 11C).

以上のような工程を経て、実装基板1のチップ実装領域にバンプ3Aが形成される。従来の半導体装置は、このバンプ3Aの形成工程と同時に、アンダーフィル材6の流出防止用のダム5がはんだめっきでパターン形成されていた。   Through the above steps, bumps 3A are formed in the chip mounting region of the mounting substrate 1. In the conventional semiconductor device, the dam 5 for preventing the underfill material 6 from flowing out is patterned by solder plating simultaneously with the bump 3A forming step.

特開2005−276879号公報JP 2005-276879 A 特開2003−234362号公報JP 2003-234362 A

近年における半導体装置の小型化の要求を受けて、図6に示した構成の半導体装置においては実装基板1の更なる小型化が検討されている。この場合、実装基板1の小型化によりアンダーフィル材6の滴下領域が狭くなるため、実装基板1上に供給したアンダーフィル材が半導体チップ2の上に這い上がったり、ダム5を乗り越えて電極パッド4へ流出するおそれが生じる。このような問題を回避するため、ダム5のパターン幅を更に狭くすることでアンダーフィル材6の滴下領域を確保する必要が生じる。   In response to the recent demand for miniaturization of semiconductor devices, further miniaturization of the mounting substrate 1 has been studied in the semiconductor device having the configuration shown in FIG. In this case, since the drop area of the underfill material 6 becomes narrow due to the downsizing of the mounting substrate 1, the underfill material supplied onto the mounting substrate 1 crawls up on the semiconductor chip 2 or climbs over the dam 5 to reach the electrode pad 4. There is a risk of spillage. In order to avoid such a problem, it is necessary to secure a dripping region of the underfill material 6 by further narrowing the pattern width of the dam 5.

しかしながら、従来の半導体装置の製造方法においては、ダム5をはんだめっきで形成しているため、パターン幅を最小でも数十μmまでしか制御できず、微細ダムを安定して形成することが非常に難しいという問題がある。   However, in the conventional method for manufacturing a semiconductor device, since the dam 5 is formed by solder plating, the pattern width can be controlled only to a few tens μm at the minimum, and it is very easy to form a fine dam stably. There is a problem that it is difficult.

また、実装基板1の小型化に伴って電極パッド4とダム5の間の距離が益々短くなる。このため、はんだめっき法でダムを形成する従来の方法では、めっき形成用のシード層として形成されるTi膜13或いはCu膜14を電極パッド4上からエッチング除去することが困難になり、ワイヤーボンディング時にワイヤが電極パッド4から剥がれ易くなるという不具合が発生する。   Moreover, the distance between the electrode pad 4 and the dam 5 becomes shorter as the mounting substrate 1 becomes smaller. For this reason, in the conventional method of forming a dam by a solder plating method, it becomes difficult to etch away the Ti film 13 or Cu film 14 formed as a seed layer for plating formation from the electrode pad 4, and wire bonding. There is a problem that sometimes the wire is easily peeled off from the electrode pad 4.

本発明は上述の問題に鑑みてなされ、微細なダムを安定して形成することができ、実装基板の小型化に対応することができる半導体装置の製造方法及び半導体装置を提供することを課題とする。   The present invention has been made in view of the above-described problems, and it is an object of the present invention to provide a semiconductor device manufacturing method and a semiconductor device that can stably form a fine dam and can cope with downsizing of a mounting substrate. To do.

以上の課題を解決するに当たり、本発明は、実装基板上のチップ実装領域の周囲に電極パッドを形成する工程と、チップ実装領域と電極パッドの形成領域との間に電極パッド側へのアンダーフィル材の流出を堰き止めるダムを形成する工程とを有する半導体装置の製造方法において、実装基板上に電極パッドを構成する導体層を形成する工程と、上記導体層をパターン加工して電極パッド層とダム層とを分離形成する工程とを有する。   In solving the above problems, the present invention provides an electrode pad forming step around a chip mounting area on a mounting substrate, and an underfill on the electrode pad side between the chip mounting area and the electrode pad forming area. A method of forming a dam for blocking outflow of a material, a step of forming a conductor layer constituting an electrode pad on a mounting substrate, and patterning the conductor layer to form an electrode pad layer. And a step of separately forming the dam layer.

本発明の半導体装置の製造方法は、アンダーフィル材の流出を堰き止めるダムの形成を電極パッドの形成工程と同時に行うことで、従来のはんだめっき法による場合よりも微細かつ高精度にダムを安定して形成するようにしている。   The semiconductor device manufacturing method of the present invention stabilizes the dam with a finer and higher accuracy than the conventional solder plating method by forming a dam that blocks outflow of the underfill material simultaneously with the electrode pad forming process. To form.

電極パッドは、実装基板の上に形成された導体層(例えばアルミニウム層)をフォトリソグラフィ技術によってパターンエッチングすることで形成される。このとき、同じ導体層をダム用にパターンエッチングすることで、電極パッドと同時にダムが形成される。フォトリソグラフィ技術を用いたパターン加工は、1μm以下(最小でも数十nm程度)の微細加工を高精度に制御可能であるため、はんだめっき法に比べて著しく微細なダムを安定して形成することが可能となる。   The electrode pad is formed by pattern-etching a conductor layer (for example, an aluminum layer) formed on the mounting substrate by a photolithography technique. At this time, a dam is formed at the same time as the electrode pad by pattern etching the same conductor layer for the dam. Pattern processing using photolithography technology enables highly precise control of fine processing of 1 μm or less (at least about several tens of nanometers), so that extremely fine dams can be stably formed compared to solder plating methods. Is possible.

導体層からなるダム層の形成後、実装基板上に形成された絶縁保護層(パッシベーション膜)を積層することで、所定高さのダムを完成させることができる。これにより、電極パッドの構成材料からなる第1のダム層と、この第1のダム層を被覆する第2のダム層とが形成される。   After the formation of the dam layer composed of the conductor layer, a dam having a predetermined height can be completed by laminating an insulating protective layer (passivation film) formed on the mounting substrate. Thereby, the 1st dam layer which consists of a constituent material of an electrode pad and the 2nd dam layer which coat | covers this 1st dam layer are formed.

なお、第1のダム層は、一層に限らず多層構造であってもよい。この第1のダム層を多層構造とする場合、下地層は上記電極パッドの構成材料でもよいし、他の材料(例えば絶縁膜)であってもよい。   The first dam layer is not limited to a single layer and may have a multilayer structure. When the first dam layer has a multilayer structure, the underlying layer may be a constituent material of the electrode pad or may be another material (for example, an insulating film).

以上述べたように、本発明によれば、アンダーフィル材の流出防止用ダムを微細かつ高精度に安定して製造することが可能となる。これにより、実装基板の低面積化を図ることができ、半導体装置の更なる小型化に充分に対応することが可能となる。   As described above, according to the present invention, it is possible to stably manufacture a dam for preventing the underfill material from flowing out with high precision and accuracy. Thereby, the area of the mounting substrate can be reduced, and it becomes possible to sufficiently cope with further downsizing of the semiconductor device.

以下、本発明の実施の形態について図面を参照して説明する。なお勿論、本発明は以下の実施の形態に限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Of course, the present invention is not limited to the following embodiments, and various modifications can be made based on the technical idea of the present invention.

(第1の実施の形態)
図1及び図2は、本発明の第1の実施の形態による半導体装置20の概略構成を示している。ここで、図1Aは実装基板1に対する半導体チップ2の実装前の状態を示す側断面図、Bはその実装後の状態を示す側断面図、図2は半導体装置20の平面図及び実装基板1の要部拡大断面図である。
(First embodiment)
1 and 2 show a schematic configuration of the semiconductor device 20 according to the first embodiment of the present invention. Here, FIG. 1A is a side sectional view showing a state before the semiconductor chip 2 is mounted on the mounting substrate 1, B is a side sectional view showing a state after the mounting, FIG. 2 is a plan view of the semiconductor device 20 and the mounting substrate 1. FIG.

本実施の形態の半導体装置20は、実装基板1と半導体チップ2とによって構成されている。実装基板1は、例えばシリコンインターポーザや半導体チップ2よりも大型の半導体チップによって構成されている。半導体チップ2は、実装基板1の主面のほぼ中央部に複数のバンプ3(3A,3B)を用いてフリップチップ実装される。実装基板1の周縁部には、実際に半導体チップ2が実装される領域(以下「チップ実装領域」という。)を取り囲む状態で複数の電極パッド4が形成されている。   The semiconductor device 20 according to the present embodiment is constituted by a mounting substrate 1 and a semiconductor chip 2. The mounting substrate 1 is composed of, for example, a semiconductor chip larger than the silicon interposer or the semiconductor chip 2. The semiconductor chip 2 is flip-chip mounted using a plurality of bumps 3 (3 </ b> A, 3 </ b> B) at a substantially central portion of the main surface of the mounting substrate 1. A plurality of electrode pads 4 are formed on the periphery of the mounting substrate 1 so as to surround a region where the semiconductor chip 2 is actually mounted (hereinafter referred to as “chip mounting region”).

実装基板1の主面上であって、チップ実装領域と電極パッド4の形成領域との間にはダム21が設けられている。ダム21は、電極パッド4の形成領域よりも内側でチップ実装領域を取り囲むように平面視矩形状の枠型に形成されている。ダム21は、実装基板1の主面から突出する状態で形成されている。さらに、実装基板1の主面上では、当該実装基板1と半導体チップ2との間にアンダーフィル材6が充填されて硬化されている。   A dam 21 is provided on the main surface of the mounting substrate 1 and between the chip mounting region and the electrode pad 4 formation region. The dam 21 is formed in a rectangular frame shape in plan view so as to surround the chip mounting area inside the area where the electrode pad 4 is formed. The dam 21 is formed so as to protrude from the main surface of the mounting substrate 1. Further, on the main surface of the mounting substrate 1, the underfill material 6 is filled between the mounting substrate 1 and the semiconductor chip 2 and cured.

アンダーフィル材6は、半導体チップ2が実装基板1上に実装された後、半導体チップ2の周縁とダム21との間の実装基板1上に滴下される。アンダーフィル材6は、毛細管現象を利用して半導体チップ2と実装基板1との間の狭い隙間に引き込まれるとともに、ダム21によって電極パッド4側への流出が堰き止められる。所定量のアンダーフィル材6が半導体チップ2の下面に行き渡ると、図1Bに示したように半導体チップ2の側周部からアンダーフィル材6が裾野状に広がり、その後の加熱処理で硬化することで実装基板1と半導体チップ2との間を機械的に強固に保持する。   The underfill material 6 is dropped onto the mounting substrate 1 between the periphery of the semiconductor chip 2 and the dam 21 after the semiconductor chip 2 is mounted on the mounting substrate 1. The underfill material 6 is drawn into a narrow gap between the semiconductor chip 2 and the mounting substrate 1 by using a capillary phenomenon, and the dam 21 prevents the outflow to the electrode pad 4 side. When a predetermined amount of the underfill material 6 reaches the lower surface of the semiconductor chip 2, as shown in FIG. 1B, the underfill material 6 spreads out from the side periphery of the semiconductor chip 2 and is cured by the subsequent heat treatment. Thus, the space between the mounting substrate 1 and the semiconductor chip 2 is mechanically and firmly held.

さて、本実施の形態において、ダム21は、図2に示すように、ダム形成層22Aとこのダム形成層22A上に形成された絶縁保護膜(パッシベーション膜)12との積層構造で構成されている。ダム形成層22Aは、電極パッド4を構成する導体層(例えばアルミニウム層)からなり、パッシベーション膜12は、窒化シリコン(SiN)等の絶縁材料からなる。なお、ダム形成層22Aは本発明の「第1のダム層」或いは「ダム層」に対応し、ダム形成層22A上の絶縁保護膜12は本発明の「第2のダム層」に対応する。   In the present embodiment, as shown in FIG. 2, the dam 21 has a laminated structure of a dam formation layer 22A and an insulating protective film (passivation film) 12 formed on the dam formation layer 22A. Yes. The dam formation layer 22A is made of a conductor layer (for example, an aluminum layer) constituting the electrode pad 4, and the passivation film 12 is made of an insulating material such as silicon nitride (SiN). The dam formation layer 22A corresponds to the “first dam layer” or “dam layer” of the present invention, and the insulating protective film 12 on the dam formation layer 22A corresponds to the “second dam layer” of the present invention. .

ダム形成層22Aは、後述するように電極パッド4の形成工程と同時に形成されるため、電極パッド4を構成する導体層と同一高さに形成されている。勿論、ダム形成層22Aの高さは電極パッド4の形成厚に関係なく任意に設定することが可能であり、例えば後述するようにダム形成層を多層化して目的とする高さに形成することが可能である。   Since the dam formation layer 22A is formed at the same time as the electrode pad 4 forming step as will be described later, the dam formation layer 22A is formed at the same height as the conductor layer constituting the electrode pad 4. Of course, the height of the dam formation layer 22A can be arbitrarily set regardless of the formation thickness of the electrode pad 4. For example, as will be described later, the dam formation layer is formed in multiple layers so as to have a desired height. Is possible.

ダム21の高さは、ダム形成層22Aの層厚と絶縁保護膜12の膜厚の総計で決まり、実装基板1や半導体チップ2の大きさ、使用するアンダーフィル材6の種類、粘度等で適宜設定される。本実施の形態では、アンダーフィル材6として酸無水物系の樹脂材料が用いられ、ダム21の形成高さは例えば1μm以上5μm以下の範囲で設定される。   The height of the dam 21 is determined by the total thickness of the dam forming layer 22A and the thickness of the insulating protective film 12, and depends on the size of the mounting substrate 1 and the semiconductor chip 2, the type of the underfill material 6 to be used, the viscosity, and the like. Set as appropriate. In the present embodiment, an acid anhydride resin material is used as the underfill material 6, and the formation height of the dam 21 is set in a range of 1 μm or more and 5 μm or less, for example.

図3はダム21の形成方法を示す工程断面図である。ダム21は、電極パッド4と同時に形成される。   FIG. 3 is a process sectional view showing a method for forming the dam 21. The dam 21 is formed simultaneously with the electrode pad 4.

先ず、図3Aに示すように、シリコン製の実装基板1の上に酸化シリコン膜等の絶縁膜10を形成し、その上に電極パッド4の構成材料からなる導体層22を形成する。この導体層22は、フォトリソグラフィ技術を用いて所定形状にパターン加工されることで、図3Bに示すように電極パッド4とダム形成層22Aが分離形成される。なお、図示せずとも実装基板1のチップ実装領域では、この導体層がバンプ3Aの下地層として同様にパターン加工される。   First, as shown in FIG. 3A, an insulating film 10 such as a silicon oxide film is formed on a silicon mounting substrate 1, and a conductor layer 22 made of a constituent material of the electrode pad 4 is formed thereon. The conductor layer 22 is patterned into a predetermined shape using a photolithography technique, whereby the electrode pad 4 and the dam formation layer 22A are separately formed as shown in FIG. 3B. Although not shown, in the chip mounting region of the mounting substrate 1, this conductor layer is similarly patterned as a base layer of the bump 3A.

次に、図3Cに示すように、電極パッド4及びダム形成層22Aを含む実装基板1の主面全域に絶縁保護膜12を形成した後、電極パッド4の形成領域にあっては電極パッド4の上面を一部開口させる開口部12aをパターン加工する。これにより、電極パッド4が作製されると同時に、所定高さのダム21が完成する。   Next, as shown in FIG. 3C, after the insulating protective film 12 is formed over the entire main surface of the mounting substrate 1 including the electrode pad 4 and the dam formation layer 22 </ b> A, the electrode pad 4 is formed in the formation region of the electrode pad 4. The opening 12a for partially opening the upper surface of the substrate is patterned. Thereby, at the same time as the electrode pad 4 is produced, the dam 21 having a predetermined height is completed.

なお、電極パッド4及びダム21の作製後は、チップ実装領域上のバンプ下地層の上にバンプ3Aを形成する工程が行われる。バンプ3Aは図8〜図11を参照して説明した工程を経て作製される。   After the electrode pad 4 and the dam 21 are manufactured, a step of forming the bump 3A on the bump base layer on the chip mounting area is performed. The bump 3A is manufactured through the steps described with reference to FIGS.

本実施の形態においては、アンダーフィル材6の流出を堰き止めるダム21の形成を電極パッド4の形成工程と同時に行うようにしているので、従来のはんだめっき法による場合よりも微細かつ高精度なダムを安定して形成することができる。すなわち、ダム21の本体となるダム形成層22が、電極パッド4を構成する導体層のフォトリソグラフィ技術を用いたパターンエッチングによって形成されるので、線幅が1μm以下(最小でも数十nm程度)の微細加工を高精度に制御することが可能となり、はんだめっき法(線幅数十μm)に比べて著しく微細なダムを安定して形成できるようになる。   In the present embodiment, the formation of the dam 21 for blocking outflow of the underfill material 6 is performed at the same time as the electrode pad 4 forming step, so that it is finer and more accurate than the conventional solder plating method. A dam can be formed stably. That is, since the dam forming layer 22 which is the main body of the dam 21 is formed by pattern etching using the photolithography technique of the conductor layer constituting the electrode pad 4, the line width is 1 μm or less (at least about several tens of nm). It is possible to control the microfabrication with high accuracy, and it becomes possible to stably form extremely fine dams as compared with the solder plating method (line width of several tens of μm).

また、従来のはんだめっき法を用いたダム形成方法では、矩形枠状の隅部の曲率や加工条件等に起因して「ダムだまり」と称される不良が発生することがあったが、本実施の形態ではこのような不良の発生を回避することができるので、ダム形状の設計自由度を高めることができる。   In addition, in the conventional dam formation method using the solder plating method, a defect called “dam accumulation” may occur due to the curvature of corners of the rectangular frame shape, processing conditions, etc. Since the occurrence of such a defect can be avoided in the embodiment, the degree of freedom in designing the dam shape can be increased.

以上のように、本実施の形態によれば、アンダーフィル材6の流出防止用ダム21を微細かつ高精度に安定して製造することが可能となる。これにより、実装基板1の低面積化を図ることができ、半導体装置20の更なる小型化に充分に対応することが可能となる。   As described above, according to the present embodiment, the outflow prevention dam 21 of the underfill material 6 can be stably manufactured finely and with high accuracy. Thereby, the area of the mounting substrate 1 can be reduced, and it is possible to sufficiently cope with further downsizing of the semiconductor device 20.

また、ダム21の形成にめっき法を用いていないので、ダム21の近傍に位置する電極パッド4上のめっき形成用シード層のエッチング残りを防ぐことが可能となり、実装基板1の歩留まり向上を図ることができる。   Further, since the plating method is not used for forming the dam 21, it is possible to prevent an etching residue of the plating formation seed layer on the electrode pad 4 located in the vicinity of the dam 21, thereby improving the yield of the mounting substrate 1. be able to.

なお、ダム21はチップ実装領域のまわりを1重に形成する場合に限らず、2重以上に形成してもよい。この場合、ダムの形成幅を従来よりも微細化できるので、ダム形成領域増大による影響を少なくできる。   The dam 21 is not limited to being formed in a single layer around the chip mounting region, and may be formed in a double layer or more. In this case, since the formation width of the dam can be made smaller than before, the influence due to the increase in the dam formation region can be reduced.

(第2の実施の形態)
次に、図4及び図5を参照して本発明の第2の実施の形態によるアンダーフィル流出防止用ダム31の構成及びその形成方法について説明する。図4及び図5は当該ダムの一形成方法を示す工程断面図である。
(Second Embodiment)
Next, the configuration of the underfill outflow prevention dam 31 according to the second embodiment of the present invention and a method for forming the same will be described with reference to FIGS. 4 and 5 are process sectional views showing a method of forming the dam.

先ず、図4Aに示すように、実装基板1の上に絶縁膜10を形成し、その上にダム下地層32Aを構成する下地材料層32を形成する。この下地材料層32は導体層であってもよいし絶縁層であってもよく、本実施の形態ではアルミニウムで構成されている。   First, as shown in FIG. 4A, the insulating film 10 is formed on the mounting substrate 1, and the base material layer 32 constituting the dam base layer 32A is formed thereon. The underlying material layer 32 may be a conductor layer or an insulating layer, and is made of aluminum in the present embodiment.

次に、図4Bに示すように、下地材料層32上であってダム形成領域を被覆するレジストパターンRP1を形成し、このレジストパターンRP1をマスクとして下地材料層32をエッチング除去する。これにより、図4Cに示すようにダム形成領域にダム下地層32Aが形成される。   Next, as shown in FIG. 4B, a resist pattern RP1 that covers the dam formation region on the base material layer 32 is formed, and the base material layer 32 is removed by etching using the resist pattern RP1 as a mask. Thereby, as shown in FIG. 4C, the dam foundation layer 32A is formed in the dam formation region.

続いて、図4Dに示すように、電極パッド4を構成する導体層(アルミニウム層)33を実装基板1の主面全面に形成した後、図5Aに示すようにダム形成位置及び電極パッド形成位置を被覆するレジストパターンRP2を形成する。そして、これらレジストパターンRP2をマスクとして導体層33を形成することで、図5Bに示すように電極パッド4及びダム形成層33Aが作製される。その後、図5Cに示すように、絶縁保護膜12を形成し電極パッド4上に開口部12aを形成することによって、電極パッド4及びダム31が完成する。   4D, a conductor layer (aluminum layer) 33 constituting the electrode pad 4 is formed on the entire main surface of the mounting substrate 1, and then a dam formation position and an electrode pad formation position are formed as shown in FIG. 5A. A resist pattern RP2 for covering the film is formed. Then, by forming the conductor layer 33 using the resist pattern RP2 as a mask, the electrode pad 4 and the dam forming layer 33A are manufactured as shown in FIG. 5B. Thereafter, as shown in FIG. 5C, the insulating protective film 12 is formed and the opening 12a is formed on the electrode pad 4, thereby completing the electrode pad 4 and the dam 31.

以上のように構成されるダム31は、ダム下地層32Aとダム形成層33Aとその上の絶縁保護膜12との3層構造を有している。このように、ダム形成層33Aの下にダム下地層32Aを形成することによって、ダム31の全体の高さ調整をより容易に行うことができる。更に、電極パッド4よりも高く実装基板1上にダム31を形成することができ、アンダーフィル材の流出防止機能を更に高めることができる。   The dam 31 configured as described above has a three-layer structure of the dam foundation layer 32A, the dam formation layer 33A, and the insulating protective film 12 thereon. Thus, the overall height adjustment of the dam 31 can be more easily performed by forming the dam foundation layer 32A under the dam formation layer 33A. Furthermore, the dam 31 can be formed on the mounting substrate 1 higher than the electrode pad 4, and the function of preventing the underfill material from flowing out can be further enhanced.

なお、ダム下地層32A及びダム形成層33Aは本発明の「第1のダム層」或いは「ダム層」に対応し、その上の絶縁保護膜12は本発明の「第2のダム層」に対応する。第1のダム層は上述の例のように2層構造に限らず更に多層化することも勿論可能である。   The dam foundation layer 32A and the dam formation layer 33A correspond to the “first dam layer” or “dam layer” of the present invention, and the insulating protective film 12 thereon constitutes the “second dam layer” of the present invention. Correspond. Needless to say, the first dam layer is not limited to the two-layer structure as in the above-described example, but can be further multilayered.

本発明の第1の実施の形態による半導体装置20の概略構成図である。1 is a schematic configuration diagram of a semiconductor device 20 according to a first embodiment of the present invention. 半導体装置20の概略平面図及び実装基板1の要部拡大断面図である。2 is a schematic plan view of the semiconductor device 20 and an enlarged cross-sectional view of a main part of the mounting substrate 1. FIG. 実装基板1上の電極パッド4及びダム21の形成工程を説明する工程断面図である。FIG. 6 is a process cross-sectional view illustrating a process of forming electrode pads 4 and dams 21 on the mounting substrate 1. 本発明の第2の実施の形態によるダム31の形成方法を説明する工程断面図である。It is process sectional drawing explaining the formation method of the dam 31 by the 2nd Embodiment of this invention. 本発明の第2の実施の形態によるダム31の形成方法を説明する工程断面図である。It is process sectional drawing explaining the formation method of the dam 31 by the 2nd Embodiment of this invention. 従来の半導体装置の概略構成図であり、Aは平面図、Bは側断面図である。It is a schematic block diagram of the conventional semiconductor device, A is a top view, B is a sectional side view. アンダーフィル充填工程を説明する要部拡大断面図である。It is a principal part expanded sectional view explaining an underfill filling process. めっきバンプの形成方法を説明する工程断面図である。It is process sectional drawing explaining the formation method of a plating bump. めっきバンプの形成方法を説明する工程断面図である。It is process sectional drawing explaining the formation method of a plating bump. めっきバンプの形成方法を説明する工程断面図である。It is process sectional drawing explaining the formation method of a plating bump. めっきバンプの形成方法を説明する工程断面図である。It is process sectional drawing explaining the formation method of a plating bump.

符号の説明Explanation of symbols

1…実装基板、2…半導体チップ、3,3A,3B…バンプ、4…電極パッド、6…アンダーフィル材、7…ノズル、12…絶縁保護膜、18…はんだめっき、20…半導体装置、21,31…ダム、22A,33A…ダム形成層、32A…ダム下地層   DESCRIPTION OF SYMBOLS 1 ... Mounting substrate, 2 ... Semiconductor chip, 3, 3A, 3B ... Bump, 4 ... Electrode pad, 6 ... Underfill material, 7 ... Nozzle, 12 ... Insulating protective film, 18 ... Solder plating, 20 ... Semiconductor device, 21 31 ... Dam, 22A, 33A ... Dam formation layer, 32A ... Dam foundation layer

Claims (4)

実装基板上に下地材料層を形成する工程と、
前記下地材料層をパターンエッチングし、前記実装基板上のダム形成領域にダム下地層を形成する工程と、
前記ダム下地層を含む前記実装基板上に導体層を形成する工程と、
前記導体層をパターンエッチングすることで、前記実装基板上のチップ実装領域の周囲の電極パッドと、前記チップ実装領域と前記電極パッドの形成領域との間の前記ダム形成領域に前記電極パッド側へのアンダーフィル材の流出を堰き止めるダムとを分離形成する工程と、
前記電極パッド及び前記ダムを含む前記実装基板上に絶縁保護層を形成する工程と、
前記導体層をバンプ下地層として、前記チップ実装領域内にめっきバンプを形成する工程と、
前記チップ実装領域に半導体チップをフリップチップ実装した後、前記実装基板と前記半導体チップとの間に前記アンダーフィル材を充填する工程と
を有する半導体装置の製造方法。
Forming a base material layer on the mounting substrate;
Pattern etching the foundation material layer, and forming a dam foundation layer in the dam formation region on the mounting substrate;
Forming a conductor layer on the mounting substrate including the dam foundation layer;
By pattern-etching the conductor layer, the electrode pad is moved to the electrode pad around the chip mounting area on the mounting substrate and to the dam forming area between the chip mounting area and the electrode pad forming area. Separating and forming a dam that blocks the outflow of the underfill material;
Forming an insulating protective layer on the mounting substrate including the electrode pad and the dam;
Using the conductor layer as a bump underlayer, forming a plating bump in the chip mounting region;
A method of manufacturing a semiconductor device , comprising flip-chip mounting a semiconductor chip in the chip mounting region and then filling the underfill material between the mounting substrate and the semiconductor chip .
チップ実装領域の周囲に形成された第1の高さを有する電極パッドと、前記チップ実装領域と前記電極パッドの形成領域との間に形成され、ダム下地層と、前記第1の高さを有し前記電極パッドの構成材料からなる第1のダム層と、絶縁材料からなる第2のダム層との積層構造からなり、前記第1の高さよりも高い第2の高さを有するダムとを有する実装基板と、
前記実装基板の前記チップ実装領域に複数のバンプを用いてフリップチップ実装された半導体チップと、
前記実装基板と前記半導体チップとの間に充填されたアンダーフィル材と
を具備する半導体装置。
An electrode pad having a first height formed around the chip mounting region; and formed between the chip mounting region and the electrode pad forming region; a dam foundation layer; and the first height A dam having a second height higher than the first height, the first dam layer made of a constituent material of the electrode pad, and a second dam layer made of an insulating material. A mounting board having
A semiconductor chip flip-chip mounted using a plurality of bumps in the chip mounting region of the mounting substrate;
An underfill material filled between the mounting substrate and the semiconductor chip;
A semiconductor device comprising:
前記第1のダム層はアルミニウムからなる
請求項に記載の半導体装置。
It said first dam layer semiconductor device according to claim 2 made of aluminum.
前記実装基板は、半導体チップである
請求項に記載の半導体装置。
The semiconductor device according to claim 2 , wherein the mounting substrate is a semiconductor chip.
JP2005350191A 2005-12-05 2005-12-05 Semiconductor device manufacturing method and semiconductor device Expired - Fee Related JP4792949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350191A JP4792949B2 (en) 2005-12-05 2005-12-05 Semiconductor device manufacturing method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350191A JP4792949B2 (en) 2005-12-05 2005-12-05 Semiconductor device manufacturing method and semiconductor device

Publications (2)

Publication Number Publication Date
JP2007157963A JP2007157963A (en) 2007-06-21
JP4792949B2 true JP4792949B2 (en) 2011-10-12

Family

ID=38241941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350191A Expired - Fee Related JP4792949B2 (en) 2005-12-05 2005-12-05 Semiconductor device manufacturing method and semiconductor device

Country Status (1)

Country Link
JP (1) JP4792949B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910408B2 (en) * 2006-01-31 2012-04-04 ソニー株式会社 Semiconductor device
JP2009177061A (en) * 2008-01-28 2009-08-06 Nec Electronics Corp Semiconductor apparatus and method of manufacturing the same
KR101089956B1 (en) 2009-10-28 2011-12-05 삼성전기주식회사 Flip chip package and manufacturing method of the same
JP5625340B2 (en) * 2009-12-07 2014-11-19 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
JP5537341B2 (en) * 2010-08-31 2014-07-02 株式会社東芝 Semiconductor device
JP6125209B2 (en) * 2012-11-19 2017-05-10 株式会社ジェイデバイス Semiconductor device and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133664A (en) * 1998-10-22 2000-05-12 Sony Corp Semiconductor device
JP2003234362A (en) * 2002-02-12 2003-08-22 Yokogawa Electric Corp Semiconductor device
JP2004063791A (en) * 2002-07-29 2004-02-26 Sharp Corp Small-sized solid image pickup device
JP2004214255A (en) * 2002-12-27 2004-07-29 Casio Comput Co Ltd Connection structure of electronic part
JP4415717B2 (en) * 2004-03-23 2010-02-17 ソニー株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007157963A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4601892B2 (en) Semiconductor device and bump manufacturing method of semiconductor chip
KR100596452B1 (en) Wafer level chip scale package having air gap between ball land and solder ball and manufacturing method thereof
TWI495024B (en) Semiconductor device, method of manufacturing the same, and method of manufacturing wiring board
JP3953027B2 (en) Semiconductor device and manufacturing method thereof
US6555296B2 (en) Fine pitch wafer bumping process
TWI429042B (en) Semiconductor device and method of manufacturing the same
US6756294B1 (en) Method for improving bump reliability for flip chip devices
JP4792949B2 (en) Semiconductor device manufacturing method and semiconductor device
US7214604B2 (en) Method of fabricating ultra thin flip-chip package
TWM512215U (en) Semiconductor substrate structure and semiconductor package structure
TWI502691B (en) Conductive structure and method for forming the same
TWI463621B (en) Package substrate and fabrication method thereof
JP6619294B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT DEVICE
JP2008311538A (en) Circuit board, and semiconductor device
US6639314B2 (en) Solder bump structure and a method of forming the same
US10957638B2 (en) Device with pillar-shaped components
TWI483362B (en) Conductive structure and mehtod for forming the same
KR20030075780A (en) Semiconductor device for reinforcing a under structure of bonding pad and method for fabricating the same
US8426303B2 (en) Manufacturing method of semiconductor device, and mounting structure thereof
US6977213B1 (en) IC chip solder bump structure and method of manufacturing same
US9564410B2 (en) Semiconductor devices having metal bumps with flange
TWI420610B (en) Semiconductor device and manufacturing method therefor
JP4812673B2 (en) Semiconductor device
JP5296567B2 (en) Manufacturing method of semiconductor device
US20060276023A1 (en) Method for forming bumps

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees