JP4789228B2 - Metal strip punching method - Google Patents

Metal strip punching method Download PDF

Info

Publication number
JP4789228B2
JP4789228B2 JP2001128010A JP2001128010A JP4789228B2 JP 4789228 B2 JP4789228 B2 JP 4789228B2 JP 2001128010 A JP2001128010 A JP 2001128010A JP 2001128010 A JP2001128010 A JP 2001128010A JP 4789228 B2 JP4789228 B2 JP 4789228B2
Authority
JP
Japan
Prior art keywords
punching
clearance ratio
chipping
die
clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001128010A
Other languages
Japanese (ja)
Other versions
JP2002321020A (en
Inventor
半二 石川
季継 高橋
尚文 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2001128010A priority Critical patent/JP4789228B2/en
Publication of JP2002321020A publication Critical patent/JP2002321020A/en
Application granted granted Critical
Publication of JP4789228B2 publication Critical patent/JP4789228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Punching Or Piercing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、金型のチッピングや金属帯のソリ発生を防止しながら形状精度の良好な打抜き製品を得る加工方法に関する。
【0002】
【従来の技術】
金属帯からリング状打抜き部品を製造する場合、図1,2に示すように、ダイ1に載置した金属帯M0をストリッパープレート2で拘束し、ダイ1に相対的に接近する方向にパンチ3を移動させて金属帯M0を中抜きする(第1工程)。次いで、中抜きされた金属帯M1をダイ1,カウンターパッド4の上に載置し、ストリッパープレート2で金属帯M1を拘束する。この状態でダイ1に相対的に接近する方向にパンチ3を移動させることにより、金属帯M1を外抜きし、リング状の打抜き製品Pを製造する(第2工程)。
【0003】
通常の打抜き加工では、ダイ1とパンチ3とのクリアランス比が小さ過ぎると、二次剪断面,タング等の発生によって打抜き面性状が劣化しやすく、剪断抵抗の増大に起因するチッピング等の微小欠陥の発生により金型寿命も低下しやすい。逆に、過大なクリアランス比では,打抜き面にダレ,カエリが増加し、ソリも大きくなって製品の平面度が低下しやすい。このようなことから、金属帯Mの打抜き加工では、5〜12%のクリアランス比が一般的に採用されている。
【0004】
クリアランス比の設定は、第1工程の中抜きと第2工程の外抜きでリング状打抜き製品Pを作製する場合でも同様に適用され、第1工程,第2工程共にダイ1とパンチ3との推奨クリアランス比5〜12%を基準として同じクリアランス比に設定することが一般的である。リング状打抜き製品Pの用途によっては平面度規格が厳しく要求されることもあり、このような場合にはソリ発生を防止するため比較的小さな値5〜8%にクリアランス比を設定している。
平面度規格の要求が厳しい加工製品を得る打抜き加工では、小さなクリアランスのために金型の磨耗が激しく、作製された打抜き製品にソリが発生するまでの時間が短くなる。そのため、ソリの増大に起因して平面度が規定値を越えた時点で金型の寿命が尽きたものと判断し、金型を交換している。
【0005】
金型の交換は、第1工程で中抜き、第2工程で外抜きすることによりリング状打抜き製品Pを製造する場合に不利となる。すなわち、第1工程、第2工程何れの金型の磨耗がソリ増大に影響を及ぼしているのか不明なため、第1工程、第2工程のパンチ及びダイを両方とも交換せざるを得ない。具体的には、平面度の要求が過酷な打抜き製品の製造ラインでは、2〜3回/日の頻度で金型の交換が余儀なくされ、金型交換作業のために生産性が低下するばかりか、多数の金型を使い潰すことから加工コストが上昇することにもなる。更に、金型交換を節減して加工を継続すると、ソリの増加に起因して平面度が規格値を超える打抜き製品が製造される。打抜き製品に生じたソリは別工程で矯正する必要があるが、ソリの除去には熟練を要し、工数増加によって加工コストが上昇する原因にもなる。
【0006】
【発明が解決しようとする課題】
打抜き加工時に発生するソリは、ダイ1及びパンチ3で金属帯Mが剪断される際に発生する曲げモーメントによる塑性変形が原因である。一般的にダイ1とパンチ3とのクリアランス比が大きいほど、ソリを助長させる大きな曲げモーメントが発生すると考えられる。したがって、ソリ発生を抑制するためには、クリアランス比を可能な限り小さく設定することが好ましい。
【0007】
他方、チッピングと称される微小欠陥が金型に発生すると、微小欠陥が打抜き製品に転写され打抜き面性状が劣化するため、チッピングの発生に起因した金型の交換が強いられる。金型に発生するチッピングは、クリアランス比の減少に起因する剪断抵抗の増加が原因である。したがって、チッピング発生の抑制にはクリアランス比をなるべく大きく設定することが好ましく、ソリ発生の抑制策と相反する。
ソリ及びチッピングの発生原因が相異なる現象に由来し、ソリ発生を抑制しようとするとチッピングが発生しやすく、チッピング発生を抑制しようとするとソリが発生しやすくなる。そのため、適正なクリアランス比を設定することにより、ソリ及びチッピング両者の発生を抑制することは困難であった。
【0008】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、中抜き,外抜きによってリング状の打抜き製品を作製する場合、ソリ発生に及ぼすクリアランス比の影響度を考慮して中抜き時と外抜き時とでクリアランス比を変えることにより、平面度を低下させるソリ発生や打抜き面性状を低下させるチッピングの発生を抑え、金型の寿命を延長させると共に、形状精度の良好な打抜き製品を得ることを目的とする。
【0009】
本発明は、その目的を達成するため、ダイに載置した金属帯をストリッパープレートで拘束してダイ方向にパンチを相対移動させて中抜き、次いで外抜きすることによりリング状打抜き製品を作製する際、ダイとパンチとの間のクリアランス比を中抜き時に比較して外抜き時に小さく設定することを特徴とする。クリアランスは、被打抜材である金属帯の板厚tに対するクリアランスCの比率で定義されるクリアランス比〔C/t×100(%)〕が中抜き時に12〜20%、外抜き時に5〜10%となるように設定することが好ましい。
【0010】
【作用】
本発明者等は、中抜き,外抜きの2工程でリング状の打抜き製品を製造するとき、各工程のソリ発生に及ぼすクリアランスの影響を種々調査検討した。その結果、クリアランス比がソリ発生に及ぼす影響は、中抜きに比較して外抜きの方が大きくなることを見出した。中抜き,外抜きでクリアランス比の影響が異なる理由は次のように推察される。
中抜き,外抜きの2工程でリング状打抜き製品を製造する場合、金属帯M0の中抜きで生じる縁部R1は、中抜きされた金属帯M1の外抜きで生じる縁部R2よりも曲率が大きく、小さな面積に大きな打抜き荷重が加わる。そのため、局部的に大きな剪断抵抗が金型に作用し、チッピングが発生しやすい。他方、大きな荷重負荷のため金属帯M0が塑性変形しやすいが、変形領域が小さなことから金属帯M0の全体に及ぼす影響が少なく、クリアランス比を比較的大きく設定してもソリ発生が少ない。
【0011】
外抜きは、製品Pとなる部分をパンチ3とカウンターパッド4で挟んで打ち抜くが、挟み込む面積が狭いため、打抜き時の曲げモーメントにより生じる反りを抑え込むことが難しく、製品Pに反りが発生しやすい。そのため、中抜きに比較して外抜き時のクリアランス比を小さく設定して、ソリ発生を抑制する必要がある。しかも、曲率が比較的小さなことから、外抜き時に加えられる打抜き荷重が局部的に大きな応力として金型に作用することもない。すなわち、チッピングは、中抜き時に比較して発生しがたい。このように中抜き時,外抜き時における金属帯M0,M1の挙動及び金型に加わる負荷を考慮して、中抜き時よりも外抜き時のクリアランス比を小さく設定することにより、リング状打抜き製品Pの平面度を低下させるソリの発生が抑えられ、且つ打抜き面性状が良好な製品が得られる。
【0012】
中抜き工程では、クリアランス比を12〜20%の範囲に設定することが好ましい。中抜き時に生じるチッピングは、12%以上のクリアランス比で顕著に抑制される。しかし、20%を超えるクリアランス比では、曲げモーメントに起因して大きなソリが生じやすくなる。外抜き工程では、クリアランス比を5〜10%と中抜き時よりも小さく設定することが好ましい。クリアランス比が5%未満になると、外抜き工程で金型のチッピングが極端に増加し、打抜き製品の端面性状を劣化させる。逆に10%を超えるクリアランス比では、打抜き製品にソリが発生しやすくなる。
【0013】
【実施例】
板厚2mm,板幅150mmのSAPH鋼帯をコイルから巻き戻し、レベラーで平面度0.05mm以下に調整した打抜き原板を用意した。金型材質はダイ1,パンチ3共にSKD11以上(HRC60以上)とし、ストローク数25spmの順送り抜き加工できる200トンメカプレスを使用した。
打抜き原板を第1工程のダイ1に載置し、ストリッパープレート2で拘束した状態で径100mmのパンチ3を下降させて中抜きした。ダイ1としては、クリアランス比が3〜22%となるように100.12〜100.88mmの範囲でダイ径を変化させたものを使用した。
【0014】
外抜き工程では、中抜きされた金属帯M1をダイ径120mmのダイ1,カウンターパッド4に載置し、ストリッパープレート2で拘束した状態でパンチ3を下降させて金属帯M1を外抜きした。パンチ3としては、クリアランス比が5〜20%となるように119.8〜119.2mmの範囲でパンチ径を変化させたものを使用した。
中抜き,外抜きで作製されたリング状打抜き製品Pを打抜き回数250ショットごとにサンプリングし、次のようにソリ,チッピングの発生状況を調査した。
【0015】
130mm×130mmの範囲で0.3mmの隙間をもつスリット治具にリング状打抜き製品Pを通過させることによってソリ発生の有無を判定し、平面度が0.3mmを超える打抜きショット数をカウントした。平面度0.3mmを超えるソリが3000ショット未満で発生したものを×,3000〜5000ショットで発生したものを△,5000ショットでも生じなかったものを○と評価した。
打抜き面性状を目視観察し、3000ショット未満でチッピングが発生したものを×,3000〜5000ショットでチッピングが発生したものを△,5000ショット以上でもチッピングが発生しなかったものを○として耐チッピング性を評価した。
【0016】
総合評価として、5000ショットの打ち抜き後に平面度0.3mmを超えるソリが発生せず、3000ショット以上でも金型にチッピングの発生がなく、且つ何れかの金型が5000ショットを超えるまでチッピングが発生しなかったものを○,5000ショットに至る前に平面度0.3mmを超えるソリが発生し、或いは5000ショットに達するまでにチッピングが発生したものを×と判定した。
【0017】
表1の調査結果にみられるように、ソリ発生に影響が小さな第1工程(中抜き)のクリアランス比を比較的大きく設定し、ソリ発生に大きな影響を与える第2工程(外抜き)のクリアランス比を比較的小さく設定した試験番号1〜6(本発明例)では,5000ショット以上でも平面度0.3mmを超えるソリが発生しなかった。また、クリアランス比を大きく設定した第1工程の金型は、打抜きを5000ショット以上繰り返した後でもチッピングが生じおらず、更なる打抜き加工に使用可能なことが判った。
【0018】
これに対し、第1工程,第2工程のクリアランス比を等しく設定して中抜き,外抜きしたものでは、クリアランス比の小さな試験番号7(従来例)ではチッピングの発生傾向が強く、クリアランス比の大きな試験番号8(従来例)ではソリの発生傾向が強くなっていた。ソリの発生は、クリアランス比の増加に伴って顕著になり、第1工程のクリアランス比を15%にした試験番号9(従来例)では、1000ショットの短期間で著しいソリが検出された。
また、第1工程のクリアランス比を第2工程よりも小さく設定した場合、第1工程のクリアランス比が小さな試験番号10(比較例)ではチッピングの発生が著しく、ソリ発生に至る打抜き回数も少なかった。この場合にも、クリアランス比の増加に伴ってソリ発生が顕著になり、試験番号11(比較例)では1000ショット、試験番号12(比較例)では500ショットと短期間でソリが発生した。
【0019】

Figure 0004789228
【0020】
【発明の効果】
以上に説明したように、本発明においては、ソリ発生に影響の少ない中抜き時のクリアランス比をチッピング低減に有効な程度まで大きくし、ソリ発生に及ぼす影響が大きな外抜き時のクリアランス比を小さく設定することにより、チッピングの発生を抑えている。この方法によると、平面度が高く、端面性状も良好なリング状打抜き製品が得られ、打抜き加工後のソリ矯正工程も省略できる。また、チッピング発生に起因する金型の交換頻度も節減できるため、加工コストも低減する。
【図面の簡単な説明】
【図1】 金属帯M0を中抜きした後、外抜きするリング状打抜き製品の製造工程図
【図2】 金属帯M0(a)を中抜き(b)し、次いで外抜き(c)することにより作製されるリング状打抜き製品
【符号の説明】
1:ダイ 2:ストリッパープレート 3:パンチ 4:カウンターパッド
0:金属帯 M1:中抜きされた金属帯 M2:外抜きされた金属帯
1:中抜きで金属帯に形成された開口縁部
2:外抜きで金属帯に形成された開口縁部
P:リング状打抜き製品[0001]
[Industrial application fields]
The present invention relates to a processing method for obtaining a punched product with good shape accuracy while preventing chipping of a mold and warping of a metal strip.
[0002]
[Prior art]
When manufacturing a ring-shaped punched part from a metal band, as shown in FIGS. 1 and 2, the metal band M 0 placed on the die 1 is constrained by a stripper plate 2 and punched in a direction relatively close to the die 1. 3 is moved to remove the metal band M 0 (first step). Next, the metal band M 1 that has been hollowed out is placed on the die 1 and the counter pad 4, and the metal band M 1 is restrained by the stripper plate 2. By moving the punch 3 in the direction of approach relative to the die 1 in this state, the metal strip M 1 and the outer vent, to produce a ring-shaped stamped product P (second step).
[0003]
In a normal punching process, if the clearance ratio between the die 1 and the punch 3 is too small, the punching surface properties are likely to deteriorate due to the occurrence of secondary shearing surfaces, tangs, etc., and minute defects such as chipping due to increased shear resistance Occurrence of the mold tends to shorten the mold life. On the other hand, when the clearance ratio is too large, sagging and burrs increase on the punched surface, the warp becomes large, and the flatness of the product tends to decrease. For this reason, a clearance ratio of 5 to 12% is generally adopted in the punching process of the metal strip M.
[0004]
The setting of the clearance ratio is similarly applied to the production of the ring-shaped punched product P by the hollowing out of the first step and the outside punching of the second step, and between the die 1 and the punch 3 in both the first step and the second step. In general, the same clearance ratio is set based on a recommended clearance ratio of 5 to 12%. Depending on the application of the ring-shaped punched product P, the flatness standard may be strictly required. In such a case, the clearance ratio is set to a relatively small value of 5 to 8% in order to prevent warping.
In punching to obtain a processed product with strict requirements for flatness standards, wear of the mold is intense due to the small clearance, and the time until warpage occurs in the manufactured punched product is shortened. Therefore, when the flatness exceeds a specified value due to the increase in warping, it is determined that the life of the mold has been exhausted, and the mold is replaced.
[0005]
The replacement of the mold is disadvantageous when the ring-shaped punched product P is manufactured by hollowing out in the first step and outside in the second step. That is, since it is unclear whether the mold wear in the first step or the second step has an effect on the increase in warping, both the punch and the die in the first step and the second step must be replaced. Specifically, in a production line for punched products with strict flatness requirements, the mold must be replaced at a frequency of 2 to 3 times per day, which not only reduces productivity due to mold replacement work. In addition, the processing cost rises because many molds are used up. Furthermore, if the machining is continued while saving the mold exchange, a punched product whose flatness exceeds the standard value due to the increase in warpage is produced. The warp generated in the punched product needs to be corrected in a separate process. However, the removal of the warp requires skill, and increases the processing cost due to an increase in man-hours.
[0006]
[Problems to be solved by the invention]
The warp generated during punching is caused by plastic deformation caused by a bending moment generated when the metal strip M is sheared by the die 1 and the punch 3. Generally, it is considered that as the clearance ratio between the die 1 and the punch 3 is larger, a larger bending moment that promotes warping is generated. Therefore, in order to suppress warp generation, it is preferable to set the clearance ratio as small as possible.
[0007]
On the other hand, when a micro defect called chipping occurs in the mold, the micro defect is transferred to the punched product and the punching surface property is deteriorated, so that the die must be replaced due to the occurrence of chipping. Chipping generated in the mold is caused by an increase in shear resistance due to a decrease in the clearance ratio. Therefore, it is preferable to set the clearance ratio as large as possible for suppressing the occurrence of chipping, which is contrary to the measure for suppressing the generation of warp.
The causes of the occurrence of warping and chipping are derived from different phenomena, and chipping is likely to occur when trying to suppress the generation of warping, and warping tends to occur when attempting to suppress the occurrence of chipping. Therefore, it is difficult to suppress the generation of both warping and chipping by setting an appropriate clearance ratio.
[0008]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem, and in the case of producing a ring-shaped punched product by hollowing out or punching out, the degree of influence of the clearance ratio on the generation of warp is taken into consideration. By changing the clearance ratio between punching and punching, it suppresses the occurrence of warping that reduces flatness and chipping that reduces punching surface properties, extends the life of the mold, and punches with good shape accuracy The purpose is to obtain a product.
[0009]
In order to achieve the object, the present invention produces a ring-shaped punched product by constraining a metal strip placed on a die with a stripper plate, relatively moving the punch in the direction of the die, and then punching out and then punching out. In this case, the clearance ratio between the die and the punch is set to be smaller at the time of outside punching than at the time of punching out. The clearance is a clearance ratio [C / t × 100 (%)] defined by the ratio of the clearance C to the thickness t of the metal strip as the punched material is 12 to 20% when the punching is performed, and 5 to 5 when the punching is performed. It is preferable to set it to be 10 %.
[0010]
[Action]
The inventors of the present invention conducted various investigations and studies on the influence of clearance on the generation of warp in each process when manufacturing a ring-shaped punched product in two processes, ie, hollowing and outside punching. As a result, it has been found that the effect of the clearance ratio on the generation of warp is larger in the case of the outer space than in the case of the hollow region. The reason why the effect of the clearance ratio differs between the hollow and outer holes is assumed as follows.
When a ring-shaped punched product is manufactured in two steps of hollowing and outer punching, the edge R 1 generated by the hollowing of the metal band M 0 is the edge R 2 generated by the hollowing of the metal band M 1 that has been hollowed out. The curvature is larger than that, and a large punching load is applied to a small area. Therefore, a large shearing resistance acts on the mold locally and chipping is likely to occur. On the other hand, the metal band M 0 is easily plastically deformed due to a large load, but since the deformation region is small, there is little influence on the entire metal band M 0 , and there is little warping even if the clearance ratio is set relatively large. .
[0011]
The outside punching is performed by pinching the part to be the product P between the punch 3 and the counter pad 4, but since the sandwiched area is small, it is difficult to suppress the warp caused by the bending moment at the time of punching, and the product P is likely to warp. . For this reason, it is necessary to set the clearance ratio at the time of outside removal smaller than that at the time of hollowing out to suppress warpage. Moreover, since the curvature is relatively small, the punching load applied at the time of external punching does not act on the mold as a large stress locally. That is, chipping is less likely to occur compared to the case of hollowing out. In this way, by considering the behavior of the metal bands M 0 , M 1 at the time of hollowing out and at the time of hollowing out and the load applied to the mold, the clearance ratio at the time of hollowing out is set smaller than that at the time of hollowing out. Generation of warp that reduces the flatness of the punched product P can be suppressed, and a product having good punching surface properties can be obtained.
[0012]
In the hollowing process, the clearance ratio is preferably set in the range of 12 to 20%. Chipping that occurs at the time of hollowing out is remarkably suppressed at a clearance ratio of 12% or more. However, when the clearance ratio exceeds 20%, a large warp tends to occur due to the bending moment. In the outside punching process, it is preferable to set the clearance ratio to 5 to 10 %, which is smaller than that at the time of hollowing out. When the clearance ratio is less than 5%, the chipping of the mold is extremely increased in the outer punching process, and the end face property of the punched product is deteriorated. On the other hand, when the clearance ratio exceeds 10 %, warping tends to occur in the punched product.
[0013]
【Example】
A SAPH steel strip having a plate thickness of 2 mm and a plate width of 150 mm was unwound from the coil, and a punched original plate adjusted to a flatness of 0.05 mm or less with a leveler was prepared. The die and punch 3 were both SKD11 or higher (HRC 60 or higher), and a 200-ton mechanical press capable of progressive feed punching with a stroke number of 25 spm was used.
The punched original plate was placed on the die 1 in the first step, and the punch 3 having a diameter of 100 mm was lowered while being constrained by the stripper plate 2 and punched out. As the die 1, a die having a die diameter changed in a range of 100.12 to 100.88 mm so that the clearance ratio is 3 to 22% was used.
[0014]
In the outside punching process, the metal strip M 1 that has been punched out is placed on the die 1 and the counter pad 4 having a die diameter of 120 mm, and the punch 3 is lowered while being restrained by the stripper plate 2 to remove the metal strip M 1. did. As the punch 3, a punch having a punch diameter changed in a range of 119.8 to 119.2 mm so that the clearance ratio is 5 to 20% was used.
A ring-shaped punched product P produced by hollowing out and punching out was sampled every 250 shots, and the occurrence of warping and chipping was investigated as follows.
[0015]
The presence or absence of warpage was determined by passing the ring-shaped punched product P through a slit jig having a gap of 0.3 mm within a range of 130 mm × 130 mm, and the number of shots with a flatness exceeding 0.3 mm was counted. A case in which warpage exceeding 0.3 mm in flatness occurred in less than 3000 shots was evaluated as x, a case in which 3000 to 5000 shots were generated was evaluated as Δ, and a case in which no warp was generated even in 5000 shots was evaluated as ○.
Chipping resistance was evaluated by visually observing the punched surface properties, x when chipping occurred at less than 3000 shots, Δ when chipping occurred at 3000 to 5000 shots, and ○ when no chipping occurred at 5000 shots or more. Evaluated.
[0016]
As a comprehensive evaluation, after punching 5000 shots, no warpage exceeding a flatness of 0.3 mm occurs, chipping does not occur in the mold even after 3000 shots, and chipping occurs until any mold exceeds 5000 shots. What did not do was evaluated as x when warpage exceeding 0.3 mm in flatness occurred before reaching 5,000 shots, or chipping occurred before reaching 5000 shots.
[0017]
As can be seen in the survey results in Table 1, the clearance ratio of the first process (outline), which has a small effect on warp generation, is set to be relatively large, and the clearance of the second process (outside), which has a large effect on warp generation In Test Nos. 1 to 6 (examples of the present invention) in which the ratio was set to be relatively small, warpage exceeding a flatness of 0.3 mm did not occur even at 5000 shots or more. Further, it was found that the mold in the first step with a large clearance ratio does not cause chipping even after punching is repeated 5000 shots or more, and can be used for further punching.
[0018]
On the other hand, in the case where the clearance ratio in the first step and the second step is set to be equal and hollowed out or removed, test number 7 (conventional example) having a small clearance ratio has a strong tendency to generate chipping. In the large test number 8 (conventional example), the tendency to warp was strong. The generation of warp becomes significant as the clearance ratio increases, and in Test No. 9 (conventional example) in which the clearance ratio in the first step is 15%, a significant warp was detected in a short period of 1000 shots.
Further, when the clearance ratio of the first step was set smaller than that of the second step, the occurrence of chipping was remarkably generated in test number 10 (comparative example) where the clearance ratio of the first step was small, and the number of times of punching leading to warpage was small. . Also in this case, warpage was noticeable with an increase in the clearance ratio, and warpage occurred in a short period of 1000 shots in test number 11 (comparative example) and 500 shots in test number 12 (comparative example).
[0019]
Figure 0004789228
[0020]
【The invention's effect】
As described above, in the present invention, the clearance ratio at the time of hollowing that has little effect on warp generation is increased to an extent that is effective for reducing chipping, and the clearance ratio at the time of outer punching that has a large effect on warpage generation is reduced. By setting, the occurrence of chipping is suppressed. According to this method, a ring-shaped punched product with high flatness and good end face properties can be obtained, and the warp correction step after punching can be omitted. In addition, since the frequency of die replacement due to chipping can be reduced, the processing cost is also reduced.
[Brief description of the drawings]
[1] After hollowed metal strip M 0, the manufacturing process view of the ring-shaped stamped products outside vent [2] metal strip M 0 (a) is hollowed (b), then the outer vent (c) Ring-shaped punched products made by doing
1: Die 2: Stripper plate 3: Punch 4: Counter pad M 0 : Metal strip M 1 : Metal strip that has been hollowed out M 2 : Metal strip that has been hollowed out R 1 : Opening formed in the metal strip by hollowing out Edge R 2 : Opening edge P formed in a metal band by outside punching: Ring-shaped punched product

Claims (2)

ダイに載置した金属帯をストリッパープレートで拘束してダイ方向にパンチを相対移動させて中抜き、次いで外抜きすることによりリング状打抜き製品を作製する際、ダイとパンチとの間のクリアランス比を中抜き時に比較して外抜き時に小さく設定することを特徴とする金属帯の打抜き加工方法。 The clearance ratio between the die and the punch when making a ring-shaped punched product by constraining the metal band placed on the die with a stripper plate and moving the punch relatively in the die direction, then punching out and then punching out A metal strip punching method characterized in that the size is set to be smaller at the time of outside punching than at the time of punching out. 金属帯の板厚に対するクリアランスの比率で定義されるクリアランス比を中抜き時に12〜20%、外抜き時に5〜10%に設定する請求項1記載の打抜き加工方法。The punching method according to claim 1, wherein the clearance ratio defined by the ratio of the clearance to the thickness of the metal strip is set to 12 to 20% at the time of punching and 5 to 10 % at the time of punching.
JP2001128010A 2001-04-25 2001-04-25 Metal strip punching method Expired - Fee Related JP4789228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128010A JP4789228B2 (en) 2001-04-25 2001-04-25 Metal strip punching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128010A JP4789228B2 (en) 2001-04-25 2001-04-25 Metal strip punching method

Publications (2)

Publication Number Publication Date
JP2002321020A JP2002321020A (en) 2002-11-05
JP4789228B2 true JP4789228B2 (en) 2011-10-12

Family

ID=18976779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128010A Expired - Fee Related JP4789228B2 (en) 2001-04-25 2001-04-25 Metal strip punching method

Country Status (1)

Country Link
JP (1) JP4789228B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935693B2 (en) * 1981-03-31 1984-08-30 住友軽金属工業株式会社 How to take out products in a continuous punching press
JPH05337566A (en) * 1992-06-10 1993-12-21 Marujiyun Seiki Kogyo Kk Method for punching thick plate
JPH10118724A (en) * 1996-10-18 1998-05-12 Nippon Steel Corp Method for punching thick steel plate excellent in fatigue durability
JPH11192518A (en) * 1998-01-08 1999-07-21 Nissan Motor Co Ltd Method for sequentially punching method and device therefor
JP3044252B1 (en) * 1999-04-19 2000-05-22 有限会社都製作所 Punching method of thin plate and laminated plate used therefor

Also Published As

Publication number Publication date
JP2002321020A (en) 2002-11-05

Similar Documents

Publication Publication Date Title
JP6293844B2 (en) Metal sputtering target with integrated backing plate
JP2006224121A (en) Steel sheet punching tool, and punching method using the same
JP6747631B1 (en) Method of manufacturing pressed parts and method of manufacturing blanks
JPH0523755A (en) Punching method for metallic plate and die
JP4789228B2 (en) Metal strip punching method
JPH08300061A (en) Steel plate punching method
JP2009050859A (en) Method of manufacturing two parts, for example, inner parts and outer parts
JPH105892A (en) Progressive feed press die used for manufacturing ultra-fine lead parts, and work used for manufacturing the lead parts
JPH07227627A (en) Method of press blanking work
CN113263108B (en) Progressive press working method
JP2003266138A (en) Forging with hole, and method and device for forging the same
CN102485369B (en) Machining method ensuring precision of stamping parts
JP2013202668A (en) Punching device and punching method
JP4454440B2 (en) Cross section correction method for irregular cross section
KR100399313B1 (en) Roll piercing mold for processing in strip plate
KR101826694B1 (en) Blanking method and apparatus thereof
KR102038082B1 (en) Manufacturing method of shielding ring through progressive press die
JP3620329B2 (en) Punching method for high silicon steel sheet
JPH07108418B2 (en) Sheet metal work manufacturing method
JP2567783B2 (en) Engine manifold flange manufacturing method
JPH1190534A (en) Formation of arched press forming product excellent in shape-freezability
JP4454441B2 (en) Cross section correction method for irregular cross section strips
JP2003220425A (en) Method for blanking metal strip
TWI808469B (en) Processed product and process product manufacturing method
CN109158467B (en) Method for improving run-out of non-oriented electrical steel stamping stator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4789228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees