JP4790365B2 - High frequency dielectric composition - Google Patents

High frequency dielectric composition Download PDF

Info

Publication number
JP4790365B2
JP4790365B2 JP2005297772A JP2005297772A JP4790365B2 JP 4790365 B2 JP4790365 B2 JP 4790365B2 JP 2005297772 A JP2005297772 A JP 2005297772A JP 2005297772 A JP2005297772 A JP 2005297772A JP 4790365 B2 JP4790365 B2 JP 4790365B2
Authority
JP
Japan
Prior art keywords
solid solution
forsterite
dielectric
sio
tefolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005297772A
Other languages
Japanese (ja)
Other versions
JP2006137664A (en
Inventor
齊 大里
勉 角岡
智紀 杉山
Original Assignee
株式会社ヤスフクセラミックス
丸ス釉薬合資会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヤスフクセラミックス, 丸ス釉薬合資会社 filed Critical 株式会社ヤスフクセラミックス
Priority to JP2005297772A priority Critical patent/JP4790365B2/en
Publication of JP2006137664A publication Critical patent/JP2006137664A/en
Application granted granted Critical
Publication of JP4790365B2 publication Critical patent/JP4790365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、高周波用誘電体組成物に関する。   The present invention relates to a high frequency dielectric composition.

高周波用誘電体材料は、近年の情報通信技術の発展により、通信回路の特性を決定する重要な材料となりつつある。このような誘電体に要求される特性としては、一般に、(i)マイクロ波帯における比誘電率(ε)が高いこと、(ii)誘電損失が小さいこと、すなわち品質係数(Q・f;但しQは誘電正接tanδの逆数、fは共振周波数)が高いこと、(iii)共振周波数の温度係数(τ)の絶対値が小さいこと、が挙げられる。特に、誘電損失は誘電体に交流電場を加えた時に熱として失われるエネルギーの量を表し、高周波においてはその値が小さいことが重要となる。 High-frequency dielectric materials are becoming important materials for determining the characteristics of communication circuits due to the recent development of information communication technology. The characteristics required for such a dielectric generally include (i) a high dielectric constant (ε r ) in the microwave band, and (ii) a low dielectric loss, that is, a quality factor (Q · f; However, Q is the reciprocal of the dielectric loss tangent tan δ, f is the resonance frequency), and (iii) the absolute value of the temperature coefficient (τ f ) of the resonance frequency is small. In particular, dielectric loss represents the amount of energy lost as heat when an alternating electric field is applied to a dielectric, and it is important that the value be small at high frequencies.

このような高周波用誘電体セラミックスの一つとして、フォルステライトが知られている。このものは、MgOとSiOの反応生成物(MgSiO)よりなり、比較的優れた高周波特性を有している。 Forsterite is known as one of such high-frequency dielectric ceramics. This product is made of a reaction product of MgO and SiO 2 (Mg 2 SiO 4 ) and has relatively excellent high frequency characteristics.

本発明者らは、これまでにフォルステライトの製造工程において、混入する不純物および粉末の粒度を制御することにより、マイクロ波領域での誘電損失の小さいフォルステライト誘電体を開発している(特許文献1、非特許文献1参照)。
特許第3083638号公報 角岡 勉ほか、JFCC Review, 4, 72-81(1992)
The present inventors have so far developed a forsterite dielectric material having a small dielectric loss in the microwave region by controlling the impurities and the particle size of the powder mixed in the forsterite manufacturing process (Patent Literature). 1 and non-patent document 1).
Japanese Patent No. 3083638 Tsutomu Tsunooka et al., JFCC Review, 4, 72-81 (1992)

しかしながら、フォルステライトからなる高周波用誘電体組成物を作製する場合、原料のMgOやSiOに混入している不純物や種々の目的で添加される元素によって、最終的な生成物である誘電体焼結体中にフォルステライト以外の相が形成され、誘電特性に影響を与えることがある。このため、誘電特性の良いフォルステライトを得るためには、製造プロセスの繊細な管理が必要となる。 However, when producing a dielectric composition for high frequency made of forsterite, the final product, the dielectric firing, depends on impurities mixed in the raw material MgO and SiO 2 and elements added for various purposes. Phases other than forsterite are formed in the aggregate, which may affect the dielectric properties. For this reason, in order to obtain forsterite with good dielectric properties, delicate management of the manufacturing process is required.

また、フォルステライトを得るための焼結温度は一般に1450℃程度である。しかし、例えば誘電体組成物を、基板の焼成と同時に電極の形成を行う同時焼成によって製造される電子デバイス等に応用する場合などにおいては、焼結温度があまり高くないことが望まれる。   The sintering temperature for obtaining forsterite is generally about 1450 ° C. However, for example, when the dielectric composition is applied to an electronic device or the like manufactured by simultaneous firing in which electrodes are formed simultaneously with firing of the substrate, it is desired that the sintering temperature is not so high.

本発明は、上記した事情に鑑みてなされたものであり、その目的は、良好な誘電特性を実現でき、比較的低温で焼成できる新規な高周波用誘電体組成物を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel high-frequency dielectric composition that can realize good dielectric properties and can be fired at a relatively low temperature.

本発明者らは、良好な誘電特性を実現でき、比較的低温で焼成できる新規な高周波用誘電体組成物を開発すべく鋭意研究してきたところ、フォルステライトにテフォライト(MnSiO)を固溶させることにより、1400℃程度と、一般的にフォルステライトの焼成に好ましいとされる1450℃よりも低温で焼成可能であり、特にマイクロ波領域でのQ・f値が大きい高周波用誘電体組成物を得られることを見出した。また、テフォライト単体でも同様に低温焼成が可能で誘電特性の良い高周波用誘電体組成物を得られることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive research to develop a novel high-frequency dielectric composition that can realize good dielectric properties and can be fired at a relatively low temperature. As a result, tefolite (Mn 2 SiO 4 ) is fixed to forsterite. When dissolved, it can be fired at a temperature of about 1400 ° C., which is lower than 1450 ° C., which is generally preferred for firing forsterite, and has a high Q · f value particularly in the microwave region. I found out I could get something. Further, the present inventors have found that a high-frequency dielectric composition having a good dielectric property and capable of being fired at a low temperature can be obtained by using tefolite alone.

すなわち、本発明はテフォライト単体またはテフォライトとフォルステライトの固溶体からなる、一般式Mg2−xMnSiO(但し0<x≦2.0)で示される高周波用誘電体組成物である。 That is, the present invention is a high-frequency dielectric composition represented by the general formula Mg 2−x Mn x SiO 4 (where 0 <x ≦ 2.0), comprising a single tefolite or a solid solution of tefolite and forsterite.

本発明によれば、特にマイクロ波領域において高純度フォルステライトに匹敵する優れた誘電特性をもつとともに、比較的低温で焼成可能な高周波用誘電体組成物を得ることができる。   According to the present invention, it is possible to obtain a high-frequency dielectric composition that has excellent dielectric properties comparable to high-purity forsterite, particularly in the microwave region, and can be fired at a relatively low temperature.

本発明の高周波用誘電体組成物は、テフォライト単体またはテフォライトとフォルステライトの固溶体からなる、一般式Mg2−xMnSiO(但し0<x≦2.0)で示されるものである。Mnの組成比、すなわち上記一般式中のxの値の範囲については、0より大きく2.0以下であれば特に制限はないが、xが0.05以上0.15以下の範囲で特に高いQ・f値をもつ高周波用誘電体組成物を得ることができる。 The high-frequency dielectric composition of the present invention is represented by the general formula Mg 2-x Mn x SiO 4 (where 0 <x ≦ 2.0), which is composed of tefolite alone or a solid solution of tefolite and forsterite. The composition ratio of Mn, that is, the range of the value x in the above general formula is not particularly limited as long as it is larger than 0 and 2.0 or less, but is particularly high when x is in the range of 0.05 to 0.15. A high frequency dielectric composition having a Q · f value can be obtained.

このような高周波用誘電体組成物は、原料であるMgO、MnO、SiOを混合して焼成することにより得ることができる。本発明の高周波用誘電体組成物の製造プロセスの一例を示す工程図を図1に示す。 Such a high-frequency dielectric composition can be obtained by mixing and firing raw materials MgO, MnO, and SiO 2 . FIG. 1 is a process diagram showing an example of a process for producing a high frequency dielectric composition of the present invention.

まず、原料であるMgO、MnO、SiO(テフォライト単体を目的の組成物とする場合はMnO、SiO)を、目的とする高周波用誘電体組成物中の原子数の比に基づいて秤量し、混合、粉砕する。MgO、MnO、SiOとしては、それぞれ高純度のものを使用することが好ましく、具体的には純度99.9%以上のものを使用することが好ましい。また、粒度はできるだけ小さいことが好ましいが、仮焼成において充分反応する程度であればよい。粉砕は、例えばボールミル等を用いた一般的な方法で行うことができる。 First, MgO as a raw material, MnO, SiO 2 (if the Teforaito alone for the purpose of the composition MnO, SiO 2), and weighed on the basis of the atomic ratio of high frequency dielectric composition of interest , Mix and grind. As MgO, MnO, and SiO 2 , it is preferable to use those having high purity, and specifically, it is preferable to use those having a purity of 99.9% or more. Further, the particle size is preferably as small as possible, but it is sufficient that the particle size is sufficiently reacted in the pre-baking. The pulverization can be performed by a general method using, for example, a ball mill.

次いで、得られた原料の混合粉末を乾燥後、仮焼成する。仮焼成は例えば焼成温度1150℃程度、焼成時間3時間程度で行えばよい。これにより、フォルステライトとテフォライトとの良好な固溶相を合成することができる。得られた固溶体は再び粉砕、乾燥して粉末とされる。粉砕は、例えばボールミル等を用いた一般的な方法で行うことができる。   Next, the obtained mixed powder of raw materials is dried and then calcined. The temporary baking may be performed, for example, at a baking temperature of about 1150 ° C. and a baking time of about 3 hours. Thereby, a good solid solution phase of forsterite and tefolite can be synthesized. The obtained solid solution is again pulverized and dried to form a powder. The pulverization can be performed by a general method using, for example, a ball mill.

次に、乾燥後の固溶体粉末にバインダを加えて造粒する。バインダとしてはポリビニルアルコール、メチルセルロースなどの有機質の糊料を好ましく使用できる。造粒後、得られた固溶体の粉粒体を成形する。成形は、例えば一軸プレスにより成形後、冷間等方圧プレス(CIP)により再成形することにより行うことができる。   Next, a binder is added to the dried solid solution powder and granulated. As the binder, organic pastes such as polyvinyl alcohol and methyl cellulose can be preferably used. After granulation, the obtained solid solution powder is formed. The molding can be performed, for example, by molding with a uniaxial press and then reforming with a cold isostatic press (CIP).

次いで、得られた成形体を脱脂後、本焼成する。脱脂処理は成形物に含まれるバインダ等の有機物を徐々に焼失させる条件で行えばよく、例えば300〜500℃で4〜8時間程度行えば良い。また、本焼成は焼成温度1400℃、焼成時間2時間程度で行うことができる。なお、本明細書において焼成温度とは加熱炉内に熱電対を設置して測定した温度をいう。但し、加熱炉の中心位置では±2〜3℃、炉内全体では測定位置により±30℃程度の誤差が生じる。   Next, the obtained molded body is degreased and then fired. The degreasing treatment may be performed under the condition that organic substances such as a binder contained in the molded product are gradually burned off, and may be performed, for example, at 300 to 500 ° C. for about 4 to 8 hours. Further, the main baking can be performed at a baking temperature of 1400 ° C. and a baking time of about 2 hours. In the present specification, the firing temperature refers to a temperature measured by installing a thermocouple in a heating furnace. However, an error of about ± 2 to 3 ° C. occurs at the center position of the heating furnace and about ± 30 ° C. depending on the measurement position in the entire furnace.

以下、実施例を挙げて本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

<実施例1−1>
(1)焼結体の作成
純度99.9%以上、平均粒径0.8mm、比表面積1.78m/gのSiO粉末、純度99.9%以上、平均粒径0.82μm、比較面積1.78m /gのMgO粉末、及び純度99.9%以上のMnO粉末を、目的とする固溶体Mg1.97Mn0.03SiO(x=0.03)中の各元素の組成比に基づいて秤量した後、蒸留水を加えて、ジルコニアボールを用いてボールミルで24時間混合した。混合後の原料粉末を、約100℃で24時間乾燥した後、空気中で1150℃で3時間仮焼成した。得られた仮焼成物をジルコニアボールを用いたボールミルにて蒸留水中で24時間粉砕した後、100℃で24時間乾燥して固溶体粉末を得た。
得られた固溶体粉末にバインダとしてポリビニルアルコールを1%添加し、造粒した。得られた造粒物を、直径12mmの金型を用いて8MPa、2分間の一軸加圧により成形した後、200MPa、2分間の冷間等方圧プレス(CIP)で再成形して、ペレット状の成形物を得た。
次いで、成形物を加熱炉に入れ、400℃で6時間加熱して脱脂した後、昇温し、1400℃で2時間の本焼成を行って焼結体を得た。なお、焼成における昇温・降温速度は5℃/minとした。
<Example 1-1>
(1) Creation of sintered body SiO 2 powder having a purity of 99.9% or more, an average particle diameter of 0.8 mm, a specific surface area of 1.78 m 2 / g, a purity of 99.9% or more, an average particle diameter of 0.82 μm, comparison An MgO powder having an area of 1.78 m 2 / g and an MnO powder having a purity of 99.9% or more are composed of each element in the target solid solution Mg 1.97 Mn 0.03 SiO 4 (x = 0.03). After weighing based on the ratio, distilled water was added and mixed with a zirconia ball in a ball mill for 24 hours. The mixed raw material powder was dried at about 100 ° C. for 24 hours and then calcined in air at 1150 ° C. for 3 hours. The obtained calcined product was pulverized in distilled water for 24 hours with a ball mill using zirconia balls and then dried at 100 ° C. for 24 hours to obtain a solid solution powder.
1% of polyvinyl alcohol was added to the obtained solid solution powder as a binder and granulated. The resulting granulated product was molded by uniaxial pressing at 8 MPa for 2 minutes using a mold with a diameter of 12 mm, and then remolded by cold isostatic pressing (CIP) at 200 MPa for 2 minutes to produce pellets. A shaped molding was obtained.
Next, the molded product was put into a heating furnace, heated at 400 ° C. for 6 hours for degreasing, then heated, and subjected to main firing at 1400 ° C. for 2 hours to obtain a sintered body. The temperature increase / decrease rate in firing was 5 ° C./min.

(2)試験
(i)相対密度
相対密度は、アルキメデス法で見かけ密度を求め、その値を理論密度で除することにより求めた。
(2) Test
(i) Relative density Relative density was determined by calculating the apparent density by the Archimedes method and dividing the value by the theoretical density.

(ii)誘電特性
上記(1)で得られた焼結体の両端面を研磨した後、Hakki and Coleman(ハッキ アンド コールマン)法を改良した両端短絡形誘電体共振器法(JIS R 1627)により比誘電率ε、品質係数Q・f値及び温度係数τを測定した。なお、測定周波数は14〜18GHzで行った。温度係数τは+20〜+80℃の温度範囲で共振周波数の変化から求めた。
(ii) Dielectric properties After polishing both end faces of the sintered body obtained in the above (1), the both ends short-circuited dielectric resonator method (JIS R 1627) improved from the Hakki and Coleman method. The relative dielectric constant ε r , the quality factor Q · f value, and the temperature coefficient τ f were measured. The measurement frequency was 14 to 18 GHz. The temperature coefficient τ f was obtained from the change in resonance frequency in the temperature range of +20 to + 80 ° C.

(iii)粉末X線回折(XRD)法による解析
得られた焼結体について、粉末X線回折法による解析(線源:CuKα)を行った。
(iii) Analysis by powder X-ray diffraction (XRD) method The obtained sintered body was analyzed by a powder X-ray diffraction method (radiation source: CuKα).

(iv)WPPD法による格子定数の精密化
(iii)で得られた粉末X線解析のデータをWPPD(Whole-Powder-Pattern Decomposition;全粉末パターン分解)法を用いて解析し、格子定数を精密化した。
(iv) Refinement of lattice constant by WPPD method
The powder X-ray analysis data obtained in (iii) was analyzed using a WPPD (Whole-Powder-Pattern Decomposition) method to refine the lattice constant.

<実施例1−2>
原料粉末を、目的とする固溶体Mg1.95Mn0.05SiO(x=0.05)中の各元素の組成比に基づいて秤量した。その他は、実施例1と同様にして焼結体を作成し、試験を行った。
<Example 1-2>
The raw material powder was weighed based on the composition ratio of each element in the target solid solution Mg 1.95 Mn 0.05 SiO 4 (x = 0.05). Other than that, a sintered body was prepared and tested in the same manner as in Example 1.

<実施例1−3>
原料粉末を、目的とする固溶体Mg1.9Mn0.1SiO(x=0.1)中の各元素の組成比に基づいて秤量した。その他は、実施例1と同様にして固溶体および焼結体を作成し、試験を行った。
<Example 1-3>
The raw material powder was weighed based on the composition ratio of each element in the target solid solution Mg 1.9 Mn 0.1 SiO 4 (x = 0.1). Otherwise, a solid solution and a sintered body were prepared and tested in the same manner as in Example 1.

<実施例1−4>
原料粉末を、目的とする固溶体Mg1.85Mn0.15SiO(x=0.15)中の各元素の組成比に基づいて秤量した。その他は、実施例1と同様にして固溶体および焼結体を作成し、試験を行った。
<Example 1-4>
The raw material powder was weighed based on the composition ratio of each element in the target solid solution Mg 1.85 Mn 0.15 SiO 4 (x = 0.15). Otherwise, a solid solution and a sintered body were prepared and tested in the same manner as in Example 1.

<実施例1−5>
原料粉末を、目的とする固溶体Mg1.5Mn0.5SiO(x=0.5)中の各元素の組成比に基づいて秤量した。その他は、実施例1と同様にして固溶体および焼結体を作成し、試験を行った。
<Example 1-5>
The raw material powder was weighed based on the composition ratio of each element in the target solid solution Mg 1.5 Mn 0.5 SiO 4 (x = 0.5). Otherwise, a solid solution and a sintered body were prepared and tested in the same manner as in Example 1.

<実施例1−6>
原料粉末を、目的とする固溶体MgMnSiO(x=1)中の各元素の組成比に基づいて秤量した。その他は、実施例1と同様にして固溶体および焼結体を作成し、試験を行った。
<Example 1-6>
The raw material powder was weighed based on the composition ratio of each element in the target solid solution MgMnSiO 4 (x = 1). Otherwise, a solid solution and a sintered body were prepared and tested in the same manner as in Example 1.

<実施例1−7>
原料粉末を、目的とするテフォライト単体MnSiO(x=2)中の各元素の組成比に基づいて秤量した。その他は、実施例1と同様にして固溶体および焼結体を作成し、試験を行った。
<Example 1-7>
The raw material powder was weighed based on the composition ratio of each element in the target tephrite simple substance Mn 2 SiO 4 (x = 2). Otherwise, a solid solution and a sintered body were prepared and tested in the same manner as in Example 1.

<実施例2−1>
原料粉末を、目的とする固溶体Mg1.95Mn0.05SiO(x=0.05)中の各元素の組成比に基づいて秤量した。また、仮焼成および本焼成を窒素雰囲気下(還元雰囲気下)で行った。その他は、実施例1と同様にして固溶体および焼結体を作成し、試験を行った。
<Example 2-1>
The raw material powder was weighed based on the composition ratio of each element in the target solid solution Mg 1.95 Mn 0.05 SiO 4 (x = 0.05). Moreover, temporary baking and main baking were performed in nitrogen atmosphere (reducing atmosphere). Otherwise, a solid solution and a sintered body were prepared and tested in the same manner as in Example 1.

<実施例2−2>
原料粉末を、目的とする固溶体Mg1.9Mn0.1SiO(x=0.1)中の各元素の組成比に基づいて秤量した。また、仮焼成および本焼成を窒素雰囲気下(還元雰囲気下)で行った。その他は、実施例1と同様にして固溶体および焼結体を作成し、試験を行った。
<Example 2-2>
The raw material powder was weighed based on the composition ratio of each element in the target solid solution Mg 1.9 Mn 0.1 SiO 4 (x = 0.1). Moreover, temporary baking and main baking were performed in nitrogen atmosphere (reducing atmosphere). Otherwise, a solid solution and a sintered body were prepared and tested in the same manner as in Example 1.

<実施例2−3>
原料粉末を、目的とするテフォライト単体MnSiO(x=2)中の各元素の組成比に基づいて秤量した。また、仮焼成および本焼成を窒素雰囲気下(還元雰囲気下)で行った。その他は、実施例1と同様にして固溶体および焼結体を作成し、試験を行った。
<Example 2-3>
The raw material powder was weighed based on the composition ratio of each element in the target tephrite simple substance Mn 2 SiO 4 (x = 2). Moreover, temporary baking and main baking were performed in nitrogen atmosphere (reducing atmosphere). Otherwise, a solid solution and a sintered body were prepared and tested in the same manner as in Example 1.

<比較例>
原料粉末を、目的とするフォルステライト単体MgSiO(x=0)中の各元素の組成比に基づいて秤量した。その他は、実施例1と同様にして固溶体および焼結体を作成し、試験を行った。
<Comparative example>
The raw material powder was weighed based on the composition ratio of each element in the target forsterite simple substance Mg 2 SiO 4 (x = 0). Otherwise, a solid solution and a sintered body were prepared and tested in the same manner as in Example 1.

[結果と考察]
表1には、各実施例および比較例における焼結体の比誘電率ε、品質係数Q・f、温度係数τ、相対密度、格子定数を示した。また、図2には、各実施例および比較例における焼結体のX線回折チャートを、図3にはxの値と比誘電率εとの関係、図4にはxの値と品質係数Q・fとの関係を、図5にはxの値と温度係数τとの関係を、それぞれ示した。
[Results and discussion]
Table 1 shows the relative dielectric constant ε r , the quality factor Q · f, the temperature coefficient τ f , the relative density, and the lattice constant of the sintered bodies in the examples and comparative examples. Further, in FIG. 2, the X-ray diffraction chart of a sintered body in each example and comparative example, the relationship between the value and the relative dielectric constant epsilon r of x in FIG. 3, FIG. 4 and the value of x Quality FIG. 5 shows the relationship between the coefficient Q · f, and FIG. 5 shows the relationship between the value of x and the temperature coefficient τ f .

Figure 0004790365
Figure 0004790365

表1より、Mn元素の組成比(xの値)の増加に伴い、格子定数が大きくなっていることから、固溶体が形成されていることが分かる。また、実施例の焼結体はいずれも相対密度が約93%〜99%であり、焼成温度1400℃で充分に高密度の焼結体が得られていることが分かった。   From Table 1, it can be seen that a solid solution is formed because the lattice constant increases as the composition ratio (value of x) of the Mn element increases. In addition, it was found that the sintered bodies of the examples had a relative density of about 93% to 99%, and a sufficiently high density sintered body was obtained at a firing temperature of 1400 ° C.

表1および図3より、テフォライトとフォルステライトとの固溶体(実施例1−1〜1−6、および実施例2−1〜2−2)およびテフォライト単体(実施例1−7、実施例2−3)からなる焼結体は、フォルステライト単体(比較例)からなる焼結体と比較して比誘電率εが高くなっていた。また、比誘電率εとxの値との間には直線的な相関関係が見出された。このことから、Mn元素の組成比を調整することにより比誘電率を所望の値にコントロール可能である。 From Table 1 and FIG. 3, solid solutions of tefolite and forsterite (Examples 1-1 to 1-6 and Examples 2-1 to 2-2) and tephrite alone (Examples 1-7 and Example 2-) The sintered body made of 3) had a higher relative dielectric constant ε r than the sintered body made of forsterite alone (comparative example). A linear correlation was found between the relative dielectric constant ε r and the value of x. From this, the relative dielectric constant can be controlled to a desired value by adjusting the composition ratio of the Mn element.

また、表1および図4より、テフォライトとフォルステライトとの固溶体およびテフォライト単体からなる焼結体は、フォルステライト単体からなる焼結体にほぼ匹敵する品質係数Q・fを示した。特に0.05≦x≦0.15の範囲内で、フォルステライト単体と比較して品質係数Q・fの大きな改善が見られ、x=0.05でQ・f=180333GHzを達成することができた。   Further, from Table 1 and FIG. 4, the sintered body composed of a solid solution of tefolite and forsterite and the single unit of tefolite exhibited a quality factor Q · f almost comparable to the sintered body composed of the single unit of forsterite. In particular, within the range of 0.05 ≦ x ≦ 0.15, a significant improvement in the quality factor Q · f is seen compared to the forsterite alone, and it is possible to achieve Q · f = 180333 GHz at x = 0.05. did it.

さらに、空気中(酸化雰囲気下)で焼成を行った実施例1−1〜1−7と、窒素雰囲下気(還元雰囲気下)で焼成を行った実施例2−1〜2−3とを比較して、比誘電率ε、品質係数Q・fおよび温度係数τの値には大きな違いはなかった。このことから、テフォライト単体またはテフォライトとフォルステライトの固溶体からなる高周波用誘電体組成物は、酸化雰囲気下または還元雰囲気下のいずれで焼成しても良好な誘電特性をもつことが分かった。 Furthermore, Examples 1-1 to 1-7 fired in air (under an oxidizing atmosphere), and Examples 2-1 to 2-3 fired in a nitrogen atmosphere (under a reducing atmosphere) The relative dielectric constant ε r , quality factor Q · f, and temperature coefficient τ f were not significantly different. From this, it was found that the dielectric composition for high frequency composed of tefolite alone or a solid solution of tefolite and forsterite has good dielectric properties even when fired in either an oxidizing atmosphere or a reducing atmosphere.

以上のように本発明によれば、特にマイクロ波領域において高純度フォルステライトに匹敵する優れた誘電特性をもつとともに、比較的低温で焼成可能な高周波用誘電体組成物を得ることができる。
また、一般的な誘電体組成物では還元雰囲気下で焼成すると誘電特性が低下してしまうため好ましくない。これに対し、本発明の高周波用誘電体組成物は酸化雰囲気下でも、N雰囲気等の還元雰囲気下でも焼成可能であり、特に還元的雰囲気下で焼成する方がやや良好な誘電特性を示す傾向にある。この理由は必ずしも明らかではないが、酸化的雰囲気では含まれるMn(II)がMn(III)やMn(IV)に変化するためではないかと推定される。
このことから、本発明の高周波用誘電体組成物は、例えば酸化しやすい金属材料を用いた電極との同時焼成を行う場合には還元的雰囲気で焼成を行うなど、目的に応じて酸化、還元のうちいずれの雰囲気下で焼成するかを自由に選択することができ、特に一般的な誘電体組成物では好ましくないとされる還元雰囲気下の焼成でも良好な誘電特性を達成することができるから、応用範囲が広いという利点がある。
As described above, according to the present invention, it is possible to obtain a high-frequency dielectric composition that has excellent dielectric properties comparable to high-purity forsterite, particularly in the microwave region, and can be fired at a relatively low temperature.
In addition, when a general dielectric composition is baked in a reducing atmosphere, the dielectric characteristics deteriorate, which is not preferable. In contrast, the high-frequency dielectric composition of the present invention can be fired in an oxidizing atmosphere or a reducing atmosphere such as an N 2 atmosphere, and exhibits slightly better dielectric properties, especially when fired in a reducing atmosphere. There is a tendency. The reason for this is not necessarily clear, but it is presumed that Mn (II) contained in the oxidizing atmosphere is changed to Mn (III) or Mn (IV).
Therefore, the high-frequency dielectric composition of the present invention can be oxidized or reduced according to the purpose, for example, in a reducing atmosphere when co-firing with an electrode using a metal material that is easily oxidized. It is possible to freely select which atmosphere to fire, and it is possible to achieve good dielectric characteristics even when firing in a reducing atmosphere, which is not preferable for general dielectric compositions. There is an advantage that the application range is wide.

本発明の高周波用誘電体組成物の製造工程の一例を示す工程図Process drawing which shows an example of the manufacturing process of the dielectric composition for high frequencies of this invention テフォライト単体、テフォライトとフォルステライトの固溶体、およびフォルステライト単体からなる焼結体のX線チャートX-ray chart of tefolite alone, solid solution of tefolite and forsterite, and sintered body consisting of forsterite alone テフォライト単体、テフォライトとフォルステライトの固溶体、およびフォルステライト単体からなる焼結体において、Mn元素の組成比(xの値)と比誘電率との関係を示すグラフGraph showing the relationship between the composition ratio (value of x) and relative dielectric constant of Mn element in tefolite alone, solid solution of tefolite and forsterite, and sintered body consisting of forsterite alone テフォライト単体、テフォライトとフォルステライトの固溶体、およびフォルステライト単体からなる焼結体において、Mn元素の組成比(xの値)と品質係数との関係を示すグラフA graph showing the relationship between the composition ratio (value of x) of Mn element and the quality factor in tefolite alone, a solid solution of tefolite and forsterite, and a sintered body made of forsterite alone テフォライト単体、テフォライトとフォルステライトの固溶体、およびフォルステライト単体からなる焼結体において、Mn元素の組成比(xの値)と温度係数との関係を示すグラフGraph showing the relationship between the composition ratio of Mn element (value of x) and temperature coefficient in tefolite alone, solid solution of tefolite and forsterite, and sintered body consisting of forsterite alone

Claims (1)

テフォライト単体またはテフォライトとフォルステライトの固溶体からなる、一般式Mg2−xMnSiO(但し0.05≦x≦0.15)で示される高周波用誘電体組成物であって、
純度99.9%以上のMgO、MnO、SiOを、目的とする高周波用誘電体組成物中の原子数の比に基づいて秤量し、混合する工程と、得られた混合物を焼成する工程とを経ることにより製造される高周波用誘電体組成物。
A high-frequency dielectric composition represented by the general formula Mg 2-x Mn x SiO 4 (where 0.05 ≦ x ≦ 0.15 ), comprising a single tefolite or a solid solution of tefolite and forsterite,
A step of weighing and mixing MgO, MnO, and SiO 2 having a purity of 99.9% or more based on the ratio of the number of atoms in the intended high-frequency dielectric composition, and a step of firing the obtained mixture The dielectric composition for high frequency manufactured by going through.
JP2005297772A 2004-10-12 2005-10-12 High frequency dielectric composition Active JP4790365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297772A JP4790365B2 (en) 2004-10-12 2005-10-12 High frequency dielectric composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004298069 2004-10-12
JP2004298069 2004-10-12
JP2005297772A JP4790365B2 (en) 2004-10-12 2005-10-12 High frequency dielectric composition

Publications (2)

Publication Number Publication Date
JP2006137664A JP2006137664A (en) 2006-06-01
JP4790365B2 true JP4790365B2 (en) 2011-10-12

Family

ID=36618714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297772A Active JP4790365B2 (en) 2004-10-12 2005-10-12 High frequency dielectric composition

Country Status (1)

Country Link
JP (1) JP4790365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748799B2 (en) * 2006-09-05 2011-08-17 ニッコー株式会社 Low-frequency fired porcelain composition for high frequency and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3927664A1 (en) * 1989-08-22 1991-03-14 Heidelberger Druckmasch Ag FRICTION ROLLER IN THE PRINTING MACHINE'S INK OR DAMPING
JP3924406B2 (en) * 1999-09-30 2007-06-06 京セラ株式会社 Alumina sintered body and manufacturing method thereof, wiring board and manufacturing method thereof
JP2001291604A (en) * 2000-04-11 2001-10-19 Matsushita Electric Ind Co Ltd Chip-type laminated thermistor and its manufacturing method

Also Published As

Publication number Publication date
JP2006137664A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
Tang et al. Relationship between Rattling Mg2+ ions and anomalous microwave dielectric behavior in Ca3-xMg1+ xLiV3O12 ceramics with garnet structure
Tang et al. Microwave dielectric properties of Li3A3Te2O12 (A= Y, Yb) garnets for low temperature cofired ceramic technologies
JP2004277226A (en) Dielectric porcelain composition and dielectric resonator using it
JP5726209B2 (en) Dielectric ceramics and dielectric filter provided with the same
Li et al. Effects of sintering conditions on microstructures and microwave dielectric properties of Ba6− 3x (Sm1− yNdy) 8+ 2xTi18O54 ceramics (x= 2/3)
JP2934639B2 (en) Dielectric ceramic composition
JP4524411B2 (en) Dielectric porcelain composition
Lv et al. Effect of the B2O3 addition on the sintering behavior and microwave dielectric properties of Ba3 (VO4) 2–Zn1. 87SiO3. 87 composite ceramics
CN104098327B (en) Dielectric ceramic composition, dielectric ceramics, electronic unit and signal equipment
KR100567322B1 (en) Dielectric ceramic composition of forsterite system for microwave and millimeter-wave application and method for forming the same
JP4790365B2 (en) High frequency dielectric composition
JPH11106255A (en) Dielectric ceramic composition and its production
JP5134819B2 (en) High frequency dielectric ceramics
JP4579159B2 (en) High frequency porcelain composition, method for producing the same, and planar high frequency circuit
Fu et al. Effect of TiO2 ratio on BaO–Nd2O3–TiO2 microwave ceramics
JP4654558B2 (en) Dielectric material and method of manufacturing the dielectric material
Xu et al. Dielectric ceramics with TiO2 rich compositions in Bi2O3–TiO2 system
JP4569857B2 (en) Dielectric ceramic composition and dielectric resonator
JP4494756B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP4383951B2 (en) High frequency dielectric ceramic composition and method for producing the same
JP4541692B2 (en) Dielectric porcelain composition
JPH08325054A (en) Low dielectric loss body
JP2004284830A (en) Forsterite ceramic sintered compact
Zhang et al. Synthesis and dielectric properties of a new Mg 2 CeNbO 6.5 ceramic system at microwave frequencies
JPH05290626A (en) Manufacture of high frequency dielectric sintered body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4790365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250